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Abstract 

The free energy is central to statistical mechanics and thermodynamics, and its accurate 

calculation via. computational modeling is important for a large number of applications, 

especially when its experimental value is hard to obtain. Several established and general 

methods for calculating the Helmholtz free energy across different length scales, including 

continuum, atomistic and quantum mechanical, are compared and analyzed. A computational 

approach is then proposed to calculate the temperature dependences of internal energy and 

absolute Helmholtz free energy for solid and liquid phases with the coupling of thermodynamic 

integration (TI) and harmonic approximation calculations from both classical molecular 

dynamics (MD) and density functional theory (DFT). We use the Lennard-Jones system as an 

example (i.e. argon) for the demonstration of the approach. It is observed that the free energy 

transits smoothly from being describable by the harmonic approximation to including 

anharmonic effects at a transition temperature around 0.56 Tm; below this temperature, the 

quantum behavior of atoms is important. At higher temperatures (T > 0.56 Tm), the TI and 

harmonic approximation results for the Helmholtz free energy functions become increasingly 

divergent with the increase of temperature. This work demonstrates that a multiscale approach 

employing TI, MD, and DFT can provide accurate calculations of the temperature dependence 

of absolute Helmholtz free energy for both solid and liquid phases. 
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1. Introduction 
The Helmholtz (volume constant) or Gibbs (pressure constant) free energy of a system is one 

of the most important thermodynamic quantities for condensed-phase systems [1]; it 

determines what the stable structures are, and the direction changes take. Bulk free energies 

can be derived from experiments, but interfacial free energies are much harder to obtain. While 

the calculation of bulk free energies and derivative thermodynamic quantities, and static 

energies for interfaces, are common and widespread applications of atomistic simulation 

techniques [2–4], the computation of solid-liquid interfacial free energies is still challenging.  

 

Free energy functions can be used for studying important fundamental problems in materials 

sciences, such as phase and structural transitions [5,6], interfacial energies [7,8], or other 

critical phenomena [9–11]. There are several techniques available for calculating the absolute 

or relative free energy as a function of temperature of a system, an attractive option when 

experimental determination is difficult. In particular, we may obtain the crystal-melt (or solid-

liquid) interfacial free energy as a function of temperature for systems in which the liquid and 

solid are formed from materials with different melting points based on the free energy functions 

of the solid and liquid phases. The interfacial energy would be the difference between the total 

free energy for a system with a solid-liquid interface, and the free energies of the bulk solid 

and liquid components [8]. In this case, the accurate computations of free energies for solid 

and liquid bulk phases become critical. Note that for the solid-liquid interface in a single 

material at its melting point, special methods are needed [12,13].  
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At a temperature sufficiently far below the melting point, one can compute absolute free 

energies quite accurately using the harmonic approximation (HA) [1]. To get free energies at 

higher temperatures, in particular when one of the materials is in the liquid state, one might 

perform thermodynamic integration (TI) from a lower temperature to a higher one. A problem 

with the usual TI approach is that one cannot integrate through the phase transition to reach the 

liquid state, thereby obtaining an absolute free energy for the liquid. The difficulty is that at the 

melting temperature there is a discontinuity in the internal energy on going from the solid to 

the liquid states (the latent heat of melting) which makes it impossible to carry out a reversible 

calculation: there is a temperature that we must include at which the internal energy is not 

uniquely defined. 

 

One way around this is to note that the free energies of the solid and liquid states are identical 

at the melting point. We can find the absolute free energy of the solid using available techniques 

to temperatures slightly above the melting point (superheated solid), and find the relative free 

energies of the liquid to just below the melting point (supercooled liquid). We can then match 

the free energies at the melting point. To do this we need techniques that allow us to compute 

the various contributions, all of which exist. 

 

In this work, as a first step towards computing solid-liquid interfacial energies, we investigate 

some of these techniques of computing free energies of solid and/or liquid bulk phases and how 

these different methods can be combined. In particular we combine TI for classical molecular 

dynamics (MD) simulations with lattice dynamics calculations of the phonon spectrum. This 

allows us to compute the temperature dependence of the Helmholtz free energy of both the 

solid and liquid phases by using a Lennard-Jones system (argon) as an example. In Section 2 

we introduce the method and modeling procedure which involves 3 aspects: (i) determination 
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of the melting point; (ii) temperature dependence of the internal energy functions for both solid 

and liquid phases; (iii) a reference value of an absolute free energy at a specified temperature 

far below the melting point. In Section 3 we combine this information to produce the Helmholtz 

free energy as a function of temperature over a large temperature range, spanning both the solid 

and liquid states. We end with a summary of conclusions in Section 4. 

2. Method and Simulations 
Suppose we know the internal energy of a system 𝑈 as a function of temperature 𝑇, and wish 

to compute the free energy F2 at temperature T2 given that we know the free energy F1 at 

temperature T1. The Gibbs-Helmholtz equation then gives 

𝐹2
𝑇2
− 𝐹1

𝑇1
= −∫ 𝑈

𝑇2
𝑇2
𝑇1

𝑑𝑇                                                        (1) 

Thus, to calculate the absolute Helmholtz free energy as a function of temperature F(T), we 

need to know its value at a reference temperature TR, which we shall obtain using the result for 

a collection of quantum harmonic oscillators. Eq. (1) can now be written as 

𝐹(𝑇)
𝑇

= 𝐹𝑅
𝑇𝑅
− ∫ 𝑈(𝑇′)

𝑇′2
𝑇
𝑇𝑅

𝑑𝑇′                                                   (2) 

As noted above, we emphasise that the temperature function of internal energy is not 

continuous across the solid/liquid transition (i.e. at the melting point, Tm), whereas F(T) is 

continuous because the free energies of solid and liquid are equal at the melting temperature. 

The superscript prime symbol on temperature (T') corresponds to classical molecular dynamics 

simulations, and it is different from the temperature (T) in quantum calculations. This is 

because, at temperatures close to 0 K, there is a discrepancy between the temperatures used for 

classical molecular dynamics and for lattice dynamics (quantum) calculations, which originates 

from the quantum zero point energy [14]. This discrepancy, however, becomes small when the 

temperature of the crystal system exceeds ~0.1Tm (Tm is the melting point) [14]. In summary, 

using Eq. (2), one can easily calculate the temperature dependence of the Helmholtz free energy 
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of a system provided a value can be found for a reference temperature, and the internal energy 

as a function of temperature can be found for both the solid (TR < T ≤ Tm) and liquid (T ≥ Tm) 

states.  

 

There is one important technical point that we investigate here. At low temperatures, the atomic 

motion is quantum in nature, and thus we use a quantum mechanical expression suitable for 

harmonic motion. To extrapolate above low temperatures, we have to incorporate anharmonic 

terms, and the most straightforward way to do that is to perform TI with MD. However, for 

MD the atoms are treated as classical objects. Thus, to reach higher temperatures we 

simultaneously move from harmonic to anharmonic motion, and from a quantum to a classical 

description of the atoms. For this to work, the atoms need to be describable by classical 

mechanics before the harmonic approximation fails. Our calculations suggest the transition 

occurs smoothly. 

 

A first step for this method is the accurate determination of the melting point. Here we obtain 

an accurate value of the melting point of argon by allowing the solid and liquid phases to reach 

equilibrium in a constant energy MD simulation [15]. Then, we compute the internal energies 

at a series of temperatures for both solid (10 K < T ≤ Tm) and liquid (T ≥ Tm) argon using 

constant volume and energy (NVE) MD simulations; constant temperature and pressure (NPT) 

MD simulations are used to establish a suitable volume. Lastly, the absolute value of the 

Helmholtz free energy at TR = 10 K (the chosen reference temperature in the current work) is 

calculated using the standard expression that relates the free energy to the phonon frequency 

spectrum [16],  

𝐹(𝑇) = 𝐸𝑡𝑜𝑡(𝑇) + 𝑘𝐵𝑇 ∫𝐹(𝜔)𝑙𝑛 [1 − 𝑒𝑥𝑝 (− ℏ𝜔
𝑘𝐵𝑇

)] 𝑑𝜔                          (3) 
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where the frequencies 𝜔 are computed from the dynamical matrix in quantum calculations. 

Here 𝐸𝑡𝑜𝑡(𝑇) includes the contribution from zero-point energy. 𝑘𝐵 and ℏ are the Boltzmann 

and Planck constant, respectively. 𝐹(𝜔) is the phonon density of states. Based on the above 

calculations using Eqs. (1)-(3) one can compute the temperature dependence of the Helmholtz 

free energy for argon with the temperature ranging from the low reference temperature (e.g. TR 

= 10 K) to temperatures well above the melting point (T ≥ Tm). 

2.1. MD simulations: melting point of argon 
If not specified otherwise, our classical MD simulations are carried out by using an open-source 

code DL_POLY, which has been developed at Daresbury Laboratory by I.T. Todorov and W. 

Smith [17]. The Lennard-Jones 12-6 potential (with ε = 0.0104 eV and σ = 3.4 Å [18]) is 

employed to define the interactions between pairs of argon atoms. We determine the melting 

point of argon at atmospheric pressure (P = 1.0 atm.) by constructing a pressure versus 

temperature diagram from a series of solid/liquid co-existence simulations using the NVE 

(constant volume and energy) ensemble. These solid/liquid co-existence interface models 

equilibrate at a certain temperature and pressure, which is, by definition, the melting point at 

that pressure [15].  

 

To perform one of these solid/liquid equilibrium simulations, we first create an initial 

configuration for the solid/liquid interface model that consists of about 50% solid by volume 

(42,592 atoms) with the rest being liquid (32,000 atoms): see below for a description of how 

the liquid is generated. These systems are pre-equilibrated at 10 K and 85 K (slightly higher 

than the experimental melting point of argon: 83.8 K [19]), respectively. Fig. 1(a) shows the 

front-view (projection of x-z plane) of a 3-D interface model, with the solid/liquid boundary 

indicated by a long-dashed line, perpendicular to the z- axis. This initial interface model is then 

relaxed and equilibrated at three different temperatures of 81 K, 83 K, and 85 K within the 
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NVT (constant volume and temperature) ensemble for 10 ns (i.e. 10 million steps with 1 fs as 

the time step of the MD simulations). Fig. 1(b) shows an equilibrated configuration of the 

interface system at 81 K. The solid/liquid boundary remains, but there is shrinkage of the liquid 

volume when the temperature is decreased from 85 K to 81 K. In addition, the solid/liquid 

boundary also remains when the interface system is equilibrated at 83 K and 85 K (figures are 

not shown here) with larger volume fraction of liquids as compared with that for the case of 81 

K. We now have three pairs of temperature-pressure values through averaging the values of 

temperature and pressure using the last 5 ns of the simulation results (out of 10 ns). In Fig. 2, 

the closed shapes of round, rhombus, and triangle represent the three pairs of temperature-

pressure values corresponding to 81 K, 83 K and 85 K, respectively. 

 

To allow for accurate interpolation to a specific pressure, we need to increase the number of 

points on our pressure versus temperature diagram. To add those points, a number of 

volumetric perturbations are applied to each interface system equilibrated at the three different 

temperatures. This is achieved for each case by adding an increment to the cell parameter along 

the z axis of 0.5 Å, 1.0 Å, 1.5 Å, 2.0 Å and 2.5 Å. As a result, a thin slab of vacuum with certain 

thickness perpendicular to the z axis is added for each volumetric perturbation. We then 

perform NVE simulation for 20 ns to allow the perturbed systems to relax sufficiently. Note 

that the volumetric perturbations are specifically chosen such that the solid/liquid boundary 

remains after relaxation. By averaging the values of temperature and pressure from each NVE 

simulation from the last 5 ns (out of 20 ns), we are able to construct the pressure versus 

temperature diagram of solid/liquid co-existence systems. The results are represented by closed 

(un-perturbed) and open (perturbed) shapes shown in Fig. 2. The pressure-temperature diagram 

can now be used to determine the melting point of argon corresponding to a particular pressure. 

Specifically, the melting point of argon at 1.0 atm. is found to be 81.0 ± 0.1 K, i.e. the crossing 
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point (as indicated by the solid arrow) of the dashed line (1.0 atm.) and dotted line (the linear 

fit to all pairs of pressure-temperature values), which is in good agreement with experiments 

(83.8 K [19]) and previously reported modelling results (82.8 K [15], 81.5 K [20]). 

 

Fig. 1. (Color Online) MD models of solid/liquid interface system of argon: (a) the initial 

configuration consisting of equal volumes of solid and liquid bulk phases; (b) an equilibrium 

configuration of the initial solid/liquid interface system following NVT relaxation at 81 K with 

a simulation time of 10 ns. Note that the white long-dashed lines in (a) and (b) indicate the 

boundaries between solid and liquid phases.  

 

Fig. 2. (Color Online) Pressure-temperature diagram for the solid/liquid co-existing interface 

systems, created using molecular dynamics simulations. The melting point (Tm) of argon at a 
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pressure of 1.0 atm. is determined from the crossing point of the black dashed line (P = 1.0 

atm.) and the red dotted line (linear fit to the values of pressure vs. temperature). 

2.2. MD simulations: internal energies of solid and liquid argon 
We now compute the internal energies as a function of temperature for both solid (10 K < T ≤ 

Tm) and liquid (T ≥ Tm) argon using MD simulations. To do that, we create a supercell of 

crystal argon containing 32,000 atoms. The system is then subjected to an MD simulation using 

the NPT ensemble for 200 ps, which brings the system pressure to 1.0 atm. at a temperature of 

10 K. Subsequently, the equilibrated crystal argon is relaxed within an NVE ensemble at a 

series of temperatures from 10 K up to the determined melting point of argon (i.e. 81 K at 1 

atm.). To create bulk liquid argon we use two steps: (i) randomization and (ii) equilibration. 

Randomization is achieved by heating up the supercell of crystal argon (containing 32,000 

atoms) in the simulation box with an extra 10% volume of vacuum inserted. Equilibration is 

then achieved when the randomized system is brought to a pressure of 1 atm. and a temperature 

of 85 K by performing MD in the NPT ensemble. Using the pre-equilibrated liquid argon at 85 

K and 1 atm. as a starting point, we then carry out NVE simulations at a series of temperatures 

from the melting point up to 85 K. A simulation time of 50 ps is found to be sufficient to 

equilibrate the crystal and liquid argon models at each temperature. 

 

We compute the internal energies of solid and liquid argon at each temperature by averaging 

the values of internal energy over the last 10 ps out of a total 50 ps of the NVE simulations. 

The values of the internal energy obtained from the MD simulations of solid and liquid argon 

are shown in Fig. 3a (red filled-square symbols). The regional enlargements of the red dashed 

rectangles in Fig. 3a are shown in Fig. 3b and Fig. 3c, respectively. These MD simulated 

internal energies evaluated for a range of temperatures of the solid and liquid bulk phases will 

be used to compute the temperature dependence of the absolute Helmholtz free energy of argon 
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using thermodynamic integration (see Eq. (2)), as described in Section 3. Internal energies of 

both solid and liquid argon vary approximately linearly with temperature. Note that there is a 

discontinuity in the internal energy from the solid state to the liquid state of argon at the melting 

point.  

 

Fig. 3. (Color Online) (a) Internal energy (U, unit: J/mol) as a function of temperature (T, unit: 

K) of solid argon computed by: molecular dynamics simulations to be used for thermodynamic 

integration (MD Computed for TI, red filled-square symbols); density functional theory lattice 

dynamics (DFT LD) with TS (blue solid curve) and Grimme (black long-dashed curve) 

methods accounting for the van del Walls corrections; classical LD based on molecular 
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dynamics (light-blue dashed curve); Debye model (dark-blue dotted curve). (b) and (c) are the 

local enlargements of (a) at certain low and high temperature regions, respectively, see the red 

dashed boxes in (a). 

2.3. Harmonic approximation calculations for solid argon 
It is possible to compute the internal energy and Helmholtz free energy as a function of 

temperature in a harmonic approximation (HA) from the phonon dispersion (or vibrational 

spectrum) of a solid [1]. Using lattice dynamics (LD) simulations [16], the phonon dispersion 

of a solid can be computed from the matrix of second derivatives of the energy with respect to 

atomic displacement. In the following, we use both the Lennard-Jones potential (Classical LD) 

and density functional theory (DFT LD) to compute the phonon dispersion of solid argon.  

 

In the case of classical LD, the phonon dispersion of solid argon is computed by evaluating the 

eigenvalues of the dynamical matrix that is constructed by observing the displacements of 

atoms in a periodic lattice during MD simulations, making use of the fluctuation-dissipation 

theorem [21]. It should be noticed that we carried out classical LD simulations by using the 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [22] open-source 

code that is capable of yielding the phonon dispersion accurately [21]. Phonon calculations by 

classical LD for solid argon are performed over the entire first Brillouin zone with the modelled 

phonon spectrum including several high symmetry points (Γ, X, K, L), as presented in Fig. 4 

(light-blue dashed curve). The result of classical LD agrees well with the experimental 

measurements (filled-circles [23,24], squares [25,26]).  

 

For DFT calculations, we start from the relaxed crystal structure, and compute the phonon 

dispersion of the solid argon by employing the linear response method (or density functional 

perturbation theory [16]) with dispersion corrections [27,28], including the TS [27] and 
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Grimme [28] approaches. The DFT LD phonon dispersions with TS (blue solid curve) and 

Grimme (black long-dashed curve) methods are shown in Fig. 4. The DFT results are in good 

agreement with that from the classical LD (light-blue dashed curve) and experimental 

measurements: filled-circles [23,24] and squares [25,26] in Fig. 4.  

 

Note that in the above DFT simulations we treat the argon crystal using a primitive face-centred 

cubic (FCC) cell containing one argon atom. All DFT calculations are performed using the 

plane wave code Cambridge Serial Total Energy Package (CASTEP) [29]. The Perdew-Burke-

Ernzerhof (PBE) functional [30] is used for the exchange and correlation energy. Brillouin 

zone integration is performed using k-points on a Monkhorst-Pack grid [31]. The Broyden-

Fletcher-Goldfarb-Shannon (BFGS) algorithm [32] is applied to relax the atomic position and 

cell vectors automatically to achieve the minimum total energy of the system. A norm-

conserving pseudo-potential is used with a plane-wave basis set energy cut-off of 390 eV. A 

k-point mesh with spacing of 0.05 Å-1 in the reciprocal space is used for all the calculations. 

Self-consistent field (SCF) calculations are converged to 5×10-7 eV/atom for the total energy 

calculations. The geometry optimization is run until the atomic forces are below 0.01 eV/Å. 

The optimized lattice parameter of argon crystal is 5.38 ± 0.01 Å at the ground state, which is 

in good agreement with that from the experimental extrapolation of 5.31 Å at 0 K [33].  

 

Statistical mechanics calculations within the HA provide a robust way of calculating the 

temperature dependences of internal energy and Helmholtz free energy of a solid [16], 

especially at temperatures far below the melting point [34,35]. We thus use this method to 

compute the internal energy and the Helmholtz free energy as a function of temperature for the 

solid argon, from which the value of free energy (FR) at a reference temperature (e.g. at TR = 
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10 K) can be obtained. It should be noted that the van der Waals interactions plays an important 

role in the solid argon [36], and so needs to be included in the DFT calculations.  

 

For comparison purpose, we also compute the internal energy as a function of temperature 

using the analytical Debye model [1]. The Debye characteristic temperature used in the model 

calculations is 85 K from experimental measurement [37]. The results of the harmonic 

approximation of classical and DFT LD, as well as the analytic Debye model, for the internal 

energy of solid argon are shown in Fig. 3. As noted before, the discrepancy between the 

temperatures used for classical molecular dynamics and for lattice dynamics is small when the 

temperature of the crystal system exceeds ~0.1Tm (Tm is the melting point) [14]. Thus, for the 

Ar crystal phase, we compare our results from classical MD and lattice dynamics for 

temperatures above 10 K, which is greater than 0.1Tm as the melting point of Ar is 81 K. 

 

The four results (i.e. DFT LD (TS), DFT LD (Grimme), Debye, and Classical LD) for the 

internal energy as a function of temperature of solid argon have very similar gradients over a 

large temperature range, with a small energy shift between them (< 0.1 kJ/mol). Interestingly, 

at relatively low temperatures (e.g. T < 40 K, see Fig. 3(b)) the gradients of the four internal 

energy functions based on quantum atoms and the HA, are distinctly different from that of the 

classical MD simulations (red filled-squares in Fig. 3, details of the simulations described in 

Section 2.2). Note that the MD computed internal energy will be used to calculate the 

Helmholtz free energy by thermodynamic integration calculations (see Section 3). The 

difference of gradient of the internal energy function (see Fig. 3) is because of the quantum 

behavior of the atoms matters at low temperatures (e.g. T < 40 K for the case of solid argon). 

At higher temperatures (e.g. T > 50 K, see Fig. 3(c)) all five results for the internal energy 

function have almost the same slope. This is as expected: they should have the same heat 
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capacity close or equal to 3R (where R is the ideal gas constant) above a certain temperature. 

This justifies a switch from the quantum harmonic model to TI somewhere between 40 K and 

50 K. 

 

Fig. 4. (Color Online) Phonon dispersion of solid argon by various approaches: density 

functional theory (DFT LD) with TS (blue solid curve) and Grimme (black long-dashed curve) 

methods accounting for the van der Waal dispersion corrections, and classical LD (light-blue 

dashed curve). Filled-circles and squares represent experimental measurements reported in the 

literature. 

3. Temperature dependence of Helmholtz free energy of solid and 
liquid argon 
The harmonic approximation calculations also provide an accurate description of the 

temperature dependence of the Helmholtz free energy for solid argon at temperatures far below 

the melting point [1]. Fig. 5(a) shows the Helmholtz free energy as a function of temperature 

of solid argon that is computed from the harmonic approximation calculations based on 

different approaches. The results of density functional theory lattice dynamics (DFT LD) with 

TS and Grimme methods are shown by the blue solid curve and black long-dashed curve in 

Fig. 5(a), respectively. The Helmholtz free energy function according to the analytical Debye 

model and the L-J potential based classical lattice dynamics (Classical LD) are indicated by 

the dark-blue dotted curve and light-blue dashed curve, respectively. Within the harmonic 
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approximation, the DFT results of Helmholtz free energy function (DFT LD with TS and 

Grimme methods) are in good agreement with the Debye and Classical LD results at certain 

low temperature range (e.g. T < 40 ~ 50 K). At higher temperatures, the discrepancy becomes 

significant and increases with the increase of the temperature.  

 

We then perform thermodynamic integration to obtain the Helmholtz free energy as a function 

of temperature for both solid and liquid argon based on Eq. (1). We use the DFT harmonic 

approximation calculations (i.e. DFT LD (TS)) to provide a reference value of Helmholtz free 

energy (FR) at a certain temperature (e.g. TR = 10 K). Thermodynamic integration (see Eq. (1)) 

based on MD simulations is then used to advance to higher temperatures. Now, we have: (i) 

the melting point (Tm = 81 K) of argon (Fig. 2); (ii) the internal energy functions (U(T)) of solid 

and liquid argon from MD modelling (Fig. 3); (iii) a value of Helmholtz free energy at a 

reference temperature (i.e. FR at TR = 10 K) from DFT harmonic approximation calculations 

(Fig. 5). We can now perform the thermodynamic integration in order to compute the 

temperature dependence of the Helmholtz free energy for both solid and liquid argon based on 

our MD simulations by using Eq. (1).  

 

For example, the Helmholtz free energy as a function of temperature over the range of 10 K to 

85 K is computed by taking the reference value at 10 K from the DFT LD (TS) calculation; the 

result is shown by the red solid curve in Fig. 5(a). The Helmholtz free energy at the melting 

point (as indicated by the vertical black dashed arrow in Fig. 5(a)) is equal for solid and liquid 

argon. A continuous transition in the Helmholtz free energy from solid to liquid can thus be 

obtained. The Helmholtz free energies of argon in this work are in reasonable agreement with 

reported values obtained by Monte Carlo methods (filled yellow circles [38] and blue triangles 

[39]) and the data based on the experimentally measured equation of state (EOS) of argon 
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(National Institute of Standards and Technology, NIST), as indicated by the red diamond 

[40,41]. 

 

It is interesting to note that the Helmholtz free energy function from classical TI agrees well 

with that from both the classical and DFT harmonic calculations at low temperature, but 

diverges when the temperature is increased to higher values. Fig. 5(b) shows the differences in 

Helmholtz free energy as a function of temperature between classical TI (FCTI) and harmonic 

calculations by DFT (FDFT(TS)) and classical (FCLD) lattice dynamics, as shown by the red solid 

curve (FCTI – FDFT(TS)) and black dashed curve (FCTI – FCLD) in Fig. 5(b), respectively. The 

difference begins to become obvious above about 45 K (i.e. 0.56 Tm, as indicated by the vertical 

black dashed arrow in Fig. 5(b)), and then becomes increasingly larger with a further increase 

of temperature. This suggests that the free energy calculated using the harmonic approximation 

is only reliable when the temperature is sufficiently below the melting point of a solid crystal 

system (e.g. 0.56 Tm in the case of solid argon). 
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Fig. 5. (Colour Online) (a) Helmholtz free energy (F) as a function of temperature (T) of argon 

computed by different approaches: density functional theory lattice dynamics (DFT LD) with 

TS (blue solid curve) and Grimme (black long-dashed curve) methods accounting for the van 

der Waal dispersion corrections; classical LD (light-blue dashed curve); thermodynamic 

integration based on classical molecular dynamics simulations (Classical TI, red solid curve); 

Debye model (dark-blue dotted curve). (b) Free energy deviations as a function of temperature 

with respect to Helmholtz free energy by Classical TI: DFT LD (TS) (FCTI-FDFT(TS), red solid 

curve) and classical LD (FCTI-FCLD, black dashed curve). 

4. Conclusion 
By using a combination of statistical mechanics in the harmonic approximation (using a phonon 

spectrum computed by DFT), and thermodynamic integration (using classical potentials), we 

have computed the temperature dependence of the Helmholtz free energy for argon (from 10 
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K to 85 K). The results from thermodynamic integration and the harmonic approximation for 

the Helmholtz free energy of solid argon are rather similar for T < 0.56 Tm but become 

increasingly divergent with further increase of temperature. We thus confirmed that free energy 

calculations using the harmonic approximation are only accurate when the temperature is 

sufficiently below the melting point of a solid system (e.g. 0.56 Tm in the case of solid argon), 

above which anharmonic contributions to the free energy become increasingly important. The 

accurate determination of free energy as a function of temperature for both solid and liquid 

systems can provide an important fundamental basis for investigating various thermodynamic 

phenomena, but especially solid-liquid interfacial free energies. 
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