Supplementary material: Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice

Supplementary material: Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice

S. Klembt,^{1, a)} T. Harder¹, O. Egorov¹, K. Winkler¹, H. Suchomel¹, J. Beyerlein¹, M. Emmerling¹, C. Schneider¹,^{1, 2} and S. Höfling^{1, 2} ¹⁾ Technische Physik and Wilhelm-Conrad-Röntgen Research Center for Complex Material Systems,

Universitat Würzburg, Am Hubland, D-97074 Würzburg, Germany.

²⁾SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom

(Dated: 30 October 2017)

^{a)}Electronic mail: sebastian.klembt@physik.uni-wuerzburg.de

Figure S1. (a)-(d) Photoluminescence measurement showing the lower polariton branch on the planar microcavity sample for increasingly negative detuning $(a)\delta = +0.76 \text{ meV}$, $(b)\delta = -8.89 \text{ meV}$, $(c)\delta = -16.46 \text{ meV}$, and $(d)\delta = -24.36 \text{ meV}$, respectively. The lower polariton branch shows the typical decrease of effective mass, due to an increasing photonic fraction. (e) White light reflectivity measurements as a function of radial position (detuning). Upper and lower polariton show the typical anti-crossing behavior with a Rabi splitting of $2\hbar\Omega_R = 9.5 \text{ meV}$.

Figure S2. (a), (c) *P*-flatband dispersion for the lattice with diameter d=3.0 μ m at an excitation power of 1.25 P_{th}. At around 3.13 P_{th} a weak signature of a *S*-flatband becomes visible. (b), (d) *S*-flatband dispersion for the lattice with diameter d=2.5 μ m at an excitation power of 1.13 P_{th}. At around 1.50 P_{th} a weak signature of a *P*-flatband becomes visible.