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Title 28 

Stomatal and growth responses to hydraulic and chemical changes 29 

induced by progressive soil drying Highlight 30 

This study synchronously investigated maize growth and physiological responses to 31 

progressive soil drying. It indicate hydraulic and chemical changes may regulate 32 

plant development and functioning during the onset of drought. 33 

Abstract 34 

A better understanding of physiological responses of crops to drought stress is 35 

important for ensuring sustained crop productivity under climate change. Here we 36 

studied the effect on 15 d-old maize (Zea mays L.) plants of a 6-d non-lethal period 37 

of soil drying (soil water potential (SWP) decreased from –0.20 to –0.81 MPa). Root 38 

growth was initially stimulated during drying (when SWP decreased from –0.31 to –39 

0.38 MPa, c.f. –0.29 MPa in well-watered pots), followed by inhibition during Days 5–40 

6 (SWP from –0.63 to –0.81 MPa). Abscisic acid (ABA) in the root began to 41 

accumulate as the root water potential declined during Days 2–3. Leaf elongation 42 

was inhibited from Day 4 (SWP < –0.51 MPa), just after leaf ABA content began to 43 

increase, but coinciding with a decline in leaf water potential. The stomatal 44 

conductance was restricted earlier in the younger leaf (4th) (on Day 3) than in the 45 

older leaf (3rd). The ethylene content of leaves and roots decreased during drying, 46 

but after the respective increase in ABA contents. This work identified critical timing 47 

of hydraulic and chemical changes at the onset of soil drying, which can be important 48 

in initiating early stomatal and growth responses to drought. 49 

Keywords: Abscisic acid (ABA), drought, ethylene, hormone, maize, physiological 50 

responses, root, shoot 51 

Abbreviations 52 

ABA: abscisic acid; CE: controlled-environment; GC: gas chromatography. 53 
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Introduction 54 

Drought is a major factor restricting crop production in many regions of the world 55 

(Boyer, 1982; Boyer et al., 2013). Whilst maize (Zea mays L.) is among the top three 56 

staple crops worldwide (Varshney et al., 2012), its production is likely to suffer more 57 

from drought stress in the future under a changing climate with increased risk of high 58 

temperatures and more variable precipitation (Battisti and Naylor, 2009; Challinor et 59 

al., 2014; Tardieu, 2012). Therefore, it is important to breed plants that are more 60 

drought resistant and to improve current irrigation management for agricultural 61 

systems. Both of these requirements can depend upon a better understanding of the 62 

physiological responses to drought stress of shoots and roots (Tuberosa et al., 2007). 63 

Unfortunately the term ‘drought’, as used in agriculture, is imprecise and does not 64 

have a universal definition (Wilhite and Glantz, 1985; Gilbert and Medina, 2016; 65 

McDaniel et al., 2017). However, it is valuable to use a combination of indices to 66 

characterise a specific drought stress event (e.g. onset, severity and duration), which 67 

can facilitate comparison and interpretation of specific plant drought responses 68 

(Lawlor, 2013). A non-lethal drought stress is common in the field and is considered 69 

to be an important target for the improvement of plant performance in droughted 70 

environments (Tuberosa et al., 2007; Skirycz et al., 2011). 71 

Plants use different strategies to cope with different degrees of drought (avoidance 72 

and tolerance), including numerous responses to avoid water loss, continue water 73 

uptake at low soil moisture contents or tolerate a low tissue water content, and 74 

thereby minimise the reduction of crop growth and yield under drought (Lawlor, 75 

2013). These avoidance and tolerance strategies are accomplished through a range 76 

of physiological responses, such as reducing stomatal conductance and 77 

development of leaf area, changing root and shoot growth to enhance root to shoot 78 

ratio and maintaining turgor pressure by reducing cellular solute potential (osmotic 79 

adjustment) etc. (Lawlor, 2013; Gilbert and Medina, 2016). Plant shoots and roots 80 

may respond differently to the same drought stress by means of development, 81 

growth and other physiological changes (Munns and Cramer, 1996; Romero et al., 82 

2017; Zhang et al., 2017). Shoot growth is generally more inhibited by drought than 83 

root growth (Sharp and Davies, 1979; Durand et al., 2016). In some cases, under 84 

mild drought, root growth may be promoted by soil drying, which is of great 85 

importance in maintaining sufficient water supply for the plant (Sharp and Davies, 86 
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1979; Kano et al., 2011). Westgate and Boyer (1985) showed that the maize nodal 87 

root could continue its elongation when the water potential in its growing region was 88 

–1.4 MPa, while the elongation of the stem, silks and leaves from the same plant 89 

was completely inhibited when the water potentials in their growing regions were –90 

0.50, –0.75 and –1.0 MPa respectively. Similarly, the primary root elongation rates of 91 

maize, soybean, cotton and squash were reduced but maintained when the 92 

substrate water potential was –1.6 MPa, while the shoot growth was completely 93 

inhibited at –0.8 MPa (Sharp, 2002).  94 

Phytohormones have been shown to regulate plant development and growth under 95 

drought stress (Santner et al., 2009; Pierik and Testerink, 2014). The concentration 96 

of abscisic acid (ABA), one of the most important drought-relevant hormones, 97 

increases under drought stress in many plant species (e.g. Arabidopsis, maize and 98 

potato) (Zhang and Davies, 1989; Huang et al., 2008; Puértolas et al., 2015). It is 99 

also suggested that the concentration of ABA in the root could be an indicator of a 100 

local change in soil water availability (Zhang and Davies, 1989). Furthermore, the 101 

accumulation of ABA under drought stress is reported to be responsible for stomatal 102 

closure and the inhibition of shoot and root growth (Chen et al., 2013; Harris, 2015). 103 

Mild drought can stimulate root growth, while severe drought can inhibit it (Sharp and 104 

Davies, 1979; Creelman et al., 1990). Accordingly, stimulatory and inhibitory effects 105 

on root growth were shown when ABA was applied to plants at low and high 106 

concentrations respectively (Xu et al., 2013; Li et al., 2017). 107 

Ethylene is a gaseous plant hormone, which is probably also involved in plant 108 

drought responses (Sharp and LeNoble, 2002; Kazan, 2015). Previous studies have 109 

indicated that drought stress may promote, restrict or not affect the ethylene 110 

production in various plant species (Morgan et al., 1990; Sharp and LeNoble, 2002; 111 

Arraes et al., 2015). Morgan et al. (1990) reported that intact cotton and bean plants 112 

showed reduced ethylene production during slow soil drying in contrast to the 113 

responses shown by detached leaves under rapid desiccation. Therefore the types 114 

of drought stress and sampling methods could affect the ethylene production result. 115 

Ethylene has been shown to be an inhibitor of shoot growth, root elongation and 116 

lateral root initiation (Pierik et al., 2006; Muday, 2012). A series of studies have 117 

suggested that significant accumulation of ABA is necessary to prevent extra 118 

ethylene production and thus ameliorate its inhibition of maize shoot and root growth 119 
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under low water potentials (Saab et al., 1990; Sharp and LeNoble, 2002). Hence, it 120 

has been assumed that the interaction between ABA and ethylene plays an 121 

important role in regulating plant drought response (Sharp and LeNoble, 2002; 122 

Tanaka et al., 2005). Nevertheless, there is also good evidence for a controlling 123 

influence of plant hydraulics in the regulation of plant development and functioning 124 

under drought (e.g. Brodribb, 2009) and more precise estimation and measurement 125 

of intra-organ variation in hydraulic and chemical status of plant cells (e.g. Buckley et 126 

al., 2017) highlights the difficulty of ruling in or out hydraulic and/or chemical control 127 

in individual studies. However, few studies have simultaneously investigated the 128 

gradual changes of hormone levels and leaf and root growth in response to a 129 

gradual soil drying, let alone the timing of these changes, which is prerequisite if we 130 

are to elucidate the complex signalling pathways which are important components of 131 

the plant drought response. 132 

By subjecting 15-d old maize plants to a 6-d non-lethal soil drying episode, the 133 

responses of leaf and root growth and physiological variables, such as endogenous 134 

ABA and ethylene accumulation, were investigated synchronously in this study. The 135 

results from this work imply the important involvement and the timing of hydraulic 136 

and hormonal changes in regulation of shoot and root growth during soil drying and 137 

could provide useful plant physiological information for improving crop management 138 

under drought. 139 

Materials and methods  140 

Plant growth 141 

The maize cultivar Earligold F1 (VSW041, Moles Seeds, UK) was used. In 142 

experiment one, 280 seeds (0.15–0.19 g seed-1) were soaked in deionized water for 143 

48 h and then pre-germinated on wet paper towels for 72 h in a controlled-144 

environment (CE) room in the dark (temperature: 24˚C/18˚C; photoperiod:14 h/10 h; 145 

relative humidity: 40%; light density: 350 μmol m-2 s-1). Then seedlings with a root 146 

length of 4–10 cm were transplanted into 155 pots (height: 24 cm; diameter: 6.4 cm; 147 

with stainless wire mesh at the bottom) with one seedling per pot. Each pot was filled 148 

with 785 g of moist soil (ca. 628 g dry soil) to make a 22-cm tall soil column. The soil 149 

was sieved (1-cm sieve) John Innes No.2 (Foremost, UK). After transplanting, each 150 

pot was watered thoroughly by adding 200 ml water. Seedlings became visible on 151 
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the next day and another 20 ml water was added to each pot. The soil column was 152 

then drained for 1 h and weighed to determine the pot capacity for water (54% of soil 153 

water content, w/w soil dry weight). All pots were weighed and watered to the pot 154 

capacity every day until the 15th day, except on the 7th day after transplantation 155 

when 50 ml Hoagland's nutrient solution (pH = 5.8–6.0) was given to each pot. The 156 

third leaf was expanded fully (the leaf collar became visible) by the 15th day after 157 

transplantation, which was set as the last watering day (Day 0) for the soil drying 158 

treatment. 159 

One hundred and four plants at a similar growth stage were selected: 48 plants for 160 

the soil drying treatment and another 48 plants as the well-watered control during the 161 

following 6 d, in addition to these, 8 plants were sampled on Day 0 as the starting 162 

reference. Control plants were watered daily to pot capacity. Eight pots of each 163 

treatment were destructively harvested every day during Days 1–6. All of the pots 164 

were moved every other day to ensure a uniform growth environment. 165 

This experiment was repeated once (experiment two). In experiment two, 170 seeds 166 

(0.15–0.19 g seed-1) were pre-germinated and 95 seedlings were transplanted into 167 

pots. On the last watering day (the 15th day, Day 0), 65 plants at a similar growth 168 

stage were selected: 30 plants for each treatment (soil drying and well-watered) and 169 

5 plants were sampled on Day 0. The growth condition and other process in these 170 

two experiments were the same. Similar results were seen in these two experiments. 171 

The data presented in this paper were combined results by treating every sample in 172 

either experiment as one replicate. 173 

Soil water content and soil water potential 174 

After removing the shoot from the soil surface, the soil column was cut into top and 175 

bottom halves from the middle (Figure 1A). After root tissue was removed, each part 176 

of the column was weighed (Woriginal), oven dried at 80˚C for about a week and 177 

weighed again for dry weight (Wdry). Then the soil water content (%, w/w) was 178 

calculated by [(Worignial – Wdry)/ Wdry] × 100%. 179 

A soil water characteristic curve can be found in Supplementary Data Figure S1. The 180 

soil water potential was measured by thermocouple psychrometer (Wescor Inc., 181 

Utah, USA) when the soil water content was above 25% (water potential higher than 182 

–0.37 MPa) and by the WP4-T Dewpoint Potentiometer (Decagon Devices, 183 
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Washington, USA) when the water content was between 5–25%. The soil water 184 

potential result was estimated from this soil water characteristic curve based on soil 185 

water content values. 186 

Leaf elongation rate and root growth measurements 187 

From the day before Day 0, the length of four growing leaves (the 4th–7th leaves) 188 

was measured daily once visible. The leaf elongation rate (mm h-1) was calculated. 189 

After the incubation for root ethylene (see below), the entire root system was 190 

scanned and analysed for total root length and root surface area with the WinRHIZO 191 

Pro system (Regent Instruments Inc., Quebec, Canada). In each treatment, the 192 

mean of root length or surface area in the previous day was treated as the root 193 

length or surface area for that day for calculation of the daily increase rates of these 194 

parameters (units: m d-1, cm2 d-1). 195 

Leaf and root water potential and solute potential 196 

Leaf and root water potential (Ψleaf and Ψroot) were measured with thermocouple 197 

psychrometers. Leaf discs (5 mm diameter) were punched from the middle of the 3rd 198 

leaf (avoiding the midrib). The leaf disc was immediately wrapped in aluminum foil to 199 

minimize water loss and loaded into a C52 sample chamber (Wescor Inc., Utah, 200 

USA) within minutes for a 3 h incubation. The voltage was then recorded on a HR-201 

33T Dew Point Microvolt meter (Wescor Inc., Utah, USA). The water potential in 202 

MPa was converted from the recorded voltage based on the calibration with salt 203 

solutions of known osmotic potentials. A few roots (no root tips) were collected from 204 

the outer surface of top two-third soil columns after the root tips were collected for 205 

ABA assay (see below). The roots were cut into small segments (5–8 mm). Ten to 206 

fifteen root segments were wrapped in aluminum foil and used to measure the water 207 

potential in the same way as for the leaf samples. During Days 0–6, leaf and root 208 

tissues were sampled from 10:00 am till 18:00 pm in the light period of the CE room 209 

(6:00 am to 20:00 pm) when a plant was destructively harvested on each day. Plants 210 

from well-watered and soil drying treatments were harvested alternately within each 211 

day (except Day 0). 212 

The same leaf and root samples were then used to measure solute potentials (Ψs-leaf 213 

and Ψs-root) by the same psychrometer. Samples were frozen by submergence into 214 

liquid nitrogen and then stored in a –20˚C freezer, defrosting before use. The voltage 215 



9 
 

was record after 30 min incubation of samples and then converted to solute potential 216 

in MPa. Leaf and root turgor pressure (Ψt-leaf and Ψt-root) were then calculated for 217 

every sample according to the equation Ψt = Ψ – Ψs.  218 

Stomatal conductance 219 

Stomatal conductance was measured daily between 7:00 and 9:00 am (photoperiod 220 

started at 6:00 am) with an AP4 porometer (Delta-T Devices, Cambridge, UK). The 221 

3rd (fully expanded on Day 0) and the 4th (fully expanded on Day 2 or 3) leaves of 222 

each plant were measured. The measurement was on the abaxial leaf surfaces from 223 

both sides of the midrib in the middle one-third of each leaf. Two positions on each 224 

side of the midrib were measured and the mean value of the four readings was used 225 

to represent the stomatal conductance for an individual plant. 226 

ABA assay for leaf and root tissues 227 

In experiment one, the 3rd leaves of every two of the eight plants from the same 228 

treatment were pooled as one replicate. In experiment two, the 3rd leaf of each plant 229 

was treated as one replicate. The leaves were cut at the collars, folded into one 15 230 

ml centrifuge tube and submerged into liquid nitrogen immediately. Around 100 root 231 

tips (ca. 3 cm) were collected from the top two-third of the soil column of the same 232 

two pots used for leaf sampling in experiment one. Similarly, around 40 root tips 233 

were collected from one plant in experiment two. The root tips were quickly washed 234 

with tap water, transferred into a 1.5 ml centrifuge tube and submerged into liquid 235 

nitrogen. All samples were stored at –20°C before being freeze-dried for 48 h. The 236 

samples were then ground, and ca. 30 mg leaf tissue and all root tips were extracted 237 

with deionised water at 1:25 mg:μl ratio in a 1.5 ml centrifuge tube and shaken at 238 

4°C overnight. Then the competitive radioimmunoassay (Quarrie et al., 1988) was 239 

used to determine ABA concentrations (ng g-1 DW). The extract was centrifuged at 240 

12 000 g for 4 min and then 50 μl supernatant was pipetted into the reaction buffer. 241 

This buffer contained 200 μl of 50% 50 mM PBS buffer (pH = 6.0), 100 μl diluted 242 

antibody MAC 252, and 100 μl diluted [3H] ABA. The mixture was then incubated for 243 

45 min at 4°C. The bound radioactivity of [3H] ABA was measured with a liquid 244 

scintillation counter (Packard TriCARB 1600TR liquid scintillation analyser, Canberra, 245 

CT, USA). A standard curve with 8 ABA solutions (0, 62.5, 125, 250, 500, 1000, 246 

2000 and 2×106 pg 50 μl-1 (+)-ABA), which was made from (±)-ABA (A1049, Sigma-247 
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Aldrich) and was measured with samples and used for calculating the ABA 248 

concentrations of samples.  249 

Ethylene release rates from leaf and root 250 

In experiment one, four of the eight plants in each treatment were used for ethylene 251 

incubation every day during Days 1–6, while every plant was used in experiment two. 252 

The 5th leaf and the entire root system of a plant were used to quantify the ethylene 253 

release rate respectively. The entire root system was washed out of the soil (within 254 

30 min) after root tips were collected. Leaf and root samples were incubated in glass 255 

test tubes sealed with rubber stoppers for 1.5 h under light and dark respectively. To 256 

prevent water loss from the sample, a piece of wet filter paper was enclosed. After 257 

the incubation, 1 ml gas was taken with a syringe and injected into a gas 258 

chromatography system (GC) fitted with a FID detector (6890N, Agilent 259 

Technologies, California, USA) (Chen et al., 2013). A 20 ppm ethylene/nitrogen 260 

standard gas (BOC Limited, Surrey, UK) was used to check the ethylene peak time 261 

and also for calibration. The leaf and root samples (after root scanning, see above) 262 

were oven dried and weighed. Then ethylene release rates (nl g-1 DW h-1) were 263 

calculated for leaves and roots. 264 

Statistical analysis 265 

The statistical software SPSS 21.0 (IBM, USA) was used to perform either one-way 266 

ANOVA with Tukey’s post hoc test or t-test at the P < 0.05 level. 267 

Results 268 

Soil water content during soil drying 269 

To establish a non-lethal progressive soil drying episode and to investigate maize 270 

root and shoot physiological responses during this process, several preliminary 271 

experiments were conducted and this 6 d drying treatment was chosen for this study. 272 

On the 6th day of soil drying, maize plants started to wilt, but this wilting 273 

phenomenon can be eliminated quickly by rewatering (data not shown). To 274 

determine the drought intensity of the soil drying treatment during the 6 d after last 275 

watering, soil water contents of top and bottom halves of soil columns were 276 

measured. The top half of the column had a lower soil water content than the bottom 277 

half of the column in both well-watered and drying treatments (Figure 1B). The well-278 

watered pots had a soil water content of 38% (soil water potential: –0.30 MPa) and 279 
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44% (soil water potential: –0.26 MPa) in the top and bottom soils on average during 280 

the 6 d, respectively (Figure 1B). In contrast, the water content in the drying 281 

treatment declined from 37% (soil water potential: –0.30 MPa) to 10% (soil water 282 

potential: –0.95 MPa) in the top half soil and from 43% (soil water potential: –0.27 283 

MPa) to 12% (soil water potential: –0.73 MPa) in the bottom half soil (Figure 1B). 284 

Soil water contents in both top and bottom halves of the drying treatment were 285 

significantly lower than those in the well-watered pots from Day 2 (Figure 1B). The 286 

average water content of the soil columns in the drying treatment dropped gradually 287 

from pot capacity (54%, just after watering) on Day 0 to 11% on Day 6 (Figure 1B), 288 

corresponding to water potentials of –0.20 and –0.81 MPa respectively (Figure 1B, 289 

Supplementary Data Figure S1).  290 

Effects of soil drying on leaf and root growth  291 

Maize leaf elongation rate, total root length and total surface area were measured to 292 

indicate plant growth responses during soil drying. Results showed that soil drying 293 

significantly reduced the leaf elongation rate after Day 4 (the average soil water 294 

potential in drying pots: –0.51 MPa) (Figure 1B, 2 and Supplementary Data Figure 295 

S1). More than 30% and around 80% reduction was seen respectively during Days 296 

4–5 (the average soil water potential in drying pots decreased from –0.51 to –0.63 297 

MPa) and Days 5–6 (from –0.63 to –0.81 MPa) (Figure 1B, 2 and Supplementary 298 

Data Figure S1). Other older (the 4th leaf) or younger leaves (the 6th and 7th leaves) 299 

showed similar reduction in elongation rate during soil drying (Supplementary Data 300 

Figure S2). 301 

Maize in the soil drying treatment showed a larger total root length and surface area 302 

than the well-watered plants on Day 3 (the average soil water potential in drying pots: 303 

–0.38 MPa) (Figure 1B, 3 and Supplementary Data Figure S1), which was caused by 304 

a greater root growth rate during Days 2–3 (the average soil water potential in drying 305 

pots decreased from –0.31 to –0.38 MPa) of the soil drying treatment, when drought 306 

was mild (Figure 1B, Supplementary Data Figure S1 and S3). However, maize 307 

subjected to the soil drying treatment had a smaller root system on Day 6 (the 308 

average soil water potential in drying pots: –0.81 MPa) (Figure 1B, 3 and 309 

Supplementary Data Figure S1), which was due to the reduced root growth rate after 310 

Day 3 when the drought became more severe (Supplementary Data Figure S3). 311 
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Physiological responses to soil drying 312 

Changes in water potential and turgor pressure of leaf and root 313 

Leaf water potential and solute potential of the 3rd leaf were monitored as an 314 

indicator of leaf water status during soil drying. The leaf water potential in well-315 

watered maize was between –0.34 to –0.37 MPa during the 6-d period, while in the 316 

drying treatment it dropped to a significant lower value on Day 5 (leaf water potential: 317 

–0.86 MPa; the average soil water potential in drying pots: –0.63 MPa) and it 318 

decreased further to –1.10 MPa on Day 6 (Figure 1B, 4A and Supplementary Data 319 

Figure S1). The leaf turgor pressure of both well-watered and droughted plants was 320 

lower than starting values of the respective treatments from Day 4 (Figure 4B). 321 

However, the soil drying treatment did not reduce leaf turgor during the 6-d period 322 

when compared with controls (Figure 4B). 323 

The root water status was determined by measuring root water potential and 324 

calculating root turgor pressure. The root water potential was always around –0.30 325 

MPa in the well-watered plants over the 6 d (Figure 4C), which was close to the 326 

average soil water potential (Figure 1B and Supplementary Data Figure S1). In 327 

contrast, the root water potential in the soil drying treatment decreased from –0.26 to 328 

–1.37 MPa between Day 1 and Day 6 (the average soil water potential in drying pots 329 

decreased from –0.29 to –0.81 MPa) and was significantly lower than that in the 330 

well-watered plants from Day 3 (the average soil water potential in drying pots: –0.38 331 

MPa) (Figure 1B, 4C and Supplementary Data Figure S1). It is notable that the root 332 

water potential decreased along with, but remained lower than, the average soil 333 

water potential in the drying treatment from Day 2 (Figure 1B, 4C and 334 

Supplementary Data Figure S1). Root turgor pressure was maintained and even 335 

increased in the treated plants over the 6 d (Figure 4D), but was not significantly 336 

increased during the early stages of soil drying when increases in root growth were 337 

detected (Figure 3, 4D). 338 

Changes in leaf stomatal conductance 339 

The stomatal response to soil drying was monitored on a mature leaf (the 3rd) and a 340 

younger one (the 4th). The stomatal conductance of the 3rd leaf decreased along 341 

with soil drying from Day 5 (the average soil water potential in drying pots: –0.63 342 

MPa) and decreased by 43% and 75% compared with the well-watered maize plants 343 
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on Day 5 and 6 respectively (Figure 1B, 5A and Supplementary Data Figure S1). 344 

However, the 4th leaf showed a higher stomatal conductance than the 3rd leaf, by 345 

around 30% on average over the 6 d (Figure 5). In addition, an earlier response of 346 

stomata to soil drying was seen in this younger leaf; a significant reduction in 347 

stomatal conductance (by 12%) was seen on Day 3 (the average soil water potential 348 

in drying pots: –0.38 MPa) in drying plants (Figure 1B, 5B and Supplementary Data 349 

Figure S1). On the last two days of soil drying, the stomatal conductance in the 4th 350 

leaf decreased further (by 39% and 62% respectively) (Figure 5B).  351 

Changes of ABA concentrations and ethylene release rates in leaf and root 352 

During the 6 d of the experiment, ABA concentrations in the 3rd leaf of well-watered 353 

plants ranged between 80–119 ng g-1 DW (Figure 6A), while in the soil drying 354 

treatment the concentrations increased to around twice this value on Day 4 (the 355 

average soil water potential in drying pots: –0.51 MPa) and more than twenty times 356 

this value from Day 5 (the average soil water potential in drying pots: –0.63 MPa) 357 

(Figure 1B, 6A and Supplementary Data Figure S1). By contrast, the ethylene 358 

release rate of the 5th leaf only showed a reduction with soil drying treatment on Day 359 

6 (by 35%, P = 0.064; the average soil water potential in drying pots: –0.81 MPa) 360 

(Figure 1B, 6B and Supplementary Data Figure S1). In one preliminary 5-d soil 361 

drying experiment, ethylene release rates of the 5th and 6th leaves showed 362 

significant reduction during soil drying from Day 4, which was one day later than the 363 

increase of leaf ABA concentration (Supplementary Data Table S1, Figure S4). 364 

The ABA concentration in the root tips of well-watered maize ranged between 66–365 

123 ng g-1 DW, which was similar to ABA concentrations in the 3rd leaf (Figure 6A, 366 

C). In response to soil drying, the ABA concentration in root tips significantly 367 

increased by 95% on Day 3 (the average soil water potential in drying pots: –0.38 368 

MPa), earlier than an increase in ABA concentration in the 3rd leaf of these plants, 369 

which increased significant only from Day 4 (Figure 1B, 6A, C and Supplementary 370 

Data Figure S1). In root tips, soil drying continued to stimulate the ABA concentration 371 

on Days 4, 5 and 6, when the concentration was 3, 9 and 12 times of that in well-372 

watered plants, respectively (Figure 6C). It has to be noted that the root tips were 373 

sampled for ABA assay while the entire root system was used for ethylene analysis. 374 

From Day 4, the root ethylene release rate in the drying treatment was significantly 375 

lower than that of the watered treatment (Figure 6D). In roots of the well-watered 376 
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controls the rate of ethylene release increased by 23–54% on Days 4–6 compared 377 

with Day 1 (Figure 6D). 378 

Discussion 379 

Different responses of maize leaf and root growth during soil drying 380 

Previous studies have reported that shoot and root growth in maize respond 381 

differently during soil drying (Sharp and Davies, 1979; Watts et al., 1981). Shoot 382 

growth can be inhibited during soil drying (Sharp and Davies, 1979, 1985; Westgate 383 

and Boyer, 1985), while root growth can be stimulated under mild drought and 384 

inhibited when the drought becomes severe (Sharp and Davies, 1979; Watts et al., 385 

1981; Creelman et al., 1990). Similarly in this study, roots of maize plants under the 386 

soil drying treatment showed higher growth rates under mild drought (Days 2–3, the 387 

average soil water potential in drying pots decreased from –0.31 to –0.38 MPa), but 388 

lower growth rate once the drought became more severe (after Day 3) (Figure 1B, 3, 389 

7A and Supplementary Data Figure S1, S3). In contrast, leaf elongation was 390 

inhibited by soil drying, but only when the drought became more severe, during Days 391 

4–5 (the average soil water potential in drying pots decreased from –0.51 to –0.63 392 

MPa) (Figure 1B, 2 7A and Supplementary Data Figure S1). Modification of shoot 393 

and root growth rates can be an important drought avoidance strategy for plants 394 

(Lawlor, 2013). Notably, the increase of root growth was the earliest detected 395 

developmental change. It has been shown that such stimulation of root growth 396 

(especially in deeper soil) under mild drought exerted a positive effect on crop 397 

production since it helps maintain water uptake (Manschadi et al., 2006; Kano et al., 398 

2011). However, when the soil volume is limited, or there is little water stored in deep 399 

soil layers, there may be little benefit from increased root growth or a deeper root 400 

system (Tardieu, 2012; Wasson et al., 2012). Under such conditions, the increased 401 

root growth can quickly deplete the small amount of extractable water that remains 402 

and then root growth will soon be significantly inhibited (Kamoshita et al., 2004; 403 

Tardieu, 2012). Additionally, apart from the severities of drought stress, the plant 404 

developmental stages will also affect its shoot and root responses to drought 405 

(Boonjung and Fukai, 1996a, b; Tardieu, 2012). 406 

In previous studies on maize, roots showed earlier responses to drought (water 407 

potential decrease) than shoots (Sharp and Davies, 1979; Westgate and Boyer, 408 
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1985; Saab and Sharp, 1989). In the present study, the root water potential started 409 

to decrease during Days 2–3 of soil drying (when the average soil water potential in 410 

drying pots decreased from –0.31 MPa to –0.38 MPa), while the leaf water potential 411 

did not decline until Days 4–5 (when  the average soil water potential in drying pots 412 

decreased from –0.51 MPa to –0.63 MPa) (Figure 1B, 4A, C, 7B and Supplementary 413 

Data Figure S1). The later response in the leaf than in the root may be attributable to 414 

the early stimulation of root growth under mild drought, allowing the root to take up 415 

sufficient water to maintain leaf elongation and leaf water relations for a number of 416 

days. In addition, the water potential gradient between leaves and roots/soil was 417 

increased during Days 2–3 of soil drying due to a decrease in the water potentials of 418 

root and soil while the leaf water potential was sustained. This result suggests that 419 

the root hydraulic conductance was increased by mild soil drying, since the stomatal 420 

conductance of the 3rd leaf was maintained (Scoffoni and Sack, 2017). It has also 421 

been reported that root proliferation under drought was able to increase whole root 422 

system hydraulic conductance and supply more water for transpiration in grape 423 

(Alsina et al., 2011). 424 

The decrease in leaf water potential only after the decrease in root and soil water 425 

potential supports the view that while leaf water potential can be an indicator of plant 426 

water status, but it does not always represent the water status of the soil or the root 427 

(reviewed in Davies and Zhang, 1991). Because leaf water potential may not change 428 

synchronously with reductions in soil water potential, and other physiological 429 

responses may have already been activated in roots and perhaps in leaves also (e.g. 430 

reduced stomatal conductance and leaf elongation) (Sharp and Davies, 1979; 431 

Bahrun et al., 2002). Some studies suggest that leaf growth inhibition and stomatal 432 

closure are the earliest plant responses to drought and the former is earlier than the 433 

latter (Hsiao, 1973; Chaves, 1991; Osório et al., 1998). But these conclusions are 434 

often reached in studies where changes in root growth and physiology are not 435 

quantified. It is worthy of note that, to avoid the effect of growth-induced water 436 

potential in leaves and roots samples (Cavalieri and Boyer, 1982; Boyer, 2017), 437 

growing tissue (e.g. root tips and young leaves) was not used for water potential 438 

measurements. 439 

The calculated leaf and root turgor pressures were maintained during the 6 d period 440 

of soil drying (Figure 4B, D), which resulted from a reduced solute potential in tissues 441 
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through osmotic adjustment. The maintenance of turgor pressure is important for 442 

tissue to continue growing despite the decrease of tissue water potential (Boyer, 443 

2017). Interestingly, the root turgor pressure in droughted plants increased from 4 444 

days after last watering when the soil drying became more severe (Figure 4D), but 445 

this was after the increase in root growth in droughted plants. Similar increase in leaf 446 

turgor pressure under drought has been seen in two out of seven pearl millet 447 

accessions included in the study of Kusaka et al. (2005). This may be an adaptation 448 

of plants to maintain tissue growth under soil drying when tissue water potential is 449 

reduced. 450 

In this study, stomatal conductance in the 3rd leaf was reduced by soil drying from 451 

Day 5 (the average soil water potential in drying pots: –0.63 MPa), when the leaf 452 

water potential dropped (Figure 1B, 4A, 5A, 7B, C and Supplementary Data Figure 453 

S1). This is different from previous reports that stomata can start to close before leaf 454 

water potential is reduced by soil drying (Bahrun et al., 2002; Tardieu et al., 2010). 455 

Reduced stomatal conductance is a typical drought avoidance strategy in many plant 456 

species because it prevents continued high rates of water loss from leaves and 457 

thereby postpones or minimises potential damage by more severe decreases in 458 

water potential and turgor (Lawlor, 2013). 459 

Interestingly, in our experiments, the younger leaf (the 4th) showed lower stomatal 460 

conductance on Day 3 (the average soil water potential in drying pots: –0.38 MPa) 461 

when only the water potential of the root was significantly reduced by soil drying 462 

(Figure 1B, 4C, 5B, 7B, C and Supplementary Data Figure S1). This could be 463 

explained if stomata of the younger leaves were more sensitive to soil drying than 464 

those of the older leaves, but there is still a question of how the stomata respond to a 465 

change in root water potential while the water potential of the leaves is not affected 466 

by soil drying. Stomata of the 4th leaf may be responding to an ABA-based root 467 

signal but if this is the case, why do stomata of the 3rd leaf not respond to this signal? 468 

Stomata in older leaves have been found to be less sensitive to ABA than those of 469 

relatively younger leaves (Chen et al., 2013).The results also indicates that the 470 

stomata of the growing leaf responded more quickly to soil drying than did its 471 

elongation rate. Leaf water potential in the 4th leaf was not measured, so it is not 472 

clear whether soil drying reduced both the water potential and stomatal conductance 473 

in the 4th leaf at the same time or not. Bajji et al. (2001) found that the decreases of 474 
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leaf water potential and solute potential were larger in younger growing leaves than 475 

those in relatively older leaves in three wheat cultivars when subjected to a same 15 476 

day-progress soil drying. It was suggested that this phenomenon may be associated 477 

with the higher capacity of younger leaves for osmotic adjustment and maintenance 478 

of cellular water content and turgor (Morgan, 1984; Bajji et al., 2001). Water potential 479 

in younger leaves could also be more depressed than in mature leaves due to 480 

possible hydraulic limitation in the growing zone at the base of the younger leaves. If 481 

this was the case, such a decrease in leaf water potential of the 4th leaf (younger 482 

leaf) (not measured) might have stimulated ABA production here. As highlighted 483 

above, intra organ variation in water status can be a complication in analysis of the 484 

kind attempted here (Buckley et al., 2017). 485 

The literature reports that older leaves can provide ABA to sustain higher ABA 486 

concentrations in younger leaves (Zeevaart and Boyer, 1984; Chater et al., 2014), 487 

but there is no evidence of this here. Thus, these results indicated that earlier root 488 

physiological responses to soil drying and stomatal closure in younger leaves may 489 

be better indicators to define the onset and severity of a drought event than leaf 490 

growth inhibition and other later responses in leaves. Furthermore, stomatal closure 491 

in young leaves will be easier to measure than root responses when plants are 492 

grown in soil. 493 

The relationship between the ABA concentration, ethylene release rate and the leaf 494 

and root growth during soil drying 495 

It is often unclear from the literature at which stage plant hormone levels start to 496 

change following the initiation of a soil drying episode and whether these changes 497 

are synchronous with other root or leaf physiological changes. In this study, it was 498 

found that ABA concentrations in both root tips and leaf tissues of maize increased 499 

under soil drying (Figure 6A, C), which is in accordance with previous studies 500 

(Davies and Zhang, 1991). Where the extra ABA came from in those samples of 501 

droughted plants cannot be determined in this study but extra ABA is detected in the 502 

root before a decline in leaf water potential is detected (although a possible decrease 503 

in water status of younger leaves is discussed above). It may be newly synthesised 504 

or released from stored inactive glucose ester conjugate either in sampled tissues or 505 

circulated from other tissues (Wasilewska et al., 2008). Interestingly, the 506 

accumulation of ABA in the roots triggered by soil drying was accompanied by a 507 
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stimulation of root growth on the same day (Days 2−3, mild drought, the average soil 508 

water potential in drying pots decreased from –0.31 MPa to –0.38 MPa), (Figure 1B, 509 

7A, D and Supplementary Data Figure S1). After Day 3, as the soil moisture content 510 

declined further, ABA continued to accumulate in roots and this was accompanied by 511 

slower rates of root growth (Figure 7A, D). Exogenous ABA has been found to both 512 

stimulate and inhibit root growth in maize, rice and also in Arabidopsis, depending on 513 

its concentration (Watts et al., 1981; Xu et al., 2013; Li et al., 2017). Therefore, this 514 

suggests that increased ABA levels in roots may have either stimulated or inhibited 515 

root growth, depending on the magnitude of ABA accumulation under a mild or a 516 

more severe drought. In contrast to the root, the ABA concentration in the leaf 517 

increased later, during Days 3–4 (Figure 7D). However, the leaf elongation rate was 518 

inhibited later, during Days 4–5 (Figure 7A). This indicates that a small increase of 519 

leaf ABA (around two-fold increase) was not related to a change in leaf elongation 520 

rate, while a large increase in leaf ABA level coincided with the inhibition of leaf 521 

elongation, which is consistent with previous reports that ABA is an inhibitor of shoot 522 

growth (Sharp and LeNoble, 2002; Meguro and Sato; 2014). 523 

In this study, root tips were sampled only from the top two-thirds of the pot to analyse 524 

ABA concentration, because the root sampling method can be important if we want 525 

to argue that root ABA increase occurred together with the decrease of root water 526 

potential. Soil water was distributed heterogeneously in the pot (Figure 1B), so that 527 

when the top part of the soil column is dry enough to trigger an increase of ABA 528 

concentration in the root, the lower part may still be too wet to see any enhanced 529 

root ABA level. Thus, if root tips are collected from the entire soil column, this may 530 

make it difficult to see an early increase of ABA concentration in the root even when 531 

the average soil water content had dropped to 22% in a preliminary experiment (data 532 

not shown). Puértolas et al. (2015) reported a similar finding in potato plants, which 533 

were grown in a vertical partial root-zone drying system, that roots sampled in the 534 

lower wetter part of a soil column had a lower ABA concentration than roots in the 535 

upper, drier soil.  536 

The present study showed that soil drying inhibited ethylene release from both maize 537 

leaves and roots (Figure 6B, D), which is in accordance with the finding that maize 538 

ethylene emission was inhibited under low water potentials when the ABA level was 539 

increased (Sharp and LeNoble, 2002). However, the inhibitory effects of soil drying 540 
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on leaf and root ethylene occurred at a later stage of the soil drying than the ABA 541 

accumulation (on Day 6 and 4 respectively) (Figure 7E). Thus, the ABA 542 

concentrations in leaf and root were more susceptible to soil drying than ethylene 543 

release rates. Furthermore, both the leaf and root growth responses had occurred 544 

prior to the detected changes of ethylene level during soil drying (Figure 7A, E). 545 

These non-synchronous effects suggest that changes in ethylene level do not play 546 

an important role in the regulation of leaf elongation and root growth under drought 547 

(at least before Day 4 in the current experiment). Similarly, Voisin et al. (2006) found 548 

that leaf elongation rate was not affected in moderately drought-stressed ABA-549 

deficient maize plants that showed high ethylene levels. One further possibility is that 550 

the ethylene emissions may have been affected by the soil drying in the first few 551 

days of soil drying, but the GC equipment may not be sufficiently sensitive to detect 552 

such small changes (Cristescu et al., 2013). 553 

A possible explanation for the increase in root ethylene levels of well-watered plants 554 

from Day 4 is that the container has constrained the growing volume of root system 555 

and caused stress (Poorter et al., 2012) (Figure 6D). Ethylene has been reported to 556 

be a stress-induced hormone. Mechanical impedance can enhance the ethylene 557 

production without changing ABA level, while phosphorus deficiency can also 558 

promote ethylene emissions (Moss et al., 1988; Li et al., 2009). 559 

Results from this work indicate when and how the hydraulic and chemical (hormonal) 560 

changes in maize leaves and roots could regulate stomatal conductance and plant 561 

growth in response to initially very small changes in soil water status during a 6-d 562 

non-lethal drying. It is suggested that ABA accumulation may play important roles in 563 

regulating both root growth promotion and inhibition during different stages of soil 564 

drying, while a reduced ethylene content may not be involved in regulating leaf and 565 

root growth at an early stage of drying. These early developmental and physiological 566 

responses may be key to crop establishment. However, plants are complex systems, 567 

and different results could be seen with different time scales of drought treatments 568 

(short-term vs. long-term), plant genotypes or soil conditions (e.g. soils with different 569 

depths) (Tardieu and Parent, 2017). The identification of the critical point at which 570 

soil water status affects root growth (either positively or negatively), along with the 571 

other observed physiological responses (e.g. stomatal conductance reduction in 572 

different leaves and changes in leaf and root water potential) focusses attention of 573 
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physiological and developmental changes that can influence both agronomy and 574 

crop improvement strategies for establishment of crops in dryland environments. It is 575 

clear that considerable precision in both chemical and hydraulic status of different 576 

plant parts is important if we are to understand which are the controlling influences 577 

for growth, development and functioning of plants under drought. 578 

Supplementary Data 579 

Table S1: Soil water content data from a preliminary 5-d soil drying experiment. 580 

Figure S1: Soil water characteristic curve: soil water potential against soil water 581 

content. 582 

Figure S2: Leaf elongation rate of (A) the 4th leaf (leaf was fully expanded on Day 2 583 

or 3), (B) the 6th leaf (leaf was expanding and visible from Day 1), (C) the 7th leaf 584 

(leaf was expanding and visible from Day 4). 585 

Figure S3: (A) Root growth rate, (B) total root surface area increase rate during the 586 

6-d soil drying treatment. 587 

Figure S4: Leaf ABA concentration and ethylene release rate results from a 588 

preliminary 5-d soil drying experiment. 589 
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Figure legends 

Figure 1: (A) Soil columns from the well-watered and soil drying treatments on Day 

6 after the last watering; (B) soil water content in top and bottom parts of well-

watered (WW) and soil drying (SD) treatments (Days 0−6). Pre-germinated maize 

seeds (Earligold F1) were transplanted into pots filled with sieved soil (John Innes 

No.2). Seedlings germinated from the soil surface after one day. All pots were 

weighed and watered to the pot capacity every day until the 15th day, except on the 

7th day after transplantation when 50 ml Hoagland’s nutrient solution (pH = 5.8−6.0) 

were given to each pot. The third leaf was fully expanded on the 15th day after 

transplantation, and this day was set as the last watering day (Day 0). Plants at a 

similar growth stage were selected. The same experiments were conducted twice 

and data presented here is the combined result. After Day 0, control plants were 

watered daily to the pot capacity while watering was ceased in the soil drying 

treatment for 6 d. Pots of each treatment were destructively harvested every day 

during Days 1−6. Each soil column was cut into top and bottom halves from the 

middle to measure the soil water content in top and bottom parts. Points and bars 

are means ± standard error. Data was analysed using one-way ANOVA with Tukey’s 

post hoc test and different letters indicate significant difference on the same day at P 

< 0.05 (n = 13 on Day 0 and n = 9 on other Days). Values in the brackets are 

estimated soil water potentials (MPa) based on the soil water content values and the 

soil water characteristic curve (Supplementary Data Figure S1). 

Figure 2: Leaf elongation rate of the 5th leaf of maize seedlings (leaf was expanding 

and visible before the start of soil drying), replication n = 13. Points and bars are 

means ± standard error. Data was analysed using t-test and stars indicate significant 

difference between well-watered and soil drying treatments on the same day at P < 

0.05. 

Figure 3: (A) Total root length and (B) total root surface area during the 

experimental period (Days 0–6). During the 6-day soil drying treatment (Figure 1), 

the roots that were used for ethylene incubation in each treatment were scanned and 

analyzed for total root length and root surface area using the WinRHIZO Pro system. 

Columns and bars are means ± standard error. Data was analysed using t-test and 

stars  indicate significant difference between well-watered and soil drying treatments 

on the same day at P < 0.05 (n = 9). 
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Figure 4: (A) Leaf water potential and (B) leaf turgor pressure of the 3rd leaf during 

the experimental period (Days 0–6). (C) Root water potential and (D) root turgor 

pressure during the experimental period (Days 0–6). During the 6-day soil drying 

(Figure 1), a leaf disc (5 mm diameter) from the middle of the 3rd leaf (avoiding the 

midrib), or a root sample (10−15 root segments, 5−8 mm in length and without root 

tips) from the top two-third of the soil columns was incubated for 3 h in a C52 sample 

chamber in the thermocouple psychrometer. The voltage was then recorded on a 

HR-33T Dew Point Microvolt meter. The leaf and root samples were then frozen and 

defrosted before they were used to measure the solute potentials, which were also 

measured by the same thermocouple psychrometer used for water potential 

measurement. Each sample was incubated for 30 min and the voltage was recorded. 

The voltage readings were then converted to water potentials and solute potentials 

respectively. Columns and bars are means ± standard error. Data was analysed 

using t-test and stars indicate significant difference between well-watered and soil 

drying treatments on the same day at P < 0.05 (n = 13). 

Figure 5: Leaf stomatal conductance of (A) the 3rd leaf (leaf was fully expanded 

before soil drying), (B) the 4th leaf (leaf was fully expanded on Day 2 or 3) in 

response to soil drying. During the 6-day soil drying (Figure 1), the 3rd and 4th 

leaves of each plant were measured for stomatal conductance using an AP4 

porometer. The measurement was on the abaxial leaf surface from both sides of the 

midrib in the middle one-third of each leaf. Two positions on each side of the midrib 

were measured and the mean value of the four readings represented the stomatal 

conductance of the respective leaf. Columns and bars are means ± standard error. 

Data was analysed using t-test and stars indicate significant difference between well-

watered and soil drying treatments on the same day at P < 0.05 (n = 8). 

Figure 6: (A) Leaf ABA concentration in the 3rd leaf (fully expanded before soil 

drying), (B) leaf ethylene release rate of the 5th leaf (expanding), (C) ABA 

concentrations in root tips, (D) ethylene release rate of the entire root system. During 

the 6-day soil drying (Figure 1), leaf samples were cut at the collars and root tips (ca. 

3 cm each) were collected from the top two-third of the soil column. These samples 

were submerged into liquid nitrogen immediately and then stored at −20˚C before 

being freeze-dried for 48 h. Dry samples were then ground and extracted with water. 

The extract was then used to determine the ABA concentration by the 
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radioimmunoassay. The 5th leaf was cut from the soil surface and then incubated for 

1.5 h (under light in the CE room) with a piece of wet filter paper in a sealed glass 

tube. A whole root system of a plant was then washed out and incubated similarly as 

the leaf sample but under dark. Then 1 ml gas was taken with a syringe and 

measured with a GC system fitted with a FID detector. The leaf or root sample was 

then oven dried for dry weight and the ethylene release rate was calculated. Points 

and bars are means ± standard error. Data was analysed using t-test and stars 

indicate significant difference between well-watered and soil drying treatments on the 

same day at P < 0.05 (n = 9). 

Figure 7: Relative differences in growth and physiology responses of plants exposed 

to soil drying compared to that were well-watered during the 6-d experimental period. 

The relative changes in (A) leaf and root growth rates, (B) leaf and root water 

potentials, (C) stomatal conductance of the 3rd and 4th leaves, (D) leaf and root ABA 

concentrations, (E) ethylene release rate of leaf and root. Points and bars are means 

± standard error. Arrows and Day indicate the time when the two treatments became 

significantly different. 


