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Several powerful techniques exist to detect topologically protected surface states of weakly-
interacting electronic systems. In contrast, surface modes of strongly interacting systems which
do not carry electric charge are much harder to detect. We propose resonant light scattering as a
means of probing the chargeless surface modes of interacting quantum spin systems, and illustrate
its efficacy by a concrete calculation for the 3D hyperhoneycomb Kitaev quantum spin liquid phase.
We show that resonant scattering is required to efficiently couple to this model’s sublattice polarized
surface modes, comprised of emergent Majorana fermions that result from spin fractionalization.
We demonstrate that the low-energy response is dominated by the surface contribution for thin
films, allowing identification and characterization of emergent topological band structures.

Introduction. One of the most striking recent develop-
ments in condensed matter physics has been the discovery
that certain types of three-dimensional (3D) band struc-
tures harbor topologically protected surface states, which
cannot be gapped out without breaking a bulk symme-
try. Systems with such surface states include topological
insulators [1–3], Weyl semimetals [4–9], and a number
of others [10, 11]. In these weakly-interacting systems
where the quasiparticles carry electric charge, theoreti-
cal predictions have quickly led to experimental detec-
tion: the Dirac cone surface states of 3D topological
insulators were first detected several years ago [12–14]
using high-resolution angle-resolved photoemission spec-
troscopy (ARPES). More recently, ARPES has also de-
tected the Fermi arcs characteristic of Weyl semimetals
in compounds TaAs, TaP, NbAs and NbP [15–18].

Such surface states are not restricted to weakly-
interacting electronic systems. In fact, topological sur-
face states have been predicted in a number of Mott-
insulating systems where they often originate from spin
fractionalization in quantum spin liquids (QSLs) [19–22].
This intriguing possibility poses an experimental chal-
lenge: since surface probes such as ARPES and STM
couple to charge, then how can such chargeless surface
states be detected? For bulk properties of chargeless
topological states, much progress has been made recently
in probing candidate QSLs using inelastic neutron [23–
32] and Raman [33–40] scattering. Both measurements
couple to spin degrees of freedom (d.o.f.), and hence can
give signatures of fractionalized spinon excitations.

Here we study inelastic light scattering as a probe of
the chargeless topological surface states that can arise
in strongly-interacting systems. We focus on the exam-
ple of the Kitaev QSL on the hyperhoneycomb lattice
[41, 42], which is known to harbor such boundary states
[10, 21]. This model is of particular interest because the
insulating magnet β−Li2IrO3 [43, 44] is believed to be
described by an effective Hamiltonian on a hyperhoney-
comb lattice with dominant Kitaev-type interactions [45–
53]. Our main findings are that (1) the surface modes can
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FIG. 1. (c) Schematic of the Fermi ring and limiting posi-
tions of the Weyl points of the emergent chargeless Majorana
fermions as κ → 0 in the bulk Brillouin Zone (BZ). (b) the
projection of the Weyl points onto the surface BZ and the sur-
face flat band (κ = 0) and Fermi arc (κ > 0). (a) illustrates a
resonant light-scattering process in the anti-symmetric chan-
nel that can probe the surface modes.

be identified by considering the low-energy power laws in
spectra of thin films; and (2) the surface states contribute
significantly to the light-scattering response only in the
resonant regime [34, 54, 55].

Our proposal is summarized schematically in Fig. 1.
The idea is that though light scattering is typically a bulk
probe, when applied to sufficiently thin films the surface
responses can be observable if the density of states (DOS)
of surface states decays more slowly with frequency than
the bulk DOS so that the surface response dominates at
sufficiently low energies. We show that this occurs for
both time-reversal (TR) symmetric and TR broken[22]
topological phases of the hyperhoneycomb Kitaev QSL,
allowing direct experimental detection of the correspond-
ing topological surface states.
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FIG. 2. The hyperhoneycomb lattice,H-0. The lattice vectors
are a1/2 = (−1,∓

√
2, 0) and a3 = (−1, 0, 3).

3D Kitaev model. The Kitaev Hamiltonian [56] is

HK = J
∑
〈ij〉α

σαi σ
α
j , (1)

where 〈ij〉α are nearest-neighbor (NN) bonds, σαj are the
Pauli matrices, and α = {x, y, z} specifies which com-
ponents of spins interact along each of three inequiv-
alent bonds. The model is solved exactly by replac-
ing the spin operator at each site j with four Majorana
fermions cj and bαj via σαj = ibαj cj [56]. In terms of Majo-
rana fermions, the Hamiltonian in Eq. (1) takes the form
HK = J

∑
〈ij〉α u〈ij〉αcicj , where the u〈ij〉α ≡ ibαi bαj form

a Z2 lattice gauge field for the cj Majoranas. The u〈ij〉α

commute with each other and the Hamiltonian, and are
therefore static.

In the Majorana description, the physical d.o.f are the
fluxes of the Z2 gauge theory on elementary plaquettes
of the lattice, and dispersing Majorana spinons ci in the
flux background. The ground state on a given lattice
corresponds to a fixed flux configuration, which is flux
free for the H-0 lattice [41, 53, 57].

In this flux-free configuration, the Hamiltonian is
quadratic in the Majorana spinons {ci}. Diagonaliza-
tion leads to a band structure with two distinct bands on
the H-0 lattice, where the modes at zero energy form a
one-dimensional Fermi ring shown schematically by the
blue line in Fig. 1(c). With open boundaries, surface flat
bands occur within the projection of the Fermi ring onto
the surface BZ (see Fig. 1(b)) [21]. This band structure
and the associated surface states are protected by a com-
bination C = IT of inversion and TR symmetry, which
is a sublattice symmetry within the Majorana spinon de-
scription [21]. The gapless surface modes are sublattice
polarized, and hence protected from back-scattering [10].

Applying a magnetic field Hh =
∑
j,α h

αSαj , where
{hx, hy, hz} are all nonzero, destroys the Fermi ring by
breaking TR, and therefore the sublattice symmetry C.
If h is much smaller than the flux gap ∆, the low-energy
Hamiltonian retains the zero-flux ground-state flux con-
figuration, and the first non-vanishing TR symmetry-
breaking terms appear at third order in h [56]. The rel-
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FIG. 3. (a) Low-energy bulk scattering intensity in the anti-
symmetric channel I[ac] for various values of the effective per-
turbation κ and (b) the log-log version. The index [ac] rep-
resents the channel antisymmetrized over “in” and “out” po-
larizations in the a and c directions [58]. (c) illustrates reso-
nant light-scattering processes contributing to the [ac] chan-
nel, which mimics the DOS’.

evant term at low-energy is

Hh = κ
∑
〈〈ij〉〉γ

σαi σ
γ
l σ

β
j = iκ

∑
〈〈ij〉〉γ

ũ〈〈ij〉〉γ cicj , (2)

where (il), (jl) are pairs of neighbors along a bond of type
α and β respectively, and γ is complementary. In terms
of Majorana spinons this gives a next-nearest neighbor
(NNN) hopping term with ũ〈〈ij〉〉γ ≡ u〈il〉αu〈lj〉β and
κ ∼ hxhyhz/∆2. On the H-0 lattice, the magnetic field
perturbation gaps out the Fermi ring, leaving a pair of
Weyl points [22], which are fixed to the Fermi energy
by the unbroken inversion symmetry [57]. The surface
flat bands are reduced to surface Fermi-arcs connecting
the projection of the Weyl points in the surface Brillouin
zone (BZ) [5] (see Fig. 1).

Raman scattering. The key features of the bulk
and surface Majorana spinon bands described above can
be detected using inelastic photon spectroscopy. To es-
tablish this, we first review some important aspects of
the derivation of the Raman operator in Mott insula-
tors [34, 54, 55] to show that the magnetic field has a
negligible effect, and clarify the resonant processes of in-
terest.

Most inelastic light scatting of low-energy magnetism
has been in the regime of Raman spectroscopy [59,
60], which probes excitations ranging 1–100 meV (10–
1000cm−1) [60, 61]. However, given the expected Ki-
taev exchange-interaction scale (J) in the honeycomb iri-
dates of around 2 – 4 meV [46, 62, 63], the energy scales
discussed here are in the regime of Brillouin scattering:
0.01–1 meV (0.1–10 cm−1) [60, 61], which differs from
Raman only by the spectrometer. We continue to refer
to ‘Raman’ operators and spectra although each applies
for both experiments.
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At zero temperature the Raman response can be writ-
ten as a correlation function of scattering operators

I(ω) = 2π

∫
dωeiωt 〈R(t)†R(0)〉 , (3)

where ω = ωin−ωout is the total energy transferred from
the in- and out-going photons to the system, and in the
following we assume that ω � ωin(out). For a Mott-
insulator, the Raman operator is

R = −PHε∗out
t (H − iη)−1Hεin

t P, (4)

where P is the projector onto states with a fixed electron
occupancy per site, εin and εout are the incoming and
outgoing photon polarization vectors, respectively, and
Hε
t is the electron/photon vertex for the polarization ε

given by

Hε
t =

(
ie

~c

) ∑
n,n′,γ,γ′

(dn,n′ · ε)T γ,γ
′

n,n′ a
†
n,γan′,γ′ . (5)

Here T γ,γ
′

n,n′ describes the electronic hopping matrix, dn,n′

is the spatial vector from lattice site n to site n′, and an,γ
is the annihilation operator for an electron at site n with
γ running over spin and orbitals.

The full Hamiltonian in the resolvent (−H+ iη)−1 can
be written as H = Ht + HU , where Ht is the electronic
hopping Hamiltonian, and for convenience we define the
interaction term HU describing the on-site electron inter-
actions, such as Coulomb repulsion and Hund’s coupling,
relative to the initial photon energy: HU = Hint − ωin.
The resolvent (−H + iη)−1 can be formally expanded to
give

R = PH
ε∗out
t

[
H−1U +H−1U HtH

−1
U + ...

]
Hεin
t P, (6)

(we dropped −iη). In the presence of a magnetic field,
the resolvent in Eq. (6) has an additional small parameter
proportional to h/U :

[HU +Ht +Hh]
−1

= H−1U
[
1+HtH

−1
U +HhH

−1
U + ...

]
.

Hence, in the regime h� t we can neglect the magnetic
field during the scattering process.

If t/(U − ωin) is small, electron hopping is strongly
suppressed, and the derivation of the Raman operator
proceeds as it does for a spin-exchange Hamiltonian.
The lowest-order terms contributing to R are linear in
t/(U−ωin) and have the well-known Loudon-Fleury (LF)
form [64]

R =
∑

n,n′;α,β

(dn,n′ · εin)(dn,n′ · ε∗out)H
α,β
n,n′σ

α
nσ

β
n′ , (7)

where Hα,β
n,n′ defines the generic spin-exchange Hamilto-

nian on the bonds 〈n, n′〉, which we take as the pure
Kitaev model.

For NN Kitaev interactions, the LF vertex does not
couple to fluxes, probing only Majorana spinon band
structures [37]. However, because the NN spin-exchange
processes that enter into (7) involve both sublattices, the
LF vertex cannot couple to the sublattice-polarized sur-
face flat bands. Moreover, even if the sublattice sym-
metry is broken with a small magnetic field, the surface
states are still approximately polarized, and the LF ver-
tex couples only very weakly to the surface states.

In order to detect the gapless surface modes, a Raman
operator should contain terms coupling two Majorana
spinons on the same sublattice. Such a term can ap-
pear by tuning the photon frequency resonant with the
Mott gap so that t/(U − ωin) is no longer very small,
and higher-order terms in the expansion of Eq. (6) con-
tribute intermediate electron hops. Two such resonant
hopping processes, involving three different sites and an
NNN electronic hop, are illustrated in Fig. 3(c); such
processes can lead to the desired low-energy term:

Rres = iκ′
∑
�ij�γ

σαi σ
γ
l σ

β
j ×Ailj

= −κ′
∑
〈〈ij〉〉γ

ũ〈〈ij〉〉γ cicj ×Ailj (8)

where κ′ contains the electron-photon coupling and spin-
exchange constants. There are other three-spin terms
with α, β, and γ permuted in Eq. (8) that create fluxes
and are therefore unimportant at low energies. The com-
putation of the resonant light-scattering matrix elements
follows Refs. 55 and 34; details for the iridates will be
presented elsewhere.

Unlike the LF scattering vertex, the
polarization-dependent factor Ailj =
[(εin · dji) (ε∗out · dil)− (ε∗out · dji) (εin · dil)], is only non-
zero in polarization channels that are anti-symmetric in
the exchange of in and out polarizations. This requires
the use of polarization channels that do not appear with
only the LF operator Eq. (7). We focus on one of these,
the anti-symmetric [ac] combination of the two-photon
processes (illustrated in Fig. 1), in which one photon
has polarization along a and another along c. Due to
the low symmetry of the model, isolating this channel
requires observation of several directly-observable spec-
tra. However, in the resonant regime the anti-symmetric
part is expected to dominate the response in a few
directly-observable channels, such as Iab [58]. Because
of the form of Eq. (8), the computation of low-energy
Raman spectra for this system amounts to evaluating
four-spinon dynamic correlators of a quadratic fermionic
Hamiltonian [37, 40].

Results. The bulk light-scattering intensity at low fre-
quency is shown for different values of κ in Figs. 3(a) and
3(b). The scattering intensity is almost linear at κ = 0
and close to quadratic at κ = 0.03J [65] directly reflecting
power law changes in the Majorana spinon DOS antici-
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FIG. 4. The low-energy DOS is plotted for (a) κ = 0 and (c) κ = 0.03J for different slab widths L, measured in unit cells
in the a1 direction. The low-energy peaks [plateaus] in the DOS are due to the surface flat bands in (a) [surface Fermi-arcs
in (c)]. (b) and (d) show the corresponding log-log plots illustrating the crossover between power laws describing the surface
contribution to ones describing the bulk. (e), (f), (g), and (h) are the same plots for the resonant scattering intensity I[ac] in
the antisymmetric [ac] channel. The suppression of low-frequency modes in (g) compared to (c) is due to suppression by the
scattering matrix elements.

pated in Ref. [22].

To study the Brillouin/Raman scattering response of
the surface modes, we consider systems that are infinite
in two directions but have a finite number L of unit cells
along the stacking direction a1. This is one of several
cutting planes with similar flat bands. However, cutting
planes whose normal vector lies in the plane of b and
a3− a1− a2 do not receive a projection from the interior
of the bulk Fermi ring and therefore are not required to
host a flat band.

Figs. 4(a) and (b) show the low-frequency behavior
of the DOS in the unperturbed model (κ = 0) in a lin-
ear and log scale, respectively. The low-energy peak in
the DOS seen for different slab thicknesses indicates the
presence of the flat band. The position of this peak is
not strictly at zero frequency due to the top and bottom
surface modes hybridizing, shifting it to higher energies.
The peak drifts towards zero frequency for larger L, but
its height relative to the rest of the spectrum decreases
due to decreasing surface-to-bulk ratio. At low energies
our results are consistent with the power law −1 expected
for the surface states, in contrast to the linear power law
seen above the crossover frequency ωc. Figs. 4(e) and (f)
show the scattering intensity in the [ac] channel for κ = 0,
where we find that the behavior of the resonant Raman
intensity reflects the behavior of the DOS, as expected.

When κ 6= 0 most of the surface states are gapped,
leaving only a surface Fermi arc at very low-energies,
whose contribution to the DOS tends to a constant at
zero frequency, in contrast with the quadratic power law
seen above ωc. In practice, this constant behavior is
dwarfed by the leftover peak from the flat bands, which
have hybridized due to the symmetry-breaking perturba-
tion. Hence the difference between surface flat bands and

surface Fermi arcs is only detectable at energy scales be-
low κ. We plot the DOS for κ = 0.03J in Figs. 4(c) and
(d). This value is below the local flux gap of ∆ = 0.13J
[32, 53, 57] putting it in the perturbative regime. We find
that the flat band peaks are significantly suppressed upon
introducing the magnetic field, although the low-energy
power-laws in this case are not visible at the numerical
resolution used of about 0.03J . Similar behavior is ob-
served in the Raman intensity shown in Figs. 4(g) and
(h), up to some additional suppression of the flat-band
peak due to matrix-element effects.

Experimentally, we expect that the low-energy peaks
and power laws in the absence of a magnetic field should
be discernible by Brillouin scattering for a film of thick-
ness 20 or 30 unit cells or less, corresponding to 100 to
300nm in β−Li2IrO3.

Discussion. We have shown that low-frequency res-
onant light-scattering is a powerful probe of the QSL
state, and can reveal both the bulk and surface Majo-
rana spinon DOS in the 3D Kitaev QSL. For the hy-
perhoneycomb lattice, we find a bulk signature of the
T -broken Weyl spin liquid that arises upon perturbing
the Kitaev Hamiltonian with a weak magnetic field, as
well as a signature of topological surface states (both
with and without T -breaking) in thin films. Our main
results are that (1) the Weyl spin liquid can be distin-
guished from the parent T -symmetric state by the power
law governing the low-frequency response; (2) the sym-
metry properties of the usual LF vertex do not allow it to
couple to sub-lattice polarized low-energy surface modes;
and (3) the resonant Raman operator arising from the
three-spin interaction can be used to probe the system’s
topologically-protected surface states on thin films.

Besides being able to couple to the surface flat bands,
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the anti-symmetric channels facilitate the task of sepa-
rating the low-frequency response of the QSL from the
contributions of acoustic phonons and Rayleigh scatter-
ing [66, 67]. Specifically, phonons contribute to antisym-
metric channels only if they couple to resonant electron
hops [66, 67]; hence these processes will be suppressed.
Rayleigh scattering leaves the state unchanged after a
single two-photon event so there is no difference between
two polarization combinations.

Brillouin and Raman scattering on thin films are ex-
pected to be useful probes of surface modes in any other
system with a large surface DOS relative to the bulk,
which is typically the case for topological and symmetry-
protected surface states. Hence, we expect that electronic
Weyl semimetals can also be probed by light scatter-
ing in addition to conventional ARPES and STM tech-
niques. The vanishing coupling between the non-resonant
scattering operator and the surface modes is specific to
Mott insulators with sublattice-polarized surface modes.
Nonetheless, the same symmetries appear in the Kitaev
model on a few other lattices including the harmonic hon-
eycomb series [21, 44], and the (8, 3)c lattice [57]. Fur-
ther studies on lattices with different symmetry combi-
nations [57] are left for future work.

In addition, topological surface states without electric
charge can also appear in non-fractionalized systems, e.g.
from topological magnon bands in kagome ferromagnets
[68]. Some of their bulk properties have been experimen-
tally verified very recently [69, 70] and we predict that
the accompanying topological magnon surface states can
be identified in a similar fashion as presented here for
their fractionalized counterparts.

In conclusion, we have shown that Brillouin and Ra-
man scattering resonant with the Mott gap are useful
probes of spin-liquid physics, and in layered systems can
potentially be used to detect chargeless topological sur-
face states that cannot be seen with conventional surface
probes such as STM and ARPES. Though we have fo-
cused calculations on a 3D model QSL phase, the qual-
itative lessons apply more broadly and may prove use-
ful in studying protected surface states arising in other
strongly-correlated systems.
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Supplementary Material

The isolation of spectra representing distinct representation of symmetry classes, known as symmetry channels,
often involves taking linear combinations of multiple observable spectra. The particular linear combinations required
for the symmetry group C4v of layered cuprate superconductors has been tabulated in Refs. 55 and 71. All of the
channels, symmetric and anti-symmetric, can be found by taking scattering spectra at a few polarization combinations,
often involving circularly polarized light. The low symmetry of the hyperhoneycomb model in a magnetic field makes
this case more involved and we therefore present here an example set of observations that lead to the [ac] channel
discussed in the main text. The result applies for any antisymmetric channel [αβ] with no symmetry assumptions
except that α and β be perpendicular, although the more general case follows from this one trivially.
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Near resonance the light-scattering operator is a 3× 3 matrix in cubic polarizations α, β = a, b, c [40].

R = εin,αRαβε
∗
out,β , (9)

where the complex conjugation occurs only for photon-creation and is important only for polarizations with a circular
component. We allow ourselves to use labels for other vectors in place of a, b, c to represent R in polarization channels
other than these. One example is the coordinates rotated by 45 degrees: â′ = (â + ĉ)/

√
2 and ĉ′ = (−â + ĉ)/

√
2.

These can be decomposed in terms of the cubic coordinates as

2Ra′a′ = Raa +Rcc + 2R(ac) (10)

2Rc′c′ = Raa +Rcc − 2R(ac), (11)

for instance, where 2R(ac) = Rac+Rca and 2R[ac] = Rac−Rca. Using Eq. (3) from the main text we can use Eq. (10)
to decompose the spectra in the rotated coordinates terms of ones in the cubic coordinates leading to

4Ia′a′ = Iaa + Icc + 2Iaa,cc + 4Iaa,(ac) + 4Icc,(ac) + 4I(ac), (12)

for example, where the mixed polarizations IA,B = 2π
∫
dωeiωt 〈[R†A(t)RB(0) +R†B(t)RA(0)]/2〉 are not directly ob-

servable and must be inferred from other measurements. We additionally define the left and right polarization vectors√
2r̂ = â+ iĉ and

√
2l̂ = â− iĉ. Note that this assumes that both incoming and outgoing light travels in the direction

normal to the a − c plane. One can infer the desired spectra using only linearly polarized light by making measure-
ments along additional non-orthogonal directions, but we do not report on those results here since back-scattering is
the typical experimental setup and allows for cleaner results.

Using decompositions such as Eq. (12), as well as the more trivial relation Iac + Ica = 2(I(ac) + I[ac]), the desired
polarization combination can be related to the observable ones by

4I[ac] = (Iac + Ica)− (Ia′a′ + Ic′c′) + (Irr + Ill). (13)

If we have a symmetry of the Hamiltonian taking c → −c, as in the low-energy theory considered in the main text,
or a→ −a, then we have that Ia′a′ = Ic′c′ and Irr = Ill so that one need only measure four independent spectra.

Finally, we note that in practice one may already be able to see the low-energy behavior described in the main text
in directly-observable spectra for which the symmetric bulk spectrum is suppressed at low energies. Such is the case
for the spectrum Iab, for which the symmetric part I(ab) was shown to have a vanishing bulk response below 4J in
the absence of a magnetic field [40].


	Raman scattering in correlated thin films as a probe of chargeless surface states 
	Abstract
	 Acknowledgments
	 References
	 Supplementary Material


