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Abstract 19 

 The degradation of coral reefs is widely reported, yet there is a poor 20 

understanding of the adaptability of reef fishes to cope with benthic change. We tested 21 

the effects of coral reef degradation on the feeding plasticity of four reef fish species. We 22 

used isotopic niche sizes and mean δ15N and δ13C values of each species in two coral 23 

reefs that differed in benthic condition. The species chosen have contrasting feeding 24 

strategies; Chaetodon lunulatus (corallivore), Chrysiptera rollandi (zooplanktivore), 25 

Halichoeres melannurus (invertivore) and Zebrasoma velifer (herbivore). We predicted 26 

that the corallivore would have a lower mean δ15N value and a smaller isotopic niche 27 

size in the degraded reef, that the herbivore and the invertivore might have a larger 28 

isotopic niche size and/or a different mean δ13C value, whereas the zooplanktivore 29 

might be indifferent since the species is not linked to coral degradation. Some results 30 

matched our predictions; C. lunulatus had a smaller niche size on the degraded reef, but 31 

no difference in mean δ15N and δ13C values, and H. melannurus displayed an increase in 32 

niche size and a lower mean δ15N value on the degraded reef. Some other results were 33 

contrary to our predictions; whereas Z. velifer and C. rollandi had smaller mean δ13C 34 
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values but no difference in niche size. Our findings suggest there may be feeding 35 

plasticity to maintain a similar diet despite contrasting habitat characteristics, with 36 

different amplitude depending on species. Such findings suggest that certain species 37 

guilds would probably adapt to changes linked to habitat degradation. 38 

 39 
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 43 

 44 

Introduction 45 

 46 

 Coral reefs are threatened by several natural and human-driven disturbances. 47 

These disturbances differ in scale and frequency, and are causing substantial economic 48 

and ecological changes (Hoegh-Guldberg 1999; Hughes et al. 2003; Wilson et al. 2006, 49 

2010; Graham et al. 2008, 2014; Mora et al. 2011; Riegl and Purkis 2015; Cinner et al. 50 

2016). The long-term persistence of coral reefs is even at risk in the face of global 51 

climate change (Roff et al. 2014; Hoey et al. 2016). As pointed out by Sale et al. (2014), 52 

“ever-expanding human impacts are continuing a substantial decline in the capacity of 53 

coastal marine ecosystems to provide crucial goods and services”. It is therefore critical 54 

and urgent to better assess how and through what mechanisms species or functional 55 

groups can adapt and cope with changing environmental conditions (Graham et al. 2013, 56 

2015; Mumby et al. 2016).  57 

One way to assess these dynamic properties is to look at the feeding plasticity of 58 

coral reef organisms, as it at least partly reflects their potential to persist under 59 

changing environments. However, due to the high diversity of organisms (Hixon 2011) 60 

and complex food webs (McMahon et al. 2015; Briand et al. 2016), it remains difficult to 61 

clearly capture dynamic energetic processes on coral reefs (Harmelin-Vivien 2002; 62 

Graham et al. 2017). The ecological niche theory (Elton 1927; Odum 1959), applied to 63 

feeding processes, offers the possibility to better evaluate energetics on coral reefs 64 

through a focus on selected species. 65 

Stable isotopes are a powerful tool to investigate feeding plasticity of organisms 66 

(Wyatt et al. 2012; Letourneur et al. 2013; McMahon et al. 2015; Briand et al. 2015, 67 

2016); both carbon and nitrogen ratios have the great advantage of providing 68 

information on time-integrated assimilated food (Fry 1988; Vander Zanden and 69 

Rasmussen 1999). δ13C can provide insights on the origin of the ingested organic 70 
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material (De Niro and Epstein 1978; Wada et al. 1991; Sweeting et al. 2007a), whereas 71 

δ15N can be used to define the trophic level of organisms (Minagawa and Wada 1984; 72 

Post 2002; Sweeting et al. 2007b). One way to use the bi-dimensional space constituted 73 

by both ratios is to quantify the isotopic niche size; the intra-specific variation in δ15N 74 

and δ13C values that captures feeding plasticity for a given species in a given habitat 75 

(Newsome et al. 2007).  76 

Here we test if differences in coral reef habitat conditions are reflected in the 77 

dietary niches of reef fishes, with implications for the capacity to use resources. Four 78 

species with different feeding strategies were chosen: an obligate corallivore species 79 

(Chaetodon lunulatus), a micro-zooplanktivore (Chrysiptera rollandi), an invertivore 80 

(Halichoeres melanurus) and a herbivore (Zebrasoma velifer). These species may display 81 

contrasting feeding responses to coral reef degradation and therefore present different 82 

mean isotopic values and/or isotopic niche sizes between reefs. For instance, a decrease 83 

of C. lunulatus’ isotopic niche size in the degraded reef might be expected due to the 84 

strong link of this species with living coral (Harmelin-Vivien and Bouchon-Navaro 1983; 85 

Pratchett et al. 2004), which in turn implies strong dietary specialization. Conversely, as 86 

a degraded reef is most often characterized by higher algal cover (Letourneur 1996), a 87 

larger isotopic niche size may be expected for the herbivore Z. velifer in the degraded 88 

reef. H. melannurus might also be affected by habitat change because the invertebrate 89 

community on which the species feed possibly responded to habitat characteristics. 90 

Finally, we would predict C. rollandi to be relatively indifferent to reef-health condition 91 

and thus have similar isotopic niche sizes on both reef types. 92 

 93 

Material and methods 94 

 95 

Conceptual framework 96 

 97 

This work derives from the ecological niche theory (Elton 1927; Odum 1959). 98 

Compared to a given presumably “normal” state, an ecological niche’s size/volume can 99 

remain stable (no apparent change), decrease or increase after one or several events. 100 

For instance, poor habitat quality, high intra- or inter-specific competition, or a high 101 

predation rate might generate a decrease in niche size/volume (Figure 1a). Conversely, 102 

good juvenile recruitment, high nutrient quality, or low predation or competition rates 103 

might generate an increase (Figure 1b).  The dimensions of the ecological niche may 104 

concern major ecological factors like habitat and feeding preferences for instance (e.g. 105 

two-dimensional biplots). 106 
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The isotopic niche concept is, to some degree, a simple transposition of the 107 

ecological niche concept into two particular dimensions (Newsome et al. 2007), giving 108 

information on a consumer position within a trophic network. Coral degradation may 109 

lead to four potential responses from the species studied:  110 

(1) the absence of any perceptible change, i.e. the isotopic niche size remains 111 

similar (the dark full line in figure 1c does not move) and the mean C and N isotopic 112 

values remain unchanged;  113 

(2) an increase or decrease of the isotopic niche size but without any significant 114 

change in δ15N and δ13C mean values (the small and large dotted lines in figure 1c);  115 

(3) significant changes in δ15N or δ13C mean values without any increase or 116 

decrease in isotopic niche size (the white or black arrows in figure 1d);  117 

(4) an increase or decrease of the isotopic niche size associated with significant 118 

changes in δ15N and/or δ13C mean values (the grey arrows in figure 1d). 119 

 120 

Study site and sampling procedures 121 

 122 

This work was carried out in October 2014 in the southwest lagoon of New 123 

Caledonia, southwest Pacific Ocean. Two fringing reefs, close to the city of Nouméa, were 124 

studied; both reefs are shallow (0-6 m depth) and separated by approximately 1.7 km. 125 

The first, considered hereafter as “healthy” (22°19'12 S and 166°29'52 E), is located 126 

leeward, subjected to low hydrodynamic conditions and is not experiencing any 127 

significant direct anthropogenic disturbances. The second, designated hereafter as 128 

“degraded” (22°18’53 S and 166°29’84 E), is located windward, with more rigorous 129 

hydrodynamic conditions, sandy-muddy sediments occur at its base (~6 m depth) and is 130 

presumably under the influence of sporadic terrigenous runoffs from a small river (its 131 

mouth is located approximately 5-6 km northeast).  132 

Habitat characteristics were assessed on four 30m transects at each site 133 

following the method of Wilson et al. (2007). Percentage hard living coral cover, dead 134 

coral, rubble, carbonate pavement and sand were estimated using point intercepts every 135 

50cm along the transect tape. Structural complexity was estimated visually on a 6 point 136 

scale (where 0 = no vertical relief, 1 = low and sparse relief, 2 = low but widespread 137 

relief, 3 = moderately complex, 4 = very complex with numerous fissures and caves, 5 = 138 

exceptionally complex with numerous caves and overhangs). The number of holes <10 139 

cm were estimated along a 10m2 section of each transect. The abundance of the fish 140 

species studied was estimated along the same transects using a 2m wide belt (i.e. 60m², 141 

x four replicates). 142 
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Fish were caught with a small fishing net adapted to the capture of aquarium fish. 143 

In order to avoid a plausible size effect on stable isotopic signatures, only individuals 144 

belonging to restricted size-classes were targeted, i.e. were caught Chaetodon lunulatus 145 

individuals of 7-10 cm (total length, TL) (N= 24 fish), Chysiptera rollandi individuals of 146 

4-5 cm TL (N= 61), Halichoeres melannurus individuals of 4-6 cm TL (N= 45), and 147 

Zebrasoma velifer individuals of 6-12 cm TL (N= 15). Since both reefs are separated by a 148 

very shallow sandy plain that is partly emerged at low tide, we therefore assumed that 149 

fish movements between reefs were negligible, especially because these species are site-150 

attached or sedentary and usually have very low to moderate home range. 151 

It is necessary to ensure that potential differences in fish population isotopic 152 

signatures are not linked to fluctuations in organic matter (hereafter OM) source 153 

isotopic values (i.e. the “baseline”), which may present significant differences even at 154 

small spatial scales (Briand et al. 2015). Three replicates of algal turf and surface 155 

sediments (for sedimentary organic matter, hereafter SOM) were sampled, as both 156 

sources are among the most important potential OM sources on coral reefs (Vermeij et 157 

al. 2010; Briand et al. 2015). 158 

 159 

Stable isotope samples and analyses 160 

 161 

Tissues providing the most reliable isotopic values were sampled and 162 

immediately frozen at −20 °C for subsequent analyses: a piece of thallus for cleaned algal 163 

turf and dorsal white muscle for all fish specimens (Pinnegar and Polunin, 1999). 164 

Carbon and nitrogen stable isotope ratios (δ13C and δ15N) were analysed for all samples. 165 

Sediment, algal turf and fish muscle samples were dried, then ground to a fine powder 166 

with a porcelain mortar and pestle using standard protocols. Samples were weighed and 167 

approximately 1 mg of powder was encapsulated for vegetal/animal tissues and 15-20 168 

mg for SOM. Samples were analysed without any prior treatment, except SOM for which 169 

two subsamples were analysed. The first, treated for δ13C analysis, required an 170 

acidification step (see details in Letourneur et al. 2013) as carbonates present higher 171 

δ13C than organic carbon (De Niro and Epstein 1978). The second, tested for δ15N, was 172 

not acidified to limit alteration of nitrogen isotopes (Pinnegar and Polunin 1999).  173 

The 13C:12C and 15N:14N ratios were measured by continuous-flow isotope-ratio 174 

mass spectrometry. Isotope ratios were expressed as parts per 1000 (‰) differences 175 

from a standard reference material:  176 

δX = [(Rsample / Rstandard) - 1] x 1000 177 
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where X is 13C or 15N, R is the corresponding ratio (13C:12C or 15N:14N) and δ is the 178 

proportion of heavy to light isotope in the sample. The international standard references 179 

are Vienna Pee Dee Belemnite for carbon and atmospheric N2 for nitrogen. Measurement 180 

precision, estimated using standards included in the analyses, was of 0.1 ‰ for δ13C and 181 

0.15 ‰ for δ15N. 182 

 183 

Data processing 184 

 185 

Variances of organic matter sources (i.e. SOM and algal turf), habitat parameters 186 

and fish density were heterogeneous (Levene test). Therefore, non-parametric Mann-187 

Whitney U tests were run to compare means.  188 

Core isotopic niche area can be revealed by fitting standard ellipses to the 189 

isotopic data in the bi-dimensional plot of δ13C/δ15N, as described in Jackson et al. 190 

(2011). The standard ellipse area of a set of bivariate data is calculated from the 191 

variance and covariance of x and y data and is expected to be less sensitive to sample 192 

size than former methods, which enable robust estimation of the isotopic niche. 193 

Layman metrics, based on the elaboration of convex hulls in the bi-dimensional 194 

δ13C/δ15N plot, were developed with the purpose to describe with precision the isotopic 195 

niche of a species or assemblage of several species (Layman et al. 2007; Cucherousset 196 

and Villeger 2015). Finally and for each species, the following metrics were calculated 197 

with the SIBER package (Jackson et al. 2011) to compare each species between the two 198 

reef sites, i.e. healthy vs. degraded:  199 

(i) TA- Total Area of the ellipse; measuring the whole trophic diversity of 200 

individuals of a given species in the δ13C/δ15N biplot;  201 

(ii) SEAc- Corrected Standard Ellipse Area; representing the averaged isotopic 202 

niche of the group of individuals, but including a correction factor that takes into 203 

account the sample size and is thus more robust than non-corrected standard ellipse 204 

area (in particular for samples with small number of individuals); 205 

(iii)  SEAb- Bayesian Standard Ellipse Area; the Bayesian assessment of the 206 

standard ellipse calculated with SEAc, performed with 104 iterations, allows to minimize 207 

uncertainties linked to SEAc calculated with small sample size. Values close to TA and 208 

SEAc are good indicators of the relevance of these metrics.  209 

In addition, the ratio SEAc/TA was calculated to obtain an idea of the individual 210 

variability within the group. The lower SEAc/TA is, the higher is the difference between 211 

TA and SEAc and thus the higher is the individual variability. 212 
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 213 

Results 214 

 215 

Habitat and fish population parameters 216 

 217 

Except for rubble and carbonate pavement cover, all habitat parameters showed 218 

strong significant differences between reefs (Mann-Whitney U test, p< 0.05, Table 1). 219 

For instance structural complexity and total live coral cover were both substantially 220 

greater on the healthy reef compared to the degraded reef. Conversely, dead coral and 221 

sand cover were 3 and 12-fold higher in the degraded reef, respectively.   222 

 Fish displayed similar (i.e. Zebrasoma velifer) or non-significantly different 223 

densities (e.g. Chaetodon lunulatus) on both reefs, except for Halichoeres melannurus 224 

that was approximatively 2-fold more numerous on the degraded reef (Mann-Whitney U 225 

test, p< 0.05, Table 2). 226 

 227 

Organic matter sources and fish isotopic ratios 228 

 229 

Both OM sources, i.e. algal turf and SOM, revealed very similar δ13C and δ15N 230 

mean values between healthy and degraded reefs (Mann-Whitney U test, p> 0.05, Table 231 

3). Ratios were slightly C- and N-depleted in algal turf compared to SOM, and were very 232 

close to values found by Briand et al. (2015) in neighboring fringing reefs.  233 

For each species, δ13C values were slightly higher in the healthy reef, and the 234 

opposite was found for δ15N, except for H. melannurus (Table 4). Differences in mean 235 

δ13C and δ15N values between healthy and degraded reefs for each species were non-236 

significant in most cases (Mann-Whitney U test, p> 0.05); only C. rollandi (p= 0.024) and 237 

Z. velifer (p= 0.021) presented  significantly C-depleted values in the degraded reef, and 238 

H. melannurus (p= 0.044) revealed significantly N-depleted ratios in the degraded reef. 239 

Among fish, Chaetodon lunulatus showed the highest mean δ13C values and Chrysipetra 240 

rollandi and Zebrasoma velifer the lowest (Table 4). Finally, Z. veliferum displayed the 241 

lowest δ15N mean value whereas Halichoeres melannurus presented the highest.  242 

 243 

Metrics and patterns of isotopic niches 244 

 245 

H. melannurus and Z. velifer respectively showed the highest and lowest TA in 246 

both reefs (Table 5). The differences between reefs were relatively high for C. lunulatus 247 
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and Z. velifer (although the latter species should be cautiously considered due to a low 248 

N) whereas C. rollandi and H. melannurus revealed similar values. Trends in SEAc 249 

slightly differed from TA results and differences were generally smoothed because the 250 

sample size was taken into account. For instance, the highest and lowest values of SEAc 251 

were obtained for C. lunulatus and C. rollandi respectively in the healthy reef and H. 252 

melannurus and C. lunulatus in the degraded reef (Table 5). C. lunulatus and Z. velifer 253 

displayed contrasted values of SEAc between both reefs, with a ~2-fold higher value in 254 

the healthy reef, whereas the opposite trend was found for H. melannurus. All species 255 

displayed moderate to low SEAc/TA ratio values (i.e. SEAc 2 to 3 times lower than TA), 256 

except Z. velifer (especially in the degraded reef) indicating a relatively important 257 

individual variability in their δ13C and/or δ15N. SEAc/TA ratios remained close on both 258 

reefs for C. lunulatus and C. rollandi indicating a similar individual variability, whereas 259 

an increase was observed for H. melannurus and Z. velifer in the degraded reef indicating 260 

a trend towards a decrease in individual variability. 261 

C. lunulatus’ TA and SEAc were clearly higher in the healthy reef (Table 5; Figure 262 

2), but a lower δ15N and more negative δ13C was also apparent. This latter pattern also 263 

appeared for C. rollandi, although TA and SEAc displayed similar expansion (Figure 2). 264 

For H. melannurus, a trend to the extension of TA and SEAc towards more negative δ13C 265 

and lower δ15N values in the degraded reef was shown (Figure 2). Z. velifer seemed to 266 

have more negative δ13C values on the degraded reef even if the modest number of 267 

individuals prevented any robust description.  268 

SEAb values for each species and both reefs were globally close to those of TA 269 

and SEAc (Figure 3), indicating the relevance of TA and SEAc metrics in our study. The 270 

only exception was Z. velifer in the degraded reef, but relatively large credibility 271 

intervals are likely linked to low numbers of individuals. 272 

 273 

Overlap in fish isotopic niches 274 

 275 

The overlap of Chaetodon lunulatus isotopic niche between both reefs is 18%; a 276 

percentage representing 46% of the degraded reef SEAc area and 25% of the healthy 277 

reef (Table 6). A similar overlap was obtained for Chrysiptera rollandi, but with an equal 278 

SEAc area overlap of ~30% in both reefs. Halichoeres melannurus was different, with the 279 

highest overlap found (25%) and an opposite trend for overlapping between reefs, i.e. a 280 

lower percentage overlap in the degraded reef (Table 6). The last species, Z. velifer, has 281 

shown the lowest overlap between isotopic niches from both reefs. Overall, these 282 

overlap differences illustrate a clear displacement of the δ13C - δ15N bi-dimensional 283 
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space from one reef to the other. It also clearly indicates a low to moderate (i.e. 9 to 284 

25%) overlap of the isotopic niche of each species between reef types and thus 285 

reinforces the previous pattern of isotopic niche displacements towards more δ13C 286 

and/or δ15N depleted isotopic niches from a healthy to a degraded reef (Figure 2). 287 

Finally, Chaetodon lunulatus and C. rollandi revealed a high probability of having 288 

lower SEAb in the degraded reef than in the healthy reef (p= 0.67 and 0.58 respectively, 289 

Table 6). The two other species, H. melannurus and Z. velifer displayed opposite results 290 

(p= 0.13 and 0.39 respectively). 291 

 292 

Discussion 293 

 294 

Coral reefs are exposed to a diversity of local and global pressures, which are 295 

leading to substantial benthic degradation (McClanahan et al. 2011; De’Ath et al. 2012). 296 

Here we have shown how all four species of fishes, with contrasted feeding strategies 297 

(an obligate corallivore, a micro-zooplanktivore, an invertivore and a herbivore), 298 

changed in feeding habits according to benthic condition on reefs; some conforming to 299 

expectations while others differed. Clearly, the influence of reef degradation on coral 300 

reef fishes will be variable, and the capacity for species to alter diets will dictate their 301 

responses. 302 

 The responses to habitat degradation of the four studied fishes were different in 303 

terms of mean isotopic values and/or isotopic niche size, and only partly fit with our 304 

initial expectations. All species displayed a modest overlap in their isotopic niche size 305 

(25% at best, for H. melannurus), strongly supporting a clear change in feeding 306 

characteristics between both reefs. Thus, the discrepancies in isotopic niches between 307 

both reef types likely reflect a potential for feeding plasticity enabling the four studied 308 

species to fit in contrasted habitat constrains.  309 

 Chaetodon lunulatus, a species usually considered as having a highly specialized 310 

diet on corals (Harmelin-Vivien and Bouchon Navaro 1983; Harmelin-Vivien 1989; 311 

Pratchett et al. 2004), showed some capacity for feeding versatility. Despite similar 312 

mean isotopic ratios on both reefs, the isotopic niche size of the obligate corallivore in 313 

the degraded reef was substantially smaller, with displacement towards more C-314 

depleted values. However, it should be borne in mind that the degraded reef still had 315 

30% live coral cover, so the findings may be quite different in an even more degraded 316 

habitat. There is likely a theoretical minimal value of live coral cover or threshold of the 317 

isotopic niche size for C. lunulatus under which feeding plasticity is not enough to permit 318 

maintenance in a severely degraded reef. The fact that this species had a very narrow 319 
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isotopic niche size in the degraded reef, associated with the highest probability of having 320 

lower SEAb in the degraded reef than in the healthy reef (Table 6), might thus reflect 321 

increasing difficulties in its condition resulting from a combination of its feeding 322 

specialization with degraded habitat characteristics. 323 

As expected, the micro-zooplanktivore Chrysiptera rollandi may have a similar 324 

feeding plasticity on both reefs as their isotopic niche size did not drastically vary, 325 

despite a decrease in mean δ13C values in the degraded reef. Another non-exclusive 326 

hypothesis is that this relative niche stability may reflect their capacity to maintain a 327 

similar diet in a more or less wide range of resource conditions and habitat 328 

characteristics. Although mostly based on copepods, C. rollandi demonstrated a 329 

relatively eclectic but consistent diet on both reefs ( Table S1) and therefore unchanged 330 

feeding plasticity. Strongly site-attached (Lieske and Myers 1994), C. rollandi remains 331 

globally indifferent to coral degradation for the amplitude measured here and despite a 332 

decrease of structural complexity and number of available holes as potential refuges.  333 

The herbivore Zebrasoma velifer, a species for which a larger isotopic niche was 334 

expected in poorer reef habitat conditions, had more C-depleted values and surprisingly 335 

a lower niche size (SEAc) in the degraded reef. Species living in large schools such as 336 

many herbivorous fish may display higher isotopic niche sizes than non-schooling 337 

species, because this behavioural trait enables them to easily reach their feeding 338 

resources. Z. velifer only rarely forms large schools and is most often encountered in 339 

small groups or even solitary, an ecological trait suggesting that Z. velifer has a smaller 340 

foraging influence than other aggregating herbivorous species (Lawson et al. 1999). It is 341 

thus unclear why this species displayed a narrower isotopic niche size in the degraded 342 

reef despite environmental conditions that are a priori more favourable. Although more 343 

individuals would permit a more robust statistical comparison, complementary work 344 

should be done on algal community structures on both reefs to investigate if the most 345 

consumed algae are abundant on the degraded reef. Alternatively, we cannot exclude 346 

that the density of the preferred algae for that species decreased on the degraded reef 347 

despite higher overall algal cover. 348 

Finally, the invertivore Halichoeres melannurus demonstrated 3 interesting 349 

changes on the degraded reef; an increase in mean density, a decrease in mean δ15N 350 

values (lower trophic level) and, mainly, an increase in isotopic niche size. Overall, these 351 

results suggest that H. melannurus may feed successfully on degraded habitats, likely 352 

benefiting from excess algal resources and associated small benthic invertebrates, 353 

despite lower habitat complexity. In such conditions, H. melannurus may express its 354 

feeding plasticity towards a larger diversity of prey-types supporting the population and 355 
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not only numerous small benthic prey. We could also assume that these various prey 356 

rely on more numerous C-depleted OM sources and/or on lower trophic level prey, 357 

explaining respectively the niche displacement towards more negative δ13C values and a 358 

decrease in mean trophic levels for H. melannurus on the degraded reef. Another 359 

possible explanation might be related to a shift within the invertebrate prey from a diet 360 

at least partially influenced by planktonic sources, such as filter feeding bivalves on the 361 

healthy reef; to one more dominated by the benthic algae cover with a larger makeup of 362 

isopods. Such a shift following reef degradation has been demonstrated in meso-363 

predatory reef fish on the Great Barrier Reef (Hempson et al. 2017). However, this 364 

hypothesis needs to be further explored as we do not have data to support it in our 365 

study. 366 

  Without any difference between the healthy and degraded reefs, algal turf and 367 

SOM displayed very similar isotopic values to ratios obtained in neighbouring New 368 

Caledonian reefs (Briand et al. 2015). This is an important point, suggesting that any 369 

obtained difference in fish δ13C or δ15N values, niche size or niche displacement may be 370 

independent from sources of OM (at least those taken into account here), and rather 371 

depend on prey items consumption. This hypothesis is partly supported by the broad 372 

diet data obtained for H. melannurus and C. rollandi for example (Table S1). In regard to 373 

the significant decreases in δ13C values for C. rollandi and Z. velifer in the degraded reef, 374 

the existence of an OM pathway ending at these fish and at least partly based on other 375 

non-sampled OM sources characterized by low δ13C values (e.g. phytoplankton, 376 

particulate organic matter or macroalgae) cannot be excluded. 377 

Substantial modifications in habitat characteristics between the two reefs might 378 

explain the variation in density obtained for C. lunulatus, which strongly depends on 379 

living coral (Harmelin-Vivien 1989; Pratchett et al. 2004). Surprisingly, the herbivorous 380 

Z. velifer did not display any significant difference in density, despite a priori more 381 

favorable conditions for algal coverage in the degraded reef. Overall, and irrespective of 382 

fish densities, our results most clearly highlighted that the four studied species do better 383 

in one or other of the reef conditions, suggesting that they either encounter different 384 

types of food resources or similar food resources but in different quantities. From a 385 

broad assessment of their diet (i.e. stomach content, Table S1), Chrysiptera rollandi and 386 

Halichoeres melannurus seem to consume similar prey in both reefs, in more or less 387 

comparable proportions for major items. However, both species showed some 388 

variations in prey consumption between reefs, such as for calanoid copepods or isopods. 389 

Strong inter-individual variability is also suggested by high SD values.  390 
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Futuyma and Moreno (1998) suggested that trophic niche size and specialization 391 

were the results of complex interactions between biological traits and local constraints, 392 

generating difficulties to disentangle the respective effects of each characteristic. Our 393 

findings strongly suggest that there is an interaction between food availability and 394 

trophic niche size of coral reef fish, but several other biological traits or environmental 395 

characteristics remain to be investigated, such as individual size and reef location at 396 

different spatial scales for instance. Balance between different traits and characteristics 397 

may lead to different responses (Bolnick et al. 2010) and thus influence feeding 398 

plasticity in response to changes of resource availability. To better assess the role of 399 

feeding plasticity during reef degradation, it is thus necessary to undertake further 400 

research on more numerous species with differing life-spans, including a wide size-401 

range, and various ecological strategies. Despite this, the data we present here are a 402 

powerful indication that feeding plasticity related to habitat degradation may be 403 

possible in a diverse range of reef fishes. 404 
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 559 
 560 
 561 
 562 
Figures legends 563 
 564 

Figure 1: The ecological niche theory; from a given ecological niche in a “normal” state 565 
(dark line, in both A and B panels), a species disturbed by an event may respond with a 566 
decrease of its niche size if the event has a negative impact (a; small dotted line), or with 567 
an increase of its niche size if event has a positive impact (b; large dotted line). (c): 568 
Transposition of the possible variations of the ecological niche size to the isotopic niche 569 
concept. Here, potential changes concern niche size, not changes in mean values of δ15N 570 
and/or δ13C. (d): The isotopic niche concept; from an initial isotopic niche (central 571 
position, dark line). Three main possibilities can be drawn: (1) an increase or a decrease 572 
of δ15N values without change in mean δ13C values (black arrows); (2) an increase or a 573 
decrease of δ13C values without change in mean δ15N values (white arrows); and (3) a 574 
combination of both (grey arrows). Note that for each case, the isotopic niche size can be 575 
stable (dark line), decrease (small dotted line) or increase (large dotted line). 576 
 577 

Figure 2: Total area (TA, dotted lines) and corrected standard ellipse area (SEAc, solid 578 
lines) for Chaetodon lunulatus (a), Chrysiptera rollandi (b), Halichoeres melannurus (c) 579 
and Zebrasoma velifer (d). Black ellipses represent the degraded reef (labeled D) and the 580 
red ellipses represent the healthy reef (labeled H). 581 
 582 

Figure 3: Boxplots of the Bayesian standard ellipse area (SEAb, in ‰²) for the four 583 
studied species in the degraded and healthy reefs. Shaded boxes represent, from light to 584 
dark grey, 50%, 75%, and 95% Bayesian credibility intervals. Black dots represent the 585 
modes of Bayesian distribution, whereas blue and red dots represent TA and SEAc, 586 
respectively.  587 
 588 


