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Abstract

The majority of the existing work on random vector functional link networks
(RVFLNs) is not scalable for data stream analytics because they work under a
batch learning scenario and lack a self-organizing property. A novel RVLFN,
namely the parsimonious random vector functional link network (pRVFLN),
is proposed in this paper. pRVFLN adopts a fully flexible and adaptive
working principle where its network structure can be configured from scratch
and can be automatically generated, pruned and recalled from data streams.
pRVFLN is capable of selecting and deselecting input attributes on the fly as
well as capable of extracting important training samples for model updates.
In addition, pRVFLN introduces a non-parametric type of hidden node which
completely reflects the real data distribution and is not constrained by a spe-
cific shape of the cluster. All learning procedures of pRVFLN follow a strictly
single-pass learning mode, which is applicable for online time-critical appli-
cations. The advantage of pRVFLN is verified through numerous simulations
with real-world data streams. It was benchmarked against recently published
algorithms where it demonstrated comparable and even higher predictive ac-
curacies while imposing the lowest complexities.
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1. Introduction1

Significant growth of the problem space has led to a scalability issue2

for conventional machine learning approaches, which require iterating entire3

batches of data over multiple epochs. This phenomenon results in a strong4

demand for a simple, fast machine learning algorithm to be well-suited for5

deployment in numerous data-rich applications. This provides a strong case6

for research in the area of randomness in neural networks [5, 25], which was7

very popular in the late 80s and early 90s. This concept offers an algorithmic8

framework, which allows them to generate most of the network parameters9

randomly while still retaining reasonable performance [5]. One of the most10

prominent examples of randomness in neural networks is the random vector11

functional link network (RVFLN) which features solid universal approxima-12

tion theory under strict conditions [7].13

Due to its simple but sound working principle, randomness in neural net-14

works has regained its popularity in the current literature [1, 26]. Nonethe-15

less, the vast majority of works in the literature suffers from the issue of16

complexity which makes their computational complexity and memory bur-17

den prohibitive for data stream analytics since their complexities are manu-18

ally determined and rely heavily on expert domain knowledge. The random19

selection of network parameters often causes the network complexity to go20

beyond what is necessary due to the existence of superfluous hidden nodes21

which contribute little to the generalization performance. Although the uni-22

versal approximation capability of such an approach is assured only when23

sufficient complexity is selected, choosing a suitable complexity for a given24

problem entails expert-domain knowledge and is problem-dependent.25

A novel RVFLN, namely the parsimonious random vector functional link26

network (pRVFLN), is proposed. pRVFLN combines the simple and fast27

working principles of RFVLN where all network parameters but the out-28

put weights are randomly generated with no tuning mechanism for hidden29

nodes. Since it characterises the online and adaptive nature of evolving intel-30

ligent systems, pRVFLN is capable of tracking any variations of data streams31

no matter how slow, rapid, gradual, sudden or temporal the drifts in data32

streams. It can initiate its learning structure from scratch with no initial33
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structure and its structure is self-evolved from data streams in the one-pass34

learning mode by automatically adding, pruning and recalling its hidden35

nodes [24]. Furthermore, it is compatible for online real-time deployment be-36

cause data streams are handled without revisiting previously seen samples.37

pRVFLN is equipped with a hidden node pruning mechanism which guar-38

antees a low structural burden and the rule recall mechanism which aims to39

address cyclic concept drift. pRVFLN incorporates a dynamic input selec-40

tion scenario which makes possible the activation and deactivation of input41

attributes on the fly and an online active learning scenario which rules out in-42

consequential samples from the training process. pRVFLN is a plug-and-play43

learner where a single training process encompasses all learning scenarios in44

a sample-wise manner without pre-and/or post-processing steps.45

pRVFLN offers at least four novelties: 1) it introduces the interval-valued46

data cloud paradigm which is an extension of the data cloud in [4]. This mod-47

ification aims to induce robustness in dealing with data uncertainty caused48

by noisy measurement, noisy data, etc. Unlike conventional hidden nodes,49

the interval-valued data cloud is parameter-free and requires no parametriza-50

tion. It evolves naturally following the real data distribution; 2) an online51

active learning scenario based on the sequential entropy method (SEM) is52

proposed. The SEM is derived from the concept of neighbourhood probabil-53

ity [35] but here the concept of the data cloud is integrated. The data cloud54

concept simplifies the sample selection process because the neighbourhood55

probability is inferred with ease from the activation degree of the data cloud;56

3) pRVFLN is capable of automatically generating its hidden nodes on the57

fly with the help of a type-2 self-constructing clustering (T2SCC) mechanism58

[36]. This rule growing process differs from existing approaches because the59

hidden nodes are created from the rule growing condition, which considers60

the locations of the data samples in the input space; 4) pRVFLN is capable of61

carrying out an online feature selection process, borrowing several concepts62

of online feature selection (OFS) [30]. The original version [30] is generalized63

here since it is originally devised for linear regression and calls for some mod-64

ification to be a perfect fit for pRVLFN. The prominent trait of this method65

lies in a flexible online feature selection scenario, which makes it possible to66

select or deselect input attributes on demand by assigning crisp weights (067

or 1) to input features.68

The effectiveness of pRVFLN was thoroughly evaluated using numerous69

real-world data streams and was benchmarked against recently published al-70

gorithms in the literature, with pRVFLN demonstrating a highly scalable71
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approach for data stream analytics while retaining acceptable generalization72

performance. An analysis of the robustness of random intervals was per-73

formed. It is concluded that random regions should be carefully selected74

and should be chosen close to the true operating regions of a system being75

modelled. Moreover, we also present a sensitivity analysis of the predefined76

threshold and study the effect of learning components. Key mathematical77

notations are listed in Table 1.78

The rest of this paper is structured as follows: related work is reviewed79

in Section 2; Section 3 elaborates basic concepts of pRVFLN, encompassing80

the principle of RVFLN and data cloud; network architecture of pRVFLN81

is discussed in Section 4; Section 5 explains the learning policy of pRVFLN;82

Numerical examples are presented in Section 6; conclusions are drawn in the83

last section of this paper.84

2. Related Work85

The concept of randomness in neural networks was initiated by Broom-86

head and Lowe in their work on radial basis function networks (RBFNs)87

[5]. A closed pseudo-inverse solution can be formulated to obtain the output88

weights of the RBFN and the centres of RBF units can be randomly sampled89

from data samples. This work later was generalized in [14], where the centres90

of the RBF neurons can be sampled from an independent distribution of the91

training data. The randomness in neural networks was substantiated by the92

findings of White [26], who developed a statistical test on hidden nodes. It93

was found that some nonlinear structures in the mapping function can be94

neglected without substantial loss of accuracy. In [26], the input weights of95

the hidden layers are randomly chosen. It is shown that the input weights96

are not sensitive to the overall learning performance.97

A prominent contribution was made by Pao et al. with the random vector98

functional link network (RVFLN) [19]. This work presents a specific case of99

the functional link neural network [20], which embraces the concept of ran-100

domness in the functional link network. The universal approximation capa-101

bility of the RVFLN is proven in [7] by formalising the Monte Carlo method102

approximating a limit-integral representation of a function. To attain the103

universal approximation capability, the hidden node should be chosen as ei-104

ther absolutely integrable or differentiable function. In practise, the region105

of random parameters should also be chosen carefully and the number of106

hidden nodes should be sufficiently large. There also exists another research107
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direction in this area, namely reservoir computing (RC), which puts forward108

a recurrent network architecture in order to take into account temporal de-109

pendencies between subsequent patterns and in order to avoid dependencies110

on time-delayed input attributes [16]. Recent advances in the area of ran-111

domness in neural network are found in the seminal work by Wang and Li,112

Stochastic Configuration Networks (SCNs) [29]. This work presents theo-113

retical contribution of random selection of neural network parameters un-114

der selective and constructive manner using a supervisory mechanism. This115

work starts from the fact that random sampling of neural network parame-116

ters highly influence the stability and convergence of neural network training.117

Improper scope settings for the random parameters may cause a neural net-118

work to lose its learning power. It is confirmed in analysis of robustness in119

Section 6.4 of this paper. Comprehensive survey of randomness in neural120

network can be found in [25].

Table 1: Key Mathematical Notations

Symbol Description

At ∈ <n The input weight vector

βt The output of expansion layer

Xt ∈ <n The input attribute

Tt ∈ <m The target attribute

xe ∈ <(2n+1)×1 The expanded input vector

wi ∈ <(2n+1)×1 The output weight vector

G̃i,temporal The interval-valued temporal firing strength

q ∈ <m The design factor

λ ∈ <R The recurrent weight vector

µ̃i ∈ <n The interval-valued local mean

Σ̃i ∈ <n The interval-valued mean square length

δi ∈ <n The uncertainty factor

H(N |Xn) The entropy of neighborhood probability

Ic(µ̃i, Xt) The input coherence

Oc(µ̃i, Xt) The output coherence

ζ() The correlation measure

ζ(G̃i,temp, Tt) The mutual information between i− th rule and the target concept

Ψi ∈ <(2n+1)×(2n+1) The output covariance matrix
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The vast majority of RVFLNs in the literature are not compatible with121

online real-time learning situations. This issue led to the development of122

online learning in RVFLNs, which follows a single-pass learning concept [34].123

The original version of RVFL is also applicable for online learning setting be-124

cause it makes use of the conjugate gradient algorithm. Some modification125

need to be implemented and involve the use of stochastic gradient principle126

where the gradient is obtained for every sample and iteration over a num-127

ber of epoch is not permitted. Nevertheless, this work is still built upon a128

fixed network structure which cannot evolve in accordance with up-to-date129

data trends. A concept of dynamic structure was offered in [12] by putting130

forward the notion of a growing structure. Notwithstanding their dynamic131

natures, concept drift remains an uncharted territory in these works because132

all parameters are chosen at random without paying close attention to the133

true data distribution. RC aims to address temporal system dynamics [16]134

but still does not consider a possible dramatic change of system behaviour.135

3. Basic Concepts136

This section outlines the foundations of pRVFLN encompassing the basic137

concept of RVFLN [19], the use of the Chebyshev polynomial as the func-138

tional expansion block [21] and the concept of data clouds [4].139

3.1. Random Vector Functional Link Network140

The idea of RVFLN was studied by Pao, Park and Sobajic in [19] and is141

one of the forms of the functional link network combined with the random142

vector approach [20]. It features the enhancement node performing the non-143

linear transformation of input attributes as well as the direct connection of144

input attributes to the output node. The activation degree of the enhance-145

ment node along with the input attributes is combined with a set of output146

weights to generate the final network output. The RVFLN only leaves the147

weight vector to be fine-tuned during the training process while the other148

parameters are randomly sampled from a carefully selected scope. Suppose149

that there are R enhancement nodes and n input attributes, the size of the150

output weight vector is W ∈ <(R+n). The quadratic optimization problem is151

then formulated as follows:152

E =
1

2N

N∑

p=1

(t(p) −Wd(p))2 (1)
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where W ∈ <(R+n) is the output weight vector. d(p) is the output of the153

enhancement node and N is the number of samples. The RVFLN is sim-154

ilar to a single hidden layer feedforward network except for the fact that155

the hidden nodes function as an enhancement of the input feature and there156

exists direct connection from the input layer to the output layer. The steep-157

est descent approach can be used to fine-tune the output weight vector. If158

matrix inversion using pseudo-inverse is feasible, a closed-form solution can159

be formulated. The generalization performance of RVFLN was examined in160

[19] and the RVFLNs convergence is also guaranteed to be attained within a161

number of iterations.162

The RVFLN is a derivation of the functional link network [21]. That is,163

the hidden node or the enhancement node can be replaced by the functional164

expansion block generating a set of linearly independent functions of the165

entire input pattern. The functional expansion block can be formulated166

as trigonometric expansion [13], Chebyshev expansion, Legendre expansion,167

etc. [21] but our scope of discussion is limited to the Chebyshev expansion168

only due to its relevance to pRVFLN. Given the n-dimensional input vector169

X = [x1, x2, ..., xn] ∈ <1×n and its corresponding target variable y, the output170

of RVFLN with the Chebyshev functional expansion block is expressed as171

follows:172

y =
2n+1∑

j=1

Wjνj(A
T
nXn + bn) (2)

where Wj is the output weight and νj() is the Chebyshev functional expansion173

mapping the n-dimensional input attribute and the input weight vector to174

the higher 2n+ 1 expansion space. As with the original RVFLN, the output175

weight vector Wj can be learned using any optimization method while other176

parameters, An and bn, are randomly generated. The 2n + 1 here results177

from the utilisation of the Chebyshev series up to the second order. The178

Chebyshev series is mathematically written as follows:179

νorder+1(x) = 2(x)νorder(x)− νorder−1(x) (3)

Because we are only interested in the Chebyshev series up to the second180

order, this results in ν0(x) = 1, ν1(x) = x, ν2(x) = 2x2 − 1. Suppose that we181

deal with two dimensional input vector X = [x1, x2], the Chebyshev function182

expansion leads to ν = [1, ν1(x1), ν2(x1), ν1(x2), ν2(x2)]. The advantage of the183

Chebyshev functional link compared to other popular functional links such as184

trigonometric [13], Legendre, power function, etc. [21] lies in its simplicity of185
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Figure 1: Network Architecture of pRVFLN

computation. The Chebyshev function scatters fewer parameters to be stored186

into memory than the trigonometric function, while the Chebyshev function187

has a better mapping capability than the other polynomial functions of the188

same order. In addition, the polynomial power function is not robust against189

an extrapolation case. The functional expansion block can be also formed190

by using the Wavelet function [24] but it must be noted that the Wavelet191

function is sensitive to its initial values. It also requires a reliable tuning192

strategy to produce a good mapping of original input space.193

3.2. Data Cloud194

The concept of the data cloud offers an alternative to the traditional clus-195

ter concept where the data cloud is not shape-specific and evolves naturally196
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in accordance with the true data distribution. It is also easy to use because197

it is non-parametric and does not require any parameterization. This strat-198

egy is desirable because parameterization per scalar variable often calls for199

complex high-level approximation and/or optimization. This approach was200

inspired by the idea of RDE and was integrated in the context of the TSK201

fuzzy system [4]. Unlike a conventional fuzzy system where a degree of mem-202

bership is defined by a point-to-point distance, the data cloud computes an203

accumulated distance of the point of interest to all other points in the data204

cloud without physically keeping all data samples in the memory similar to205

the local data density. This notion has a positive impact on the memory and206

space complexity because the number of network parameters significantly207

reduces. The data cloud concept is formally written as:208

γit =
1

1 + ||xt − µLt ||2 + ΣL
t − ||µLt ||2

(4)

where γit denotes the i-th data cloud at the t-th observation. The data209

cloud evolves by updating the local mean µLt and square length of i-th local210

region ΣL
t as follows:211

µLt =
N i
t − 1

N i
t

µLt−1 +
xt,Ni

N i
t

, µL1 = x1 (5)

212

ΣL
t =

N i
t − 1

N i
t

ΣL
t−1 +

||xt,Ni
||2

N i
t

,ΣL
1 = ||x1||2 (6)

where N i
t denotes the number of samples associated to i-th cluster at the213

t-th observation. It is worth noting that these two parameters correspond to214

statistics of the i-th data cloud and are computed recursively with ease using215

standard recursive formulas. They do not impose a specific optimization or216

a specific setting to be performed to adjust their values.217

4. Network Architecture of pRVFLN218

pRVFLN utilises a local recurrent connection at the hidden node which219

generates the spatiotemporal activation degree. This recurrent connection220

is realized by a self-feedback loop of the hidden node which memorizes the221

previous activation degree and outputs a weighted combination between pre-222

vious and current activation degrees spatiotemporal firing strength. In the223

literature, there exist at least three types of recurrent network structures224
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Figure 2: Interval Valued Data Cloud

referring to its recurrent connections: global [9], interactive [13], and local225

[10], but the local recurrent connection is deemed to be the most compati-226

ble recurrent type in our case because it does not harm the local property,227

which assures stability when adding, pruning and fine-tuning hidden nodes.228

pRVFLN utilises the notion of the functional-link neural network where the229

expansion block is created by the Chebyshev polynomial up to the second230

order. Furthermore, the hidden layer of pRVFLN is built upon an interval-231

valued data cloud [4] where we integrate the idea of an interval-valued local232

mean into the data cloud.233

The input coherence explores the similarity between new data and ex-234

isting data clouds directly, while the output coherence focusses on their dis-235

similarity indirectly through a target vector as a reference. The input and236

output coherence formulates a test that determines the degree of confidence237

in the current hypothesis:238

Ic(µ̃i, Xt) ≤ α1, Oc(µ̃i, Xt) ≥ α2 (7)

Suppose that a pair of data points (Xt, Tt) is received at t-th time instant239

where Xt ∈ <n is an input vector and Tt ∈ <m is a target vector, while n240

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and m are respectively the number of input and output variables. Because241

pRVFLN works in a strictly online learning environment, it has no access242

to previously seen samples, and a data point is simply discarded after being243

learned. Due to the pre-requisite of an online learner, the total number of244

data N is assumed to be unknown. The output of pRVFLN is defined as245

follows:246

yo =
R∑

i=1

βiG̃i,temporal(A
T
t Xt +Bt), G̃temporal = [G,G] (8)

where R denotes the number of hidden nodes and βi stands for the i-th output247

of the functional expansion layer, produced by weighting the weight vector248

with an extended input vector βi = xTe wi. xe ∈ <(2n+1)×1 is an extended249

input vector resulting from the functional link neural network based on the250

Chebyshev function up to the second order [21] as shown in (3) and wi ∈251

<(2n+1)×1 is a connective weight of the i-th output node. The definition of βi is252

rather different from its common definition in the literature because it adopts253

the concept of the expansion block, mapping a lower dimensional space to a254

higher dimensional space with the use of certain polynomials. This paradigm255

produces the extended input vector xe and here the Chebyshev polynomial256

expansion block up to the second order is used to produce the extended input257

vector as aforementioned in Section 3.1. Suppose that three input attributes258

are given X = [x1, x2, x3], the extended input vector is expressed as the259

Chebyshev polynomial up to the second order xe = [1, x1, ν2(x1), x2, ν2(x2),260

x3, ν(x3)]. Note that the term 1 here represents an intercept of the output261

node to avoid going through the origin, which may risk an untypical gradient.262

At ∈ <n is an input weight vector randomly generated from a certain range.263

The bias Bt is removed for simplicity. G̃i,temporal is the i-th interval-valued264

data cloud, triggered by the upper and lower data cloud Gi,temporal, Gi,temporal.265

Note that recurrence is not seen in (8) because pRVFLN makes use of local266

recurrent layers at the hidden node. By expanding the interval-valued data267

cloud, the following is obtained:268

yo =
R∑

i=1

(1− qo)βiGi,temporal +
R∑

i=1

qoβiGi,temporal (9)

where q ∈ <m is a design factor to reduce an interval-valued function to a
crisp one. It is worth noting that the upper and lower activation functions
Gi,temporal, Gi,temporal deliver spatiotemporal characteristics as a result of a
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local recurrent connection at the i-th hidden node, which combines the spa-
tial and temporal firing strength of the i-th hidden node. These temporal
activation functions output the following.

Gt
i,temporal = λiG

t
i,spatial + (1− λi)Gt−1

i,temporal,

G
t

i,temporal = λiG
t

i,spatial + (1− λi)Gt−1
i,temporal (10)

where λ ∈ <R is a weight vector of the recurrent link. The local feedback269

connection here feeds the spatiotemporal firing strength at the previous time270

step G̃t−1
i,temporal back to itself and is consistent with the local learning princi-271

ple. This trait happens to be very useful in coping with the temporal system272

dynamic because it functions as an internal memory component which mem-273

orizes a previously generated spatiotemporal activation function at t − 1.274

Also, the recurrent network is capable of overcoming over-dependency on275

time-delayed input features and lessens strong temporal dependencies of sub-276

sequent patterns. This trait is desired in practise since it may lower the input277

dimension, because prediction is done based on the most recent measurement278

only. Conversely, the feedforward network often relies on time-lagged input279

attributes to arrive at a reliable predictive performance due to the absence280

of an internal memory component. This strategy at least entails expert281

knowledge for system order to determine the suitable number of delayed282

components.283

The hidden node of the pRVFLN is an extension of the cloud-based hidden284

node, where it embeds an interval-valued concept to address the problem of285

uncertainty. Instead of computing an activation degree of a hidden node286

to a sample, the cloud-based hidden node enumerates the activation degree287

of a sample to all intervals in a local region on-the-fly. This results in local288

density information, which fully reflects real data distributions. This concept289

was defined in AnYa [4]. This concept is also the underlying component of290

TEDA-Class [11], all of which come from Angelov sound work of RDE [3].291

This paper aims to modify these prominent works to the interval-valued case.292

Suppose that Ni denotes the support of the i-th data cloud, an activation293

degree of i-th cloud-based hidden node refers to its local density estimated294

recursively using the Cauchy function:295

G̃i,spatial =
1

1 +
Ni∑
k=1

( x̃k−xt
Ni

)

, x̃k = [xk,i, xk,i], G̃i,spatial = [Gi,spatial, Gi,spatial]

(11)

12
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where x̃k is k-th interval in the i-th data cloud and xt is t-th data sample.
It is observed that (11) requires the presence of all data points seen so far.
Its recursive form is formalised in [4] and is generalized here to the interval-
valued case:

Gi,spatial =
1

1 + ||ATt xt − µi,Ni
||2 + Σi,Ni

− ||µi,Ni
||2 ,

Gi,spatial =
1

1 + ||ATt xt − µi,Ni
||2 + Σi,Ni

− ||µ
i,Ni
||2 (12)

where µ
i
, µi signify the upper and lower local means of the i-th cloud:

µ
i,Ni

= (
Ni − 1

Ni

)µ
i,Ni−1

+
xk,Ni

−∆i

||Ni||
, µ

i,1
= x1,N1 −∆i,

µi,Ni
= (

Ni − 1

Ni

)µi,Ni−1 +
xk,Ni

+ ∆i

||Ni||
, µi,1 = x1,N1 + ∆i (13)

where ∆i is an uncertainty factor of the i-th cloud, which determines the
degree of tolerance against uncertainty. The uncertainty factor creates an
interval of the data cloud, which controls the degree of tolerance for uncer-
tainty. It is worth noting that a data sample is considered as a population
of the i-th cloud when resulting in the highest density. Moreover, Σi,Ni

,Σi,Ni

are the upper and lower mean square lengths of the data vector in the i-th
cloud as follows:

Σi,Ni
= (

Ni − 1

Ni

)Σi,Ni−1 +
||xk,Ni

||2 −∆i

||Ni||
, Σi,1 = ||x1,Ni

||2 −∆i,

Σi,Ni
= (

Ni − 1

Ni

)Σi,Ni−1 +
||xk,Ni

||2 + ∆i

||Ni||
, Σi,1 = ||x1,Ni

||2 + ∆i (14)

Although the concept of the cloud-based hidden node was generalized in296

TeDaClass [11] by introducing the eccentricity and typicality criteria, the297

interval-valued idea is uncharted in [11]. Note that the Cauchy function is298

asymptotically a Gaussian-like function, satisfying the activation function299

requirement of the RVFLN to be a universal approximator.300

Unlike conventional RVFLNs, pRVFLN puts into perspective a nonlinear301

mapping of the input vector through the Chebyshev polynomial up to the302

second order. Note that recently developed RVFLNs in the literature mostly303

are designed with a zero-order output node [1]. The functional expansion304
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Figure 3: Fundamental working principle of pRVFLN

block expands the output node to a higher degree of freedom, which aims305

to improve the local mapping aptitude of the output node. pRVFLN imple-306

ments the random learning concept of the RVFLN, in which all parameters,307

namely the input weight A, design factor q, recurrent link weight λ, and308

uncertainty factor ∆, are randomly generated. Only the weight vector is309

left for parameter learning scenario wi. Since the hidden node is parameter-310

free, no randomization takes place for hidden node parameters. This trait311

helps to improve consistency of random network in which bad random val-312

ues lead to poor performance. The network structure of pRVFLN and the313

interval-valued data cloud are depicted in Figs. 1 and 2 respectively.314

5. Learning Policy of pRVFLN315

This section discusses the learning policy of pRVFLN structured as fol-316

lows: Section 5.1 outlines the online active learning strategy, which actively317

samples relevant training samples for model updates; Section 5.2 deliberates318

the hidden node growing strategy of pRVFLN; Section 5.3 elaborates the hid-319

den node pruning and recall strategy; Section 5.4 details the online feature320
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selection mechanism; Section 5.5 explains the parameter learning scenario of321

pRVFLN; Section 5.6 discusses the effect of ranges of random parameters in322

RVFLN. Algorithm 1 shows the pRVFLN learning procedure.323

5.1. Online Active Learning Strategy324

The active learning component of the pRVFLN is built on the extended325

sequential entropy (ESEM) method, which is derived from the SEM method326

[35]. The ESEM method makes use of the entropy of the neighborhood prob-327

ability to estimate the sample contribution. The underlying difference from328

its predecessor [35] lies in the integration of the data cloud paradigm, which329

greatly relieves the effort in finding the neighborhood probability because the330

data cloud itself is inherent with the local data density, taking into account331

the influence of all samples in a local region. Furthermore, it handles the332

regression problem which happens to be more challenging than the classifi-333

cation problem because the sample contribution is estimated in the absence334

of a decision boundary. The concept of neighborhood probability refers to335

the probability of an incoming data stream sitting in the existing data clouds:336

P (Xi ∈ Ri) =

Ni∑
k=1

M(Xt,xk)
Ni

R∑
i=1

Ni∑
k=1

M(Xt,xk)
Ni

(15)

where XT is a newly arriving data point and xn is a data sample, associated337

with the i-th data cloud and Ri is the number of data clouds. M(XT,xk)338

stands for a similarity measure, which can be defined as any similarity mea-339

sure. The bottleneck is however caused by the requirement to revisit already340

seen samples. This issue can be tackled by formulating the recursive expres-341

sion of (15). we would like to clarify that in [24], recursive update as usually342

done in realm of EIS [3, 2] is formed to compute (15) but the recursive up-343

date must be calculated per rule or locally. In the context of the data cloud,344

this issue becomes even simpler, because it is derived from the idea of local345

density and is computed based on the local mean [4]. (15) is then written as346

follows:347

P (Xi ∈ Ri) =
Λi

R∑
i=1

Λi

(16)

Algorithm 1. Learning Architecture of pRVFLN348
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Algorithm 1: Parsimonious Random Vector Functional Link Network
Given a data tuple at t− th time instant (Xt, Tt) = (x1, ..., xn, t1, ..., tm), Xt ∈ <n, Tt ∈ <m;
set predefined parameters α1, α2

/*Step 1: Online Active Learning Strategy/*
For i=1 to R do

Calculate the neighborhood probability (16) with spatial firing strength (12)
End For
Calculate the entropy of neighborhood probability (17)
IF (18) Then
/*Step 2: Online Feature Selection/*
IF Partial=Yes Then

Execute Algorithm 3
Else IF

Execute Algorithm 2
End IF
/*Step 3: Data Cloud Growing Mechanism/*
For j=1 to n do

Compute ξ(xj, T0)
End For
For i=1 to R do

Calculate input coherence and output coherence (19),(20)
For o=1 to m do

Calculate ξ(µ̃i, T0) (21)
End For
IF (23) Then

Assign a new sample to the winning data cloud, with the highest input coherence i∗

Else IF
Create a new data cloud based on a new sample (24)

End IF
End For
/*Step 4: Data Cloud Pruning and Recall Mechanism/*
For i=1 to R do

For o=1 to m do
Calculate ξ(G̃i,temp, T0)

End For
IF (26) Then

Discard i-th data cloud
End IF

End For
IF (27) Then

Recall previously pruned rule i∗ (28)
End IF
/*Step 5: Adaptation of Output Weight/*
For i=1 to R do

Update output weights using FWGRLS
End For

349

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where Λi is a type-reduced activation degree Λi = (1 − q)Gi,spatial +350

qGi,spatial. Once the neighbourhood probability is determined, its entropy351

is formulated as follows:352

H(N |Xi) = −
R∑

i=1

P (Xi ∈ Ri)logP (Xi ∈ Ni) (17)

The entropy of the neighbourhood probability measures the uncertainty353

induced by a training pattern. A sample with high uncertainty should be354

admitted for the model update, because it cannot be well-covered by an355

existing network structure and learning such a sample minimises uncertainty.356

A sample is to be accepted for model updates, provided that the following357

condition is met:358

H ≥ thres (18)

where thres is an uncertainty threshold. The higher the value of this359

paper the higher the number of training samples are to be discarded and360

vice versa. This parameter can be made adaptive rather than constant by361

dynamically adjusting its value to suit the learning context as done in [24].362

Nevertheless, this scenario has to integrate a budget determining the maxi-363

mum number of training samples. Otherwise, it often overspends and is very364

sensitive to the step size.365

366

5.2. Hidden Node Growing Strategy367

pRVFLN relies on the T2SCC method to grow interval-valued data clouds368

on demand. This notion is extended from the so-called SCC method [36] to369

adapt to the type-2 hidden node working framework. The significance of370

the hidden nodes in pRVFLN is evaluated by checking its input and output371

coherence through an analysis of its correlation to existing data clouds and372

the target concept. Let µ̃i = [µ
i
, µi] ∈ <1×n be a local mean of the i-th373

interval-valued data cloud (5), Xt ∈ <n is an input vector and Tt ∈ <n is a374

target vector, the input and output coherence are written as follows:375

Ic(µ̃i, Xt) = (1− q)ζ(µi, Xt) + qζ(µ
i
, Xt) (19)

376

Oc(µ̃i, Xt) = (ζ(Xt, Tt)− ζ(µ̃i, Tt)), ζ(µ̃i, Tt) = (1− q)ζ(µi, Tt) + qζ(µ
i
, Tt)
(20)
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where ζ() is the correlation measure. Both linear and non-linear correlation
measures are applicable here. However, the non-linear correlation measure
is rather hard to deploy in the online environment, because it usually calls
for the Discretization or Parzen Window method. The Pearson correlation
measure is a widely used correlation measure but it is insensitive to the scaling
and translation of variables as well as being sensitive to rotation [17]. The
maximal information compression index (MCI) is one attempt to tackle these
problems and it is used in the T2SCC to perform the correlation measure
ζ()[17]:

ζ(X1, X2) =
1

2
(var(X1) + var(X2)

−
√

(var(X1) + var(X2))2 − 4var(X1)var(X2)(1− ρ(X1, X2)2))
(21)

ρ(X1, X2) =
cov(X1, X2)√

var(X1)var(X2)
(22)

where (X1, X2) are substituted with (µi, Xt), (µt, Xt), (µi, Tt), (µt, Tt), (Xt, Tt)377

to calculate the input and output correlation (19), (20). respectively stand378

for the variance of X, covariance of X1 and X2, and Pearson correlation379

index of X1 and X2. The local mean of the interval-valued data cloud rep-380

resents a data cloud because it represents a point with the highest density.381

In essence, the MCI method indicates the amount of information compres-382

sion when ignoring a newly observed sample. The MCI method features383

the following properties: 1) 0 ≤ ζ(X1, Y2) ≤ 0.5(var(X1) + var(X2)), 2)384

a maximum correlation is given by ζ(X1, X2) = 0, 3) a symmetric prop-385

erty ζ(X1, X2) = ζ(X2, X1), 4) it is invariant against the translation of the386

dataset, and 5) it is also robust against rotation.387

The input coherence explores the similarity between new data and ex-388

isting data clouds directly, while the output coherence focusses on their dis-389

similarity indirectly through a target vector as a reference. The input and390

output coherence formulates a test that determines the degree of confidence391

in the current hypothesis:392

Ic(µ̃i∗, Xt) ≤ α1, Oc(µ̃i∗, Xt) > α2 (23)

where α1 ∈ [0.001, 0.01], α2 ∈ [0.01, 0.1] are predefined thresholds. If a hy-393

pothesis meets both conditions, a new training sample is assigned to a data394
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cloud with the highest input coherence i∗. Accordingly, the number of in-395

tervals Ni∗, local mean and square length µ̃i∗ , Σ̃i∗ are updated respectively396

with (21) and (22) as well as Ni∗ = Ni∗ + 1. A new data cloud is introduced,397

provided that the existing hypotheses do not pass either condition (7) , that398

is, one of the conditions is violated. This situation reflects the fact that a new399

training pattern conveys significant novelty, which has to be incorporated to400

enrich the scope of the current hypotheses. Note that if a larger α1 is spec-401

ified, fewer data clouds are generated and vice versa, whereas if a larger α2402

is specified, larger data clouds are added and vice versa. The sensitivity of403

these two parameters is studied in the section V.E of this paper. Because a404

data cloud is non-parametric, no parameterization is committed when adding405

a new data cloud. The output node of a new data cloud is initialised:406

WR+1 = Wi∗ , ΨR+1 = ωI (24)

where ω = 105 is a large positive constant. The output node is set as the407

data cloud with the highest input coherence because this data cloud is the408

closest one to the new data cloud. Furthermore, the setting of covariance409

matrix ΨR+1 leads to a good approximation of the global minimum solution410

of batched learning.411

5.3. Hidden Node Pruning and Recall Strategy412

pRVFLN incorporates a data cloud pruning scenario, termed the type-413

2 relative mutual information (T2RMI) method. This method was firstly414

developed in [6] for the type-1 fuzzy system. This method is convenient to415

apply here because it estimates mutual information between a data cloud and416

a target concept by analysing their correlation. Hence, the MCI method (21),417

(22) is valid to measure the correlation between two variables. Although this418

method has been well-established [6], to date, its effectiveness in handling419

data clouds and a recurrent structure as implemented in pRVFLN is an open420

question. Unlike both the RMI method that applies the classic symmetrical421

uncertainty method, the T2RMI method is formalised using the MCI method422

as follows:423

ζ(G̃i,temp, Tt) = qζ(Gi,temp, Tt) + (1− q)ζ(Gi,temp, Tt) (25)

where Gi,temp, Gi,temp are respectively the lower and upper temporal activa-424

tion functions of the i-th rule. The temporal activation function is included425

in (25) rather than the spatial activation function in order to account for the426
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inter-temporal dependency of subsequent training samples. The MCI method427

is chosen here because it possesses a significantly lower computational burden428

than the symmetrical uncertainty method but it is still more robust than a429

linear Pearson correlation index. A data cloud is deemed inconsequential, if430

the following is met:431

ζi > mean(ζ) + 2std(ζ) (26)

where mean(ζ), std(ζ) are respectively the mean and standard deviation of432

the MCI during its lifespan. This criterion aims to capture an obsolete data433

cloud which does not keep up with current data distribution due to possible434

concept drift, because it computes the downtrend of the MCI values during435

its lifespan. It is worth mentioning that mutual information between hidden436

nodes and the target variable is a reliable indicator for changing data distri-437

butions because it monitors significance of a local region with respect to the438

recent data context.439

The T2RMI method also functions as a rule recall mechanism to cope with440

cyclic concept drift. Cyclic concept drifts frequently happen in relation to the441

weather, customer preferences, electricity power consumption problems, etc.442

all of which are related to seasonal change. This points to a situation where443

a previous data distribution reappears in the current training step. Once444

pruned by the T2RMI, a data cloud is not forgotten permanently and is445

inserted into a list of pruned data clouds R∗ = R∗ + 1. In this case, its local446

mean, square length, population, an output node, and output covariance447

matrix µ̃R∗ , Σ̃R∗ , NR∗ , βR∗ ,ΨR∗ , are retained in memory. Such data clouds448

can be reactivated in the future, whenever their validity is confirmed by an449

up-to-date data trend. It is worth noting that adding a completely new data450

cloud when observing a previously learned concept catastrophically erases the451

learning history. A data cloud is recalled subject to the following condition:452

max(ζi∗)
i∗=1,...,R∗

< max(ζi)
i=1,...,R

(27)

This situation reveals that a previously pruned data cloud is more relevant453

than any existing ones. This condition pinpoints that a previously learned454

concept reappears again. A previously pruned data cloud is then regenerated455

as follows:456

µ̃R+1 = µ̃R∗ , Σ̃R+1 = Σ̃R∗ , NR+1 = NR∗ , βR+1 = βR∗ ,ΨR+1 = ΨR∗ (28)

Although previously pruned data clouds are stored in memory, all previously457

pruned data clouds are excluded from any training scenarios except (18).458
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Unlike its predecessors, this rule recall scenario is completely independent459

from the growing process (please refer to Algorithm 1).460

5.4. Online Feature Selection Strategy461

A prominent work, namely online feature selection (OFS), was developed462

in [30]. The appealing trait of OFS lies in its aptitude for flexible feature463

selection, as it enables the provision of different combinations of input at-464

tributes in each episode by activating or deactivating input features (1 or 0)465

in accordance to the up-to-date data trend. Furthermore, this technique is466

also capable of handling partial input attributes which are fruitful when the467

cost of feature extraction is too expensive. OFS is generalized here to fit the468

context of pRVFLN and to address the regression problem.469

We start our discussion from a condition where a learner is provided with470

full input variables. Suppose that B input attributes are to be selected in471

the training process and B < n, the simplest approach is to discard the input472

features with marginal accumulated output weights
R∑
i=1

2∑
j=1

βi,j and maintain473

only B input features with the largest output weights. Note that the second474

term
2∑
j=1

is required because of the extended input vector xe ∈ <(2n+1). The475

rule consequent informs a tendency or orientation of a rule in the target space476

which can be used as an alternative to gradient information. Although it is477

straightforward to use, it cannot ensure the stability of the pruning process478

due to a lack of sensitivity analysis of the feature contribution. To correct479

this problem, a sparsity property of the L1 norm can be analyzed to exam-480

ine whether the values of n input features are concentrated in the L1 ball.481

This allows the distribution of the input values to be checked to determine482

whether they are concentrated in the largest elements and that pruning the483

smallest elements wont harm the models accuracy. This concept is actualized484

by first inspecting the accuracy of pRVFLN. The input pruning process is485

carried out when the system error is large enough Tt − yt > κ. Nevertheless,486

the system error is not only large in the case of underfitting, but also in487

the case of overfitting. We modify this condition by taking into account the488

evolution of system error |et + σt| > κ|et−1 + σt−1| which corresponds to the489

global error mean and standard deviation. The constant κ is a predefined490

parameter and fixed at 1.1. The output nodes are updated using the gradient491

descent approach and then projected to the L2 ball to guarantee a bounded492
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norm. Algorithm 2 details the algorithmic development of pRVFLN.493

494

Algorithm 2. GOFS using full input attributes Input : α learning rate,
χ regularization factor, B the number of features to be retained
Output : selected input features Xt,selected ∈ <1×B

For t=1,., T
/*Step 1: Check the reliability of model/*
Make a prediction yt
IF |et+σt| > 1.1|et−1+σt−1| // for regression case, check global system

error ô = max
o=1,...,m

(yo) 6= Tt or // for classification, check whether a sample

is correctly classified
/*Step 2: Adapt the output weight vector and apply L2

projection/*

βi = βi − χα βi − αχ ∂E
∂βi
, βi = min(1,

1/
√
χ

||βi||2 )βi
/*Step 3: Prune inconsequential input attribute/*

Prune input attributes Xt except those of B largest
R∑
i=1

2∑
j=1

βi,j

Else
βi = βi,t−1

End IF
End FoR

495

where α, χ are respectively the learning rate and regularization factor. We496

assign α = 0.2, χ = 0.01 following the same setting [30]. The optimization497

procedure relies on the standard mean square error (MSE) as the objective498

function and utilises the conventional gradient descent scenario:499

∂E

∂βi
= (Tt − yt)

{
R∑

i=1

(1− q)Gi,temporal +
R∑

i=1

qGi,temporal

}
(29)

Furthermore, the predictive error has been theoretically proven to be bounded500

in [30] and the upper bound is also found. One can also notice that the GOFS501

enables different feature subsets to be elicited in each training observation t.502

A relatively unexplored area of existing online feature selection is a situa-503

tion where a limited number of features is accessible for the training process.504

To actualise this scenario, we assume that at most B input variables can505

be extracted during the training process. This strategy, however, cannot be506

done by simply acquiring any B input features, because this scenario risks507

having the same subset of input features during the training process. This508

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

problem is addressed using the Bernoulli distribution with confidence level ε509

to sample B input attributes from n input attributes B < n. Algorithm 3510

provides an overview of feature selection procedure.511

512

Algorithm 3. GOFS using partial input attributes Input : α learning
rate, χ regularization factor, B the number of features to be retained, ε
confidence level
Output : selected input features Xt,selected ∈ <1×B

For t=1,., T
/*Step 1: Generate partial input information/*
Sample γ from Bernoulli distribution with confidence level ε
IF γt = 1

Randomly select B out of n input attributes X̃t ∈ <1×B

End IF
/*Step 2: Check reliability of the model/*
Make a prediction yt
IF |et+σt| > 1.1|et−1 +σt−1| // for regression, check the global system

error ô = max
o=1,...,m

(yo) 6= Tt or // for classification, check whether a sample

is correctly classified
/*Step 3: Adapt the output weight vector and apply L2

projection/*

X̂t = X̃t

/
(B/nε) + (1− ε)

βi = βi − χα βi − αχ ∂E
∂βi
, βi = min(1,

1
/√

χ

||βi||2 )βi
/*Step 4: Prune inconsequential input attribute/*

Prune input attributes Xt except those of B largest
R∑
i=1

2∑
j=1

βi,j

Else
βi,t = βi,t−1

End IF
End FoR

513

514

As with Algorithm 2, the convergence of this scenario has been theoreti-515

cally proven and the upper bound is derived in [30]. One must bear in mind516

that the pruning process in Algorithm 2 and 3 is carried out by assigning517

crisp weights (0 or 1), which fully reflect activation and deactivation of input518

features.519
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5.5. Random Learning Strategy520

pRVFLN adopts the random parameter learning scenario of the RVFLN,521

leaving only the output nodes W to be analytically tuned with an online522

learning scenario, whereas others, namely At, q, λ,∆, can be randomly gen-523

erated without any tuning process. To begin the discussion, we recall the524

output expression of pRVFLN as follows:525

yo =
R∑

i=1

βiG̃i,temporal(Xt;At, q, λ,∆) (30)

Referring to the RVFLN theory, the activation function G̃i,spatial should sat-526

isfy the following conditions.527

∫

R

G2(x)dx <∞, or
∫

R

[G′(x)]2dx <∞ (31)

Furthermore, a large number of hidden nodes R is usually needed to ensure528

adequate coverage of data space because hidden node parameters are chosen529

at random [27]. Nevertheless, this condition can be relaxed in the pRVFLN,530

because the data cloud growing mechanism, namely the T2SCC method,531

partitions the input region in respect to real data distributions. The data532

cloud-based neurons are parameter-free and thus do not require any param-533

eterization, which often calls for a high-level approximation or complicated534

optimization procedure. Other parameters, namely At, q, λ,∆, are randomly535

chosen, and their region of randomisation should be carefully selected. Re-536

ferring to [7], the parameters are sampled randomly from the following.537





b = −w0y0 − µ0

w0 = αc0; c0 ∈ V d; V d = [0; Ω]× [−Ω; Ω]

y0 ∈ Id
µ0 ∈ [−2Ω, 2Ω]

(32)

where µ,Ω, α are probability measures. Nevertheless, this strategy is im-538

possible to implement in online situations because it often entails a rigorous539

trial-error process to determine these parameters. Furthermore, these ranges540

are derived to prove theoretically the universal approximation property of541

RVFL.542
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Assuming that a complete dataset Ξ = [X,T ] ∈ <N×(n+m) is observable,543

a closed-form solution of (7) can be defined to determine the output weights .544

Although the original RVFLN adjusts the output weight with the conjugate545

gradient (CG) method, the closed-form solution can still be utilised with546

ease [7]. The obstacle for the use of pseudo-inversion in the original work547

was the limited computational resources in 90’s. Although it is easy to use548

and ensures a globally optimum solution, this parameter learning scenario549

however imposes revisiting preceding training patterns which are intractable550

for online learning scenarios. pRVFLN employs the FWGRLS method [22]551

to adjust the output weight. we also would like to clarify that FWGRLS can552

be seen as a derivation of FWRLS [3] where the weight decay term is added553

to retain the decay effect during the recursive updates. As the FWGRLS554

approach has been detailed in [22], it is not recounted here. The flowchart555

of pRVFLN is visualized in Fig. 3.556

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Details of Experimental Procedure

Section Mode Number of Runs Benchmark
Algorithm

Pred. Parameters NS NI

A (Nox Emission)
Direct Partition 10 times GENEFIS,

eTS, simpeTS,
DFNN,
GDFNN,
FAOS-PFNN,
ANFIS,
BARTFIS

α1 = 0.002, α2 = 0.02
826 170

Cross Validation 5 times per fold DNNE, Online
RVFLN, Batch
RVFLN

α1 = 0.002, α2 = 0.02

B (Tool Cond. Mon.)
Direct Partition 10 times GENEFIS,

eTS, sim-
peTS, DFNN,
GDFNN,
FAOS-PFNN,
ANFIS,
BARTFIS

α1 = 0.002, α2 = 0.02
630 12

Cross Validation 5 times per fold DNNE, Online
RVFLN, Batch
RVFLN

α1 = 0.002, α2 = 0.02

C (Nox E., Tool Cond. Mon.) Cross Validation 5 times per fold N/A α1 = 0.002, α2 = 0.02 As above As above

D (Mackey Glass) Direct Partition 10 times N/A α1 = 0.002, α2 = 0.02 3500 4

E (BJ gas furnace) Direct Partition 10 times N/A N/A 290 2
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5.6. Robustness of RVFLN557

The network parameters are usually sampled uniformly within a range of558

[-1,1] in the literature. A new finding of Li and Wang in [12] exhibits that559

randomly generating network parameters with a fixed scope [−α, α] does not560

ensure a theoretically feasible solution or often the hidden node matrix is561

not full rank. Surprisingly, the hidden node matrix was not invertible in562

all their case studies when randomly sampling network parameters in the563

range of [-1,1] and far better numerical results were achieved by choosing564

the scope [-200,200]. This trend was consistent with different numbers of565

hidden nodes. How to properly select scopes of random parameters and566

its corresponding distribution still require in-depth investigation [26]. In567

practice, a pre-training process is normally required to arrive at a decent568

scope of random parameters. Note that the range of random parameters569

by Igelnik and Pao [7] is still at the theoretical level and does not touch the570

implementation issue. We study different random regions in Section 6.4 to see571

how pRVFLN behaves under variations of the scope of random parameters.572

Table 3: Prediction of Nox emissions Using Time-Series Mode

Model RMSE Node Input Runtime Network Samples

pRVFLN (P) 0.04±0.0009 1 5 3.4±0.14 11 596±0
pRVFLN (F) 0.04±0.009 1 5 3.46±0.25 11 596±0

eT2Class 0.045 2 170 17.98 117304 667

GENEFIS 0.1 7 18 6.59 2268 667

RIVMcSFNN 0.05 1 146 6.59 128.62 667

Simp eTS 0.14 5 170 5.5 1876 667

BARTFIS 0.11 4 170 5.55 52 667

DFNN 0.18 548 170 4332.9 280198+NS 667

GDFNN 0.48 215 170 2144.1 109865 667

eTS 0.38 27 170 1098.4 13797 667

FAOS-PFNN 0.06 6 170 14.8 2216+NS 667

ANFIS 0.15 2 170 100.41 17178 667
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Table 4: Prediction of Nox emissions Using CV Mode

Model NRMSE Node Input Runtime Network Samples

pRVFLN (P) 0.09±0.01 1.3±0.05 5 4.78±0.48 14.5±0.6 743.4±0.14
pRVFLN (F) 0.094±0.01 1.3±0.17 5 4.4±0.47 14.96±1.9 743.4±0.2

DNNE 0.14±0 50 170 8.74±0.05 43600+NS 744

Online RVFLN 0.52±0.02 100 170 5.13±0.52 87200 744

Batch RVFLN 0.59±0.05 100 170 6.3±0.001 87200+NS 744

6. Numerical Examples573

This section presents the numerical validation of our proposed algorithm574

using case studies and comparisons with prominent algorithms in the liter-575

ature. Two numerical examples, namely modelling of Nox emissions from a576

car engine and tool condition monitoring in the ball-nose end milling process,577

are presented in Section 6.2 and 6.3 of this paper, and two other numerical578

examples, namely modeling of S&P 500 index time series and prediction579

of household electricity consumption, are placed in the supplemental docu-580

ment to keep the paper compact while Section 6.1 elaborates on experimental581

setup. We provide the analysis of robustness in Section 6.4 which offers ad-582

ditional results with different random regions and illustrates how the scope583

of random parameters influences the final numerical results. The influence584

of user-defined predefined thresholds are analysed in Section 6.5. Further-585

more, additional numerical results across different problems are provided in586

the supplemental document.587

6.1. Experimental Setup588

Our numerical studies were carried out under two scenarios: the time-589

series scenario and the cross-validation (CV) scenario. The time-series pro-590

cedure orderly executes data streams according to their arrival and partitions591

data streams into two parts, namely training and testing. Simulations were592

repeated 10 times and the numerical results were averaged from 5 runs to ar-593

rive at conclusive findings because of the random nature of pRVFLN. In the594

time-series mode, pRVFLN was compared against 11 state-of-the-art evolv-595

ing algorithms: eT2Class [23], RIVMcSFNN [24], BARTFIS [18], GENEFIS596

[22], eTS [3], simp eTS [2], DFNN [32], GDFNN [33], FAOSPFNN [31], AN-597

FIS [8]. The CV scenarios were implemented in our experiment in order598

to follow the commonly adopted simulation environment of other RVFLNs599
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in the literature where each fold is repeated five times to prevent the ran-600

dom natures of RVFLNs affecting numerical results. The numerical results601

were obtained from average numerical results over all folds. pRVFLN was602

benchmarked against the decorelated neural network ensemble (DNNE) [1],603

online and batch versions of RVFLN [26]. The MATLAB code of pRVFLN is604

provided in 1 while the MATLAB codes of DNNE and RVFLN are available605

online 2,3. Comparisons were performed against five evaluation criteria: ac-606

curacy, data clouds, input attribute, runtime, and network parameters. The607

scope of the random parameters was set in the range [0,1] but the effect of this608

range on numerical results is explained in Section 6.4. For all simulations,609

the same setting of hyper-parameters was applied α1 = 0.002, α2 = 0.02 to610

show that these two parameters are not case-specific. It is worth mentioning611

that these two values are simply picked up and are not obtained from a pre-612

processing step - grid search, cross validation, etc. In other words, we do not613

fine-tune these two parameters to arrive at presented numerical results. One614

can explore different values that might lead to better numerical results than615

those reported. All the numerical studies were carried out using the original616

feature space without offline feature selection to check the effectiveness of the617

GOFS method. Moreover, two configurations of the GOFS method, partial618

and full, were simulated in the numerical study. For Nox emission problem,619

the desired number of input attributes was set as 5 for both time-series and620

CV modes while, for the tool wear prediction problem, the number of input621

variables was selected as 8 for both time-series and CV scenarios. Normal-622

ization was undertaken before carrying out the simulation. To ensure a fair623

comparison, all the consolidated algorithms were executed using the same624

computational resources under the MATLAB environment. Details of the625

experimental procedure are given in Table 2.626

6.2. Modeling of Nox Emissions from a Car Engine627

This section demonstrates the efficacy of the pRVFLN in modeling Nox628

emissions from a car engine [15]. This real-world problem is relevant to vali-629

date the learning performance, not only because it features noisy and uncer-630

tain characteristics similar to the nature of a car engine, it also characterizes631

high dimensionality, containing 170 input attributes. That is, 17 physical632

1http://www.ntu.edu.sg/home/mpratama/Publication.html
2http://homepage.cs.latrobe.edu.au/dwang/html/DNNEweb/index.html
3http://ispac.ing.uniroma1.it/scardapane/software/lynx/
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variables were captured in 10 consecutive measurements. Furthermore, dif-633

ferent engine parameters were applied to induce changes to the system dy-634

namics to simulate real driving actions across different road conditions. In635

the time-series procedure, 826 data points were streamed to consolidated al-636

gorithms, where 667 samples were set as training samples, and the remainder637

were fed for testing purposes. 10 runs were carried out to attain consistent638

numerical results. In the CV procedure, the experiment was run under the639

10-fold CV, and each fold was repeated five times similar to the scenario640

adopted in [1]. This strategy checks the consistency of the RVFLNs learning641

performance because it adopts the random learning scenario and avoids data642

order dependency. Table 3 and 4 exhibit the consolidated numerical results643

of the benchmarked algorithms.644

Table 5: Tool Wear Prediction Using Time Series Mode

Model RMSE Node Input Runtime Network Samples

pRVFLN (P) 0.14±0.02 1.4±0.5 8 0.14±0.04 23.8±9.3 295.6±28.4

pRVFLN (F) 0.14±0.03 1±0 8 0.07±0.02 17 206.2±83.4
eT2Class 0.16 4 12 1.1 1260 320

RIVMcSFNN 0.11 1 12 1.1 1260 315

Simp eTS 0.22 17 12 1.29 437 320

eTS 0.15 7 12 0.56 187 320

BARTFIS 0.16 6 12 0.43 222 320

GENEFIS 0.14 14 12 0.41 2366 320

DFNN 0.27 42 12 2.41 1092+NS 320

GDFNN 0.26 7 12 2.54 259+ NS 320

FAOS-PFNN 0.38 7 12 3.76 1022+NS 320

ANFIS 0.16 8 12 0.52 296+ NS 320

It is evident that pRVFLN outperforms its counterparts in all the evalu-645

ation criteria. pRVFLN is equipped with an online active learning strategy,646

which discards superfluous samples. This learning module had a signifi-647

cant effect on predictive accuracy. Furthermore, pRVFLN utilizes the GOFS648

method, which is capable of coping with the curse of dimensionality. Note649

that the unique feature of the GOFS method is that it allows different fea-650

ture subsets to be picked up in every training episode which avoids the catas-651

trophic forgetting of obsolete input attributes, which are temporarily inactive652
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Table 6: Tool wear prediction using CV Mode

Model NRMSE Node Input Runtime Network Samples

pRVFLN (P) 0.16±0.3 1.08±0.23 8 0.14±0.01 25.1±0.88 478.8±69.63
pRVFLN (F) 0.12±0.07 1.02±0.14 8 0.14±0.01 17.3±2.04 493.8±63.8

DNNE 0.11±0 50 12 0.65±0.04 3310+NS 571.5

Online RVFLN 0.16±0.01 100 12 0.17±0.21 1400 571.5

Batch RVFLN 0.19±0.04 100 12 0.2±0.001 1400+NS 571.5

due to changing data distributions. The GOFS can handle partial input at-653

tributes during the training process and results in the same level of accuracy654

as that of the full input attributes. The use of full input attributes slowed655

down the execution time because it needed to deal with 170 input variables656

first, before reducing the input dimension. In this case study, we selected five657

input attributes to be kept for the training process. Our experiment shows658

that the number of selected input attributes is not problem-dependent and659

is set to the desired tradeoff between accuracy and simplicity. The fewer the660

number of input attributes to be selected the faster the training speed but at661

a cost of accuracy. We did not observe a significant performance difference662

when using either the full input mode or partial input mode. On the other663

hand, consistent numerical results were achieved by pRVFLN, although the664

pRVFLN is built on the random vector functional link algorithm, as observed665

in the CV experimental scenario. In addition, pRVFLN produced the most666

encouraging performance in almost all evaluation criteria. Note that the667

number of training samples, NS, has to be added in the network parameters668

for both DNNE and batch RVFLN because their learning procedures cannot669

be executed in a single scan rather it depends on iterating entire data samples670

over a number of epochs.671

6.3. Tool Condition Monitoring of High-Speed Machining Process672

This section presents a real-world problem from a complex manufacturing673

process [18]. The objective of this case study is to perform predictive ana-674

lytics of the tool wear in the ball-nose end milling process frequently found675

in the metal removal process of the aerospace industry. In total, 12 time-676

domain features were extracted from the force signal and 630 samples were677

collected during the experiment. Concept drift in this case study is evident678

from changing surface integrity, tool wear degradation as well as varying ma-679

chining configurations. For the time-series experimental procedure, the con-680
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Figure 4: The frequency of input features

solidated algorithms were trained using data from cutter A, while the testing681

phase exploited data from cutter B. This process was repeated 10 times to682

achieve valid numerical results. For the CV experimental procedure, the 10-683

fold CV process was undertaken where each fold was undertaken five times684

to arrive at consistent findings. Tables 5 and 6 report the average numerical685

results across all folds. Fig. 4 depicts how many times input attributes are686

selected during one fold of the CV process.687

It is observed from Tables 5 and 6 that pRVFLN evolved the lowest struc-688

tural complexities while retaining a high accuracy. It is worth noting that689

although the DNNE exceeded pRVFLN in accuracy, it imposed consider-690

able complexity because it is an offline algorithm revisiting previously seen691

data samples and adopts an ensemble learning paradigm. The efficacy of692

the online sample selection strategy can be seen, as it leads to a significant693

reduction in the training samples to be learned during the experiment. Using694

partial input information led to subtle differences to those with the full input695

information. It is seen in Fig. 4 that the GOFS selected different feature696

subsets in every training episode. Additional numerical examples are pro-697

vided in the supplemental document. It is worth mentioning that the nature698
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of RVFL-based algorithms such as pRVFLN, dnne is highly dependent on699

the initialization step. Recently, dnne has been extended in [28] where it in-700

corporates the concept of SCN to minimize the effect of improper parameter701

initialization.702

6.4. Analysis of Robustness703

This section aims to numerically validate our claim in Section 5.6 that a704

range [-1,1] does not always ensure the production of a reliable model [12].705

Additional numerical results with different intervals of random parameters706

are presented. Four intervals, namely [0,0.1], [0,0.5], [0,0.8], [0,3], [0,5], [0,10]707

were tried for two case studies described in Sections 6.1 and 6.2. Our exper-708

iments were undertaken in the 10-fold CV procedure as in previous sections.709

Table 7 displays the numerical results.710

For the tool wear case study, the best-performing model was generated711

by the range [0,0.1]. The higher the range of the model, the more inferior712

the model, to the point where a model was no longer stable under the range713

[0,3]. On the other side, the range [0,0.5] induced the best-performing model714

with the highest accuracy while evolving comparable network complexity715

for the Nox emission case study. A higher scope led to a deterioration in716

the numerical results. Moreover, the range [0,0.1] did not deliver a better717

accuracy than the range [0,0.5] since this range did not generate diverse718

enough random values. These numerical results are interpreted from the719

nature of pRVFLN, a clustering-based algorithm. The success of pRVFLN720

is mainly determined by the compatibility of the zone of influence of hidden721

nodes on a real data distribution, and its performance worsens when the722

scope is not representative to cover the true data distribution. That is,723

the location of data clouds in the feature space with respect to true data724

distribution is influential to the success of pRVFLN since the data cloud725

will return very small or almost zero firing strength when a data sample is726

far from its coverage. This finding is complementary to Li and Wang [12]727

which relies on a sigmoid-based RVFLN network, and the scope of random728

parameters can be outside the applicable operating intervals. Its predictive729

performance is set by its approximation capability in the output space. It is730

worth-stressing that network parameters are randomly generated in a positive731

range since the uncertainty threshold setting the footprint of uncertainty is732

also chosen at random. Having negative values for this parameter causes733

invalid interval definitions and poor performance is returned as a result.734
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6.5. Sensitivity Analysis of Predefined Thresholds735

This section examines the impact of two predefined thresholds, namely736

α1, α2, on the overall learning performance of pRVFLN. Intuitively, one can737

envisage that the higher the value of α1, the fewer the number of data clouds738

are added during the training process and vice versa, whereas the higher739

the value of α2, the higher the number of data clouds that are generated.740

To further confirm this aspect, the sensitivity of these parameters is anal-741

ysed using the box Jenkins (BJ) gas furnace problem. The BJ gas furnace742

problem is a popular benchmark problem in the literature, where the goal743

is to model the CO2 level in off gas based on two input attributes: the744

methane flow rate u(n), and its previous one-step output t(n− 1). From the745

literature, the best input and output relationship of the regression model746

is known as ŷ(n) = f(u(n − 4), t(n − 1)). 290 data points were gener-747

ated from the gas furnace, 200 of which were assigned as the training sam-748

ples, and the remainder were utilised to validate the model.α1 was varied749

in the range of [0.002,0.004,0.006,0.008], while α2 was assigned the values750

of [0.02,0.04,0.06,0.08]. Two tests were carried out to test their sensitivity.751

That is, α1 was fixed at 0.002, while setting different values of α2, whereas752

α2 was set at 0.02, while varying α1. Moreover, our simulation followed the753

time-series mode with 10 repetitions as aforementioned. The learning perfor-754

mance of pRVFLN was evaluated against four criteria: non-dimensional error755

index (NDEI), number of hidden nodes, execution time, number of training756

samples, and number of network parameters. The results are reported in757

Table 8.758

Referring to Table 8, it can be observed that pRVFLN can achieve satis-759

factory learning performance while demanding very low network, computa-760

tional, and sample complexities. Allocating different values of α1, α2 did not761

cause significant performance deterioration, where the NDEI, runtime and762

the number of samples were stable in the range of [0.27,0.38], [0.5,0.79], and763

[10,30] respectively. Note that the slight variation in these learning perfor-764

mances was also attributed to the random learning algorithm of pRVFLN.765

On the other hand, the number of hidden nodes and parameters remained766

constant at 2 and 10 respectively and were not influenced by a variation of767

the two predefined thresholds. It is worth mentioning that the data cloud-768

based hidden node of pRVFLN incurred modest network complexity because769

it did not have any parameters to be memorised and adapted. In all the770

simulations in this paper, α1 and α2 were fixed at 0.02 and 0.002 respectively771

to ensure a fair comparison with its counterparts and to avoid a laborious772
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pretraining step in finding suitable values for these two parameters.773

7. Conclusion774

A novel random vector functional link network, namely the parsimonious775

random vector functional link network (pRVFLN), is proposed. pRVFLN776

aims to provide a concrete solution to the issue of data streams by putting777

into perspective a synergy between adaptive and evolving characteristics and778

the fast and easy-to-use characteristics of RVFLN. pRVFLN is a fully evolv-779

ing algorithm where its hidden nodes can be automatically added, pruned780

and recalled dynamically while all network parameters except the output781

weights are randomly generated in the absence of any tuning mechanism.782

pRVFLN is fitted by the online feature selection mechanism and the online783

active learning scenario which further strengthens its aptitude in processing784

data streams. Unlike conventional RVFLNs, the concept of interval-valued785

data clouds is introduced. This concept simplifies the working principle of786

pRVFLN because it neither requires any parameterization per scalar vari-787

ables nor follows a pre-specified cluster shape. It features an interval-valued788

spatiotemporal firing strength, which provides the degree of tolerance for789

uncertainty. Rigorous case studies were carried out to numerically validate790

the efficacy of pRVFLN where pRVFLN delivered very low complexity. The791

ensemble version of pRVFLN will be the subject of our future investigation792

which aims to further improve the predictive performance of pRVFLN.793
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Table 7: Analysis of Robustness

Scope Criteria Tool Wear Nox emission

[0,0.1]

RMSE 0.13±0.008 1.9±0

Node 1.8±0.25 1

Input 8 5

Runtime 0.2±0.1 0.1±0.02

Network 30.9 11

Samples 503.1 1

[0,0.5]

RMSE 0.14±0.02 0.1±0.01

Node 1.92±0.2 1.98±0.14

Input 8 5

Runtime 0.18±0.008 5.7±0.3

Network 32.6 21.8

Samples 571.5 743.4

[0,0.8]

RMSE 0.47±0.42 0.18±0.3

Node 1.4±0.05 1.96±0.19

Input 8 5

Runtime 0.19±0.13 5.56±0.96

Network 23.8 21.6

Samples 385.1 711.24

[0,3]

RMSE

Unstable Unstable

Node

Input

Runtime

Network

Samples

[0,5]

RMSE

Unstable Unstable

Node

Input

Runtime

Network

Samples

[0,10]

RMSE

Unstable Unstable

Node

Input

Runtime

Network

Samples
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Table 8: Sensitivity Analysis

PARAMETERS NDEI HN RUNTIME NP

α1 = 0.002 0.3 19.3 0.52 96.5

α1 = 0.004 0.3 19.3 0.49 96.5

α1 = 0.006 0.3 35.9 0.67 179.5

α1 = 0.008 0.3 7.3 0.4 36.5

α2 = 0.02 0.3 17 0.44 85

α2 = 0.04 0.31 143 1.41 715

α2 = 0.06 0.32 196.3 2.01 981.5

α2 = 0.08 0.32 196.3 2.01 981.5
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