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Abstract

We show that one can naturally describe elements of R. Thomp-
son’s finitely presented infinite simple group V , known by Thompson
to have a presentation with four generators and fourteen relations, as
products of permutations analogous to transpositions. This perspec-
tive provides an intuitive explanation towards the simplicity of V and
also perhaps indicates a reason as to why it was one of the first dis-
covered infinite finitely presented simple groups: it is (in some basic
sense) a relative of the finite alternating groups. We find a natural
infinite presentation for V as a group generated by these “transposi-
tions,” which presentation bears comparison with Dehornoy’s infinite
presentation and which enables us to develop two small presentations
for V : a human-interpretable presentation with three generators and
eight relations, and a Tietze-derived presentation with two generators
and seven relations.

Mathematics Subject Classification (2010). Primary: 20F05; Sec-
ondary: 20E32, 20F65.

Keywords. Thompson’s groups, simple groups, presentations, generators
and relations, permutations, transpositions.

1 Introduction

In this article, we investigate R. Thompson’s group V from a mostly-
unexplored perspective. As a consequence we derive new, and hopefully
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elegant, presentations of this well-known group and introduce a simple and
dextrous notation for handling computations in V .

Recall that the group V first appears in Thompson’s 1965 notes [23] and
is given there as one of two “first-examples” of infinite finitely presented
simple groups (along with its simple subgroup T , called “C” in those notes).
Since then, it has been the focus of a large amount of subsequent research
(see, for example, [4, 5, 6, 13, 15, 18, 24] for a small part of that research).
Thompson’s group V arises in various other settings, for example, Birget [2,
3] investigates connections to circuits and complexity while Lawson [19]
considers links to inverse monoids and étale groupoids.

We shall demonstrate that one can consider V as a symmetric group
acting, not on a finite set, but instead on a Cantor algebra (the algebra of
basic clopen sets in a Cantor space). We focus upon certain well-known
properties of a finite symmetric group, namely being generated by trans-
positions and being transitive in its natural action. Reflecting these two
fundamental properties, a finite symmetric group possesses a Coxeter-type
presentation, with generating set T corresponding to a set of appropriate
transpositions and relations t2 = 1 for all t ∈ T , (tu)2 = 1 when t, u ∈ T
correspond to transpositions of disjoint support and (tu)3 = 1 when t 6= u
but the corresponding transpositions have intersecting support. If we ex-
ploit the fact that these generators have order 2, this third type of relation
can be rewritten as t−1ut = u−1tu and indeed in the symmetric group
this conjugate equals another transposition v, namely that whose support
satisfies supp v = (supp t)u.

In the context of a Cantor algebra, the analogues of transpositions are
piecewise affine maps which “swap” a pair of basic open sets. We shall
observe that Thompson’s group V is generated by such transpositions of
the standard Cantor algebra and hence derive an infinite Coxeter-like pre-
sentation for V , as appears in Theorem 1.1 below.

As is well known, the standard Cantor algebra admits a natural tree-
structure where the nodes correspond to the basic open sets in Cantor
space C and these nodes are indexed by finite words in the alphabet X =
{0, 1}. Consequently, we label our transpositions by two incomparable
words α and β from X∗. Indeed, for such α and β, we write tα,β for the
element of V that is the transposition defined in Equation (2.1). We shall
also write sα,β and (α β) for symbols representing elements in two abstract
groups whose presentations we give in Theorems 1.1 and 1.2, respectively.
We specifically use different notations for each of these elements so as to
distinguish between the elements of each abstract group and the actual
transformations of Cantor space. The thrust of our work is to demon-
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strate that the two abstract groups are isomorphic to V and that under the
isomorphisms these three elements sα,β, (α β) and tα,β correspond. The
first two of our families of relations appearing in Theorem 1.1 reflect that
these tα,β act as transpositions so have order 2, commute when their sup-
ports are disjoint, and conjugate in a manner analogous to transpositions
in symmetric groups when their supports intersect appropriately.

Passing from the setting of actions of finite permutation groups on finite
sets to the setting of corresponding actions of infinite groups on Cantor
algebras has further implications for the resulting presentation. Namely,
due to the self-similar nature of Cantor space, each generating transposition
can be factorised. To be precise, each tα,β satisfies what we call a split
relation: tα,β = tα0,β0 tα1,β1. This provides the third family of relations
that are seen in Theorem 1.1. They have the consequence that not only
is every element of V a product of our transpositions tα,β, but also we
can re-express any such product as one that involves an even number of
transpositions. Thus one can simultaneously view R. Thompson’s group V
as an infinite analogue of both the finite alternating groups and of the finite
symmetric groups.

It follows quite easily from the presentation in Theorem 1.1 that any
transposition tγ,δ can be obtained by conjugation using only those tα,β with
|α|, |β| 6 3, for example, and this motivates an effort to find a finite pre-
sentation involving permutations and their relations, where these permuta-
tions involve only the nodes in the first three levels of the tree. Theorem 1.2
provides this presentation (involving three generators and eight relations).
Note here that we depart slightly from the Coxeter-style of presentation: we
exploit the presence of the symmetric group of degree 4 acting upon X2 to
reduce further the presentation, at the cost of employing a “three-cycle” as
a generator. Of note, this human-interpretable presentation is much smaller
than the currently known finite presentation for V (given by Thompson [23]
and discussed in detail in Cannon, Floyd and Parry’s survey [12]), which
has four generators and fourteen relations.

As a technical exercise, we further reduce the presentation in Theo-
rem 1.2 to a 2-generator and 7-relation presentation, found in Theorem 1.3.
The resulting presentation is small, but not so readily interpretable by hu-
mans.

Our infinite presentation in Theorem 1.1 bears comparison with De-
hornoy’s infinite presentation for V (see [13, Proposition 3.20]). Dehornoy’s
presentation highlights different aspects as to why the group V can be con-
sidered as a fundamental object in group theory, and even in mathematics,
bearing out, as it does, the connection of V to systems with equivalences
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under associativity and commutativity.
Our viewpoint of V as a form of a symmetric or alternating group per-

haps hints at why V arose as one of first two known examples of an infinite
simple finitely presented group. Permuting sets is a basic activity, and the
Cantor algebra represents a fundamental way to pass from a finite to an in-
finite context, thus it seems natural that researchers eventually noticed V .
To give further background, we note there are many generalisations of V
to infinite simple finitely presented groups, all of which owe their simplicity
to the same fundamental idea (similar to the reason why the alternating
groups are simple). One such family is the Higman–Thompson groups Gn,r
for which V = G2,1, see [15]. (The group Gn,r is simple for n even. When
n is odd, one must pass to the commutator subgroup of index 2, reflecting
the observation that the corresponding split relations in Gn,r do not change
the parity of any decomposition as a product of transpositions.) Other fam-
ilies include the Brin–Thompson groups nV for which V = 1V , see [6], and
the groups nVm,r that generalise the previous two families, see [20], and
where we have similar simplicity considerations, see [7]. The finite pre-
sentability of these groups comes from the much stronger fact that they are
all in fact F∞ groups. (There is a beautiful argument of the F∞ nature of
these groups given in [24], which applies to many of these “relatives” of V .
In many specific cases, F∞ arguments already exist for individual groups
and for classes of groups in these families. See, for example, [1, 8, 9, 17].)
The ideas of this paper ought to apply to all of these groups of “Thomp-
son type” in aiding in the discovery of natural and small presentations.
On the other hand, the infinite family of finitely-presented infinite simple
groups arising from the Burger-Mozes construction and following related
work (see, e.g., [10, 11, 21]) are of an entirely different nature, and the
methods employed here do not seem appropriate to that context.

We mention here a debt to Matatyu Rubin and Matthew G. Brin. Rubin
indicated to Brin a proof of the simplicity of V , which uses the generation
of V by transpositions with restricted support on Cantor space. Brin set
this proof out briefly in his paper [6] and developed the ideas to extend the
proof to the groups nV , which he carries out in the short paper [7]. It is
not a stretch to say that the current article would not exist without that
thread of previous research.

A note on content

The first two sections of this article are intended for the interested mathe-
matician and provide structure and insights into these sorts of groups. The
outline of the proofs of the theorems are found towards the end of Section 2.
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Figure 1: The infinite binary rooted tree with nodes labelled by elements
of X∗

The sections that follow are more technical and verify the details required
for those proofs.

Statement of results and some notation

Let X = {0, 1}. We write X∗ for all finite sequences x1x2 . . . xk where
k > 0 and each xi ∈ X. In particular, we assume that X∗ contains the
empty word ε. We view the elements of X∗ as representing the nodes on the
infinite binary rooted tree with edges between nodes if they are represented
by words which differ by a suffix of length 1. (Figure 1 illustrates this tree
together with the nodes labelled by elements of X∗.) Similarly, we give
the standard definition of the Cantor set C as Xω, the set of all infinite
sequences x1x2x3 . . . of elements of X under the product topology (starting
with X endowed with the discrete topology). Thus points in C correspond
to boundary points of the infinite binary rooted tree.

If α ∈ X∗ and β ∈ X∗ ∪Xω, then we write αβ for the concatenation of
the two sequences. We denote by αC the set of elements of C with initial
prefix α. This set is a basic open set in the topology on C and is itself
homeomorphic to C. We shall write α � β to indicate that α is a prefix
of β (including the possibility that the two sequences are equal). This
notation then means that β = αγ for some γ ∈ X∗ ∪Xω. Moreover, when
β ∈ X∗, then α and β represent nodes on the infinite binary rooted tree
such that β lies on a path descending from α (see Figure 2(i)), and therefore
βC ⊆ αC.

We also write α ⊥ β to denote that both α 6� β and β 6� α. Then we
shall say that α and β are incomparable. In this case, the paths to α and
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Figure 2: (i) α � β (and the paths representing elements of βC); and
(ii) α ⊥ β

to β from the root separate at some node above both α and β (as shown
in Figure 2(ii)), so that αC ∩ βC = ∅ (for such α, β ∈ X∗).

If m is a positive integer, we shall also use Xm to denote the collection
of all finite sequences x1x2 . . . xm of length m with xi ∈ X for each i. We
write |α| for the length of the sequence α ∈ X∗.

Motivated by the well-known fact (see, for example, [13]) that R. Thomp-
son’s group V has a partial action on the set of finite binary rooted trees and
equally on the set X∗, we shall use the notation γ · (α β), for α, β, γ ∈ X∗,
defined by

γ · (α β) =


βδ if γ = αδ for some δ ∈ X∗,
αδ if γ = βδ for some δ ∈ X∗,
γ if both γ ⊥ α and γ ⊥ β,
undefined otherwise.

(1.1)

Thus γ · (α β) is undefined precisely when γ ≺ α or γ ≺ β and when it
is defined it represents a prefix substitution replacing any occurrence of α
by β and vice versa.

The notation appearing in Equation (1.1) above is motivated via our
anticipated isomorphism between V and the abstract group defined by the
presentation in Theorem 1.2. The map tα,β is taken to the element (α β)
and the above formula reflects the effect of applying tα,β to a point in the
partial action of V on X∗. Note also that we are choosing to write our maps
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on the right since in our opinion this enables one to more conveniently com-
pose a number of maps and such a convention is consistent with denoting
an element of V by tree-pairs with the domain on the left and the codomain
on the right. Nevertheless, we still view maps in V as being given by prefix
substitutions of the infinite sequences that are elements of the Cantor space
so as to be consistent with other work on these groups.

Our results are as follows:

Theorem 1.1 Let A to be the set of all symbols sα,β where α, β ∈ X∗

with α ⊥ β. Then R. Thompson’s group V has an infinite presentation
with generating set A and relations

s2
α,β = 1

s−1
γ,δ sα,β sγ,δ = sα·(γ δ),β·(γ δ)

sα,β = sα0,β0 sα1,β1

(1.2)

where α, β, γ and δ range over all sequences in X∗ such that α ⊥ β, γ ⊥ δ,
and α · (γ δ) and β · (γ δ) are defined.

Our primary finite presentation for the group V has three generators
a, b and c, but, as mentioned above, it is most naturally expressed in terms
of a “permutation-like” notation extending the transpositions in the infinite
presentation. Our generators a, b and c then correspond to permutations
that we denote (00 01), (01 10 11) and (1 00), respectively, and the
relations are similarly expressed in terms of elements (α β) that we define
fully in Section 2. This “human-readable” presentation is as follows:

Theorem 1.2 R. Thompson’s group V has a finite presentation with three
generators (00 01), (01 10 11) and (1 00) and eight relations

R1. (00 01)2 = (01 10 11)3 =
(
(00 01) (01 10 11)

)4
= 1;

R2. (1 01)(1 00) = (00 01);

R3. (1 00) = (10 000) (11 001);

R4. [(00 010), (10 111)] = [(00 011), (10 111)] = 1;

R5. [(000 010), (10 110)] = 1.

We shall provide words in terms of the generators a, b and c to express
these relations later in Equation (2.3). Observe that the Relations R1
tells us that (00 01) and (01 10 11) satisfy the relations of the symmetric

7



group S4, so the subgroup that they generate is isomorphic to some quotient
of S4. In fact, it will turn out that this subgroup is isomorphic to S4.

The element (α β) will correspond to the element of Thompson’s group
V that maps a point of the Cantor set that has prefix α to a point with
prefix β and vice versa. Relations R4 and R5 then reflect the fact that
certain elements of V commute because they have disjoint support.

We show that V is generated by the two elements u and v described by
the tree-pairs in Figure 3. Transforming the presentation in Theorem 1.2 to
one using these two generators via Tietze transformations (as described in
Corollary 5.2) and reducing the nine resulting relations using the Knuth–
Bendix algorithm, as implemented in the GAP package KBMAG [14, 16],
results in the surprising two generator and seven relation presentation given
below:

Theorem 1.3 R. Thompson’s group V has a finite presentation with two
generators u and v and the seven relators

u6, v3, (u3v)4,

v−1u(u2v−1)2u3vu−1v−1u3vu(uvu2(uv−1u3v)3)2uv−1u3v−1,

uv−1u3v−1u−2v−1uvu2v−1u−1vu2v−1uvu−1(u−1v−1)2u3vu−1,

v(uv−1u3v−1)2u−1v−1u3v−1u−1v−1u3v,

uvu3vuv−1u−2v−1u(u2v)2(u2v−1)2u3vu−2v−1u3v.

This reduction to seven relations caught the authors by surprise, but
perhaps it is not so unexpected in view of the deficiency (as defined, for
example, in [22, §14.1]) of the presentations in Theorems 1.2 and 1.3 both
being −5.

1 2 3

4 5

u−−→
2 1 5

3 4

1 2 3 4

v−−→
1 4 2 3

Figure 3: Two elements given by tree-pairs that generate for R. Thompson’s
group V
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Figure 4: The map t100,11 denoted using tree-pairs

2 Further preliminaries and the proofs of the main
theorems

This section contains the heart of the mathematics within the article. We
present all the remaining preliminaries required to fully understand the
statements of the theorems listed in the introduction, in particular, un-
packing the presentations that we use. We then provide the proofs, subject
to deferring technical calculations to the sections that follow.

R. Thompson’s group V

One view of Thompson’s group V is as a group of certain homeomor-
phisms of the Cantor set C, namely those that are finite products of the
elements tα,β, for α, β ∈ X∗ with α ⊥ β, defined as follows

xtα,β =


βy if x = αy for some y ∈ C;

αy if x = βy for some y ∈ C;

x otherwise

(2.1)

(see Brin [6, Lemma 12.2]). Note that the map tα,β has the effect of swap-
ping those elements of C that have an initial prefix α with those that have
an initial prefix β and fixing all other points in C. A general element of V is
often denoted by a pair of finite binary rooted trees representing the domain
and codomain of the map. We label the leaves of these two trees by the
numbers 1, 2, . . . , n (for some n) and this then specifies that our element
of V has the effect of substituting the prefix from X∗ corresponding to the
node in the domain tree labelled i by the member of X∗ corresponding to
the node in the codomain tree with the same label (for each i). For example,
Figure 4 provides such tree-pairs for the map t100,11 as just defined.

From the definition, it is visible that t2α,β = 1. Equations of this type
(as α and β range over all incomparable pairs from X∗) will form our family
of order relations.
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If we shift our attention to conjugation, it is a straightforward calcu-
lation in V , along the lines of the familiar one concerning conjugation of
permutations demonstrated to undergraduates in a first course on group
theory, to verify that

t−1
γ,δ tα,β tγ,δ = tα·(γ δ),β·(γ δ)

whenever α · (γ δ) and β · (γ δ) are both defined. We call this resultant
family of relations in V our conjugacy relations. At this point, we also note
that we will use an exponential notation for conjugation, so the left-hand
side of the above relation will also be denoted by tα,β

tγ,δ in what follows.
Our final family of relations exploit the action of our elements tα,β on

basic open sets of the Cantor set C and the self-similar structure of this
space. Specifically, if α ∈ X∗, then the basic open set αC splits into two
subsets, namely the set of all elements of C with initial prefix α0 and those
with initial prefix α1. In view of this, we obtain the equation

tα,β = tα0,β0 tα1,β1 (2.2)

when α, β ∈ X∗ with α ⊥ β. We refer to the family of these relations as
split relations.

Deriving the presentations for V

One of the presentations that we use in this article is that found by R.
Thompson and discussed in Cannon–Floyd–Parry (see [12, Lemma 6.1]).
This presentation has four generators A,B, C and π0 and fourteen relations.
We state these relations when we need them at the start of Section 4 below.

As described in Theorem 1.1, the first of our new presentations involves
the order relations, conjugacy relations and split relations of V just de-
scribed. To be precise, we define P∞ to be the group having the infinite
presentation with generating set A = { sα,β | α, β ∈ X∗, α ⊥ β } and
the relations listed in Equation (1.2). Of course, we already know that
that V is generated by the maps tα,β and that these satisfy the order,
conjugacy and split relations. This ensures that there is a surjective ho-
momorphism φ : P∞ → V given by sα,β 7→ tα,β for α, β ∈ X∗ with α ⊥ β.
When establishing Theorem 1.1, we shall be observing that φ is actually
an isomorphism.

We now describe our primary finite presentation for V , which has three
generators a, b and c and eight relations but, more importantly, can be
readily understood by a human. The majority of our calculations will take
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place with this presentation and so, as indicated above, we develop a help-
ful notation that is parallel to that used in finite permutation groups. It
is a consequence of Higman [15] that all the relations that hold in V can
be detected as consequences of products using tree-pairs of some bounded
size. This motivates our presentation which employs essentially a finite
subcollection of the order, conjugacy and split relations from P∞ and in-
volving only some swaps (α β) all satisfying |α|, |β| 6 3. (To aid reducing
the number of relations required we encode a copy of the symmetric group
of degree 4, corresponding to acting on X2, within our presentation.)

Accordingly, the three generators a, b and c of the group P3 that we de-
fine will represent cyclic permutations of basic open sets. As stated above,
we shall write (00 01), (01 10 11) and (1 00) for a, b and c, respectively. This
reflects the fact that, under the isomorphism that we shall establish between
P3 and V , the element a corresponds to the map t00,01 that interchanges
the basic open sets 00C and 01C, b corresponds to the product t01,10 t01,11

(inducing a 3-cycle of the sets 01C, 10C and 11C), and c corresponds to t1,00.
We extend this notation by defining elements (α β) that we will refer to as
swaps below and a formula for each in terms of a, b and c will be extracted
from the definitions we make. The element (α β) will correspond to tα,β
under the isomorphism. It is these swaps that appear in our list of relations
found in Theorem 1.2 above.

Once we have defined the swaps below, we can translate the Rela-
tions R1–R5 into words in a, b and c. The result is the following re-
statement of Theorem 1.2:

Theorem 2.1 R. Thompson’s group V has a finite presentation with three
generators a, b and c and the following eight relations:

a2 = b3 = (ab)4 = 1,

c = abcacaa
ba
ab

−1cacaab
−1a

,

[ab
−1cac, ab

−1cacabab
−1a

] = 1,

cac = a,

[abcac, ab
−1cacabab

−1a
] = 1,

[abca
bca
, abcaca

bab
−1a

] = 1.

(2.3)

The careful reader will doubtless have observed that the eighth relation
can be shortened by conjugating by a. The presentation as listed is a direct
consequence of the interpretation of Theorem 1.2 in terms of a, b and c. No
effort has been made in its statement to reduce the length of the relations.

Having found this nice presentation for V , we felt obligated to reduce
the relations employing the available technology, specifically the Knuth–
Bendix Algorithm. This algorithm shortens the above relations, although
the results are no longer particularly transparent. To carry out these re-
ductions, we used the implementation of the algorithm found in the freely

11



available KBMAG package [16] in GAP [14] in the following way. Denote
the eight relators corresponding to the equations in (2.3) by r1, r2, . . . , r8.
We can construct a rewriting system associated to each of the groups
Qi = 〈 a, b, c | r1, r2, . . . , ri−1, ri+1, . . . , r8 〉 for i = 4, 5, . . . , 8 in sequence.
The systems that KBMAG constructs are not confluent, but nevertheless
enable us to replace each ri by a Tietze-equivalent (in the group Qi) shorter
relation. This process is repeated until the resulting relations stabilise. As
a consequence, the normal closure, in the free group on {a, b, c}, of the
following eight relations is identical to that of our original list:

a2 = b3 = (ab)4 = 1,

c−1(ac)2a = 1,

(cab−1aba)2cb(cabab−1a)2 = 1,

a(cb)2a(b−1c)2bcabcb−1cab−1acb−1(cb)2ab−1 = 1,

ab−1cbc(ab−1)2cbcb−1a(b−1c)2babcb−1cab−1 = 1,

ca(b−1c)2bacabacbc(b−1ca)2b(cb−1)2(acb)2cb−1cab−1 = 1.

(2.4)

We observe this mechanical process produces considerably shorter relations
than our original eight in Equation (2.3).

The presentation in Theorem 1.3 is deduced in a manner that similarly
depends upon the use of the Knuth–Bendix Algorithm. One first applies
Tietze transformations to pass to a 2-generator presentation employing
generators u and v and relations deduced from the list (2.4). We shall
describe these Tietze transformations by expressing u and v in terms of
a, b and c (adding extraneous generators), and expressing a, b and c in
terms of u and v (removing extraneous generators). The relevant formulae
are

u = a(abab
−1

)caca
bab

−1a
and v = b

and
a = u3, b = v, c = (u3)vu

−2vu3 (u3)vu
−1vu3v.

These formulae can be deduced by direct calculation in V . This application
of Tietze transformations is expanded upon a little in Section 5 and Corol-
lary 5.2 provides the intermediate step to the theorem. (This corollary is
established by purely theoretical means and does not rely upon computer
calculation.)

We then employ the same relation reduction process using KBMAG as
described earlier and this shows that two of the nine relations resulting
from the Tietze transformations are extraneous. In this manner we have
deduced Theorem 1.3 from Theorem 1.2.

12



We now proceed to formally define the swaps (α β) for α, β ∈ X∗ with
α ⊥ β and |α|, |β| 6 3 in terms of our generators a, b and c in order to
present the group P3. To start off, we define swaps (α β) for α, β ∈ X2 as
follows:

(00 01) = a, (00 10) = ab, (00 11) = ab
−1

(01 10) = aba, (01 11) = ab
−1a, (10 11) = abab

(2.5)

Here, and in all that follows, we shall also adopt the convention that the
swap (β α) coincides with (α β) whenever the latter has already been
defined. We write T2 for the set of swaps (α β) with α, β ∈ X2.

The swaps in T2 and their effect when conjugating will be of funda-
mental importance in our calculations. Accordingly we spend a little time
expanding upon the above definitions before we define the remaining swaps.
In the Relations R1, we have assumed that a and b satisfy the relations of
the symmetric group S4 and the formulae on the right-hand side of Equa-
tion (2.5) are those that correspond to transpositions in S4. Consequently,
when we multiply and conjugate elements of T2, they behave in exactly the
same way as transpositions do. In particular, we can view individual ele-
ments of T2, and, by extension, products of such swaps, as transformations
of the set X2. Indeed, our notation γ · (α β), as defined in Equation (1.1),
when α, β, γ ∈ X2, is precisely the formulae for these maps. Our assump-
tion of Relations R1 justifies our using products of swaps from T2 as maps
X2 → X2, as we shall do explicitly, for example, in Lemma 3.4 below.
Similarly, we have written (01 10 11) for the generator b, since it follows
from the Relations R1 that b is equal to the product (01 10) (01 11), which
induces a 3-cycle on X2.

To define the remaining swaps (α β), where |α|, |β| 6 3, we need one
further piece of notation. If x ∈ X, we define x̄ to be the other element
in X; that is,

x̄ =

{
1 if x = 0,

0 if x = 1.

Then for any x, y, z ∈ X, we make our definitions in the following order:

(0 1) = (00 10) (01 11); (2.6)

(1 00) = c, (1 01) = (1 00)(00 01),

(0 1x) = (1 0x)(0 1);
(2.7)

(1 00x) = (00 1x)(1 00), (1 01x) = (1 00x)(00 01),

(0 1xy) = (1 0xy)(0 1);
(2.8)
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(00 01x) = (1 01x)(1 00), (01 00x) = (00 01x)(00 01),

(1x 1x̄y) = (0x 0x̄y)(0 1), (1x 0yz) = (0ȳ 0yz)(0ȳ 1x),

(0x 1yz) = (1x 0yz)(0 1);

(2.9)

(000 001) = (1 000)(1 001), (000 010) = (1 000)(1 010),

(000 011) = (1 000)(1 011), (001 011) = (1 001)(1 011),

(xy0 xy1) = (000 001)(00 xy).

(2.10)

Finally, for distinct κ, λ ∈ X2, fix a product ρκλ of swaps from T2 that
moves 00 to κ and 01 to λ when viewed, as described above, as a map
X2 → X2. Define

(κx λy) = (00x 01y)ρκλ (2.11)

for (x, y) ∈ {(0, 0), (0, 1), (1, 1)}. In this way, we have now defined all
swaps (α β) where |α|, |β| 6 3.

Having made these definitions, it is a straightforward matter to con-
vert the relations R1–R5 into the list (2.3) of actual words expressed in
the generators a, b and c, completing the translation of Theorem 1.2 into
Theorem 2.1.

Proofs of the main theorems

We now provide the proofs of the main theorems (that is, Theorems 1.1
and 1.2), subject to information that we shall establish in the sections of the
paper that follow. Here we link the groups V , P3 and P∞. Specifically, we
build homomorphisms between these groups as indicated in the following
diagram:

P3 P̄3

〈Ā, B̄, C̄, π̄0〉 〈s00,01, s01,10, s10,11, s1,00〉

V P∞

// // //τ

Tietze
** **

θ
' �

44i0

G g

tt
i1jjjj ψ

oooo φ

(2.12)
We already know that φ : P∞ → V is a surjective homomorphism. We

now describe the other parts of the hexagon of maps.
The majority of the work in Sections 3–5 involves the presentation for

the group P3, where we establish information about the swaps (α β) defined
above. In Section 3, we verify that these swaps satisfy the order relations,
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conjugacy relations and split relations of R. Thompson’s group V , providing
we restrict to those involving only swaps (α β) with |α|, |β| 6 3. Then in
Section 4, we establish that four specific elements Ā, B̄, C̄ and π̄0 in P3 sat-
isfy the fourteen relations listed in Cannon–Floyd–Parry [12] that define the
group V . In that section, we ensure that we only rely upon the consequences
of our Relations R1–R5 established in Section 3. This then guarantees the
existence of a surjective homomorphism ψ : V → 〈Ā, B̄, C̄, π̄0〉.

In the final section, we establish that 〈Ā, B̄, C̄, π̄0〉 coincides with the
group P3 (see Proposition 5.1), from which it follows that the natural in-
clusion map i0 is also surjective.

Amongst the generators for P3 are the elements a = (00 01) and
b = (01 10 11), which satisfy the relations of the symmetric group S4

(Relations R1). Of course, S4 also enjoys a presentation in terms of trans-
positions involving only order and conjugacy relations. Accordingly, we
apply Tietze transformations to convert the presentation for P3 into one
for a group P̄3 with generators (00 01), (01 10), (10 11) and (1 00) and some
order, conjugacy and split relations (specifically translations of R2–R5, to-
gether with the new ones to replace R1). Thus we have on the one hand,
an isomorphism τ : P3 → P̄3 and, on the other, a surjective homomorphism
θ : P̄3 → 〈s00,01, s01,10, s10,11, s1,00〉 (a subgroup of P∞), since the relations
defining P̄3 all hold in P∞.

We can now deduce that P3 = 〈Ā, B̄, C̄, π̄0〉 is not trivial, since suc-
cessively composing the appropriate maps in (2.12) sends, for example,
a = (00 01) to the non-identity element t00,01 in V . Hence, from sim-
plicity of V , we conclude P3

∼= V and therefore, subject to the work in
Sections 3–5, establish Theorem 1.2.

Finally, it is relatively straightforward to observe that if α is a non-
empty sequence in X∗, then there is a product w involving only the swaps
(00 01), (01 10), (10 11) and (1 00) such that 00 · w = α. From this, one
quickly deduces, principally relying upon the conjugacy relations, that one
can conjugate s00,01 by some element of 〈s00,01, s01,10, s10,11, s1,00〉 to any
generator sα,β where (α, β) 6= (0, 1). This ensures that the inclusion i1 is
surjective. Hence P∞ ∼= V also and we have established Theorem 1.1.

The remaining sections are perhaps technical, but carry out the deferred
work just as described above. We hope that these sections will quickly
impress the reader with the utility of the permutation notation (α β) in
performing calculations within R. Thompson’s group V .

Remarks

(i) If our goal had been simply to establish Theorem 1.1, then our work
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in the next two sections would have been greatly reduced. Indeed, it
is actually rather easy to show that the group P∞ defined by all the
relations listed in Theorem 1.1 is isomorphic to V (for example, the
relations that Dehornoy [13] lists are particularly straightforward to
deduce). However, from the viewpoint of the high transitivity of the
action of V on the Cantor set C, one expects that it would be enough
to restrict to relations involving swaps (α β) with |α| and |β| bounded.
Indeed, this is what leads to our presentation for the group P3 and
the small set of relations, R1–R5, where we are relying upon a small
subset involving only swaps (α β) with |α|, |β| 6 3. Establishing that
this set of relations is sufficient is the delicate business of Sections 3
and 4.

(ii) Now that we have established that the groups P3, P∞ and V are
all isomorphic, it is safe to use the notation (α β) as a convenient
notation for the map tα,β as defined earlier. We can then perform
computations within R. Thompson’s group V employing this nota-
tion, for example, along the lines of those in the sections that follow,
and we hope this will be of use to those working with elements in this
group.

3 Verification of relations to level 3

Our principal aim is to establish that all the relations holding in R. Thomp-
son’s group V can be deduced from Relations R1–R5. In this section, we
complete the first stage of our technical calculations by establishing es-
sentially a subset of the infinitely many relations in the list (1.2), namely
those order relations, the conjugacy relations and the split relations involv-
ing only swaps (α β) with |α|, |β| 6 3. It will turn out that these are enough
to then deduce the fourteen relations for V found in [12] as we shall see in
Section 4.

Accordingly, in this section, we shall verify all relations of the form

(α β)2 = 1

(α β)(γ δ) = (α·(γ δ) β ·(γ δ))
(α β) = (α0 β0) (α1 β1)

whenever any swap (κ λ) appearing above satisfies |κ|, |λ| 6 3. (So, for
example, the split relation (α β) = (α0 β0) (α1 β1) needs only to be verified
for |α|, |β| 6 2 in order that the swaps on the right-hand side of the equation
fulfil this requirement.) The main focus throughout the section will be in
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establishing all the conjugacy relations στ = υ and we will consider these
relations when we select σ, τ and υ from the following sets:

T2 = { (α β) | (α, β) = (0, 1) or α, β ∈ X2 }
T3 = { (α β) | α, β ∈ X3 }
Tmn = { (α β) | α ∈ Xm, β ∈ Xn }, where 1 6 m < n 6 3

We start our verification by first noting that (1 00) is a conjugate
of (00 01) by Relation R2 and hence has order dividing 2 by the first
relation in R1. From this and the definitions of the swaps, we now know
that (α β)2 = 1 whenever α ⊥ β with |α|, |β| 6 3. We will use this fact
throughout the rest of this section.

We step through the various relations, essentially introducing “longer”
swaps through the stages. Accordingly, we start with relations involving
only swaps from T12 ∪ T2, then introducing swaps from T13, and so on.
We need to take various side-trips from this general direction in order to
successfully establish all the relations we want.

Relations involving T12 and T2 only

With careful analysis, one can soon establish which conjugacy relations
involve only swaps selected from T12 ∪ T2. These are, for x, y ∈ X, the
following three relations:

(x x̄y)(0 1) = (x̄ xy) (3.1)

(x x̄y)(x̄y x̄ȳ) = (x x̄ȳ) (3.2)

(x x̄y)(x x̄ȳ) = (x̄y x̄ȳ) (3.3)

These are actually very easy to verify. For example, Equation (3.1) simply
follows from our definition of (0 1x) (for x ∈ X) in (2.7), while we can
establish Equation (3.2) using our definition of (1 01) in (2.7) and then
conjugating, if necessary, by (0 1) and using the now established Equa-
tion (3.1). We now have the first step in our verification and results along
the lines of the following lemma will occur throughout our progress.

Lemma 3.1 All conjugacy relations of the form στ = υ where σ, υ ∈ T12

and τ ∈ T2 can be deduced from Relations R1–R5. �

This lemma contributes now to establishing Equation (3.3), since we
observe that, for the case x = 1 and y = 0, the equation is Relation R2
and that the general equation can then be deduced by conjugating by

17



a product of elements from T2. Specifically, conjugating by (0 1) gives
(0 11)(0 10) = (10 11) and then subsequently the two equations now estab-
lished by (00 01) and (10 11), respectively, establishes the final cases.

Relations involving T12, T13 and T2 only

When we introduce swaps from T13, in addition to those from T12 and T2,
the relations that need to be verified are, for x, y, z ∈ X, the following:

(x x̄yz)(0 1) = (x̄ xyz) (3.4)

(x x̄yz)(x̄y x̄ȳ) = (x x̄ȳz) (3.5)

(x x̄yz)(x x̄y) = (xz x̄y) (3.6)

Both Equations (3.4) and (3.5) follow quickly from the definitions in
(2.8). They establish:

Lemma 3.2 All conjugacy relations of the form στ = υ where σ, υ ∈ T13

and τ ∈ T2 can be deduced from Relations R1–R5. �

If we expand the definition of (1 00z) from Equation (2.8), we obtain
(1 00z)(1 00) = (00 1z) for z ∈ X. Now conjugate by an appropriate product
of elements from T2, using Lemmas 3.1 and 3.2 similarly to the argument
used for Equation (3.3), to establish Equation (3.6).

First batch of relations involving T2 and T23 only

We now turn to relations involving swaps from T23. There are additional
relations that we shall establish later involving only swaps from T2 and T23,
but for now we are concerned with the following equations (in particular,
the first of our split relations) for x, y ∈ X, for distinct κ, λ, µ ∈ X2, and
for any τ ∈ T2 for which the first is defined:

(κ λx)τ = (κ·τ (λx)·τ) (3.7)

(x x̄y) = (x0 x̄y0) (x1 x̄y1) (3.8)

(κ λx)(µ λx) = (κ µ) (3.9)

We shall need the following lemma to be able to manipulate the initial
swaps from T23 from which the others are built, as given in (2.9). We shall
then establish Equation (3.7) in the form of Lemma 3.4 below.

Lemma 3.3 (i) (1 00), (10 000) and (11 001) all commute;
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(ii) (01 00x)(1 00) = (01 1x);

Proof: (i) Using Relation R3 and the fact that all the swaps involved have
order dividing 2, we conclude that (10 000) and (11 001) commute. It then
follows, again using R3, that (1 00) also commutes with these elements.

(ii) Pull apart the formula for (01 00x) using the definitions in (2.9),
and then apply Relation R2 and Equation (3.6) as follows:

(01 00x)(1 00) = (1 01x)(1 00) (00 01) (1 00) = (1 01x)(1 01) = (01 1x).

�

Lemma 3.4 All conjugacy relations of the form στ = υ where σ, υ ∈ T23

and τ ∈ T2 can be deduced from Relations R1–R5.

Proof: The first half of the proof deals with the case when σ = (κ λ0)
for distinct κ, λ ∈ X2. To establish this, we must first verify that the
swap (00 010) commutes with (10 11). However, to achieve this, we actually
work first with the swap (10 000). Indeed,

(10 000) (01 11) = (1 00) (11 001) (01 11) by Rel. R3

= (1 00) (01 11) (01 001) by the def. of (11 001) in (2.9)

= (01 001) (01 11) (1 00) by Lem. 3.3(ii) twice

= (01 11) (11 001) (1 00) by the def. in (2.9)

= (01 11) (10 000) by Lem. 3.3(i) and Rel. R3.

As the definition of (10 000) in Equation (2.9) is (00 010)(00 01) (01 10), we
conclude that (00 010) commutes with (01 11)(01 10) (00 01) = (10 11).

So we now turn to the required relation when σ = (κ λ0) for distinct
κ, λ ∈ X2. As described earlier, we view τ as a permutation of X2. As
such a map, suppose τ maps κ and λ to µ and ν, respectively. Then by
the definition in Equation (2.9) there are products ρ1 and ρ2 of elements
from T2 such that

(κ λ0) = (00 010)ρ1 and (µ ν0) = (00 010)ρ2 .

Specifically, ρ1 and ρ2 are products that, when viewed as permutations
of X2, map 00 and 01 to κ and λ and to µ and ν, respectively. Then
ρ1τρ

−1
2 ∈ 〈(10 11)〉 since it fixes both 00 and 01. Hence, by our previous

calcuation, (00 010) commutes with ρ1τρ
−1
2 , so

(κ λ0)τ = (00 010)ρ1τ = (00 010)ρ2 = (µ ν0). (3.10)
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Thus, we have established Equation (3.7) in the case when x = 0.
To deduce the equation for x = 1, we proceed similarly and first need

to establish that (00 011) commutes with (10 11). We calculate as follows:

(10 000)(01 000) = (10 000)(1 00) (01 10) (1 00) by Lem. 3.3(ii)

= (10 000)(01 10) (1 00) by Lem. 3.3(i)

= (01 000)(1 00) by Eq. (3.10)

= (01 10) by Lem. 3.3(ii).

Conjugate by (01 10) and use Equation (3.10) again to establish the formula
(01 000)(10 000) = (01 10). Now we find

(11 001) (01 10) = (10 000) (1 00) (01 10) by Rel. R3

= (10 000) (01 000) (1 00) by Lem. 3.3(ii)

= (01 10) (10 000) (1 00) as just established

= (01 10) (11 001) by Rel. R3.

Thus [(11 001), (01 10)] = 1, and then using the definition of (11 001)
in (2.9) and the Relations R1, we deduce [(00 011), (10 11)] = 1. We then
proceed as in the first half of the proof, using this new equation, and we
establish Equation (3.7) when x = 1, completing the proof of the lemma.

�

Equation (3.8) now follows by conjugating Relation R3 by an appropri-
ate product of elements from T2 using Lemmas 3.1 and 3.4.

The establishment of Equation (3.9) requires an intermediate observa-
tion first. We use Lemma 3.4 to tell us that (11 001) commutes with (01 10),
so

(01 10) (11 001) = (11 001) (01 10)

= (10 000) (1 00) (01 10) by Rel. R3

= (10 000) (01 000) (1 00) by Lem. 3.3(ii)

= (10 000) (01 000) (10 000) (11 001) by Rel. R3.

Hence (01 000)(10 000) = (01 10). By a similar sequence of calculations we
establish

(10 000) (01 11) = (01 11) (10 000) by Lem. 3.4

= (01 11) (1 00) (11 001) by Rel. R3

= (1 00) (01 001) (11 001) by Lem. 3.3(ii)
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= (10 000) (11 001) (01 001) (11 001) by Rel. R3,

so (01 001)(11 001) = (01 11). We now have two equations that, once we
conjugate by a product of elements from T2, yield the general form of
Equation (3.9) using Lemma 3.4 and Relations R1.

Relations involving T12, T2 and T23

The relations that involve swaps from T12, T23 and T2 and that definitely
include at least one swap from each of the first two sets are, for x, y, z, t ∈ X,
the following:

(xy x̄z)(x x̄z̄) = (x̄z x̄z̄y) (3.11)

(xy x̄zt)(x x̄z) = (xt x̄zy) (3.12)

To establish Equation (3.11), first calculate

(00 1x)(1 01) (1 00) = (00 1x)(1 00) (00 01) = (1 00x)(00 01) = (1 01x)

using Relation R2 and the definitions in (2.8). Hence

(00 1x)(1 01) = (1 01x)(1 00) = (00 01x)

by the definitions in (2.9). This is Equation (3.11) in the case when x = 1
and z = 0. The general equation then follows by conjugating by a suitable
product of elements from T2 and using Lemmas 3.1 and 3.4.

To establish Equation (3.12), we first deal with the case when x = 1
and z = 0. We calculate

(1y 00t)(1 00) = (01 00t)(01 1y) (1 00) = (01 00t)(1 00) (01 00y)

= (01 1t)(01 00y) = (1t 00y)

using the definitions in (2.9), Equation (3.11) (twice) and (3.9). Now con-
jugate by an appropriate product of elements from T2, using Lemmas 3.1
and 3.4, to conclude that Equation (3.12) holds.

Intermediate relations

Our current goal at this stage is to complete the establishment of rela-
tions involving swaps from T2 and T23 to supplement Equations (3.7)–(3.9)
already obtained. However, in order to achieve this, we need some inter-
mediate relations involving swaps from T3 of the form (κ0 κ1) for some
κ ∈ X2, specifically for x, y ∈ X and distinct κ, λ ∈ X2:

(κ λx)(κ λx̄) = (λ0 λ1) (3.13)
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(κ λx)(λ0 λ1) = (κ λx̄) (3.14)

[(x x̄y), (x̄ȳ0 x̄ȳ1)] = 1 (3.15)

We start by establishing a helpful lemma, analogous to Lemmas 3.3
and 3.4, concerning the swaps of the form (κ0 κ1).

Lemma 3.5 (i) (000 001)(1 00) = (10 11);

(ii) (000 001) commutes with (01 10), with (01 11), and with (10 11).

(iii) All conjugacy relations of the form στ = υ, where σ, υ ∈ T3 have
the form (κ0 κ1) for some κ ∈ X2 and τ ∈ T2, can be deduced from
Relations R1–R5.

Proof: (i) This follows using the definitions in (2.8) and (2.10):

(000 001)(1 00) = (1 000)(1 001) (1 00) = (1 000)(1 00) (00 11)

= (00 10)(00 11) = (10 11).

(ii) First we know, by Lemma 3.4, that (10 11) commutes with (01 00x)
for any x ∈ X. Conjugating by (1 00), using part (i) and Lemma 3.3(ii),
establishes that (000 001) commutes with (01 1x).

Then we perform the following calculation:

(000 001) (10 11) = (1 00) (10 11) (1 00) (10 11) by part (i)

= (10 000) (11 001) (10 11) (1 00) (10 11) by Rel. R3

= (10 11) (11 000) (10 001) (1 00) (10 11) by Lem. 3.4

= (10 11) (1 00) (10 001) (11 000) (10 11) by Eq. (3.12)

= (10 11) (1 00) (10 11) (11 001) (10 000) by Lem. 3.4

= (10 11) (1 00) (10 11) (1 00)

by Lem. 3.3(i) and Rel. R3

= (10 11) (000 001) by part (i).

Thus (000 001) commutes with (10 11).
(iii) This follows by the same argument as used in Lemma 3.4, noting

that if a product ρ of elements from T2 fixes 00 then it lies in the subgroup
generated by (01 10), (01 11) and (10 11) and so commutes with (000 001)
by part (ii). �
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For Equation (3.13), start with the equations (01 1x)(01 1x̄) = (10 11)
and then conjugate by (1 00). Use Lemmas 3.3(ii) and 3.5(i) to conclude

(01 00x)(01 00x̄) = (000 001)

for any x ∈ X. The required equation now follows by conjugating by a
product of elements from T2 and using Lemmas 3.4 and Lemma 3.5(iii).

To establish Equation (3.14), first use Lemma 3.4 to conclude that
(10 000)(10 11) = (11 000). Now conjugate by (1 00) and use Equation (3.12)
and Lemma 3.5(i) to establish the formula (10 000)(000 001) = (10 001).
Conjugating by an appropriate product of elements from T2 and use of
Lemmas 3.4 and 3.5(iii) establishes (κ λ0)(λ0 λ1) = (κ λ1), which is suffi-
cient to verify Equation (3.14).

We deduce Equation (3.15) by starting with [(00 01), (10 11)] = 1 and
conjugating by (1 00) to yield [(1 01), (000 001)] = 1, using RelationR2 and
Lemma 3.5(i). Conjugating by an appropriate product of elements from T2

and using Lemmas 3.1 and 3.5(iii) establishes the required relation.

Remaining relations involving T2 and T23

We now establish all the relations remaining that involve just swaps from
T2 and T23. Careful analysis shows that the ones we are currently missing
are, for x, y ∈ X and distinct κ, λ, µ, ν ∈ X2, the following:

[(κ λ0), (µ λ1)] = 1 (3.16)

[(κ λx), (µ νy)] = 1 (3.17)

Note that in establishing these equations we are essentially establishing
that swaps from T23 that have disjoint support (or, more accurately, corre-
sponding to maps in V with disjoint support) commute.

Equation (3.16) simply follows from Lemma 3.3(i) using Lemma 3.4.
Use of Lemma 3.4 deduces [(κ λ0), (µ ν1)] = [(κ λ1), (µ ν1)] = 1

for all distinct κ, λ, µ, ν ∈ X2 from Relations R4. Consequently, in the
case of Equation (3.17), it remains to verify the relation in the case when
x = y = 0. First observe that

(11 011)(000 001) = (11 011)(10 000) (10 001) (10 000) = (11 011)

by use of Equation (3.13) and then repeated use of the cases of Equa-
tion (3.17) that we already have; that is, [(11 011), (000 001)] = 1. Now

(000 001)(10 010) = (000 001)(1 01) (11 011) by Eq. (3.8)
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= (000 001)(11 011) by Eq. (3.15)

= (000 011) as just established.

Thus, (10 010) and (000 001) commute. This means that when we con-
jugate the relation [(10 010), (11 001)] = 1, which is an instance of Equa-
tion (3.17) that we already know, by the swap (000 001), we obtain

[(10 010), (11 000)] = 1,

with use of Equation (3.14). We now make use of Lemma 3.4 in our usual
way to establish the missing case of Equation (3.17), namely when x = y =
0.

Relations involving T12, T13, T2 and T23

We now establish all the relations we require that involve swaps from
T12, T13, T2 and T23. In view of the relations that we have already ob-
tained, we can assume that at least one swap from T13 and at least one
from T23 occur within our relation. The relations we need to establish are
therefore, for x, y, z ∈ X, the following:

[(x x̄yz), (x̄ȳ x̄yz̄)] = 1 (3.18)

(x x̄y)(x x̄ȳz) = (x̄y x̄ȳz) (3.19)

(x x̄y)(x̄y x̄ȳz) = (x x̄ȳz) (3.20)

(x x̄yz)(x x̄ȳ) = (x̄ȳ x̄yz) (3.21)

For Equation (3.18), take the equation [(00 10), (01 11)] = 1, conjugate
by (1 00) and use the definition in (2.8) and Lemma 3.3(ii) to conclude
[(1 000), (01 001)] = 1. The required equation then follows, as usual, by
use of Lemmas 3.2 and 3.4.

For Equation (3.19), we calculate as follows:

(1 00)(1 01z) = (1 00)(00 01) (1 00z) (00 01) by the definition in (2.8)

= (1 01)(1 00z) (00 01) by the definition in (2.7)

= (1 01)(1 00) (00 1z) (1 00) (00 01) by the definition in (2.8)

= (01 1z)(1 00) (00 01) using Rels. R2 and R1

= (01 00z)(00 01) by Eq. (3.11)

= (00 01z) by Lem. 3.4.

The required equation now follows using Lemmas 3.1, 3.2 and 3.4.
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For Equation (3.20), our main calculation is

(1 00)(00 01z) = (1 00)(1 00) (1 01z) (1 00) = (1 00)(1 01z) (1 00)

= (00 01z)(1 00) = (1 01z),

obtained by exploiting the definition of (00 01z) in (2.9) and Equation
(3.19) above. The required equation again follows by Lemmas 3.1, 3.2
and 3.4.

Equation (3.21) follows from the definition of (1 01z) as in Equa-
tion (2.8) with use of Lemmas 3.1, 3.2 and 3.4.

First relations involving T2 and T3 only

We now introduce swaps from T3 into the relations we verify. The first
step is to establish that swaps from T3 behave well when we conjugate by
one from T2 and then our other split relation. All other relations involving
just swaps from T2 and T3 will have to wait until we have established some
more intermediate relations. Accordingly, we start with the following for
x, y ∈ X, distinct κ, λ ∈ X2 and τ ∈ T2 for which Equation (3.22) is defined:

(κx λy)τ = ((κx)·τ (λy)·τ) (3.22)

(κ λ) = (κ0 κ1) (λ0 λ1) (3.23)

As with those from T23, we begin with a lemma to manipulate the
basic T3-swaps from the definition in (2.10). In particular, we will establish
Equation (3.22) as part (iv) in the lemma.

Lemma 3.6 (i) (000 01x)(1 00) = (10 01x), for any x ∈ X;

(ii) (001 011)(1 00) = (11 011);

(iii) (000 010), (000 011) and (001 011) each commute with (10 11).

(iv) All conjugacy relations of the form στ = υ, where σ, υ ∈ T3 and τ ∈
T2, can be deduced from Relations R1–R5.

(v) (001 010)(1 00) = (11 010);

Proof: (i) We calculate as follows:

(000 01x)(1 00) = (1 000)(1 01x) (1 00) by the definition in (2.10)

= (1 000)(1 00) (00 01x) by Eq. (3.21)

= (00 10)(00 01x) by the definition in (2.8)
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= (10 01x) by Eq. (3.9).

Part (ii) is established in exactly the same way.
(iii) We perform the following calculations:

(000 01x)(10 11) (1 00)

= (10 01x)(1 00) (10 11) (1 00) by part (i)

= (10 01x)(10 000) (11 001) (10 11) (1 00) by Rel. R3

= (11 01x)(11 000) (10 001) (1 00) by Lem. 3.4

= (11 01x)(11 000) (1 00) by Eq. (3.17) twice

= (11 01x)(11 000) (10 000) (11 001) by Rel. R3

= (11 01x)(10 000) (10 11) (11 001) by Eq. (3.9)

= (11 01x)(10 11) (11 001) by Eq. (3.17)

= (10 01x)(11 001) by Lem. 3.4

= (10 01x) by Eq. (3.17).

Thus (000 01x)(10 11) = (10 01x)(1 00) = (000 01x), again by part (i). A
similar argument, using (ii), shows that (001 011) commutes with (10 11).

(iv) When σ (and υ) has the form (κ0 κ1), this result was established in
Lemma 3.5(iii). All remaining swaps in T3 are defined by conjugating one of
(000 010), (000 011) or (001 011) by some product of elements from T2. The
result then follows by the same argument, but now relying upon part (iii).

(v) appears to be similar to the first two parts of the lemma, but actually
requires a different argument, based on what we have just established:

(001 010)(1 00) = (000 011)(00 01) (1 00) = (000 011)(1 00) (1 01)

= (10 011)(1 01) = (11 010),

by part (iv), Relation R2, part (i) and Equation (3.12). �

Equation (3.23) is now established by taking the equation (1 01) =
(10 010) (11 011), which is an instance of Equation (3.8), and conjugating
by (1 00) to yield

(00 01) = (000 010) (001 011),

using Relation R2 and Lemma 3.6(i) and (ii). The required relation then
follows by conjugating by a product of elements from T2 and using the
Relations R1 and Lemma 3.6(iv).
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Further intermediate relations involving T23 and T3

Our principal direction of travel at this stage is to complete the verification
of those relations involving swaps from T2 and T3 to supplement those
in Equations (3.22) and (3.23). However, to achieve this we need some
intermediate results making use of swaps from T23, specifically, for x ∈
X, distinct κ, λ, µ ∈ X2 and distinct α, β ∈ X3 for which κ ⊥ α, β, the
following:

(κ α)(κ β) = (α β) (3.24)

(κ α)(α β) = (κ β) (3.25)

[(κ λx), (µ0 µ1)] = 1 (3.26)

For Equation (3.24), first note that Equation (3.13) deals with the case
when α and β share the same two-letter prefix. For the remaining cases,
first observe

(10 000)(10 010) (1 010)

= (10 000)(10 010) (11 011) (1 010) by Eqs. (3.16) and (3.17)

= (10 000)(1 01) (1 010) by Eq. (3.8)

= (10 000)(01 10) (1 01) by Eq. (3.6)

= (01 000)(1 01) by Lem. 3.4

= (1 000) by Eq. (3.21).

Hence (10 000)(10 010) = (1 000)(1 010) = (000 010), using the definition
in Equation (2.10). A similar argument establishes (11 000)(11 011) =
(1 000)(1 011) = (000 011). Equally we apply a variant of the argument
to obtain further equations:

(10 011)(10 000) (1 011) = (10 011)(1 00) (1 011) arguing as before

= (10 011)(00 011) (1 00) by Eq. (3.21)

= (00 10)(1 00) by Eq. (3.9)

= (1 000) by the definition in (2.8).

Thus we obtain (10 011)(10 000) = (1 000)(1 011) = (000 011). Similarly we
determine the equation (11 011)(11 001) = (001 011). Thus given any choice
of x, y ∈ X, we have obtained one example of a relation

(κ λx)(κ µy) = (λx µy)
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(for some choice of distinct κ, λ and µ.) We can then obtain all examples
by use of Lemmas 3.4 and 3.6(iv). This completes the establishment of
Equation (3.24).

Equation (3.14) is already Equation (3.25) in the case when α and β
share the same two-letter prefix. For the remaining cases, use Equa-
tion (3.24) to tell us (1x 000)(1x 01y) = (000 01y) for any x, y ∈ X. Conju-
gate this equation by (1 00) and use Equation (3.12) and parts of Lemma 3.6
to establish (10 00x)(00x 01y) = (10 01y). All cases of Equation 3.25 now
follow by conjugating by an appropriate product of elements from T2.

For Equation (3.26), start with the fact that (10 11) commutes with
(000 01x) for any x ∈ X (Lemma 3.6(iii)). Conjugate by (1 00) and use
Lemmas 3.5(i) and 3.6(i) to conclude [(000 001), (01 01x)] = 1. Then con-
jugating by a product of swaps from T2 establishes the required equation.

Remaining relations involving only T2, T23 and T3

Having established the intermediate relations, we can now establish all
remaining relations involving swaps only from T2 and T3. We obtain those
also involving swaps from T23 at the same time. When one analyses the
relations required, we find that they are, for x, y ∈ X, distinct κ, λ ∈ X2

and distinct α, β, γ, δ ∈ X3, the following:

[(κ0 κ1), (λx µy)] = 1 (3.27)

(κx λy)(κ0 κ1) = (κx̄ λy) (3.28)

[(κ α), (β γ)] = 1 for κ ⊥ α, β, γ (3.29)

(α β)(α γ) = (β γ) (3.30)

[(α β), (γ δ)] = 1 (3.31)

We establish Equation (3.27) by choosing ν to be the element in X2 \
{κ, λ, µ}, using Equation (3.24) to tell us (λx µy) = (ν λx)(ν µy) and then,
as Equation (3.26) says that both (ν λx) and (ν µy) commute with (κ0 κ1),
we establish Equation (3.27).

By Lemma 3.4, (1x 01y)(10 11) = (1x̄ 01y) for any x, y ∈ X. Conju-
gate by (1 00) and use Lemma 3.5(i) and parts of Lemma 3.6 to conclude
(00x 01y)(000 001) = (00x̄ 01y). Equation (3.28) then follows.

Our final equation involving swaps from T23 and T3 is Equation (3.29).
We need to establish this in a number of stages. If x ∈ X, we know
that (10 11) commutes with the swap (000 01x) by Lemma 3.6(iii). If we
conjugate by (1 00) and use Lemma 3.5(i) and Lemma 3.6(i), we conclude
[(10 01x), (000 001)] = 1. We then deduce Equation (3.29) in the case when
β and γ share the same two-letter prefix in our now established manner.
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The second case of the equation is when α and β share their two-
letter prefix. Equation (3.17) tells us that [(1x 000), (1x̄ 01y)] = 1 for
any x, y ∈ X. Now conjugate by (1 00) and use Equation (3.12) and parts
of Lemma 3.6 to conclude [(10 00x), (00x̄ 01y)] = 1. Equation (3.29) when
α and β share their two-letter prefix then follows.

It remains to deal with the case when α, β and γ have distinct two-letter
prefixes. One particular case is our Relation R5: [(10 110), (000 010)] =
1. Conjugating by (110 111), using Equation (3.14) and (3.27), we de-
duce [(10 111), (000 010)] = 1. Similarly, conjugating what we now have,
[(10 11x), (000 010)] = 1 for any x ∈ X, by (000 001) and use (3.26)
and (3.28) to now conclude that [(10 11x), (00y 010)] = 1 for all x, y ∈ X.
Finally use the same argument, conjugating by (010 011), to conclude
[(10 11x), (00y 01z)] = 1 for all x, y, z ∈ X. The remaining case of Equa-
tion (3.29) now follows.

One case of Equation (3.30), namely when α and γ share the same
two-letter prefix, has already been established as Equation (3.28). For
the case when α and β share the same two-letter prefix, start with the
equation (10 11)(1x 01y) = (1x̄ 01y), for x, y ∈ X, as given by Equation (3.9).
Conjugate by (1 00) and use Lemma 3.5(i) and parts from Lemma 3.6 to
conclude (000 001)(00x 01y) = (00x̄ 01y). From this the general formula
(κ0 κ1)(κx λy) = (κx̄ λy) follows for distinct κ, λ ∈ X2.

For the case when α, β and γ have distinct two-letter prefixes, say
α = κx, β = λy and γ = µz, choose ν to be the other element of X2. Then

(α β)(α γ) = (κx λy)(κx µz) = (κx λy)(ν κx) (ν µz) (ν κx)

= (ν λy)(ν µz) (ν κx)

= (λy µz)(ν κx) = (λy µz) = (β γ),

by Equations (3.24) (used three times) and (3.29).
Part of Equation (3.31) has already been established as Equation (3.27),

but we shall deal with our required relation in full generality. Indeed, first
assume that α, β, γ and δ have between them at most three distinct two-
letter prefixes. Let ν ∈ X2 be different from those two-letter prefixes.
Then write (γ δ) as (ν γ) (ν δ) (ν γ), by Equation (3.24), and observe this
commutes with (α β) using Equation (3.29).

The case when α, β, γ and δ have four distinct two-letter prefixes can
then be deduced as follows. Suppose as α = κx for some κ ∈ X2 and x ∈ X.
By the previous case, (α β) commutes with both (κx̄ γ) and (κx̄ δ), and
hence it also commutes with (γ δ) = (κx̄ γ)(κx̄ δ), using Equation (3.30).

29



Relations involving T3, at least one of T12, T13 and T23, and pos-
sibly T2

We now establish the final batch of relations for this section. These involve
swaps from T3 and at least one of T12, T13 and T23, and are the following
for x, y, z, t ∈ X and distinct α, β, γ ∈ X3 satisfying x 6≺ α, β, γ:

(x̄y0 x̄y1)(x x̄y) = (x0 x1) (3.32)

[(x α), (β γ)] = 1 (3.33)

(x α)(α β) = (x β) (3.34)

(α β)(x α) = (x β) (3.35)

(x̄yz x̄ȳt)(x x̄y) = (xz x̄ȳt) (3.36)

Equation (3.32) follows from Lemma 3.5(i) by our standard T2-conjug-
ation argument.

Equation (3.33) follows by taking the relation [(00 1y), (1ȳ 01z)] = 1 and
the relation [(00 1y), (010 011)] = 1, which hold by Lemmas 3.4 and 3.6(iv)
respectively, and then conjugating by (1 00) and proceeding as in previous
arguments to conclude that [(x κy), (κȳ λz)] = 1 and [(x κy), (λ0 λ1)] = 1
for any x, y, z ∈ X and any distinct κ, λ ∈ X2 with x 6≺ κ, λ.

To establish Equation (3.34), conjugate the already established equa-
tions (00 1y)(10 11) = (00 1ȳ) and (00 1y)(1y 01z) = (00 01z), for y, z ∈ X,
by (1 00). This yields (1 00y)(000 001) = (1 00ȳ) and (1 00y)(00y 01z) =
(1 01z), which now yields the two forms of Equation (3.34): (x κy)(κ0 κ1) =
(x κȳ) and (x κy)(κy λz) = (x λz) for any x, y, z ∈ X and distinct κ, λ ∈ X2

with x 6≺ κ, λ.
For Equation (3.35), we shall show (000 001)(1 00x) = (1 00x̄) and

(00x 01y)(1 01y) = (1 00x) for any x, y ∈ X. Four of these occurrences
are found in the definitions in (2.10), while the other two are deduced by
conjugating (10 11)(00 10) = (00 11) and (11 010)(00 010) = (00 11) by (1 00).
The required equation then follows.

Finally, for Equation (3.36), from Lemma 3.6: (00z 01t)(1 00) = (1z 01t)
for any z, t ∈ X. Then as in the previous equations we conjugate by
products of elements from T2.

We have now established all required relations of the form στ = υ where
σ, τ and υ come from the sets T2, T12, T13, T23 and T3. This is the first stage
in establishing the existence of the homomorphism ψ in Diagram (2.12) and,
in particular, the verification of Theorem 1.2.
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4 Verifying the Cannon–Floyd–Parry relations

In this section we describe how to verify that all the relations that hold
in R. Thompson’s group V can be deduced from those assumed in Rela-
tions R1–R5. We shall rely upon the work in the previous section. One
might wonder whether it is possible to proceed more directly to show, for
example, that all relations holding in V can be deduced from the infinitely
many in the presentation in Theorem 1.1. It is a consequence of our results
that this can be done, but our own attempt to do so resulted in overly long
arguments replicating those already found in Section 6 of [12]. We have
chosen the more direct method of verifying the finite set of relations known
already to define V .

In their paper (see [12, Lemma 6.1]), Cannon–Floyd–Parry provide the
following presentation for V . It has generators A, B, C and π0 and relations

CFP1. [AB−1, X2] = 1; CFP8. π1π3 = π3π1;
CFP2. [AB−1, X3] = 1; CFP9. (π2π1)3 = 1;
CFP3. C1 = BC2; CFP10. X3π1 = π1X3;
CFP4. C2X2 = BC3; CFP11. π1X2 = Bπ2π1;
CFP5. C1A = C2

2 ; CFP12. π2B = Bπ3;
CFP6. C3

1 = 1; CFP13. π1C3 = C3π2;
CFP7. π2

1 = 1; CFP14. (π1C2)3 = 1;

where the elements appearing here are defined by the following formulae
Cn = A−n+1CBn−1, Xn = A−n+1BAn−1 both for n > 1, π1 = C−1

2 π0C2

and πn = A−n+1π1A
n−1 for n > 2.

Recall from Section 2 that P3 is the group presented by generators
a = (00 01), b = (01 10) (01 11) and c = (1 00) subject to relations
R1–R5. Define four new elements of P3 by

Ā = (0 1) (0 10) (10 11); B̄ = (10 11) (10 110) (110 111);

C̄ = (10 11) (0 10); π̄0 = (0 10),

and then new elements C̄n, X̄n and π̄n for n > 1 defined in terms of these
four by same formulae used when defining the relations for V .

It is a consequence of the relations involving swaps from the sets T2, T12,
T13, T23 and T3 established in the previous section (i.e., Equations (3.1)–
(3.36)) that the elements Ā, B̄, C̄ and π̄0 satisfy CFP1–CFP14. To verify
this is a sequence of calculations. Below we present the verification of CFP1
for these elements. For the entertainment of the reader, Relation CFP2
required the longest calculation whilst the others are more straightforward.
The following formulae are useful for this work.
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Lemma 4.1 The following formulae hold in G:

(i) ĀB̄−1 = (00 01) (01 10) (0 10);

(ii) X̄2 = (0 11) (00 01) (00 010) (010 011) (0 11);

(iii) X̄3 = (0 111) (00 01) (00 010) (010 011) (0 111);

(iv) C̄2 = (0 10) (0 111) (110 111);

(v) C̄3 = (0 110) (10 111) (0 100) (0 101) (10 110) (110 111);

(vi) π̄1 = (10 110);

(vii) π̄2 = (0 11) (00 010) (0 11);

(viii) π̄3 = (0 111) (00 010) (0 111).

Proof: We verify the two formulae, (i) and (ii), required to verify CFP1.
Below, we principally rely upon the conjugacy relations, although a split
relation is applied in one step. The other formulae listed are established
similarly.

(i) We calculate

ĀB̄−1 = (0 1) (0 10) (10 11) · (110 111) (10 110) (10 11)

= (0 1) (0 10) (100 101) (11 100)

= (0 1) (00 01) (00 11) (0 10)

= (00 10) (01 11) (00 01) (00 11) (0 10)

= (00 01) (01 10) (0 10).

(ii) We start with the definition of Ā and B̄:

X̄2 = Ā−1B̄Ā

= (10 11) (0 10) (0 1) · (10 11) (10 110) (110 111) · (0 1) (0 10) (10 11)

= (10 11) (0 10) (00 01) (00 010) (010 011) (0 10) (10 11)

= (0 11) (00 01) (00 010) (010 011) (0 11).

�

We now verify that the elements Ā, B̄, C̄ and π̄0 of our P3 satisfy the
relation CFP1:

[ĀB̄−1, X̄2] = (0 10) (01 10) (00 01) · (0 11) (010 011) (00 010) (00 01) (0 11)

· (00 01) (01 10) (0 10) · (0 11) (00 01) (00 010) (010 011)

· (0 11)
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= (0 11) (10 11) (10 111) (110 111) (010 011) (00 010) (00 01)

· (0 11) (00 01) (01 10) (0 10) (0 11) (00 01) (00 010)

· (010 011) (0 11)

= (0 11) (10 11) (10 111) (110 111) (010 011) (00 010) (00 01)

· (110 111) (10 111) (10 11) (00 01) (00 010) (010 011) (0 11)

= (0 11) (11 101) (100 101) (010 011) (00 010) (00 01) (100 101)

· (11 101) (00 01) (00 010) (010 011) (0 11)

= (0 11) (11 101) (100 101) (010 011) (00 010) (100 101)

· (11 101) (00 010) (010 011) (0 11)

= (0 11) (11 101) (010 011) (00 010) (11 101) (00 010) (010 011)

· (0 11)

= (0 11) (11 101) (010 011) (11 101) (010 011) (0 11)

= 1

(by first collecting (0 11) to the left, then conjugating some swaps by (0 11),
some by (10 11), some by (00 01), some by (100 101), then single swaps
by (00 010) and by (11 101), and finally exploiting the fact our swaps have
order 2).

Once we have established the fourteen relations CFP1–CFP14, it follows
that there is indeed a surjective homomorphism ψ : V → 〈Ā, B̄, C̄, π̄0〉, as
indicated in the Diagram (2.12) and used in the proof of Theorems 1.1
and 1.2.

5 Final details for the proofs

In this section, we complete the technical details relied upon in the proofs
given in Section 2.

We first need to show that the subgroup 〈Ā, B̄, C̄, π̄0〉 coincides with the
group P3. Indeed observe this subgroup contains all the following elements:

π̄0 = (1 00) = c

C̄π̄0 = (10 11)

(C̄π̄0)ĀC̄ = (10 11)(0 1) = (00 01) = a

π̄B̄
−1C̄

0 = (0 10)(110 111) (10 110) (0 10) = (10 110)

π̄B̄
−1C̄

0 C̄π̄0B̄ = (110 111)

and
(10 110)(110 111) (10 11) (0 10) (10 11) = (01 10).
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The Relations R1 ensure that b ∈ 〈(00 01), (01 10), (10 11)〉, and so we
now conclude that this subgroup generated by Ā, B̄, C̄ and π̄0 is the whole
group P3. This establishes the following result and means that we have now
completed all the details required for the proofs of Theorem 1.1 and 1.2.

Proposition 5.1 The elements Ā, B̄, C̄ and π̄0, defined earlier, generate
the group P3. �

Finally, we deduce a 2-generator presentation for V from Theorem 1.2.
As noted in Section 2, the following is the intermediate step used to estab-
lish Theorem 1.3. Although the latter depends on computer calculation,
the following is established by purely theoretical methods in line with our
proofs of Theorems 1.1 and 1.2.

Corollary 5.2 R. Thompson’s group V has a finite presentation with two
generators and nine relations.

Proof: We work in the group P3. Define u and v to be the elements

u = (00 01) (10 110) (10 111) and v = b = (01 10 ).

(When interpreted via the isomorphism from P3 to V , obtained by compos-
ing the maps specified in the diagram (2.12), these two elements correspond
to the element of V given by tree-pairs in Figure 3 in the Introduction.)

If we rely upon the relations that hold in P3 (i.e., simply calculating
within R. Thompson’s group V , as, by this stage, we have completed all
steps in establishing Theorem 1.2), then we can obtain a formula for u as
a product of the generators a, b and c, for example,

u = w(a, b, c) = a(abab
−1

)caca
bab

−1a

and the following formulae:

a = (00 01) = u3,

(10 000) = (u3)vu
−2vu3 ,

(11 001) = (u3)vu
−1vu3v

Therefore c = γ(u, v) = (u3)vu
−2vu3 (u3)vu

−1vu3v. If r1(a, b, c), r2(a, b, c),
. . . , r8(a, b, c) denote the words in a, b and c that define our relations (see
the Equations (2.4) in Section 2, or alternatively, Equations (2.3)), then
applying Tietze transformations shows that
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V ∼=
〈
u, v

∣∣ r1

(
u3, v, γ(u, v)

)
= r2

(
u3, v, γ(u, v)

)
= · · · =

r8

(
u3, v, γ(u, v)

)
= 1, u = w

(
u3, v, γ(u, v)

) 〉
.

This establishes the corollary. �

As we described in Section 2, Theorem 1.3 is deduced from this presen-
tation. We produce the formulae ri

(
u3, v, γ(u, v)

)
, for i = 1, 2, . . . , 8, by

taking ri to be the formulae in (2.4). We then apply the process of pro-
ducing equivalent relations for this 2-generator presentation by repeatedly
using the Knuth–Bendix Algorithm as described in Section 2. It is during
this process that we discover that two of the relations can be omitted since
the relevant word reduces to the identity. The remaining seven relations
reduce to those listed in Theorem 1.3.
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[20] Conchita Mart́ınez-Pérez and Brita E. A. Nucinkis, “Bredon cohomo-
logical finiteness conditions for generalisations of Thompson groups,”
Groups Geom. Dyn. 7 (2013), no. 4, 931–959.

[21] Diego Rattaggi, “A finitely presented torsion-free simple group,” J.
Group Theory 10 (2007), no. 3, 363–371.

[22] Derek J. S. Robinson, A Course in the Theory of Groups, Second Edi-
tion, Graduate Texts in Mathematics 80, Springer-Verlag, New York,
1996.

[23] Richard J. Thompson, Handwritten widely circulated notes, 1965.

[24] Werner Thumann, “Operad groups and their finiteness properties,”
Adv. Math. 307 (2017), 417–487.

37


