Northumbria Research Link

Citation: Rushdi, Ahmed, Ersek, Vasile, Mix, Alan and Clark, Peter (2018) Controls on dripwater chemistry of Oregon Caves National Monument, Northwestern United States. Journal of Hydrology, 557. pp. 30-40. ISSN 0022-1694

Published by: Elsevier

URL: https://doi.org/10.1016/j.jhydrol.2017.12.006 https://doi.org/10.1016/j.jhydrol.2017.12.006

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/32777/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

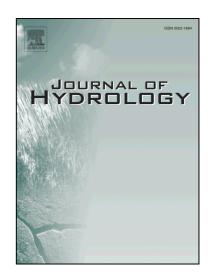
www.northumbria.ac.uk/nrl

Accepted Manuscript

Research papers

Controls on dripwater chemistry of Oregon Caves National Monument, northwestern United States

Ahmed I. Rushdi, Vasile Ersek, Alan C. Mix, Peter U. Clark


PII: S0022-1694(17)30824-7

DOI: https://doi.org/10.1016/j.jhydrol.2017.12.006

Reference: HYDROL 22417

To appear in: Journal of Hydrology

Received Date: 11 July 2017 Accepted Date: 3 December 2017

Please cite this article as: Rushdi, A.I., Ersek, V., Mix, A.C., Clark, P.U., Controls on dripwater chemistry of Oregon Caves National Monument, northwestern United States, *Journal of Hydrology* (2017), doi: https://doi.org/10.1016/j.jhydrol.2017.12.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	To: Journal of Hydrology
2	
3	Controls on dripwater chemistry of Oregon Caves National Monument,
4	northwestern United States
5	
6	
7	Ahmed I. Rushdi ^{1,*} , Vasile Ersek ² , Alan C. Mix ³ , Peter U. Clark ³
8	
9	¹ ETAL, 2951 SE Midvale Dr., Corvallis OR 97333, U.S.A.
10	² Department of Geography, Northumbria University, NE1 8ST UK
11	³ College of Earth, Oceanic and Atmospheric Sciences, Oregon State University,
12	Corvallis OR 97331, U.S.A.
13	
14	
15	
16	
17	
18	
19	
20	

 $^{^*}$ Corresponding author: $\underline{arushdi@ksu.edu.sa} \text{ or } \underline{airushdi@comast.net}$

Abstract

Cave dripwater chemistry of Oregon Caves National Monument (OCNM) was
studied, where the parameters pH, total alkalinity, calcium, magnesium, strontium,
sodium and barium were analyzed at quasi-monthly intervals from 2005 to 2007.
Different statistical analyses have been used to investigate the variability of the chemical
parameters in the different sites in the OCNM cave system. The dripwater varies in
response to seasonal changes in rainfall. The drip rates range from zero in summer to
continuous flow in winter, closely following the rainfall intensity. Spatial variations of
dripwater chemistry, which is nonlinearly related to dripwater discharge likely, reflect the
chemical composition of bedrock and overlying soil, and the residence time of the ground
water within the aquifer. The residence time of infiltrated water in bedrock cracks control
the dissolution carbonate bedrock, reprecipitation of calcium carbonate and the degree of
saturation of dripwater with respect to calcium carbonate minerals. Spatiotemporal
fluctuations of dripwater Mg/Ca and Sr/Ca ratios are controlled by dissolution of
carbonate bedrock and the degree of calcite reprecipitation in bedrock cracks. This
suggests that trace elements in speleothem deposits at the OCNM may serve as
paleoclimatological proxies for precipitation, if interpreted within the context of
understanding local bedrock chemistry.

Keywords: OCNM, Oregon, speleothem, geochemistry, dripwater, Mg/Ca, Sr/Ca

1. Introduction

Interactions between rain, soil, and bedrock produce a variety of biogram	eochemical
signals in cave dripwaters including $\delta^{18}O$ and δD from rain, traces of organic n	natter, δ^{13} C
of total dissolved CO ₂ and elements such as calcium, magnesium, strontium.	. Dripwater
properties depend on the surrounding environmental conditions and on the	dissolution
and precipitation processes in the karst system (Fairchild et al., 2000; 2006;	Toran and
Roman, 2006; Borsato et al., 2015; Casteel and Banner, 2015; Zeng et al., 201	5). Studies
of limestone caves identified seasonal variations in ionic concentrations of	dripwaters
(Baker et al., 2000; Drever, 1982; Musgrove and Banner, 2004; Day and I	Henderson,
2013). For example, total dissolved ion concentrations in dripwaters were of	bserved to
correlate with soil CO ₂ seasonal variations (Mayer, 1999) because higher levels	vels of soil
CO ₂ increase carbonate mineral dissolution. The composition of the host	rock also
strongly influences the water composition (Motyka et al., 2005; Smart et al., 1	986; Tooth
and Fairchild, 2003). Dripwaters with high concentrations of calcium and bica	rbonate are
mainly produced from calcitic bedrock while waters with high concentrations	of calcium,
magnesium, bicarbonate, and sulfate are produced from dolomitic bedrock	with pyrite
(Chalmin et al., 2007; Bar-Matthews et al., 1991; Frisia et al., 2002; Wu et al.,	2015). The
variation in physical and chemical properties of dripwater may be incorp	orated and
preserved in speleothem deposits, and these changes have been used to infer pa	aleoclimate
and paleoenvironmental conditions in the caves where speleothem deposits w	ere formed
(McDermott, 2004; Fairchild et al., 2006; Johnson et al., 2006; McDonald e	t al., 2007;
Lachniet 2009, Steponaitis et al., 2015). The physicochemical characteristics	of the drip
waters can help in understanding the processes that affect the formation of	stalagmites

67	and carbon, hydrogen and oxygen isotopic composition (McDonald et al., 2007; Lamber
68	and Aharon, 2011).

Drip water rates change seasonally and vary from slow and irregular to fast and continuous (Baker and Brunsdon, 2003; Baker et al., 2000; Fernández-Cortés et al., 2007). The drip water rates in the Oregon Caves National Monumnent (OCNM) also vary seasonally and range from slow to no drip at shallow rooms to fast and constant drip at the deeper rooms (Schubert 2007). The control of drip water rate and room locality (i.e, shallow vs depth) on the drip water chemistry has not been fully investigated. Therefore, the objectives of this work were to: (1) characterize the geochemistry and the saturation states of the waters with respect to carbonate minerals and (2) investigate the possible factors that control dripwater chemistry and their potential influence on the chemical composition of speleothems from shallow (slow dripwater rate) and deep (fast dripwater rate) rooms. Here, we analyze dripwaters from the OCNM in southwestern Oregon of the USA.

2. Study Area and Sampling Sites

The OCNM is located in the Klamath Mountains, southwestern Oregon (42° 05′ 53″ N, 123° 24′ 26″ W, altitude ~1220m) (Fig. 1). The modern vegetation above the cave is dominated by *Pseudotsuga menziesii* (Douglas fir) and *Abies concolor* (white fir). The plants are mainly of C-3 type vegetation. Soils overlying the OCNM are from various bedrock lithologies including granites and serpentinites. The bedrock in the OCNM cave system belongs to the Paleozoic-Triassic Applegate Group, consisting of metavolcanics and metasediments (Irwin, 1966; Barnes et al., 1996). The OCNM was formed in a

faulted and folded marble lens, and was carved by meteoric waters that have percolated
through the overlying soil and bedrock (Barnes et al., 1996; Vacco et al., 2005; Schubert
2007).

The measured temperature deep inside the cave is approximately constant through the year at 8.8±0.7°C. The monthly-average temperature outside the cave ranges from ~19°C in summer to ~6.5°C in winter (Schubert, 2007). Precipitation falls mostly as rain in the fall and spring and as snow in winter, but is virtually absent in summer (Taylor and Hannan, 1999). Water entering the cave is derived from local snowmelt and rainfall (Ersek et al., 2010). Rainfall events activate dripwater sites within hours to days in the upper part of the cave, although water also may take months to years to reach the cave through cracks parallel to the orientation of the bedrock structure (Roth, 2005). While upper parts of the cave dry out by the end of summer, deeper parts remain wet throughout the year (Schubert, 2007).

3. Methodology

3.1. Sampling

Dripwater samples were collected at four sites within the OCNM cave system (Fig. 1) at quasi-monthly intervals from January, 2005 to July, 2007. We collected the water samples manually and used a stopwatch to count the number of drips/minute. We did this 3 times and averaged the number. Precipitation data were obtained from a weather station installed outside the cave. Collection sites were situated in the the Kings and Queens Throne Room (KQR, ~14 meters subsurface), Imagination Room (IR, ~18 m subsurface), the Miller's Chapel Room (MR, ~30 m subsurface), and from two sites in

113	the Shower Room (SR1 and SR2, ~51 m subsurface). All water samples were collected
114	into dark amber glass bottles with airtight screw-cap seals and plastic vapor barriers
115	which were acid-washed, rinsed with deionized water purified with Milli-Q Plus Water
116	System (Millipore) prior to use. Nitric acid was added to each sample to achieve pH ~ 1.0
117	(Cenci and Martin, 2004).
118	. The samples were subsequently stored in a refrigerator for 1-12 months before
119	analysis, where the pH and total alkalinity measurements were performed during the first
120	2-3 months of the sample collection. The analyses of trace and major elements were
121	conducted 3-6 months later.
122	
123	3.2. Chemical Analyses
124	The bottles were carefully sealed to ensure that they remain gas-tight to prevent
125	any atmospheric gas exchange. We divided the water samples into two aliquots. The first
126	aliquot, which was drawn slowly from the top 5 cm of the solution, was used for pH and
127	total alkalinity measurements, and the second aliquot was used for isotopic (Ersek et al.,
128	2010) and major and minor element analyses. As sample pH can be affected by gas
129	exchange, the pH and total alkalinity measurements were performed in closed cell to
130	avoid any opportunity to CO ₂ exchange with atmosphere.
131	pH Benchtop meter (Thermo Scientific TM Orion Star TM A211) was used to
132	measure pH and total alkalinity. Before proceeding with any pH and titration
133	measurements, we standardized the electrodes in two VWR buffer solutions assigned pH
134	of 4.63 ± 0.02 at 25° C (4.62 ± 0.02 at 20° C) and pH of 7.38 ± 0.02 at 25° C (7.39 ± 0.02 at

20°C), and determined the slope, S, of the electrode, expressed in mv/pH. We compared

135

the slope with the theoretical one (e.g., S = 58.178 my/pH at 20°C) and if measurements were within 1%, the theoretical value was usually used. The practical slope for six different measurements had a standard deviation of +0.099 mv/pH and % error ranged from -0.325 to 0.117%. The measured pH, pH_m, was calculated from: CRIK

140

136

137

138

139

$$pH_{m} = pH_{b} + \frac{E_{m} - E_{b}}{S} \tag{1}$$

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

where pH_b is the pH of the standard buffer solution, and E_m and E_b are the electrode potential in the test solution and in the standard buffer, respectively. No significant drift in pH electrode was observed during the routine measurements. The reproducibility of the pH measurements was found to range from 0.009-0.024pH unit at pH > 7.50 and from 0.005-0.013pH unit for pH < 4.00.

Total alkalinity (TA) of each test solution was measured using the Gran titration method (Gran, 1952; Dyrssen and Sillen, 1967; Mehrbach et al, 1973; Rushdi et al., 1998). The standard deviation of total alkalinity was +5.8 µeq L⁻¹ solution.

We analyzed major and trace metals by inductive coupled plasma-mass spectrometry at the W.M. Keck Collaboratory, College of Oceanic and Atmospheric Sciences, Oregon State University. The metals (and their detection limits) included calcium (Ca) (0.1 ppm), magnesium (Mg) (0.4 ppb), strontium (Sr) (0.1 ppb), barium (Ba) (0.1 ppb), and sodium (Na) (3 ppb). Deionized water was used to prepare the calibration and quality control solutions. Nitric acid was added to the matrix of the standard and quality control solutions to achieve pH ~ 1.0. We analyzed reference solutions every 10-20 samples to monitor the stability of analytical system. Standard deviations of triplicate

analyses were better than <5%. The concentrations of potassium (K^+), chlorine (Cl^-) and sulfate (SO_4^{2+}) ions were obtained from the data of a different project, studying the dripwater chemistry of same rooms, by Schubert (2007).

3.3. Degree of saturation with respect to carbonate minerals

The saturation states of the solutions are calculated at in situ temperatures using the ratio of ionic products (IP) to solubility constants (K_{sp}) of the mineral of interest (i.e., IP/Ksp). This value is known as degree of saturation (Ω), saturation ratio, and saturation index (SI) (Picknett et al., 1976). The percent degree of saturation ($^{9}\Omega$) with respect to different carbonate minerals was calculated from:

$$\%\Omega = \left[\frac{(Ca^{2+})_T * CA \frac{K_2}{(\gamma_{H^+})_T (H^+)_T + 2K_2}}{\frac{K_{sp}^0}{(\gamma_{Ca^{2+}})_T (\gamma_{Co_3^{2-}})_T}} \right] * 100 \quad (2)$$

 $K_2 = \frac{K_2^0 (\gamma_{HCO_3^-})_T}{(\gamma_1)^2 (\gamma_2)^2}$

where CA is the carbonate alkalinity (CA = (HCO₃⁻) + (CO₃²-)); $(\gamma_i)_T$ is the total activity coefficient of the species (i)_T (Davies, 1962); and K₂ and K₂⁰ are the second stoichiometric and thermodynamic dissociation constants of carbon acid (Hanred and Scholes 1941); K_{sp} and K_{sp}⁰ are the stoichiometric and thermodynamic solubility constants of the mineral calcium carbonate, respectively (Plummer and Bunsenberg,

(3)

179	1982). The concentration ranges of Cl ⁻ , K ⁺ and SO_4^{2-} of the dripwaters (Schurbet, 2007)
180	were small relative to Ca ²⁺ , HCO ₃ and CO ₃ and did not affect the computed values of
181	Ca ²⁺ and CO ₃ ²⁻ activity coefficients; thus, their concentration effects on the saturation
182	states of calcium carbonate minerals are insignificant.
183	Values of $\%\Omega$ were estimated for pure calcite, aragonite, and vaterite minerals.
184	Our calculation was in a good agreement with the values estimated by Schubert (2007)
185	using PHREEQC1 speciation water resource application software (Parkhurst, 200).
186	9
187	3.4. Statistical analysis
188	The statistical analyses including linear relationships between different physical
189	and chemical parameters, cluster analysis (CA) and principal component analysis (PCA)
190	were performed using the SPSS (IBM-Statistical Package for the Social Sciences, version
191	16.0).
192	
193	4. Results and discussion
194	4.1. Rainfall and Dripwater rates
195	In 2005, precipitation was up to 25.1 millimeter per month (mm m ⁻¹), with
196	maximum rain occurring in October. The amount of precipitation increased in 2006 with
197	a maximum amount in November (276.9 mm m ⁻¹) and December (368.3 mm m ⁻¹) (Fig. 2).
198	The increase in the amount of precipitation was also significant in 2007, where the
199	maximum rainfall was recorded in October and November (234.4 and 117.9 mm m ⁻¹ ,
200	respectively). The average amount of rainfall increased significantly from 7.4 mm m ⁻¹ in

201	2005 (July-December), 70.9 mm m ⁻¹ in 2006 (January-December) to 92.7 mm m ⁻¹ in
202	2007 (January-November).

The amount of water that infiltrates into caves depends on the types of soil and bedrock above the cave, the hydrology of the karst aquifer, and the water source (Atkinon, 1977; Ford and Williams, 1989; Tooth and Fairchild, 2003; McDonald and Drysdale, 2007). The drip rates at the OCNM range from no drip to continuous discharge at all sites except SR1 and SR2, where water flows throughout the year, and increase with the increase of the rainfall outside the cave (Fig. 2). At the other sites, there was no water discharge during much of the summer. After times of low or no rainfall, the water discharge in the cave usually starts a month after precipitation events. After heavy rainfall events the drip rates typically increases within 3-7 days. The drip rates were highest at the deepest sites (SR2 and SR1) and lowest at the shallowest site (IR) (Fig. 2b) but were not monotonically related to depth in the cave (KQR> MR).

4.2. Chemical parameters and dripwater rates

The chemical analyses of the dripwater samples (pH, total alkalinity, calcium, magnesium, strontium, barium and sodium) are shown Figure 2. Obviously, the major and trace metal concentrations varied both seasonally and spatially (Fig. 2) where the highest concentrations were observed between November and December and deeper rooms with discrete drippings. For the purpose of understanding the similarity and dissimilarity among the different sites, the data set was statistically analyzed by cluster analysis; it was performed with the standardized data by Z score using Ward's method with squared Euclidean distances. The cluster analysis of the chemical parameters (Figure

224	3a) shows that only two groups were recognized; the first group included IR and KQR (<
225	18 m depth) and the second group included MR, SR1 and SR2 (> 30 m depth). The
226	depth of the site from surface and dripwater discharge also appears to affect calcium
227	variability. Sites in the cave that are shallower (IR, KQR) or have slow drip rates (MR)
228	show higher Ca ²⁺ and Mg ²⁺ variability than deep cave sites (SR1 and SR2). Slightly
229	higher concentrations of calcium and magnesium are also detected when water discharges
230	are slow at deeper drip sites.
231	The levels of the various measured parameters have been submitted to simple
232	regression analyses to examine any probable correlation among them with emphasis on
233	the dripwater rates for shallow and deep rooms. The correlations between the different
234	physicochemical parameters of the shallow and deep rooms are shown in Table 1. For the
235	shallower (<18m depth) site rooms such as the QKR and IR, the significant correlations
236	are mainly for TA-Ca $^{2+}$ and Mg $^{2+}$ -Sr $^{2+}$ (p < 0.01), where the dripwater rates are slow. The
237	lack of significant correlations between other parameters such as TA-Mg ²⁺ , TA-Sr ²⁺ ,
238	Mg ²⁺ -Ca ²⁺ , Ca ²⁺ -Sr ²⁺ is possibly due to incongruent dissolution and re-precipitation of
239	calcium carbonate of different carbonate minerals. In deeper rooms (> 30 m depth) such
240	as MR, SR1 and SR2, where the dripwater rates are discrete, the correlations are
241	significant for Drip-pH, pH-Sr ²⁺ , TA-Ca ²⁺ , TA-Ca ²⁺ and Mg ²⁺ -Sr ²⁺ likely is caused
242	mainly by congruent dissolution of carbonate bed rock. Obviously, dissolution process is
243	the limiting factor that controls the concentrations of elements when the drip rates are
244	continuous and fast. This indicates that residence time of percolated water in epikarst
245	likely influences the concentration of elements in dripwaters.

Storage capacity and orientation of bedrock fractures influence the concentrations
of major and trace elements in dripwaters (Tooth and Fairchild, 2003). Slow-moving
ground waters require recharge threshold to reach different parts of the cave system. The
major change in the water composition around November 2005 and 2006 is consistent
with the increase in rainfall prior to these periods (September, 2005 and October, 2006).
These concentration peaks are followed by decreases in these chemical parameters a
month after November that persist throughout the rest of the rainy season.

4.3. Processes controlling dripwater chemistry

Because of relatively high pCO₂ derived from plant respiration and organic matter decay, dissolution processes are the main reactions in both the soil and epikarst zones (Hindy, 1971; Mayer, 1999). Therefore, dripwater solutions have geochemical information from rainfall, the soil component including organic matter and elements such as calcium, magnesium, strontium and phosphorous, and the mineralogy of the epikarst zone where dissolution and reprecipitation of calcium, magnesium, and strontium are expected.

To determine the possible sources of elements and physical and chemical processes that control the concentrations of the measured parameters, principle component analysis (PCA) was performed with the correlation coefficient matrix and the variance rotation with Kaiser Normalization. PCA analysis, with eigen value > 1.0, identified two principle components for shallow and deeper rooms (Table 2). Factor loadings of > 0.75 for variables were used for interpretation.

268	By treating the karst as one homogenous system and using all the data set to
269	predict PC factors to physicochemical parameters, two principle components were
270	extracted explaining 91.96% of the total variance. PC1 explains 78.62% of the variance,
271	with pH, TA, Ba ²⁺ , Ca ²⁺ , Mg ²⁺ and Na ⁺ as the predominant parameters (Fig. 3b). Thus,
272	PC1 represents the major processes controlling the dripwater components, which are
273	mainly dissolution of the bed rock, solid-solution reaction and water-rock ion exchange.
274	A 13.34% of the variance is explained by PC2 showing a significant factor loading for
275	Sr ²⁺ , likely dissolution of minerals containing strontium (e.g., crawfordite
276	(Na ₃ Sr(PO ₄)(CO ₃)), strontianite (SrCO ₃) and celestite (SrSO ₃)).
277	The relationship between calcium and other elements can be used to investigate
278	the dominant reactions and sources of these elements (Fairchild et al., 2000; McDonald et
279	al., 2007; Cruz et al., 2007; Karmann et al., 2007). Table 2 shows the correlation between
280	various elements and calcium concentrations in dripwater solutions. Both magnesium and
281	strontium concentrations show significant positive correlations with calcium
282	concentrations (Table 2) at the IR, SR1 and SR2 sites. This suggests that the main source
283	of these elements (i.e., calcium, magnesium and strontium) is the dissolution of carbonate
284	minerals in bedrock, which also confirmed by the results of PCA. These correlations are
285	insignificant in the KQR and MR dripwater sites suggesting that the dissolution/re-
286	precipitation reactions of carbonate minerals might not be the main sources of the major
287	elements (i.e., Ca, Mg and Sr) in the solutions of these dripwater sites. Another
288	explanation for this lower correlation is the dissolution of other minerals beside carbonate
289	minerals such as calcium sulfate (CaSO _{4(s)}). Sodium and barium show poor correlations

with calcium (Table 2),	which suggest tha	t the main source	e of these eleme	ents is the soil
cover.				

Since the dissolution and/or the precipitation of calcium carbonate ($CaCO_{3(s)}$)
affects both total carbon dioxide and total alkalinity, the contribution of CaCO3(s) can be
confirmed by the correlation between TA calcium ion (Ca2+) concentrations. The
correlations between TA and Ca^{2+} is significant at shallow and deep sites (r = 0.82-0.92)
(Table 1), indicating that $CaCO_{3(s)}$ is the major source of calcium ions. The number of
moles of CO_3^{2-} that are involved in the formation of $CaCO_{3(s)}$ or are released as a result of
CaCO _{3(s)} dissolution will change the carbonate alkalinity by a factor of 2 according to
equation (CA = (HCO_3^-) + $2(CO_3^{2-})$). Thus, one would expect to obtain a slope of 2 by
plotting CA against Ca ²⁺ if the main cause of the CA change is the dissolution or
precipitation of CaCO _{3(s)} . The estimated slopes are respectively 1.91, 1.98 and 1.96 and
1.67 (1.88 \pm 0.14) for the IR, MR, SR1 and SR2 sites (Fig. 4b), confirming that CaCO _{3(s)}
bedrock is the main source of Ca, Mg, and Sr in IR, MR and SR sites. This is also
supported by the significant correlations between Mg-Ca and Sr-Ca for SR1 and SR2
(Table 2). The slope of 1.07 for the KQR site suggests that additional minerals are
involved in the contribution of Ca concentration in dripwater. One of these minerals is
likely to be CaSO _{4(s)} , which will increase the concentration of calcium ion relative to
carbonate alkalinity and eventually reduce the slope

4.4. The saturation levels of dripwater solutions with respect to carbonate minerals

Values of $\%\Omega$ were estimated for pure calcite, aragonite, and vaterite minerals.

All sites showed that the dripwaters were supersaturated with respect to pure calcite and

313	aragonite and undersaturated with respect to vaterite (Table 4; Fig. 5). They ranged from
314	86% to 528% (mean = 262 ± 111), 59% to 368% (mean = 182 ± 77), and 21% to 128%
315	(mean = 63 ± 26) for calcite, aragonite and vaterite, respectively.
316	The degree of saturation of the dripwater is an important parameter to assess its
317	chemistry and the tendency for stalagmite formation or dissolution. At the KQR and MR
318	sites, the dripwaters were saturated to supersaturated with respect to pure calcite and
319	aragonite and undersatruated to supersaturated at IR SR1 and SR2 sites. All sites are
320	undersaturated to saturated with respect to vaterite. We also note that the degree of
321	saturation generally increases with the decreases of drip rates in May-June 2006 and 2007
322	when solutions become more supersaturated when the drip rate is slow (Figs 2 and 5).
323	Various natural waters (i.e., spring, ground, oceanic and pore waters) are often
324	found to be supersaturated with respect to both calcite and aragonite, but without
325	inorganic precipitation of CaCO _{3(s)} (Weyle, 1961; Pytkowicz, 1965; Berner, 1975). It is
326	well established that the magnesium content of calcite has a direct effect on the physical
327	and chemical behavior of CaCO _{3(s)} and its solubility (Chave et al., 1962; Bischoff and
328	Fyfe, 1968; Lahann, 1978a,b; Mackenzie et al., 1982; Mucci and Morse, 1984; Mucci et
329	al., 1985; Rushdi, 1995; Rushdi et al., 1992, 1998). Chave et al (1962) showed that the
330	solubility of calcium carbonate increases in the order of pure calcite, low magnesian
331	calcite, aragonite and high magnesian calcite. Previous studies have shown that the
332	solubility of magnesian calcite increases by the increase of Mg content of CaCO _{3(s)}
333	(Plummer and Mckenzie, 1974; Thorstenson and Plummer, 1977; Land, 1967; Chave et
334	al., 1962, Walter and Morse, 1984; Mucci and Morse, 1984; Rushdi et al., 1992, 1998).
335	This may produce dripwater solutions with high Mg concentrations and supersaturated

with respect to pure calcite. The maximum super saturation range where low magnesian calcite may form is about 528% (Rushdi et al., 1998). However, the dripwater solutions are supersaturated with respect to pure calcite and aragonite, so they are likely to be undersaturated with respect to high magensian calcite. Therefore, one would expect that pure and low magnesian calcite will form as a speleothem deposit.

4.5. Mg/Ca and Sr/Ca ratios of dripwaters

Prolonged interaction between groundwater and bedrock enhances dissolution of calcium carbonate bedrock increasing the saturation levels of calcium carbonate and the concentrations of Ca, Mg, Sr and other trace metals in solution. The dripwaters in caves are expected to have a high degree of saturation (i.e., high Ca concentration) (Fig. 6a) with respect to calcium carbonate minerals. Different Mg/Ca and Sr/Ca ratios due to enhanced dissolution of various carbonate minerals and possible calcite reprecipitation are expected (Fairchild et al. 2000; Day and Henderson, 2013). We find that shallow sites show relatively high concentrations of Ca and lower degree of superaturation, whereas deeper sites show lower Ca concentrations and higher degree of super saturation (Fig. 6a). This is likely due to longer contact times of waters and bedrock and reprecipitation of low magnesian calcite in deeper sites.

The Mg/Ca and Sr/Ca ratios fluctuate at slow and fast drip sites (Figs. 2b) and the values of Ca, Mg and Sr concentrations (Fig. 2) also suggest that the bedrock (with different calcium carbonate minerals) is the main factor that influences the chemistry of the dripwaters in the cave. The results also show that there is an increase in the Sr/Ca with the increase of Mg/Ca (Fig. 6b). Shallow sites (e.g. IR) show low values of both

Mg/Ca and Sr/Ca ratios with no obvious trend. This is likely due to repre-	cipitation of
magnesian calcite on the surfaces of bedrock fractures. This is supported	by the low
Mg/Ca ratios and relatively lower degree of saturation at shallow sites (IR	and KQR)
relative to the high ratios and higher saturation levels with respect to calcium	carbonate in
deeper sites (SR1 and SR2) (Fig. 6).	

Dilution effects are likely to be insignificant in these dripwater sites; therefore, Ca variation relative to Mg/Ca and Sr/Ca in dripwaters is likely controlled by dissolution of different CaCO_{3(s)} minerals (e.g., calcite with different mole percent Mg, aragonite, and dolomite) and calcite reprecipitation in the routes and cracks above the cave. Calcite reprecipitation apparently increases in dry seasons because air circulation increases in the epikarst as a result of low level of ground waters of high degree of saturation with respect to calcium carbonate (Fairchild et al., 2000; Tooth and Fairchild, 2003; Musgrove and Banner, 2004; McDonald et al., 2004; Fairchild et al., 2006; Day and Henderson, 2013). This will increase the relative co-precipitation of Mg and Sr and decrease the Mg/Ca and Sr/Ca ratios in dripping waters of shallow sites (Fig. 6c and d). During the wet season, when the degree of supersaturation is expected to be comparatively lower, low magnesian calcite precipitates and less Mg and Sr are co-precipitated in the mineral phase leading to high dripwater Mg/Ca and Sr/Ca ratios. Sr/Ca ratios show slightly different behavior due to likely different bedrock carbonate minerals as is explained below.

These observations suggest that the degree of supersaturation of the solution and rate of calcite reprecipitation, which differ seasonally, control the variations of Mg/Ca and Sr/Ca ratios in dripwater solutions. This is because the partition coefficients of Mg and Sr are less than 1 in dilute solutions (Mucci and Morse, 1983; Morse and Bender,

1990; Huang and Fairchild, 2001). In addition, the ionic sizes of Ca (radius = 112 pm),
Mg (radius = 86 pm) and Sr (radius = 132 pm) have differing effects on the chemical and
physical behaviors of the carbonate minerals. Sr is more commonly associated with
aragonite and is found to increase the solubility of aragonite, while Mg is associated with
calcite and increases its solubility (Chave et al., 1962; Land, 1967; Plummer and
MacKenzie, 1974; Mucci and Morse, 1984; White, 1994, 2004). Usually, the Sr/Ca ratio
in aragonite is higher than in calcite, so that the dissolution and transformation of
aragonite to calcite releases Sr into the solution (Huang et al., 2001; Fairchid and
Killawee, 1995; White, 2004; McMillan et al., 2005). This indicates that the increase in
Sr/Ca ratios in KQR is likely attributed to the presence of aragonite in the bedrock.

The exponential decrease of Ca in solution relative to both Mg/Ca and Sr/Ca ratios in these dripwaters (Fig. 6e and f) suggests that calcite reprecipitation, which is clearly shown in shallow sites, can be considered as the key chemical reaction that controls the variation in elemental ratios in dripwater of the OCNM cave system. Therefore, trace metals in speleothem deposits at the OCNM can be used as paleoclimatological proxies for precipitation, if interpreted within the context of understanding local bedrock chemistry.

5. Conclusions and paleoclimate implications

Dissolution and reprecipitation are likely the main processes that control the chemistry of the dripwaters in the OCNM cave system. Calcite reprecipitation could be a key process at parts of the epikarst and causes homogenous short-term variation in major

and trace elements in dripwaters in the system. Seasons with low rainfall are associated
with increases in Ca, Mg, and Sr concentrations karst solutions. This is followed by
relative increases in Mg/Ca and Sr/Ca concentration ratios relative to the concentration of
Ca in the dripwaters due to re-precipitation of calcite along flow routes.

Spatiotemporal covariance of chemical parameter suggests that stalagmites in this cave might record the major and trace metal variations as a result of changes in hydrological conditions. In particular, Mg/Ca and Sr/Ca in speleothems from OCNM may serve as proxies of past climate. The spatial chemical variations in the OCNM cave waters are apparently influenced by the mineralogy of the bedrock and the flow routes, which cause the differences in their values and the slopes of Mg/Ca and Sr/Ca ratio trends. This suggests that Mg/Ca and Sr/Ca at a given location in the ONCM cave system can be used as qualitative proxies for seasonal changes of past rainfall as long as groundwater pathways to each site remain constant, but that quantitative interpretations, or combination of data from multiple sites, would require site-specific calibration.

Acknowledgments

The authors thank the staff at Oregon Cave National Monument for their assistance in sampling water.

426	References
427	Atkinson, T. C., (1977), Diffuse flow and conduit flow in limestone terrain in Mendip
428	Hills, Somerset (Great Britain). Journal of Hydrology 35, 93–110.
429	Baker, A., D. Genty, and I.J. Fairchild (2000), Hydrological characterization of
430	stalagmite drip water at Grottee de Villars, Dordogne, by the analysis of inorganic
431	species and luminescent organic matter. Hydrology and Earth System Sciences 4,
432	439-449.
433	Bar-Matthews, M., A. Matthews, and A. Ayalon (1991). Environmental Controls of
434	Speleothem Mineralogy in a Karstic Dolomitic Terrain (Soreq Cave, Israel). The
435	Journal of Geology, 99:189-207.
436	Barnes, C.G., Donato, M.M., Tomlinson, S.L. (1996), The enigmatic Applegate group of
437	southwestern Oregon: Age correlation and tectonic affiliation. Oregon Geology
438	58, 79-91.
439	Berner, R. A., (1975), The role of magnesium in the crystal growth of calcite and
440	aragonite from sea water. Geochim. Cosmochim. Acta 39, 489-504.
441	Bischoff, J. L., and W. S. Fyfe (1968), The aragonite-calcite transformation. Am. J. Sci.
442	266, 65-79.
443	Casteel, R. C., and J. L. Banner (2015), Temperature-driven seasonal calcite growth and
444	drip water trace element variations in a well-ventilated Texas cave: Implications
445	for speleothem paleoclimate studies. <i>Chemical Geology</i> , 392, 43-58.
446	Cenci, R. M., and J. M. Martin (2004). Concentration and fate of trace metals in Mekong
447	River Delta. Sci. Total Environ. 332, 167–182.

448 Chalmin, E. F. d'Orlyé, L. Zinger, L. Charlet, R. A. Geremia, G. Orial, M. Menu, D. 449 Baffier, and I. Reiche (2007), Biotic versus abiotic calcite formation on 450 prehistoric cave paintings: the Arcy-sur-Cure 'Grande Grotte' (Yonne, France) case. Geological Society, London, Special Publications; 2007; v. 279; p. 185-197; 451 452 DOI: 10.1144/SP279.15. Chave, K. E., K. S. Deffeves, P. K. Weyl, R. M. Garrels, and M. E. Thompson (1962), 453 454 Observations on the solubility of skeletal carbonate in aqueous solution. Science 137, 33-34. 455 Cruz Jr., F. W., S. J. Burns, M. Jercinovic, I. D. Karmann, W. D. Sharp, and M. Vuille 456 457 (2007), Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et 458 459 Cosmochimica Acta 71, 2250–2263. Davies, C. W. (1962), Ion Association. Butterworths, London. 460 Day, C. C., and G. M. Henderson (2013), Controls on trace-element partitioning in cave-461 462 analogue calcite. Geochim. Cosmochim. Acta., 120: 612-627. Drever, J.I., (1982), The geochemistry of natural waters: Englewood Cliffs, Prentice-Hall, 463 INC, 388 p. 464 465 Dyrssen, D., and L. G. Sillen (1967), Alkalinity and total carbonate in seawater. A plea for –T independent data. Tellus, 19, 113-121. 466 Ersek V., A. C. Mix, and P. U. Clark (2010), Variations of δ^{18} O in rainwater from 467 southwestern Oregon. J. Geophys. Res.: D09109, doi:10.1029/2009JD013345 468 469 Fairchild, I.J., A. Borsato, A. Tooth, S. Frisia, C. J. Hawkesworth, Y. Huang, F. 470 McDermott, and B. Spiro (2000), Controls on trace element (Sr-Mg)

471	compositions of carbonate cave water: implications for speleothem climatic
472	records. Chemical Geology 166, 255-269.
473	Fairchild, I. J., and J. A. Killawee (1995), Selective leaching in glacierized terrains and
474	implications for retention of primary chemical signals in carbonate rocks. In:
475	Kharaka, Y. K., and O. VChudaev, Eds., Water-Rock Interaction. Proceedings
476	of the 8th International Symposium on Water-Rock Interaction — WRI- 8,
477	Vladivostok, Russia, 15-19 August 1995. A.A. Balkema, Rotterdam, pp. 79-82.
478	Fairchild, I. J., C. L. Smith, A. Baker, L. Fuller, C. Spotl, D. Mattey, and F. McDermott
479	(2006), Modelling and preservation of enrivonmental environmental signals in
480	speleothem. Earth Science Review 75, 105-153.
481	Ford, D. C., and P. W., Williams (1989), Karst Geomorphology and Hydrology.
482	Chapman and Hall: London.
483	Frisia, S., A. Borsato, I. J. Fairchild, F. McDermott, E. M. Selmo (2002), Aragonite-
484	Calcite Relationships in Speleothems (Grotte De Clamouse, France):
485	Environment, Fabrics, and Carbonate Geochemistry. Journal of Sedimentary
486	Research; September 2002; v. 72; no. 5; p. 687-699; DOI:
487	10.1306/020702720687.
488	Fernández-Cortés, A., J. M. Calaforra, F. Sánchez-Martos, and J. Gisbert (2007).
489	Stalactite drip rate variations controlled by air pressure changes: an example of
490	non - linear infiltration processes in the 'Cueva del Agua' (Spain). Hydrological
491	processes 21: 920-930.
492	

22

493	Gran, G. (1952), Determination of equivalence point in potentiometric titration Part II.
494	Analyst 77, 661-671.
495	Harned, H. S., and S. R. Scholes (1941), The ionization constant of HCO- 3 from 0 to
496	50°C, J. Am. Chem. Soc., 63, 1706–1709.
497	Hendy, C. H. (1971), The isotopic geochemistry of speleothems- The calculation of the
498	effects of different modes of formation on the isotopic composition of
499	speleothems and their applicability as palaeoclimatic indicators. Geochimica et
500	Cosmochimica Acta 35, 801-824.
501	Huang, H. M., and I. J. Fairchild (2001), Partitioning of Sr2+ and Mg2+ into calcite in
502	karst-analogue experimental solutions. Geochimica et Cosmochimica Acta 65:
503	47–62. DOI: 10.1016/S0016-7037(00)00513-5.
504	Huang, Y., I. J. Fairchild, A. Borsato, S. Frisia, N.J. Cassidy, F. McDermott, and C. J.
505	Hawkesworth (2001), Seasonal variations in Sr, Mg and P in modern speleothems
506	(Grotta di Ernesto, Italy). Chemical Geology 175:429-448.
507	Irwin, W.P. (1966), Geologic reconnaissance of the Northern Coast Ranges and Klamath
508	Mountains, California with a summary of mineral resources: California Division
509	of Mines and Geology Bulletin, v 179, 80p.
510	Johnson, K. R., C. Hu, N. S. Belshaw, and G. M. Henderson (2006), Seasonal trace
511	element and stable isotope variations in China speleothem: The potential for high
512	resolution paleo mansoon reconstruction. Earth and Planetary Science Letter 244,
513	394-407.

514	Karmann, I., F. W. Cruz Jr., O. Viana Jr., and S.J. Burns (2007), Climate influence on
515	geochemistry parameters of waters from Santana-Pérolas cave system, Brazil.
516	Chemical Geology 244, 232-247.
517	Lachniet, M. D. (2009), Climatic and environmental controls on speleothem oxygen-
518	isotope values. Quat. Sci. Rev. 28, 412-432.
519	Lahann, R. W. (1978a), A chemical model for calcite crystal growth and morphology
520	control. J. Sed. Petrol. 48, 337-341.
521	Lahann, R. W. (1978b), (Reply) A chemical model for calcite crystal growth and
522	morphology control. J. Sed. Petrol. 49, 337-341.
523	Lambert, W. J., and P. Aharon (2011), Controls on dissolved inorganic carbon and δ 13
524	C in cave waters from DeSoto Caverns: implications for speleothem $\delta 13C$
525	assessments. Geochimica et Cosmochimica Acta, 75(3), 753-768.
526	Land, L. S. (1967), Diagenesis of skeletal carbonate. J. Sed. Petrol. 37, 914-930.
527	Mackenzie, F. T., W. D. Bischoff, F. C. Bishop, M. Loijens, J. Schoonmaker, and R.
528	Wollast (1982), Magnesium calcite: Low-temperature occurrence, solubility and
529	solid solution behavior. In; Reed, R. J., (ed.) Carbonate Mineralogy and
530	Chemistry Reviews in Mineralogy 11, Ribbe, P. H., series (ed), p 97-144.
531	Mayer, J. (1999), Spatial and temporal variation of groundwater chemistry at Pettyjohns
532	Cave, northwest Georgia: Journal of Cave and Karst Studies, v. 61(3), p. 131-138.
533	McDonald, J., R. Drysdale, D. Hill (2004), El Nino recorded in Australian cave drip
534	waters: Implications for reconstructing rainfall histories using stalagmites.
535	Geophysical Research Letters 31, L22202, doi:10.1029/2004GL02859.

536	McDonald, J., R. Drysdale, D. Hill, R. Chisari, H. Wong (2007), The hydrochemical
537	response of cave drip waters to sub-annual and inter-annual climate variability,
538	Wombeyan caves, SE Australia, Chemical Geology 244, 605-623.
539	McDonald, M., and R. Drysdale (2007), Hydrology of cave drip waters at varying
540	bedrock depths from a karst system in southeastern Australia. Hydrological
541	Process. 21, 1737–1748. DOI: 10.1002/hyp.6356
542	McDermott, F. (2004), Palaeo-climate reconstruction from stable isotope variations in
543	speleothems: a review. Quat. Sci. Rev. 23(7-8), 901-918.
544	McMillan, E. A., I. J. Fairchild, S. Frisia, A. Borsato, F. McDermott (2005), Annual trace
545	element cycles in calcite-aragonite speleothems: evidence of drought in the
546	western Mediterranean 1200-1100 yr BP. Journal of Quaternary Science 20:423-
547	433. DOI: 10.1002/jqs.943
548	Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz (1973), Measurement
549	of the apparent dissociation constants of carbonic acid in seawater at atmospheric
550	pressure, Limnol. Oceanogr., 18, 897–907.
551	Morse, J. W., and M. Bender (1990), Partition coefficients in calcite: examination of
552	factors influencing the validity of experimental results and their application to
553	natural systems. Chem. Geol. 82, 265-277.
554	Motyka, J., M. Gradziński, P. Bella, and P. Holúbek (2005), Chemistry of waters from
555	selected caves in Slovakia – a reconnaissance study: Environmental Geology, v.
556	48, p. 682-692, doi: 10.1007/s00254-005-000602.

557	Mucci, A., and J. W. Morse (1983), The incorporation of Mg2+ and Sr2+ into calcite
558	overgrowths: influences of growth rate and solution composition. Geochimica et
559	Cosmochimica Acta 47, 217-233.
560	Mucci, A., and J. M. Morse (1984), The solubility of calcite in seawater solutions at
561	various magnesian concentrations. It = 0.697m at 25oC and one atmospheric total
562	pressure. Geochim. Cosmochim Acta, 48, 815-822.
563	Mucci, A., J. M. Morse, and M. S. Kaminsky (1985), Auger spectroscopy analysis of
564	magnesium calcite overgrowth precipitated from seawater and solution of similar
565	composition. Am. J. Sci. 285, 289-305.
566	Musgrove, M., and J. L. Banner (2004), Controls on the spatial and temporal variability
567	of vados dripwater geochemistry; Edwards aquifer, central Texas. Geochimica et
568	Cosmochimica Acta 68; 1007-1020.
569	Parkhurst, D.L. (2007), U.S. Geological Survey;
570	http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqci/index.html
571	Picknett, R. G., L. G. Bray, and R. D. Stenner (1976). The chemistry of cave water. In:
572	Ford, T. D. and C. H. C. Cullingford (ed.) The Science of Speleology. New York,
573	Academic Press, p. 213-266.
574	Plummer, L. N., and E. Busenberg (1982) The solubilities of calcite, aragonite and
575	vaterite in CO ₂ -H ₂ O solutions between 0 and 90°C and an evaluation of the
576	aqueous model for the system CaCO ₃ -CO ₂ -H ₂ O. Geochim. Cosmochim. Acta 46,
577	1011–1040.
578	Plummer, L. N., and F. T. Mckenzie (1974), Predicting mineral solubility from rate data:
579	Application to the dissolution of magnesian calcite. Am. J. Sci. 274, 61-83.

580	Pytkowicz, R. M., (1965), Rates of inorganic calcium carbonate nucleation. J. Geol. 3,
581	196-199.
582	Roth, J. E., (2005), Oregon Caves National Monument – Subsurface Management plan –
583	Environmental Assessment, National Park Service; U.S. Department of the
584	Interior.
585	Rushdi, A. I., (1995), Equilibrium behavior magnesian calcite mineral: A theoretical
586	approach. J. K. A. U. Mar. Sci., 6, 41-50.
587	Rushdi, A. I., C. T. A. Chen, and E. Suess (1998), Solubility of calcite in seawater
588	solution of different magnesium concentration at 25°C and 1 Atm Pressure: A
589	laboratory re-examination. La Mer, 36, 9-22
590	Rushdi, A. I., R. M. Pytkowicz, E. Suess, and C. T. Chen (1992), The effect of
591	magnesium-to-calcium ratios in artificial seawater at different ionic products,
592	upon the induction time and mineralogy of calcium carbonate: a laboratory study.
593	Geologisch Rundschan, 81, 751-578.
594	Salinas, J., (2003), An Oregon caves water inventory: Oregon Caves National Monument.
595	Report CAS-0403.
596	Schubert, N. (2007), Study of a Karst Geochemical Data-Set from a Marble Cave:
597	Oregon Caves National Monument. University of Missouri, Columbia, 56pp.
598	Smart, P.L., H. Friederich, and S.T. Trudgill (1986), Controls on the composition of
599	authigenic percolation water in the Burren, Ireland. In: Paterson, K. and Sweeting,
600	M.M., Editors, 1986. Proceedings of the Anglo-French Karst Symposium, 1983
601	Proceedings of the Anglo-French Karst Symposium, 1983, pp. 17–47.

602 Steponaitis, E., Alexandra A., David M., Jay Q., Yu-Te., Wallace S. B., Bryan N. S., 603 Stephen J. B., and Hai C (2015). Mid-Holocene drying of the US Great Basin 604 recorded in Nevada speleothems. Quaternary Science Reviews 127: 174-185. 605 Taylor, G. C., and C. Hannan (1999), The Climate of Oregon: From Rainforest to Desert. 606 Oregon State University Press, Corvallis. 607 Thorstenson, D. D., and L. N. Plummer (1977), Equilibrium criteria for two component 608 solids reaction with fixed composition in an aqueous phase example: the magnesian calcite. Am. J. Sci. 277, 1203-1223. 609 610 Tooth, A. F., and I. J. Fairchild (2003), Soil and karst aquifer hydrological controls on the 611 geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest 612 Ireland. Journal of Hydrology 273 (2003) 51–68. 613 Toran, L., and E. Roman (2006), CO₂ outgasing in a combined fracture conduit karst 614 aquifer near Lititz Spring, Pennsylvania, in Harmon, R. S., and C. M. Wicks eds., 615 Perspectives on karst geomorphology, hydrology, and geochemistry – A tribute 616 volume to Derek C. Ford and William B. White: Geological Society of America Special Paper 404, p. 267-274, doi: 10.1130/2006.2404(22). 617 618 Vacco, D.A., Clark, P.U., Mix, A.C., Cheng, H. and Edwards, R.L., (2005). A 619 speleothem record of younger Dryas cooling, Klamath mountains, Oregon, USA. Quaternary Research, 64(2), pp.249-256. 620 621 Walter, L. M., and J. W. Morse (1984) Magnesian calcite stablilites: A reevaluation. 622 Geochim. Cosmochim. Acta. 48, 1059-1069. 623 Weyle, P. K., (1961), The carbonate saturatometer. J. Geol. 69, 32-44.

624	White, W. B. (1994), The anthodites from Skyline Caverns, Virginia: The Type locality
625	Natl. Speleol. Soc. Bull. 48: 20-26.
626	White, W. B. (2004), Palaeoclimate records from speleothems in limestone caves. In:
627	Sasowsky, I. D., and J. Mylroie, (Eds.), Studies of Cave Sediments. Physical and
628	Chemical Records of Palaeoclimate. Kluwer Academic, New York, pp. 135-175.
629	Wu, K., Shen, L., Zhang, T., Xiao, Q., and Wang, A. (2015). Links between host rock,
630	water, and speleothems of Xueyu Cave in Southwestern China: lithology,
631	hydrochemistry, and carbonate geochemistry. Arabian Journal of Geosciences
632	8(11), 8999-9013.
633	Zeng, G., W. Luo, S, Wang, and X. Du (2015), Hydrogeochemical and climatic
634	interpretations of isotopic signals from precipitation to drip waters in Liangfeng
635	Cave, Guizhou Province, China. Environ Earth Sci 74, 1509-1519.
636	

Table 1. Spearman correlation coefficient (r) of physicochemical parameters of drip-water samples from shallow (< 18m) and deep (> 20m) rooms at Oregon Caves National Monument from 2006-2007.

Shallow Rooms (KQR & IR)	Drip	рН	TA	Ba2+	Ca2+	Mg2+	Na+	Sr2+
Drip	1	-0.014	402*	0.126	370*	-0.121	-0.214	-0.061
pН	•	1	-0.058	.409*	-0.258	-0.035	-0.14	0.063
TA		•	1	362*	.924**	0.271	0.007	0.183
Ba2+			•	1	407*	.351*	0.157	.439*
Ca2+				•	1	0.252	0.093	0.151
Mg2+					•	1	0.175	.940**
Na+						•	1	0.136
Sr2+								0.130
Mg/Ca								
Sr/Ca								
Ba/Ca								
Na/Ca								
Deep Rooms (MR & SR1+2)								
Drip	1	.546**	313*	0.21	-0.202	.356*	281*	287*
pH	•	1	-0.253	.293*	-0.177	-0.015	-0.162	387**
TA		•	1	-0.273	.818**	0.086	-0.028	.431*
Ba2+			•	1	454*	-0.018	0.035	0.052
Ca2+					1	0.188	-0.034	.396*
Mg2+					•	1	0.13	.600**
Na+						•	1	0.251
Sr2+							•	1
Mg/Ca								•
Sr/Ca			7					
Ba/Ca								

Na/Ca

**. Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).

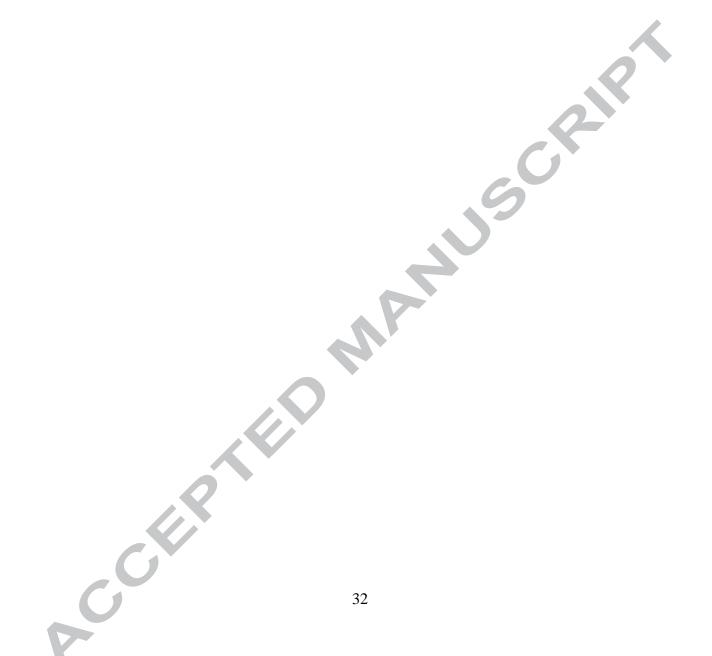
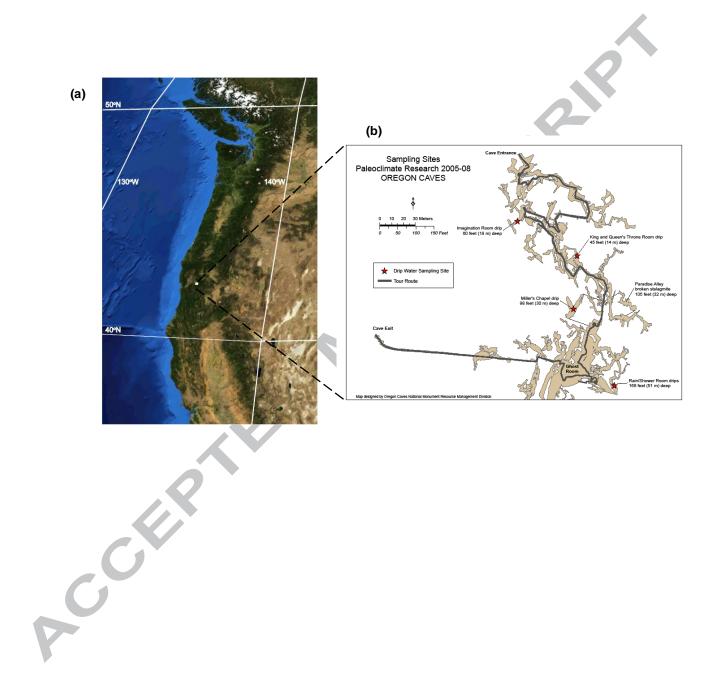
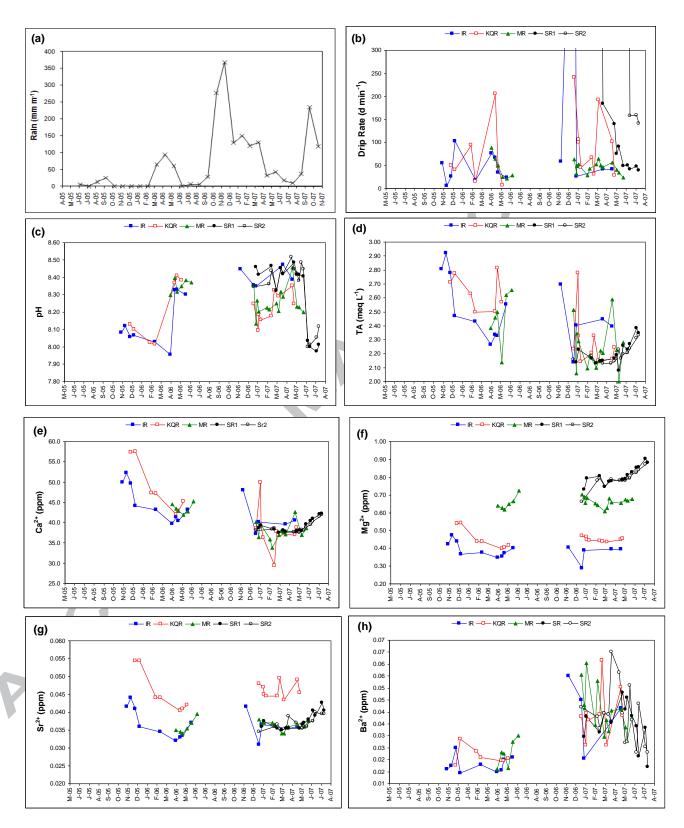
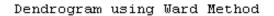
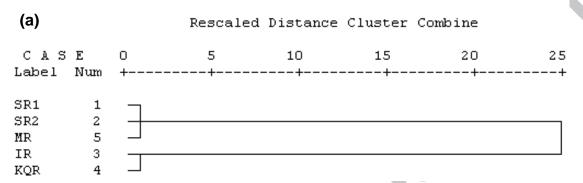


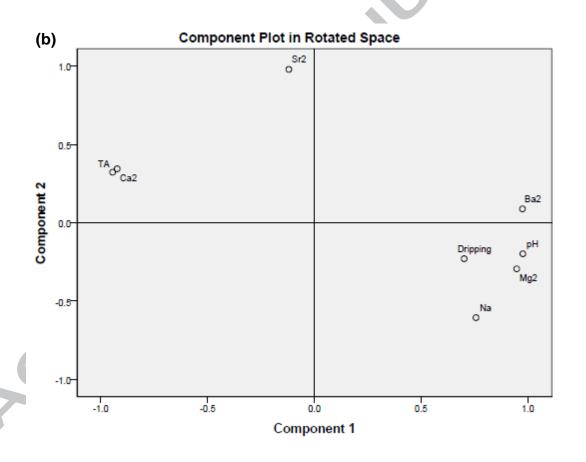
Table 2. Principal component (PC) factors to physicochemical parameters of dripwaters from all cave sites.

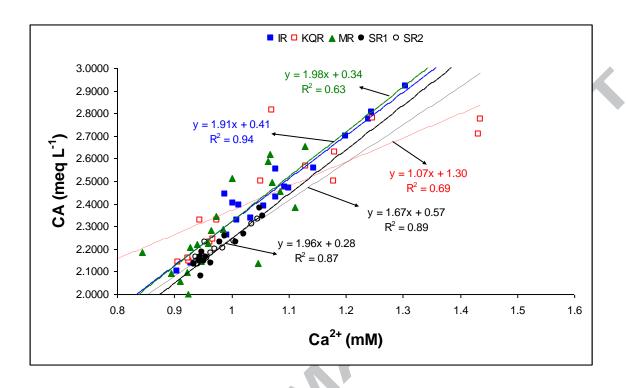

	All		
	PC1	PC2	
Dripping	0.701	-0.229	
pН	0.976	-0.198	
TA	-0.944	0.323	
Ba2+	0.974	0.089	
Ca2+	-0.923	0.345	
Mg2+	0.947	-0.294	
Na+	0.757	-0.605	
Sr2+	-0.119	0.98	
Eigen value	6.29	1.068	
Total variance (%)	78.62	13.34	
Cumulative (%)	78.62	91.96	

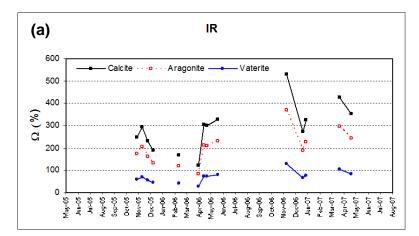

Table 4. Carbonate chemical parameters of dripwater solutions from Oregon Caves National Monument Cave.

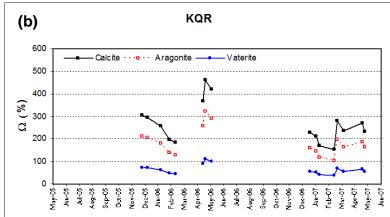

	Site				
	IR	KQR	MR	SR1	SR2
Sampling Period	Jan 05-Apr 07	Dec 05-May 07	Dec 06-May07	Jan-Jul 2007	Dec 06-Jul 08
CA (meq L ⁻¹)		07			
Minimum	2.1015	2.1408	1.9989	2.0778	2.1314
Maximum	2.9200	2.8134	2.6539	2.3812	2.3316
Mean (Standard Deviation)	2.4710 (0.2200)	2.4407 (0.0616)	2.2997 (0.0444)	2.2047 (0.0228)	2.1891 (0.0611)
TCO ₂ (mole L ⁻¹)					
Minimum	2.1459	2.1637	2.0197	2.0806	2.1245
Maximum	2.9657	2.8266	2.6620	2.4434	2.3701
Mean	2.5043	2.4683	2.3165	2.2220	2.2030
(Standard Deviation)	(0.2231)	(0.0633)	(0.0431)	(0.0285)	(0.0777)
%Ω (Calcite)					
Minimum	86	151	156	139	131
Maximum	528	462	472	375	396
Mean (Standard Deviation)	262 (110)	267 (22)	277 (20)	279 (25)	284 (85)
%Ω (Aragonite)					
Minimum	59	105	108	97	91
Maximum	368	322	328	261	275
Mean (Standard Deviation)	182 (77)	186 (15)	193 (14)	194 (17)	197 (59)
%Ω (Vaterite)	7				
Minimum	21	36	38	34	32
Maximum	128	112	114	91	96
Mean (Standard Deviation)	63 (26)	64 (5)	67 (5)	67 (6)	69 (21)

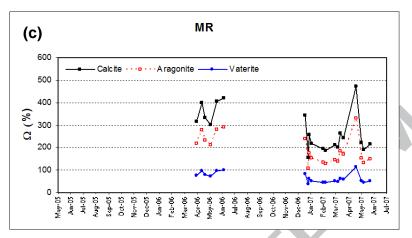

Figure Captions


- **Figure 1.** Map showing the locations of (a) Oregon Caves National Monument (OCNM), which is located in the Klamath Mountains, western the United States of America and (b) the water sampling sites in the OCNM caves.
- **Figure 2.** Monthly variations of: (a) Rainfall, (b) dripwater rate, (c) pH, (d) total alkalinity (TA), (e) calcium (Ca²⁺), (f) magnesium (Mg²⁺), (g) strontium (Sr²⁺) and (h) barium (Ba²⁺) in dripwaters during monitoring program from January 2005 to April 2007.
- **Figure 3.** Plot showing: (a) the dendrogram of cluster analysis (CA) and (b) the principal component analysis (PCA) for the physicochemical parameters.
- **Figure 4.** Plots of Carbonate alkalinity (CA) vs. calcium (Ca²⁺) for dripwaters of all sites.
- **Figure 5.** Percent saturations of the drip waters with respect to: (a) calcite, (b) arabonite and (c) varetrite.
- Figure 6. Plots of the variation trends and relationships between different parameters in dripwaters of the different rooms as a result of dissolution and reprecipitation reactions: (a) Ca vs. Ω %, (b) Sr/Ca vs Mg/Ca ratios, (c) Ω % vs. Mg/Ca ratios, (d) Ω % vs. Sr/Ca ratios, (e) Ca vs. Mg/Ca ratio, and (f) Ca vs. Sr/Ca ratio for all sites.









F5

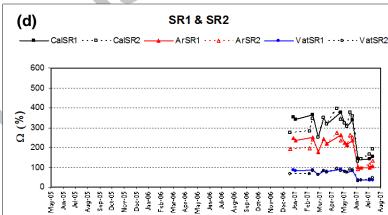
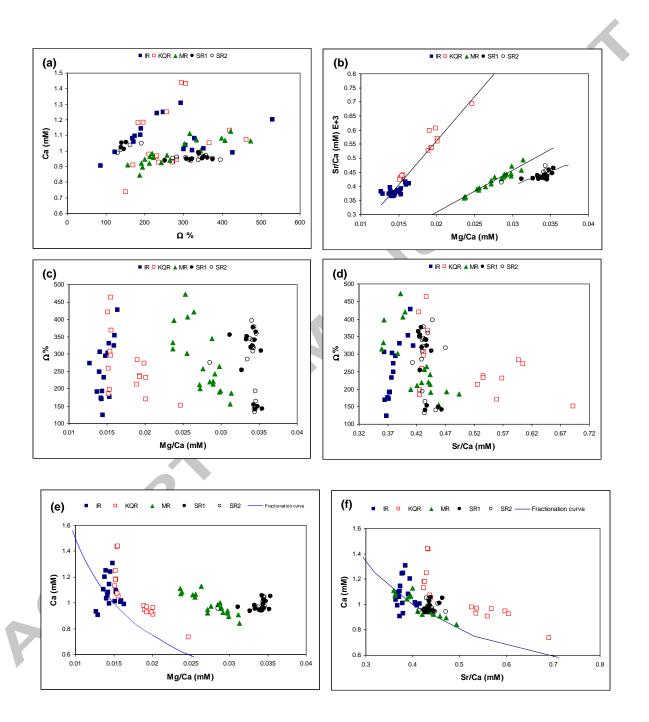



Fig 6

Highlights

- Cave dripwater chemistry of Oregon Caves National Monument (OCNM) was studied.
- The dripwater varies in response to seasonal changes in rainfall.
- Spatial variations of dripwater chemistry reflect the chemical composition of bedrock
- The residence time of infiltrated water in bedrock cracks control the dissolution and reprecipitation of calcium carbonate.
- Dripwater Mg/Ca and Sr/Ca ratios are controlled by dissolution and reprecipitation of carbonate bedrock.