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In this work, we consider the dynamics of bosons in bands with non-trivial topological structure.
In particular, we focus on the case where bosons are prepared in a higher-energy band and allowed
to evolve. The Bogoliubov theory about the initial state can have a dynamical instability, and we
show that it is possible to achieve the interesting situation where the topological edge modes are
unstable while all bulk modes are stable. Thus, after the initial preparation, the edge modes will
become rapidly populated. We illustrate this with the Su-Schrieffer-Heeger model which can be
realized with a double-well optical lattice and is perhaps the simplest model with topological edge
states. This work provides a direct physical consequence of topological bands whose properties are
often not of immediate relevance for the near-equilibrium properties of bosonic systems.

PACS numbers: 67.85.-d, 03.75.-b, 37.10.Jk, 71.45.Lr

I. INTRODUCTION

Bloch bands with non-trivial topological structure have
been found to have important physical consequences for a
variety of fermionic condensed matter systems including
1d conjugated polymers [1], quantum Hall systems [2],
and topological insulators [3, 4]. Of central importance
in each of these systems is the presence of topologically
protected edge modes. There currently are growing ef-
forts to create and understand bosons in non-trivial topo-
logical Bloch bands through the use of ultracold atomic
systems in optical lattices [5–16]. One of the promising
routes to such a realization is through the use of synthetic
gauge fields [17, 18], and very recently a physical realiza-
tion of the Hofstadter model has been achieved [19, 20].
However, the physical consequences of topologically non-
trivial bands is less direct for the near-equilibrium prop-
erties of bosons than it is for fermions since bosons
will generally populate the lowest energy single-particle
states, while higher-energy topological edge states will be
unoccupied. Experimental probes for edge states in such
systems typically involve directly exciting bosons from
the condensate into these modes (see, for instance, [21]).

In this work, we consider the evolution of a bosonic
system (with topological edge modes) initially prepared
in a higher energy band which has a dynamical insta-
bility. Dynamical instabilities, which give exponential
growth of unstable modes in a conservative system, have
received considerable experimental and theoretical atten-
tion with ultracold atoms (see, for instance, [22–28]). We
show that it is possible to have the interesting situation
where the edge modes are unstable while all of the bulk
modes are stable. Therefore, after the system is allowed
to evolve the bosons will rapidly (exponentially fast) oc-
cupy the edge modes. Apart from being an experimental
probe of edge modes, the present work, more interest-
ingly, proposes a new type of non-equilibrium dynamics
where bosons under a dynamical instability rapidly pop-
ulate these modes. While a ‘holy grail’ of current efforts
with bosons in topological bands is to realize strongly-
interacting fractional quantum Hall phases, the dynam-

ics proposed here exists in the more common weakly-
interacting regime.

II. BOGOLIUBOV-SSH HAMILTONIAN

Our work is partially inspired by the recent ‘twin
atomic beams’ experiment [26]. In this experiment,
bosons are initially prepared in the first excited trans-
verse mode of a tube-shaped quasi one-dimensional trap
and allowed to evolve. The system exhibits a dynami-
cal instability and beams peaked at opposite momenta
propagate longitudinally. We propose a variation of
this set-up where the system is instead prepared in a
quasi one-dimensional optical lattice potential which has
single-particle states with non-trivial topology. For the
non-interacting theory, we take the Su-Schrieffer-Heeger
(SSH) Hamiltonian [1, 29]

Ĥ0 = −J
∑
n

[
(1 + ε̄(−1)n)(â†nân+1 + H.c.)− 2â†nân

]
(1)

which describes bosons hopping in a double-well 1d opti-
cal lattice [30]. In (1), ε̄ gives the magnitude of staggering
in the hopping where 0 ≤ ε̄ ≤ 1, and we have included an
overall shift in the chemical potential so that the lowest
single-particle energy is zero. We choose to work with
the SSH Hamiltonian (1) since it is perhaps the simplest
model which possesses topological edge modes. However,
the main results of this work are expected to hold for any
system with edge modes. Measuring the Zak phase of
the Rice-Mele model (which is the SSH model with stag-
gering in the onsite energies) was the focus of a recent
experimental work [12]). Methods of realizing fractional-
ized excitations of ultracold fermions in the SSH model
were also proposed in [31, 32].

In [33], it was shown that adding an additional term
to (1) with imaginary staggering in the on-site potential

of the form Ĥ′ = i|δ|∑n(−1)nâ†nân can give exponen-
tial growth of the edge modes. Such a term will render
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the full Hamiltonian non-hermitian, but can arise effec-
tively for photons in waveguides. Here, we instead con-
sider a fully hermitian Hamiltonian Ĥ = Ĥ0 + Ĥ1 that
arises naturally when performing a Bogoliubov expansion
about the initial state of the aforementioned experiments
where

Ĥ1 =
∑
n

[
(u−∆)â†nân +

1

2
u(ânân + H.c.)

]
(2)

contains the anomalous terms. In (2), u = Un0 where
U is the on-site Hubbard interaction and n0 is the aver-
age number of particles per site for the initial state. The
parameter ∆ is related to the mean-field energy differ-
ence between the initial excited and ground state. That
is, when ∆ = 0, one recovers the Bogoliubov theory of
bosons condensed in the SSH lattice, and when ∆ > 0,
there can be a dynamical instability. A derivation of this
Hamiltonian is presented in the Appendix. We also point
out that Hamiltonians of this form also arise in the con-
text of quenched spinor condensates [34, 35], but here
we will focus on scalar condensates prepared in a higher-
energy band for definiteness.

III. GENERAL FORMALISM FOR QUADRATIC
BOSONIC SYSTEMS

In the following, we will briefly describe the general
methods used to compute the dynamical instabilities in
finite systems. Considering a lattice withN sites, one can
write the full Hamiltonian as Ĥ = 1

2 Ψ̂†HΨ̂ where Ψ̂ =

(â1, . . . , âN , â
†
1, . . . , â

†
N )T and the Bogoliubov de Gennes

(BdG) Hamiltonian H is a 2N × 2N Hermitian matrix
which can be directly determined from (1) and (2). It is
straightforward to see that the solution to the Heisenberg
equations of motion ih̄∂tΨ̂ = [Ψ̂, Ĥ] is given by

Ψ̂(t) = e−
i
h̄ τzHtΨ̂(0). (3)

Here, τα = σα⊗1 where σα are Pauli matrices (where α
can be x, y, or z) and 1 is the identity matrix. Since τzH
is in general not Hermitian, it may have complex eigen-
values. When this occurs, the system is said to have
a dynamical instability. This can be contrasted with
the analogous problem of quadratic fermionic Hamilto-
nians which cannot have complex modes and therefore
will never have a dynamical instability. To further un-
derstand (3), we consider the BdG equation

τzHψi± = ±Eiψi± (4)

where ψi± is a 2N dimensional eigenvector.
For our problem, as is verified numerically, the eigen-

values of τzH are either purely real or imaginary. We will
consider these cases separately. Because of the symmetry
τxHτx = H∗, the real eigenvalues occur in pairs ±Ei (as
already indicated in (4)) with ψi− = τxψ

∗
i+. For the real

case, eigenvectors can be normalized as ψ†i+τzψi′+ = δii′ ,

ψ†i−τzψi′− = −δii′ , and we also have that ψ†i+τzψi′− = 0

[36]. We now introduce the operators α̂i = ψ†i+τzΨ̂ (or

α̂†i = −ψ†i,−τzΨ̂) which can be seen to satisfy bosonic
commutation relations and diagonalize the stable portion
of the full Hamiltonian.

We now consider the imaginary eigenvalues of τzH.
These will also occur in ± pairs since for a right eigen-
vector ψi+ of energy Ei, we can obtain a left eigenvector

ψ†i+τz of energy E∗i = −Ei. These eigenvectors can be

normalized as ψ†i+τzψi′− = iδii′ and we also have that

ψ†i+τzψi′+ = ψ†i−τzψi′− = 0 [36]. The operators defined

as x̂i = iψ†i−τzΨ̂ and p̂i = −iψ†i+τzΨ̂ can then be seen to
satisfy canonical commutation relations [x̂i, p̂i′ ] = iδii′ .
Equations can be simplified further by introducing the

bosonic operators β̂i = 1√
2
(e−i

π
4 x̂i + ei

π
4 p̂i). Then, to-

gether with the results from the real eigenvalues, we are
able to rewrite the full Hamiltonian in the quasi-diagonal
form

Ĥ =
∑
i

(Ei + 1/2)α̂†i α̂i +

′∑
i

1

2
|Ei|(β̂iβ̂i + β̂†i β̂

†
i ) (5)

where the first summation is over stable modes and the
second (primed) summation is over unstable modes [37].
Note that a Hamiltonian that has a dynamical instability
cannot be brought fully to diagonal form. It is straight-
forward to adapt the above formalism to the momentum
basis or continuous systems, which will be done in the
following paragraphs.

IV. BULK MODES

We will now focus on performing the above explicitly
for our model. The bulk modes are expected to be well-
approximated by applying periodic boundary conditions.
It is easiest to begin by working in a basis which diag-
onalizes the non-interacting SSH Hamiltonian (1). It is
straightforward to find that the non-interacting band en-
ergies are

ξ
(1,2)
k = 2J ∓ 2J

√
cos2(k) + ε̄2 sin2(k) (6)

where k is restricted to the reduced Brillouin zone
[−π/2, π/2] (for simplicity we set the lattice constant
to unity). These non-interacting bulk bands (6) satisfy

ξ
(1)
k ∈ [0, 2J(1 − ε̄)], ξ(2)

k ∈ [2J(1 + ε̄), 4t]. Writing (1,2)
in this basis, one finds that the Bogoliubov energies are
the eigenvalues of τzHk where Hk = (2J +u−∆)1⊗1+
1
2

(
ξ

(2)
k − ξ

(1)
k

)
1⊗σz+uσx⊗1 (1 here is the 2×2 identity

matrix). Through this, the bulk energies are evaluated
to be

E
(n)
k =

√
(ξ

(n)
k −∆)(ξ

(n)
k −∆ + 2u). (7)

When ∆ = 0, (7) is real for all values of k and
one recovers the phonon modes of bosons condensed in
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FIG. 1. Schematic description of dynamical instability. Left:
energies of the non-interacting bulk and edge states. Right:
region where dynamical instability occurs for a particular
value of parameters. For the parameters illustrated in this
figure, only the bulk modes in the lower band will be unsta-
ble.

the SSH lattice potential which has sound speed c =√
2uJ(1− ε̄2)/h̄. On the other hand, when ∆ > 0, it

is possible to have imaginary values of (7). In particular,
a bulk mode that satisfies

∆− 2u < ξ
(n)
k < ∆, (8)

will correspond to a dynamical instability. The condition
for these modes to be stable/unstable is shown pictorially
in Fig. 1.

V. EDGE MODES

We now move on to a description of the edge modes
of our system. It is well known that the non-interacting
SSH model can have topological mid-gap states local-
ized at the edge of the system [1]. The existence of such
states are predicted by the non-trivial Zak phase of the
bulk banks of the SSH model [38]. More precisely, an
edge mode of energy 2J will be present if a site at the
boundary is connected with the smaller of the two hop-
ping parameters, J(1−|ε̄|) and J(1+|ε̄|). We will restrict
our attention to systems with an odd number of sites N ,
with the first site labelled by n = 1, thus ensuring pre-
cisely one edge mode in the non-interacting spectrum at
the left-hand side of the system.

We now proceed to analyze the fate of the edge mode
when the anomalous portion of the Hamiltonian (2) is
accounted for. As a model for the edge mode, we allow
ε̄ in (1) to depend on position and thus replace ε̄ → εn.
We take εn to have a localized “kink” so that εn → ±ε̄
far to the right (left) of the kink. That is, moving across
the kink changes the sign of εn. This lattice defect will
bind a state which is topologically equivalent to an edge

mode [3, 39, 40]. We next decompose ân as

ân = ei
π
2 nb̂n + e−i

π
2 nd̂n (9)

where the right and left movers, b̂n and d̂n, are taken
to be slowly varying on the scale of the lattice constant
(we will drop second second and higher order deriva-
tives in the continuum limit of these terms). This ap-
proximation is expected to be valid for small ε̄ since for
this case, the edge mode is primarily composed of states
at the band edges [1]. Inserting (9) into (1,2), taking

the continuum limit b̂n, d̂n → b̂(x), d̂(x), and dropping

higher derivatives, we find Ĥ = 1
2

∫
dxΨ̂†(x)H(x)Ψ̂(x)

where Ψ̂(x) = (b̂(x), d̂(x), b̂†(x), d̂†(x))T and here the
BdG Hamiltonian is

H =(2J + u−∆)1⊗ 1 + 2J(−i∂x)σz ⊗ σz (10)

− 2Jε(x)σz ⊗ σy + uσx ⊗ σx.

For simplicity, we choose the kink to be centered at
x = 0 and therefore take ε(x) to be antisymmetric about
this point. Since H only involves first order derivatives,
the BdG equation for positive energy, τzH(x)ψ+(x) =
Eψ+(x), has the general solution

ψ+(x) = e
∫ x
0
dx′F (x′)ψ(0) (11)

where F (x) = 1
2J [iE1 ⊗ σz − i(2J + u − ∆)σz ⊗ σz +

2Jε(x)1⊗ σx + iuσy ⊗ σy].
We search for a solution (11) which exponentially de-

cays away from the kink and thus require

F |ε=ε̄ ψ+(0) = −κ1ψ+(0) (12)

F |ε=−ε̄ ψ+(0) = κ2ψ+(0) (13)

for κ1, κ2 > 0. Subtracting (12) from (13) gives

2ε̄ 1⊗ σx ψ+(0) = −(κ1 + κ2)ψ+(0). (14)

Therefore, ψ+(0) ∝ χ ⊗ χ−x where σxχ−x = −χ−x and
χ is to be determined. Adding (12) and (13) with this
condition on ψ+(0) then gives

iEχ⊗ χx − i(2J + u−∆)σzχ⊗ χx − u σyχ⊗ χx
=J(κ2 − κ1)χ⊗ χ−x (15)

where σxχx = χx. This forces κ1 = κ2 = ε̄ and (15) is
simplified to

[(2J + u−∆)σz − iuσy]χ = Eχ. (16)

From this, the energy of the edge mode immediately fol-
lows:

Eedge =
√

(2J −∆)(2J −∆ + 2u) (17)

which will be imaginary when

∆− 2u < 2J < ∆. (18)
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By comparing (8) and (18) one sees that for certain
parameters, it is possible to have the situation where the
edge mode is unstable but all bulk modes are stable. The
optimal value of ∆ for this to occur is ∆ = ∆∗ ≡ 2J + u
so that the region of unstable modes is centered in the
gap (cf. Fig. 1). Then it is clear that all of the bulk modes
will be stable if u < 2Jε̄. At the optimal value of ∆, we
also have Eedge = iu and the BdG wave function (11) can
be found from (12,13) and takes on the relatively simple
form

ψ+(x) = N e−ε̄|x|(ω, ω−3, ω−1, ω3)T (19)

where ω = ei
π
4 and N is a (real) normalization constant.

The overall phase is chosen so that ψ∗+(x) = τxψ+(x). A
very similar analysis can be used to find ψ−(x).

We now consider the experimentally relevant case of
starting with a vacuum state of ân bosons. This occurs
for the case when all atoms are prepared in the higher-
energy band [26] (see also the Appendix). Quantum fluc-
tuations will trigger the evolution of this state (which at
the classical level is stationary) into the lower band. To
elucidate this behavior, we consider the time dependence
of the population per site in the lowest band given by

Gn(t) ≡ 〈â†n(t)ân(t)〉 (20)

where ân(t) = e
i
h̄ Ĥtâne

− i
h̄ Ĥt in the Heisenberg picture

and the expectation value is evaluated with the vacuum
state corresponding to zero initial population in the lower
band. We take a finite system with an odd number of
sites, so that the edge mode decays to the right from
site n = 1 (note that we number the lattice sites so that
n > 0). We consider the case where only the edge mode is
unstable and take ∆ = ∆∗, with u < 2Jε̄. The BdG wave
function (19) can then be used to find an expression for
the time-dependent population of the atoms in the lowest
band at a particular site when |ε̄| � 1. Reverting back
to the case of a discrete lattice, we find

Gn(t) = 4ε̄e−2ε̄n sin2
(πn

2

)
sinh2

(
ut

h̄

)
. (21)

In deriving (21) we have neglected the contribution from
the stable bulk modes which have oscillatory time depen-
dence, and whose relative contribution to (20) becomes
small for |Eedge|t/h̄ � 1. Note that the initial vacuum
state will generically have non-zero overlap with the bulk
states of system. For these parameters, the bulk band

with energy E
(1)
k will be energetically unstable, but the

corresponding modes will not grow since the total energy
is conserved. Eq. (21) gives exponential growth of the
edge mode. One should note, however, that when the
number of depleted bosons

∑
nGn(t) is on the order of

the total particle number, the Bogoliubov theory breaks
down, and (21) is inapplicable.
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FIG. 2. (Color online) Top: the eigenvalues of τzH from
direct diagonalization of (1,2) in ascending order for a lattice
with N = 101 sites and parameters u/J = ε̄ = 1/2. (a) has
∆ = 0 and so all modes are real while (b) has ∆ = 2J+u. (c):
The population per site after time t̄ = 30h̄/J for ∆ = 2J +u.
So that Gn(t̄) extends over several lattice sites, the values
u/J = ε̄ = 1/10 were chosen in (c).

VI. NUMERICAL DIAGONALIZATION.

We now move on to discuss the direct numerical di-
agonalization of the 2N × 2N BdG equation. This will
allow us to validate the analytic results found previously,
and also to access the regime where ε̄ is not small. In-
terestingly, the conditions established previously for the
edge state to by stable/unstable remain accurate when
ε̄ is not small. Results are shown in Fig. 2. Panel (a)
shows the eigenvalues of the BdG equation for the case of
∆ = 0 which has all real eigenvalues, as expected. These
are the Bogoliubov energies of bosons condensed in the
ground state of the SSH model. In panel (b), the optimal
value of ∆ = ∆∗ is chosen. As is indicated by (8), (18)
and confirmed by the diagonalization, the only imaginary
eigenvalue is associated with the edge mode. The analyti-
cal expressions for the bulk and edge energies (7,21) show
excellent agreement with the results from the numerical
diagonalization. The population per site, Gn(t), can be
computed numerically from (3). In panel (c), Gn(t) is
plotted, again for the optimal value of ∆. For this panel,
we set ε̄ = 1/10 so that the edge mode extends across sev-
eral lattice sites, but is still well-localized about the LHS
of the system (N = 101 > 1/2ε̄). For the time shown
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in the plot, the unstable edge has the dominant contri-
bution to Gn(t), and the expression (21) shows excellent
agreement with the exact result shown in the figure.

VII. DISCUSSION AND CONCLUSION

The microscopic parameters entering (1, 2) for the pro-
posed experiment of having an unstable edge mode but
stable bulk modes are within current experimental range.
The value of ∆ can be tuned over a wide range of values
by changing the trap confinement in the tight direction
as discussed in the Appendix. Though the experiment in
[26] is done without an optical lattice, their value of ∆ is
about a factor of four larger than the mean field interac-
tion energy. Now consider tuning ∆ to its optimal value,
∆ = ∆∗ = 2J+u, so that the region of unstable modes as
pictured in Fig. 1 is centered in the gap. For non-zero u,
the edge mode will have a dynamical instability. For all
of the bulk modes to be (dynamically) stable, we have the
further requirement u < 2Jε̄. This requirement is consis-
tent with the initial state being in the superfluid regime
(away from the Mott Insulator transition) and will occur
when ε̄ is not too small.

Our treatment of finite systems with open bound-
ary conditions is somewhat over-idealized in that experi-
ments in ultracold gases normally also involve a confining
potential V (xn) which adds the additional contribution

Ĥtrap =
∑
n V (xn)â†nân to the full Hamiltonian. While

a thorough treatment of the confining potential is be-
yond the scope of the present work, we note that it is
shown in [41] that many of the features of edge modes
remain when a harmonic confining potential is applied.
Alternatively, it is possible to engineer sharp boundary
conditions as described in [42] which are very similar to
open boundary conditions. Finally, it may be possible to
directly engineer a kink or domain wall using the recently
developed methods to address single sites of an optical
lattice [43, 44].

In summary, we have described a method through
which the topological edge modes of a system can tuned
to have a dynamical instability while all the bulk modes
remain stable. This is particularly interesting since
topological bands typically play an inessential role in
condensed bosonic systems. To illustrate, motivated
by its simplicity, we have considered the SSH model
with anomalous terms. An interesting avenue of future
study will be to consider similar preparations of two-
dimensional Chern insulators [45]. A crucial difference
with such systems is that the edge modes in the 2d sys-
tems have dispersion and so only a portion of them will be
unstable. This work only concentrated on the quadratic
theory expanded about the initial state, which will in-
evitably break down at sufficiently long times when the
number of depleted bosons becomes comparable to the
number of condensed bosons. Another interesting future
direction is to use more elaborate theoretical techniques
to explore such dynamics for longer times.
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Appendix A: Derivation of the Bogoliubov-SSH
Hamiltonian

In the following, we discuss a context in which the effec-
tive Hamiltonian given in Eqns. (1,2) of the manuscript
arises. We consider a setup akin to that used in the
experiment in [26], but in the presence of a double-well
optical lattice. The full Hamiltonian of the system is

Ĥ =

∫
d3r

[
Φ̂†(r)

(
− h̄2

2m
∇2 + Vtrap(y, z) + Vlat(x)

−µ
)

Φ̂(r) +
g

2
Φ̂†(r)Φ̂†(r)Φ̂(r)Φ̂(r)

]
. (A1)

In this equation, Vtrap(y, z) = 1
2m(ω2

yy
2 +ω2

zz
2) is a har-

monic trapping potential, Vlat(x) is the optical lattice
potential, µ is the chemical potential, g is the interac-
tion parameter related to the three-dimensional s-wave
scattering length, and Φ̂(r) are the bosonic field opera-

tors: [Φ̂(r), Φ̂†(r′)] = δ(r − r′). For Vlat(x), we take a
one-dimensional double-well lattice having, for instance,
the form

Vlat(x) = V1 cos(Qx) + V2 cos(2Qx) (A2)

with V1, V2 > 0. As in [26], we take tight confinement
in the y and z directions with ωy <∼ ωz and consider
an initial state that is in the first excited state of the
trapping potential. We accordingly expand the bosonic
field operator into the ground and excited bands (where
the excited band corresponds to the first excited spatial
mode of the trap): Φ̂(r) = Φ̂g(r) + Φ̂e(r) where

Φ̂g(r) =
∑
n

φg(y, z)wn(x)âg,n (A3)

Φ̂e(r) =
∑
n

φe(y, z)wn(x)âe,n. (A4)

In this, the one-dimensional sum is over the lattice sites
situated at the minima of Vlat(x) in the x-direction. The
Wannier orbital wn(x) is centered at site n, and φg(y, z)
and φe(y, z) are ground and first excited spatial modes
of the trap which are well approximated by harmonic
oscillator wave functions for strong confinement. The
orbitals φg(y, z) and φe(y, z) are taken to be real and are
symmetrical under z → −z, while φg(y, z) = φg(−y, z)
and φe(−y, z) = −φe(y, z). Inserting Φ̂(r) = Φ̂g(r) +
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Φ̂e(r) into Ĥ, using the parity of φe,g, and integrating
over y and z, we obtain

Ĥ =
∑
n

[
− J(1 + ε̄(−1)n)(â†g,nâg,n+1 + â†e,nâe,n+1 + H.c.)

+
Ugg
2
â†g,nâ

†
g,nâg,nâg,n +

Uee
2
â†e,nâ

†
e,nâe,nâe,n (A5)

+2Ugeâ
†
g,nâ

†
e,nâg,nâe,n +

Uge
2
â†g,nâ

†
g,nâe,nâe,n

+
Uge
2
â†e,nâ

†
e,nâg,nâg,n − ∆̃â†g,nâg,n

−µ(â†g,nâg,n + â†e,nâe,n)

]
where ∆̃ > 0 is the energy difference between the
ground and excited orbitals (in the limit of tight con-

finement, ∆̃ = h̄ωy), and we have shifted the chemi-
cal potential. The nearest-neighbor hopping expressed

as -
∫
dxw∗n(x)

(
−h̄2

2m
d2

dx2 + Vlat(x)
)
wn+1(x) is J(1+ ε̄) for

n even and J(1 − ε̄) for n odd (hopping further than
nearest-neighbors is dropped). We also define Uαβ =
g
∫
d3r φ2

α(y, z)φ2
β(y, z)|wn(x)|4. A similar analysis to

the above is carried out in [46].
The Gross-Pitaevskii equation corresponding to (A5)

will have the solution ae,n =
√

(µ+ 2t)/Uee ≡ āe, ag,n =
0 which corresponds to all bosons being in the excited
band. Inserting âe,n = āe+δâe,n into (A5) and expanding
to quadratic order in δâe,n and âg,n, we find (dropping
the constant term)

ĤB = Ĥg + Ĥe (A6)

where

Ĥg =
∑
n

[
− J(1 + ε̄(−1)n)(â†g,nâg,n+1 + H.c.) (A7)

+(2J + Ugen0 −∆)â†g,nâg,n +
Ugen0

2
(âg,nâg,n + H.c.)

]
and

Ĥe =
∑
n

[
− J(1 + ε̄(−1)n)(δâ†e,nδâe,n+1 + H.c.) (A8)

+(2J + Ueen0)δâ†e,nδâe,n +
Ueen0

2
(δâe,nδâe,n + H.c.)

]
.

In these equations, we have introduced n0 ≡ |āe|2 and

∆ ≡ ∆̃ + Ueen0 − Ugen0. Interestingly, at the quadratic
level the dynamics of bosons in the ground and excited
band is decoupled. It is straightforward to diagonal-
ize Ĥe and see that it is stable. Furthermore, retain-
ing higher-energy bands will yield additional stable and
gapped modes which are unimportant. The Hamiltonian
Ĥg is analyzed in the manuscript where the subscript g
is dropped and U ≡ Uge.

Appendix B: Evolution from the excited band

We now consider the evolution of the initial state
where all atoms are in the excited band: 〈âg,n〉 = 0,
〈âe,n〉 =

√
n0. Since this initial state is a solution of

the Gross Pitaevskii equation, it will be stationary at
the classical level. Quantum fluctuations, which are con-
tained in (A6), will trigger the evolution. The atom num-
ber per site as a function of time is given by

Fn(t) = 〈ψ(t)|(â†g,nâg,n + â†g,eâg,e)|ψ(t)〉 (B1)

= n0 + 〈ψ(t)|â†g,nâg,n|ψ(t)〉+ 〈ψ(t)|δâ†e,nδâe,n|ψ(t)〉

where |ψ(t)〉 = e−
i
h̄ ĤBt|0〉 and |0〉 is the vacuum state of

âg,n and δâe,n bosons. This expression is valid when

∑
n

〈ψ(t)|(â†g,nâg,n + δâ†e,nδâe,n)|ψ(t)〉 � n0N. (B2)

If there is a dynamical instability, there will inevitably be
a time at which (B2) breaks down, but (B1) will be valid
before then. In the manuscript, we investigate the behav-
ior of Gn(t) = 〈ψ(t)|â†g,nâg,n|ψ(t)〉 which has exponential
growth for a dynamical instability.

[1] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su,
Rev. Mod. Phys. 60, 781 (1988).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and
M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

[3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[4] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[5] E. Zhao, N. Bray-Ali, C. J. Williams, I. B. Spielman,
and I. I. Satija, Phys. Rev. A 84, 063629 (2011).
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