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Abstract 

Modulation of ruminal biohydrogenation in sheep through dietary tannins or energy 

sources  

In the present thesis, four experiments were conducted to study how ruminal 

biohydrogenation pathways can be modulated through dietary inclusion of tannin sources 

and to acquire a better comprehension about the occurence of t10-shifted biohydrogenation 

pathways. In the first experiment, in vitro batch incubations with 100 g/kg dry matter (DM) of 

extracts of chestnut tannins (mostly hydrolysable tannins) and quebracho, grape seed or 

rockrose (Cistus ladanifer) condensed tannins, as well as a control treatment were incubated 

for 6 h with ruminal fluid from fistulated sheep and a dehydrated lucerne-based substrate 

with 60 g/kg DM of sunflower oil. Grape seed and, to a lesser extent, C. ladanifer led to a 

higher disappearance of 18:2n-6 with a consequent higher production of c9,t11-18:2 and t11-

18:1 than chestnut, quebracho and control. There was no clear innibition of 18:0 production 

with any of the extracts comparing with control. In the second experiment, rumen fistulated 

sheep were fed tannin extracts from mimosa condensed tannins, chestnut hydrolysable 

tannins or their mixture (100 g/kg DM) in a complete diet with sunflower and linseed oils (40 

g/kg DM), following a change-over design (3 treatments, 4 sheep and 4 periods). There was 

a variable inhibition of ruminal biohydrogenation and a lower “trans-/cis-18:1” ratio in 

bacterial fractions with mimosa than with chestnut. Mimosa led to a lower fermentative 

activity, as well as a lower abundance of Fibrobacter succinogenes, Ruminococcus albus, 

Ruminococcus flavefaciens and Butyrivibrio proteoclasticus and higher abundance of 

Selenomonas ruminantium with a lower bacterial biomass estimate of dimethylacetals than 

chestnut. In the third experiment, two rumen fistulated rams were housed in metabolic cages 

and adapted to a wheat-based diet with 41 g/kg DM of sunflower oil. During the first two 

weeks of trial, the t10-shift occurred temporarily in both animals but in different moments. 

These results were probably due to individual variability of rumen microbiota, since, for a 

selected period of the trial, a lower bacterial diversity was found for ram 1 compared to ram 

2. Moreover, the t10-shift was associated with an increase of total trans-18:1 and a decrease 

of 18:0. There was no clear association of t10-shift with rumen pH or its expression in blood 

plasma. In the fourth experiment, 40 lambs were fed, for 6 weeks, with complete diets 

containing barley or barley completely replaced for dehydrated citrus pulp, dehydrated beet 

pulp or soybean hulls. All diets were supplemented with an oil blend (soybean:fish oils, 59:10 

g/kg DM). Overall, the t10-/t11-18:1 ratio was above 3 in meat and subcutaneous fat, 

although soybean hulls increased t11-18:1 and c9,t11-18:2 comparing with the other 

treatments. Citrus pulp led to the lowest gene expression of fatty acid synthase, while that of 

stearoyl-CoA desaturase was inferior for soybean hulls and beet pulp. 

Keywords: Fatty acids, biohydrogenation, rumen bacteria, tannins, starch.  
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Resumo 

Modulação da bioidrogenação ruminal em ovinos através de taninos ou de fontes 

energéticas da dieta 

A dieta dos ruminantes é um dos principais determinantes que influencia a bioidrogenação 

(BH) ruminal. A inclusão de taninos na dieta, os quais são compostos fenólicos das plantas, 

pode aumentar a proporção, no rúmen e nos tecidos, de ácidos gordos (AG) bioactivos com 

efeitos benéficos na saúde humana, tais como os ácidos vacénico (t11-18:1) e ruménico 

(c9,t11-18:2; conjugado do ácido linoleico - CLA) derivados das vias t11 da BH. A maior 

quantidade de c9,t11-18:2 presente nos tecidos resulta da dessaturação de t11-18:1 pela 

estearoil-CoA dessaturase (SCD; Δ9-dessaturase). Contudo, na presença de dietas com alto 

teor em amido e baixo conteúdo em forragem, com ou sem suplementação com óleos ricos 

em ácidos gordos polinsaturados, pode ocorrer uma modificação das vias da BH com 

predomínio das vias t10 relativamente às t11 (o shift-t10) e o concomitante aumento de AG 

deletérios para a saúde, nomeadamente t10-18:1 e t10,c12-18:2.  

Na presente tese, foram realizadas duas experiências com o propósito de estudar o efeito 

da inclusão de diversos tipos de taninos como moduladores da BH (experiências 1 e 2) e 

duas experiências para obter uma melhor compreensão dos factores que determinam a 

ocorrência do shift-t10 (experiências 3 e 4). Em todos os estudos, foram incorporados óleos 

de origem vegetal ou animal nas dietas para aumentar a formação de intermediários da BH. 

Na primeira experiência, foi realizado um ensaio in vitro com 100 g/kg de matéria seca (MS) 

de extractos de taninos da castanha (maioritariamente taninos hidrolisáveis) e de extractos 

de taninos condensados de quebracho, de sementes de uva e de esteva (Cistus ladanifer), 

bem como um tratamento controlo (sem taninos). As incubações decorreram durante 6 h 

com fluido de rúmen de ovinos fistulados e um substrato à base de luzerna desidratada com 

60 g/kg MS de óleo de girassol (2:1, rácio “foragem/concentrado”). A composição em AG 

dos tubos de incubação foi obtida por transesterificação combinada, seguida da separação 

dos ésteres metílicos dos AG por cromatografia gás-líquido e da sua identificação com 

espectrometria de massa. Determinaram-se também a produção de ácidos gordos voláteis 

(AGV) e o pH do rúmen, tendo-se verificado apenas pequenas diferenças no pH. Os 

tratamentos com extractos de uva e, menos marcadamente, de C. ladanifer causaram um 

maior desaparecimento de ácido linoleico (c9,c12-18:2; 18:2n-6) e um consequente aumento 

do total de trans-18:1, nomeadamente de t11-18:1, e de c9,t11-18:2, bem como uma 

diminuição do total de dimetilacetais (DMA), comparativamente aos extractos de castanha e 

de quebracho e ao controlo, embora, considerando o total de DMA, esta diferença não tenha 

sido significativa para o caso do quebracho. Não houve uma clara inibição da produção de 

ácido esteárico (18:0) com nenhum dos tratamentos em comparação com o controlo, apesar 

do extracto de uva ter originado uma menor proporção de 18:0 relativamente ao total de 



 

vi 

 

produtos da BH. Na segunda experiência, ovinos fistulados foram alimentados com 

extractos comerciais de taninos da mimosa (condensados), da castanha (hidrolisáveis) e de 

uma mistura de ambos (100 g/kg MS) incorporados numa dieta completa (1:1, rácio 

“foragem/concentrado”) suplementada com uma mistura de óleos de girassol e linho (40 

g/kg MS), segundo um desenho experimental de “change-over” (3 tratamentos, 4 animais 

and 4 períodos). Os períodos experimentais tiveram a duração de 3 semanas, includindo 2 

semanas de adaptação às dietas e 1 semana de recolha de amostras. As amostras de 

conteúdo do rúmen foram obtidas antes da refeição da manhã em 2 dias das últimas 

semanas de cada período com um intervalo de 2 dias entre recolhas. No primeiro dia de 

amostragem, recolheram-se os conteúdos totais do rúmen para obtenção das bactérias 

associadas às fracções sólida (SAB) e líquida (LAB), enquanto, no segundo dia, os 

conteúdos foram usados para avaliação da actividade fermentativa (análise de pH e AGV). 

Em ambos os dias de recolha, as amostras de conteúdo do rúmen foram utilizadas para a 

análise de AG, bem como para a extracção de DNA e posterior quantificação do número de 

cópias de 16S rRNA de bactérias seleccionadas do rúmen. No último dia, recolheram-se 

amostras de sangue antes e 3 h depois da refeição da manhã. As dietas com extracto de 

mimosa e com a mistura de extractos causaram uma inibição da BH ruminal em algumas 

réplicas dos tratamentos e a mimosa originou ainda um menor rácio “trans-/cis-18:1” nas 

fracções bacterianas, comparativamente à dieta com extracto de castanha. A dieta com 

mimosa levou ainda a uma menor concentração do total de AGV, bem como a uma inferior 

abundância de Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens 

e Butyrivibrio proteoclasticus e a uma maior abundância de Selenomonas ruminantium, 

juntamente com um menor estimativa da biomassa bacteriana por DMA, em comparação 

com a castanha. Adicionalmente, o tratamento com mimosa originou um aumento do total de 

oxo-18:0, no plasma sanguíneo e no rúmen, em relação à castanha, enquanto, nas fracções 

bacterianas, este aumento verificou-se com a mistura de extractos comparativamente à 

média dos tratamentos com extractos de mimosa e de castanha. Na terceira experiência, 

dois carneiros fistulados foram colocados em caixas metabólicas e gradualmente adaptados 

a uma dieta à base de trigo com 41 g/kg MS de óleo de girassol. Durante os 29 dias de 

ensaio, recolheram-se amostras de conteúdo do rúmen, antes e 3h depois da refeição da 

manhã. Os conteúdos do rúmen foram também obtidos uma vez por semana a cada 1h30 

entre as 9h30 e as 20h00 para a análise da composição em AG e dos grupos taxonómicos 

bacterianos, juntamente com amostras de sangue recolhidas antes e 3 h depois da refeição 

da manhã. O shift-t10 ocorreu progressiva e temporariamente nas primeiras duas semanas 

e coincidiu com um acréscimo de ingestão de alimento que se seguiu ao seu decréscimo. O 

padrão de indução do shift-t10 apresentou variabilidade individual, a qual foi provalmente 

causada por diferenças entre animais a respeito da microbiota do rúmen, na medida em 

que, num período definido do ensaio, verificou-se uma menor diversidade bacteriana no 



 

vii 

 

animal com maior rácio t10-/t11-18:1 (carneiro 1) do que no animal com menor rácio 

(carneiro 2). Considerando os grupos taxonómicos obtidos por pirossequenciação da região 

16S rRNA do genoma bacteriano, a abundância dos filos Actinobacteria e, em menor 

extenção, Spirochaetae era maior no carneiro 1 em relação ao carneiro 2, contrariamente 

aos filos Bacteroidetes e Firmicutes. Para além disso, o shift-t10 estava associado ao 

aumento do total de trans-18:1 e à diminuição da produção de 18:0, bem como ao aumento 

prévio da formação de oxo-18:0 no rúmen. Não se verificou uma clara associação entre o 

estabelecimento do shift-t10 e a sua expressão no plasma sanguíneo e a redução do pH do 

conteúdo do rúmen. De facto, o aumento do rácio “t10-/t11-18:1” no rúmen não se 

encontrava relacionado com um maior rácio “t10-18:1/(t11-18:1 + c9,t11-18:2)” no plasma e, 

apenas num carneiro, ocorreu um aumento pós-prandial do rácio “t10-/t11-18:1” associado a 

uma redução do pH. Na quarta experiência, quarenta borregos foram alimentados, durante 6 

semanas, com uma de quatro dietas completas (1:4, rácio “foragem/concentrado”) 

suplementadas com uma mistura de óleos de soja e de peixe (59:10 g/kg MS) e contendo, 

como principal fonte energética, cevada (42% MS) (cereal) ou cevada completamente 

substituída por polpa de citrinos desidratada, polpa de beterraba desidratada ou cascas de 

soja. Durante a experência, os parâmetros produtivos foram avaliados. Imediatamente após 

o abate dos animais, amostras de músculo Longissimus foram recolhidas para avaliação da 

expressão dos genes das enzimas síntase de ácidos gordos (FASN), SCD e acetil-CoA 

carboxilase (ACACA). Ao terceiro dia após o abate, obtiveram-se amostras de músculo e de 

gordura subcutânea para análise da composição em AG. A dieta com polpa de citrinos levou 

a uma redução do ganho de peso diário e a um aumento da probabilidade de desenvolver 

lesões mais severas de paraqueratose da mucosa do rúmen. As dietas com polpa de 

citrinos e com cascas de soja foram responsáveis pela diminuição da eficiência alimentar, 

comparativamente à dieta com cevada. Todos os tratamentos originaram um rácio “t10-/t11-

18:1” acima de 3, na carne e na gordura subcutânea, apesar da dieta com cascas de soja 

ter causado um aumento de t11-18:1 e c9,t11-18:2 nos tecidos, comparativamente aos 

outros tratamentos. Adicionalmente verificou-se a menor expressão dos genes da FASN, 

com a dieta com polpa de citrinos, e da SCD, com as dietas com cascas de soja e polpa de 

beterraba.  

Palavras-chave: Ácidos gordos, bioidrogenação, bactérias do rúmen, taninos, amido. 
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Introduction 

 

Ruminant edible fats are rich in saturated fatty acids (SFA) but their content of 

polyunsaturated fatty acids (PUFA) is low and of trans-fatty acids (TFA) is variable. These 

features are directly related to ruminal biohydrogenation (BH), which consists of 

isomerization, hydrogenation or hydration of dietary non-esterified unsaturated fatty acids 

(UFA) by rumen microbiota (Bessa, Alves & Santos-Silva, 2015). The human intake of SFA 

and TFA has been related to an increased risk of cardiovascular disease (CVD) (Givens, 

2009; Mozaffarian, Aro & Willett, 2009). However, not all TFA are deleterious to human 

health, as it is the case of vaccenic acid (t11-18:1) that can lead to a decrease of 

atherosclerosis development (Aldai, de Renobales, Barron & Kramer, 2013). Moreover, 

endogenous conversion of t11-18:1 by Δ9-desaturase or stearoyl-CoA desaturase (SCD) is 

responsible for up to 87% of rumenic acid (c9,t11-18:2) deposited in tissues (Palmquist, St-

Pierre & McClure, 2004), which is the major conjugated linoleic acid (CLA) in the meat 

(Parodi, 2003; Khanal & Dhiman, 2004). The c9,t11-18:2 is known to prevent CVD and 

tumorigenesis (Bhattacharya, Banu, Rahman, Causey & Fernandes, 2006). Additionally, 

PUFA, particularly n-3 PUFA, have anti-inflammatory effects that can lead to the suppression 

of chronic diseases, such as CVD (Calder, 2006; Givens, 2009).  

Several studies have attempted to explore the effects of dietary compounds on ruminal BH 

with the aim of increasing the amount of PUFA, t11-18:1 and c9,t11-18:2 and decreasing 

SFA content in meat and milk. However, there is a lack of knowledge about the main 

purposes of the occurrence of BH with a report by Bessa, Santos-Silva, Ribeiro and Portugal 

(2000) proposing that BH would be a response of rumen ecosystem to stress stimuli induced 

by lipid overload with a hydrogenation of PUFA and a consequent production of TFA. The 

effect of tannins, which are polyphenolic compounds that constitute secondary metabolites of 

plants, on ruminal BH have been described in the literature (Vasta & Bessa, 2012). In the 

majority of studies, tannins were incorporated in a diet or dietary substrate supplemented 

with oils rich in PUFA, which were found to exacerbate the ruminal production of BH 

intermediates (BI), such as t11-18:1 and c9,t11-18:2 (Bessa, Portugal, Mendes & Santos-

Silva, 2005). The dietary incorporation of tannins was shown to inhibit the last step of BH, 

reducing the production of stearic acid (18:0) and consequently promoting the accumulation 

of t11-18:1 and, in some reports, also of c9,t11-18:2 in the rumen (Vasta & Bessa, 2012). 

However, other studies suggested a depression of the first steps of BH that led to an 

enhancement of 18:2 and 18:3 PUFA, with tannins (Roy et al., 2002; Kronberg, 

Scholljegerdes, Barceló-Coblijn & Murphy, 2007; Cabiddu et al., 2009). The inconsistency of 

tannins’ effects might be related to the molecular type and source of these compounds, dose 
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and time of administration and the animal species involved (Frutos, Hervás, Giráldez & 

Mantecón, 2004; Toral, Hervas, Belenguer, Bichi & Frutos, 2013). 

Moreover, the accumulation of beneficial fatty acids (FA) is constrained if an alteration of 

ruminal BH, termed t10-shift, is present. In fact, t10-shifted BH pathways are associated with 

a predominance of t10-18:1 to the detriment of t11-18:1, as the main trans monoene isomer 

in the rumen and tissues (Aldai et al., 2013; Bessa et al., 2015). Besides the deleterious 

effects to human health promoted by t10-18:1, such as an increased risk of CVD (Hodgson, 

Wahlqvist, Boxall & Balazs, 1996; Aldai et al., 2013), this FA cannot be converted into c9,t11-

18:2. Since high-starch low-forage diets with or without PUFA supplementation fed to 

ruminants in the fattening phase were reported as being responsible for the occurrence of 

the shift (Bessa et al., 2005; Alfaia et al., 2009; Rosa et al., 2014), the replacement of cereals 

with low-starch feeds might be an option to prevent the establishment of t10-shift. These 

alternative energy sources include industrial by-products, such as citrus and beet pulps and 

soybean hulls, and, in general, their incorporation in diets does not impair animal productive 

performance (Bampidis & Robinson, 2006; Vasta, Nudda, Cannas, Lanza & Priolo, 2008). 

The stimulation of t11 BH pathways was verified when cereals were replaced for citrus pulp 

causing an increased ruminal production of c9,t11-18:2 and t11-18:1. The accumulation of 

these BI was either associated with the presence of phenolic compounds in the by-product 

(Lanza et al., 2015) or the suppression of t10 BH pathways (Santos-Silva et al., 2016). 

However, in general, even with a stimulation of t11 BH pathways, the replacement of cereals 

with citrus pulp did not lead to a general prevention of t10-shift, which was probably caused 

by a high animal variability in its occurrence (Bessa et al., 2015; Santos-Silva et al., 2016). 

In the present thesis, four experiments were conducted to study how ruminal 

biohydrogenation (BH) pathways can be modulated through dietary inclusion of tannin 

sources (experiments 1 and 2) and to acquire a better knowledge about the induction and 

development of t10-shifted BH pathways (experiment 3 and 4). Those methodological 

approachs were: a) the inclusion of condensed and hydrolysable tannin extracts in a dietary 

substrate (in vitro - experiment 1; in vivo - experiment 2) and b) the alteration of the dietary 

starch level, such as the incorporation of a high starch level in a diet for rumen fistulated 

sheep (experiment 3) and the replacement of cereal with alternative energy sources 

(dehydrated citrus pulp, dehydrated beet pulp or soybean hulls) in lambs’ finishing diets 

(experiment 4). Both experimental models included the supplementation with oils rich in 

PUFA. Considering an integrative approach, the impact of each strategy on ruminal BH was 

analysed, although, in experiment 4, BH was only indirectly evaluated by the FA composition 

of meat and subcutaneous fat. Also, in the lattest trial, it was studied the influence of the 

energy sources on productive performance, carcass and meat quality traits and on the 

expression of genes in Longissimus muscle that codify for SCD, acetyl-CoA carboxylase α 
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(ACACA) and fatty acid synthase (FASN) enzymes, which are associated with endogenous 

synthesis of c9,t11-18:2 and de novo FA synthesis, respectively.  

This document is organized in 7 Chapters, which include the bibliographic review and 

objectives (Chapter 1), followed by the results obtained from each experiment in the form of 

scientific publications (Chapter 2 to 5). Afterwards, a general discussion of results achieved 

with the experimental models was done (Chapter 6), as well as the main conclusions and 

implications of the present work (Chapter 7). 
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1.1. Ovine production and meat consumption  

 

1.1.1. Livestock and meat 

The world ovine population is around one billion and, in 2014, it amounted to 1 209 908 142 

animals. The main producers of sheep are China and Australia. In fact, from 2003 to 2014, 

Asia accounted for 43.3% of total ovine population with only 11.8% from Europe (Food and 

Agriculture Organization of the United Nations Statistics Division [FAOSTAT], 2015). The 

world sheep meat production in 2013 was 8 702 257 tonnes of carcass weight and, although 

a decrease on its amount was verified between 2007 and 2010, there has been an increase 

afterwards.  

In 2014, the amount of sheep in the European Union (EU-28) was 97 665 170 and so the EU 

is far from being self-sufficient in the ovine meat sector and, consequently, imports 

considerable quantities, mainly from New Zeeland and Australia (FAOSTAT, 2015; European 

Comission [EC], 2016). After the mid-term review of the Common Agricultural Policy (CAP) 

that led to the decoupling of subsidies in 2003, a reduction of the total livestock was reported 

for various species. Regarding sheep livestock, the most pronounced fall (12.1%) for 14 EU 

Member States with more than 500 000 sheep occurred between 2005 and 2014. During this 

period, the sheep flocks decreased 30.0% (2 903 to 2 032.62 million heads) in Portugal but 

from 2014 to 2015 an increase of 0.5% was reported. That increase was not only verified in 

Portugal but also in countries of EU that are major producers of ruminants, such as United 

Kingdom (UK) and Spain (EC, Eurostat, 2015a). In fact, during 2015, 23 103 and 16 522.96 

million heads were found in UK and Spain, respectively and, in 2014, the UK (39.7%) and 

Spain (16.4%) contributed with 56.1% of the total small ruminant meat produced in EU-28.  

Similar to the livestock, a diminishment of sheep meat production (1 065 456 to 707 000 

tonnes) was verified in EU-28 between 2005 and 2014 and, particularly in Portugal, it 

declined around 14 000 tonnes, reaching the 10 222 tonnes (887 619 heads) (EC, Eurostat, 

2015b; FAOSTAT, 2015; Instituto Nacional de Estatística [INE], 2015). However, the number 

of sheep slaughtered in slaughterhouses increased between 2014 and 2015 and, in Portugal, 

it reached 893 802 heads that corresponds to 10 472 tonnes, consisting, the majority of 

these animals (57% of total slaughters), of lambs with more than 10 kg of carcass weight 

(INE, 2015).  

Concerning the composition of sheep flock in Portugal during 2014, dairy ewes corresponded 

to only 20.6% of the national sheep number and so there was a predominance of meat 

production (EC, Eurostat, 2015a). Moreover, a significant concentration at regional level can 

be found with Alentejo presenting more than half of the livestock, accounting for a total of 1 

172 000 animals in 2015 (INE, 2015).  
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The lamb meat consumption in the world averaged 1.7 kg/year per capita during the period 

of 2013 to 2015 with an important contribution from EU-28 (1.8 kg/year per capita). 

Considering sheep and goat meats, the degree of self-sufficiency in Portugal increased 

between 2014 and 2015, reaching 82.6% and the consumption was 2.2 kg/year per capita 

(INE, 2015). In Portugal, Merino Branco is the most used lambs’ breed for meat production, 

corresponding to a slaughter body weight (BW) up to 25 kg and HCW between 10 and 13 kg. 

In the world, a further increment in the production of ovine meat (15.3 to 20.1 million tonnes) 

was projected, but at a declining rate in developed countries that will probably only contribute 

to an increase from 3.1 to 3.5 million tonnes, considering the period between  2015 and 

2030. The sheep and goat livestock were also predicted to increase worldwide from 1997/99 

to 2030 (1749 to 2309 million heads) with a low contribution of developed countries (341 to 

358 million heads) (FAO, 2003). The projections for Europe and Central Asia followed these 

trends with an enhancement of ovine meat from 2005/07 to 2030 (2.2. to 2.5 million tonnes), 

although at a decreased annual growth rate (0.62 to 0.21%) (FAO, 2012).  

 

1.1.2. Production systems 

In Southern countries of EU-28, ovine dairy production is significant and, consequently, 

carcass weights are lower than in Northern countries, which have a predominant meat 

production system. This fact, together with the lower prolificacy of Southern sheep breeds, 

gives rise to less productivity in Southern countries than in the others (Sañudo, Sanchez & 

Alfonso, 1998). 

Production systems from Spain were described as representatives of Southern countries by 

Sañudo et al. (1998), which are similar to the ones from Portugal and consist of meat 

production from milk or suckling lambs, light or fattening lambs and adult sheep. Milk lambs 

come from the extensive dairy production system. They are slaughtered at 25 to 45 days in 

order to milk the ewes, originating carcasses with an average of 5.26 kg of hot carcass 

weight (HCW). However, if animals are supplemented with milk-concentrate, a later 

slaughtering can be executed. Light lambs are reared with ewes’ milk and supplemented with 

pasture or finished with concentrate, being slaughtered at 4 to 6 months of age obtaining 8.5 

to 14 kg of HCW. This semi-extensive system is the more frequent in Iberian countries and 

the Merino breed and its cross-breeding are the most used type of lambs. Fattening lambs 

come from an intensive production system, since, after weaning, they are kept indoors until 

reaching 90 to 100 days of age and HCW around 13 to 15 kg. Adult sheep comprise animals 

in the end of their productive cycle that come from milk and meat production systems. 
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Carcass traits, meat quality and lipid composition 

Feeding systems can influence carcass traits and meat quality of sheep. The muscle 

proportion has been reported to be higher with very lean carcasses for lambs fed with 

pasture, which is related to a lower average daily weight gain (ADG) of these animals, than 

the ones supplemented with concentrate (Santos-Silva, Mendes & Bessa, 2002b). In fact, the 

concentrate feeding generally leads to increased intramuscular fat (IMF) deposition in 

ruminants compared to pasture, which has been associated with a higher availability of 

glucogenic precursors derived from starch feedstuffs fermentation that increases the 

concentration of insulin in plasma stimulating a lipogenic response (Bessa et al., 2015).  

The IMF can be an important meat quality trait as it is a reservoir of FA that might have an 

important influence on human health and also due to its relation with meat sensorial 

characteristics (Daley, Abbott, Doyle, Nader & Larson, 2010; Bessa et al., 2015). The level of 

IMF of lamb meat that contributes for its good quality was considered to be 5% (Hopkins, 

Fogarty & Mortimer, 2011), which corresponds to a ‘‘low in fat” meat (Scollan et al., 2006). 

The IMF is composed of two fractions that correspond to neutral (NL) and polar (PL) lipids, 

which include FA present in intramuscular adipocytes and muscle fibres, respectively (Raes, 

De Smet & Demeyer, 2004; Bessa et al., 2015). The intramuscular adipose tissue is also 

known as “marbling fat” (Wood et al., 2008) and comprises isolated or clustered adipocytes 

located along the fibres and in the interfascicular area. This fat portion mainly consists of 

triacylglycerols (TAG), while lipids in fibres have a high proportion of phospholipids, placed in 

cell membranes, and a smaller amount of TAG (cytosolic droplets) and cholesterol. The 

phospholipid content is relatively constant, although it depends on the metabolic type of the 

muscle fibre, being higher in more oxidative muscles (Raes et al., 2004). The ruminant 

species and their stage of growth can play a minor role on the steadiness of the PL fraction. 

In fact, this constancy seems to be stricter in bovine than in ovine and other farm animal 

species muscles and an initial increase of PL in the first stages of IMF deposition was 

reported, which might be associated with a greater amount of cellular membranes due to a 

higher metabolic activity and adipocytes hyperplasia (Bessa et al., 2015). Conversely, the 

amount of TAG varies widely (0.2 to 5 g/100 g of fresh tissue) (Raes et al., 2004) and it 

depends essentially on the muscle type, overall body fatness degree and animal breed. 

Therefore, the composition of IMF results from the balance between uptake, synthesis and 

degradation of TAG. So, modifications of IMF induced by the diet are mainly due to an 

impact on the amount of FA present in TAG. In fact, IMF contains an average of 45 to 48, 35 

to 45 and up to 5 g/100 g of total FA as SFA, monounsaturated FA (MUFA) and PUFA, 

respectively (Scollan et al., 2006) but, if just the phospholipid portion was considered, a 

predominance of PUFA would be obtained. Indeed, phospholipids contain PUFA at 20 to 50 

g/100 g of total FA, whereas their content in TAG has been described as 2 to 30 g/100 g of 
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total FA. In bovine muscles, a considerable low proportion of PUFA in TAG can be found (2 

to 3 g/100 g of total FA) (Raes et al., 2004). The incorporation PUFA in PL is limited and 

mostly includes 18:3n-3 and 18:2n-6 with even a higher selectivity for their corresponding 

derivatives n-3 and n-6 long chain (LC)-PUFA (Wood et al., 2008; Jerónimo, Alves, Prates, 

Santos-Silva & Bessa, 2009; Jerónimo et al., 2011). A greater affinity has been described for 

18:2n-6 than for 18:3n-3 deposition (De Smet, Raes & Demeyer, 2004; Sinclair, 2007; Wood 

et al., 2008), although 18:3n-3 is the preferred substrate for enlogases and desaturases 

enzymatic complex. Moreover, increased levels of 18:2n-6 comparing with 18:3n-3 in IMF 

might also be due to a lower rumen BH of 18:2n-6 (Wood et al., 2008). In the study reported 

by Jerónimo et al. (2011), a preferential incorporation of cis-isomers in PL was verified, such 

as the majority of cis-18:1 originated from oleic acid (c9-18:1), even though c9-18:1 

predominated in NL. However, the majority of trans C18 FA derived from BH were 

accumulated in NL, including c9,t11-18:2 and t11-18:1. In fact, other studies reported that 

more than 80% and up to 99% of the two BI were present in TAG of very lean and fatter 

meats, respectively (Bessa et al., 2015). These results indicate that an increase of trans-FA 

in muscle probably has low potential to change the membrane FA composition and structure 

and, consequently, the cellular function. 

The production and feeding systems were shown to affect the FA composition of meat and, 

consequently, its quality and nutritional value. In fact, in one study by Sañudo et al. (2000), 

the meat from British lamb types fed with forage-based diet had higher 18:0, 18:3n-3 and n-3 

LC-PUFA and lower 18:2n-6 than the one from concentrate-fed Spanish breeds. The 

increase of 18:3 in British types was related to higher odour and flavour intensity scores 

comparing with the other animals. Santos-Silva, Bessa and Santos-Silva (2002a) also 

described that the FA profile of lambs’ muscle was effective in the identification of feeding 

systems, since there was an increase of 18:3n-3; n-3 LC-PUFA; CLA (mainly c9,t11-18:2) 

and trans-18:1, as well as a decrease of “n-6/n-3 PUFA” ratio when lambs were reared with 

their dams on pasture comparing with the ones fed with concentrate. The lower value of the 

ratio indicates a higher nutritional value of meat promoted by the corresponding system 

(Wood et al., 2004). 

The modification of meat FA profile by feeding systems can also affect meat sensory 

characteristics. Indeed, ruminants’ diets can modulate the lipid content of IMF. There is a 

strong relationship between IMF and the amount of TAG. Both of them increase when 

animals are fed a concentrate- in opposition to a forage-based diet and depend on the 

degree of overall body fatness, breed and muscle type (Scollan et al., 2006; Bessa et al., 

2015). A higher IMF content may raise meat tenderness and juiciness, although the strength 

of their correlation varies between studies. The disposition of IMF allows for a more easily 

breakdown of muscle structure in the mouth contributing for an increased tenderness. 
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Besides, the concentrate based-diets might lead not only to an increment of IMF but also of 

some specific SFA named non-terminal branched chain FA (NT-BCFA) mostly present in 

subcutaneous fat, which may allow for a decreased firmness of lambs’ fat due to their low 

melting points. A greater retention of water in meat during cooking promoted by IMF 

deposition may lead to a higher juiciness (Wood et al., 2008). Additionally, Angood et al. 

(2008) found that the two sensory characteristics were affected by levels of IMF but juiciness 

was the mostly influenced. 

Moreover, differences in IMF and subcutaneous fat content were suggested to be related to 

meat odours and flavours (Resconi, Campo, Furnols, Montossi & Sanudo, 2009). Meat 

flavour is derived from the Maillard reaction between amino acids and reducing sugars and 

the thermal degradation of lipids (Scollan et al., 2006). This attribute is important for meat 

appreciation by consumers, particularly considering lamb meat (Young, Reid, Smith & 

Braggins, 1994). The species-specific aromas result from fat-soluble volatile compounds and 

aromatic compounds derived from lipid oxidation (Mottram, 1998). The increase of IMF with 

concentrate compared to forage feed can be responsible for higher “fatty” flavour and 

“fatty/oily” odour scores (Resconi et al., 2009). Moreover, feeding considerable amounts of 

forage to ruminants has been associated with ‘‘fishy’’ (Scollan et al., 2006) and “pastoral” 

(Sinclair, 2007) flavours and with a ‘‘fishy’’ odour (Resconi et al., 2009) of meat, mainly due 

to increased n-3 PUFA in this type of feed (Scollan et al., 2006; Sinclair, 2007). Considering 

that PUFA are liable to oxidative breakdown, an increased lipid oxidation can occur with 

forage based-diets leading to higher rancid or acid flavours and rancid odour scores. 

Conversely, the concentrate feed was related to increased intensity of typical lamb aroma 

and flavour (Resconi et al., 2009). However, even though it was more extensively reported in 

steers, when a concomitant enhancement of forage and vitamin E intake occurs, the 

antioxidant properties of this compound helps to raise the oxidative stability of PUFA and, 

consequently, can be accompanied by an improvement of meat flavour and a longer 

maintenance of meat red colour saturation (chroma, *C) (Scollan et al., 2006; Wood et al., 

2008). 

The meat colour can also be influenced by feeding systems and might be associated with 

meat quality in ruminants. In fact, Bessa, Lourenço, Portugal and Santos-Silva (2008) 

reported a darker meat with lower L* (lightness) and higher a* (redness) (Comission 

Internationale de l´Eclairage, CIE L*, a*, b* system) values with concentrate than with forage 

diets due to an increased HCW with concentrate when all lambs were slaughtered at the 

same age, although, in some studies of bovine meat (Vestergaard, Oksbjerg & Henckel, 

2000; Raes et al., 2003; Nuernberg et al., 2005), the opposite was found, which may be 

explained by a higher proportion of muscle oxidative fibres presenting an increased content 

of myoglobin with grass feeding (Vestergaard et al., 2000). However, these effects of the 
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basal diet on meat colour may not be detrimental and the slaughter of heavier animals can 

increase the productivity and flexibility of production systems without compromising meat 

quality and acceptability. Indeed, Santos-Silva et al. (2002b) even verified that lamb meat 

colour did not considerably change with feeding systems, since the concomitant increase of 

a* and b* (yellowness) estimates with concentrate compared with pasture treatments led to a 

relatively constant “a*/b*” ratio. Also, although the latter authors observed a decrease of L* 

and b* colour estimates when slaughter weight was incremented from 24 to 30 kg, this effect 

was not detrimental considering that meat was within the range of light pink meats preferred 

by consumers, which is characterized by L* > 45, a* between 15 and 18 and a*/b*≈2 

(Sanudo et al., 1992) or, more recently, by L* ≥ 44 and a* ≥ 14.5 (Khliji, van de Ven, Lamb, 

Lanza & Hopkins, 2010). Noticeable, the a* value was slightly lower than those 

recommended but not enough to affect the meat acceptance. Moreover, a minimal impact of 

slaughter BW on meat sensory characteristics has been reported with only an increase of 

juiciness (Santos-Silva & Portugal, 2001) and flavour intensity (Teixeira, Batista, Delfa & 

Cadavez, 2005).  

Considering meat tenderness, a relation between this sensory attribute and Warner-Bratzler 

shear force (WBS) was proposed, consisting on the following classification: very tender, 

WBS < 3.2 kg; tender, 3.2 kg < WBS < 3.9 kg; medium tender, 3.9 kg < WBS < 4.6 kg and 

tough, WBS > 4.6 kg (Shackelford, Morgan, Cross & Savell, 1991). In the study from Teixeira 

et al. (2005), an increase of shear force with higher slaughter BW had no influence on meat 

toughness and consequently on its tenderness. In general, lamb meat was found to be 

tender or very tender regardless of the treatment (Santos-Silva & Portugal, 2001; Santos-

Silva et al., 2002b; Francisco et al., 2015). However, higher WBS values, corresponding to 

medium tender or tough meat, were reported by Bessa et al. (2008) but these results were 

probably due to an inferior ageing period of the meat, which may lead to a decreased 

collagen solubility and fragmentation (Sullivan & Calkins, 2011). 
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1.2. Effects of dietary fat on human health 

 

1.2.1. Saturated fatty acids 

Ruminant edible fats are rich in SFA (Bessa et al., 2015) and the ruminant milk is the largest 

source of SFA, which often contributes to 41% of all SFA of Human diet (Givens, 2009). The 

intake of SFA has been related to an increased risk of CVD and, although less documented, 

also to a reduction of insulin sensitivity and consequent predisposition to the onset of 

diabetes (Givens, 2009; FAO, 2010). Considering this, an attempt to decrease the intake of 

SFA has been made and so the SFA daily intake was recommended to be lower than 10% of 

total energy (E), which corresponds to amounts inferior to 33 g for male and to 26 g for 

female adults with moderate activity (FAO, 2001, 2010). However, not all SFA have similar 

metabolic influence, since those from C12 to C16 have a greater effect on raising low density 

lipoproteins-cholesterol (LDL-C) and lowering the “total cholesterol (TC)/high density 

lipoproteins-cholesterol (HDL-C)” ratio than the others. Even among these FA, the lauric acid 

(12:0) was suggested to be less detrimental than myristic (14:0) and palmitic (16:0) acids 

(Mensink, Zock, Kester & Katan, 2003). Oppositely, the 18:0, which is generally the major 

SFA in ruminant meat together with 16:0, was shown to be beneficial or neutral to human 

health (FAO, 2010). In one study, this FA reduced LDL-C and “total cholesterol (TC)/HDL-C” 

ratio and had a neutral effect with respect to HDL-C comparing with the remaining SFA 

(Hunter, Zhang & Kris-Etherton, 2010). In fact, Hunter et al. (2010) reported an intermediate 

influence of 18:0 between that of healthier UFA, such as c9-18:1 and 18:2n-6, and other 

SFA. The c9-18:1 is the predominant cis-MUFA in the meat, being the main product of 18:0 

desaturation. So, an increase of 18:0 may also contribute for beneficial effects of c9-18:1, 

such as the reduction of “TC/HDL-C” ratio (FAO, 2010). Although a general acceptance that 

SFA consumption is associated with an adverse influence on human health is present, there 

is controversy about this issue, since some studies revealed that SFA are not or are weakly 

associated with CVD, particularly with coronary artery disease (CAD) (Lawrence, 2013). 

Additionally, iso and anteiso branched chain FA (BCFA) were reported to have health 

promoting properties, which include decreased FA biosynthesis (Wongtangtintharn, Oku, 

Iwasaki & Toda, 2004) and induction of apoptosis of cancer cells (Yang et al., 2000) with a 

consequent inhibition of tumoral growth. The main BCFA associated with these effects was 

the 13-methyltetradecanoic acid (iso-15:0) (Yang et al., 2000; Wongtangtintharn et al., 2004) 

but other FA, such as 12-methyltetradecanoic acid (anteiso-15:0), 14-methylpentadecanoic 

acid (iso-16:0) and, in a lesser extent, the straight-chain FA pentadecanoic acid (15:0) and 

14:0 also presented cytotoxicity effects (Wongtangtintharn et al., 2004). Moreover, these 

BCFA were shown to reduce the incidence of necrotizing enterocolitis and to modify ileal 

microbiota composition in a rat model (Ran-Ressler et al., 2011) and that can be important 
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as these FA are constituents of the healthy human newborn gastrointestinal tract (Ran-

Ressler, Devapatla, Lawrence & Brenna, 2008). 

 

1.2.2. Trans fatty acids 

The TFA are UFA that contain at least one double bond in the trans configuration instead of 

the usual cis. In double bonds with trans configuration, the hydrogen atoms are located on 

the opposite sides of the carbon chain (Dhaka, Gulia, Ahlawat & Khatkar, 2011; Tardy, 

Morio, Chardigny & Malpuech-Brugere, 2011). These isomers might come from industrial 

sources (iTFA) by partial hydrogenation of vegetable oils or from ruminal BH (rTFA). 

Generally, t11-18:1 is the major rTFA, while elaidic acid (t9-18:1) is the main iTFA (Dhaka et 

al., 2011). The human dietary consumption of TFA has been associated with the 

development of CVD, particularly myocardial infarction and coronary heart disease (CHD), 

due to endothelial dysfunction, systemic inflammation and adverse influence on the 

concentration of serum lipoproteins (Lp) and lipids. The effects on Lp and lipids include an 

increase of LDL-C, apoprotein (Apo) B, Lp (a) and fasting TAG; a decrease of HDL-C and 

Apo A-I and a higher “TC/HDL-C” ratio in comparison with other FA, specially MUFA and 

PUFA. Some studies reported a relation between TFA and tumorigenesis possibly 

associated with the proinflammatory effects (Mozaffarian et al., 2009; Dhaka et al., 2011; 

Aldai et al., 2013). There is also inconsistent evidence of predisposition for a decreased 

insulin sensitivity and consequently diabetes and for gain weight with TFA (Dhaka et al., 

2011; Tardy et al., 2011). Moreover, a higher risk of myocardial infarction and CHD when 

TFA (2% of E) replaced SFA was reported and this effect was gradually more pronounced 

with the substitution of cis-MUFA and cis-PUFA (Mozaffarian et al., 2009). In order to reduce 

the incidence of these adverse effects, the TFA daily intake was recommended to be lower 

than 1% of E, which corresponds to amounts inferior to 3.3 g for male and to 2.6 g for female 

adults with moderate activity (2987 and 2355 kcal ingested per day, respectively) (FAO, 

2001, 2010). The consumption of rTFA at current levels should not raise health concerns, 

since they account for a small part of total FA in milk (2-5%) and meat (3-9%) (Wang, 

Jacome-Sosa & Proctor, 2012). Conversely, iTFA may reach 50% in hydrogenated fats and 

so more attention has been given to iTFA instead of rTFA (Weggemans, Rudrum & 

Trautwein, 2004; Aldai et al., 2013). Indeed, national policies in order to eliminate iTFA from 

dietary sources have been adopted (World Health Organization [WHO], 2012), including the 

specification of the TFA content in the label of every packaged food (Food and Drug 

Administration [FDA], 2013). The fact that these regulations have been successful in many 

countries, together with an increase of total rTFA in products derived from ruminants fed with 

concentrate-based diets supplemented with oils, have contributed to an enhanced 
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importance of the consumption of rTFA. The definition of TFA for regulation purposes 

includes all FA with isolated trans non-conjugated double bonds and does not consider that 

specific isomers may have beneficial or deleterious impact on human health. Noticeable, not 

all conjugated isomers are beneficial and some non-conjugated ones are even desirable 

(Aldai et al., 2013). Indeed, some studies with animal models have demonstrated that t11-

18:1 can lead to a decrease of atherosclerosis development in opposition to t10-18:1 and t9‐

18:1 (Bauchart et al., 2007; Dupasquier et al., 2007; Aldai et al., 2013). Also, Hodgson et al. 

(1996) reported a positive association of t10-18:1 and t9‐18:1 with the degree of CAD. 

Moreover, t11-18:1 is endogenously converted into c9,t11-18:2 (Bessa et al., 2015) that is 

known to improve immune function and to prevent atherosclerosis, CVD, hypertension and 

different types of cancer (Bhattacharya et al., 2006; Gebauer et al., 2011; Wang et al., 2012). 

The predominant conjugated FA in ruminant-derived products is usually the c9,t11-18:2 but, 

in certain conditions as in the presence of t10-shift, an increase of t10,c12-18:2 to the 

detriment of c9,t11-18:2 might happen (Aldai et al., 2013). Although some studies suggested 

that the two CLA isomers may act similarly in inhibiting atherosclerosis (Bhattacharya et al., 

2006), there is more evidence about an antagonist action. In fact, t10,c12-18:2 was shown to 

have deleterious effects on human health, increasing the risk of atherosclerosis (Tricon et al., 

2004; Kostogrys, Maslak, Franczyk-Zarow, Gajda & Chlopicki, 2011) and stimulating 

adenoma growth (Rajakangas, Basu, Salminen & Mutanen, 2003), even with the beneficial 

anti-adipogenic role of this isomer described by Bhattacharya et al. (2006). Also, some 

conjugated linolenic acid (CLNA) isomers, such as c9,t11,t13-18:3 and c9,t11,c13-18:3, were 

identified as having bioactive properties, contributing to an inhibition of atherosclerosis, 

tumorigenesis, inflammation and to an improvement of immune response (Hennessy, Ross, 

Devery & Stanton, 2011). Differences between TFA related to human health might even 

occur with FA presenting structural similarity. In fact, although both t10,c15-18:2 and t10,c12-

18:2 have a t10 double bond, the anti-adipogenic effects of t10,c12-18:2 were not observed 

with t10,c15-18:2 (Vahmani, Meadus, Rolland, Duff & Dugan, 2016). However, in general, 

cis,trans‐18:2 were associated with a higher predisposition to develop CVD than trans‐18:1 

(Aldai et al., 2013).  

 

1.2.3. Polyunsaturated fatty acids 

Linolenic (18:3n-3) and linoleic acids (18:2n-6) are PUFA that are considered as essential 

FA, since they cannot be synthesized de novo by mammals and, consequently, they have to 

be present in the diet. Both of them have methylene interrupted double bonds and, for 18:3n-

3, the last double bond is located in the third carbon counting from methyl end whereas, for 

18:2n-6, it is placed in the sixth carbon. The 18:3n-3 and 18:2n-6 are converted into n-3 LC-

PUFA and n-6 LC-PUFA, respectively. The fact that the efficiency of these two pathways is 
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very low, which is exacerbated by a competition between the two substrates to utilize the 

same enzymes, stands for the supplementation of human diets with LC-PUFA. Although 

18:3n-3 has been described as a much stronger suppressor of 18:2n-6 conversion than the 

opposite, the incorporation of n-3 LC-PUFA is of particular importance, since the intake of n-

3 PUFA is lower than that of n-6 PUFA (Barceló-Coblijn & Murphy, 2009; FAO, 2010). 

Besides, n-3 LC-PUFA have been associated with a more beneficial impact on human health 

compared to n-6 LC-PUFA. In fact, they were positively related to cognitive ability and 

present anti-inflammatory potential that can lead to the suppression of chronic diseases, 

such as rheumatoid arthritis, atherosclerosis and CHD (Calder, 2006; Givens, 2009). The n-3 

LC-PUFA, mainly eicosapentanoic (EPA, 20:5n-3) and docosahexaenoic (DHA, 22:6n-3) 

acids, can replace arachidonic (AA, 20:4n-6) acid, which is the main n-6 LC-PUFA located in 

cell membrane phospholipids, or inhibit its metabolism. The AA is the precursor of 

eicosanoids including 2-series prostaglandins (PGs) and thromboxane A2 (TXA2) originated 

by cyclooxygenase-2 (COX-2), as well as 5-hydroxyeicosatetraenoic acid (5-HETE) and 4-

series leukotrienes (LT) produced by 5-lipoxygenase (5-LOX). These compounds have a pro-

inflammatory role and, although EPA can also act as a substrate for these enzymes, this FA 

gives rise to eicosanoids that present a slightly different structure and, consequently, a lower 

potency compared to the ones formed from AA, such as 3-series PGs and TX and 5-series 

LTs. The inhibition of AA metabolism might consist on the suppression of COX-2 and 5-LOX 

by EPA or of COX-2 by DHA. Moreover, EPA can inhibit AA release from phospholipids by 

phospholipase A2 (Calder, 2002, 2006, 2010). These two PUFA may have other anti-

inflammatory actions that are independent from their direct influence on eicosanoid formation 

and result in decreased leukocyte chemotaxis and reactive oxygen species, cytokines and 

adhesion molecules productions (Calder, 2006). The effects on cytokines and adhesion 

molecules mostly occur at the level of altered gene expression though an impact on the 

activity of transcription factors (Calder, 2002, 2006). Also, a group of anti-inflammatory and 

inflammation resolving mediators might be formed from EPA (E-series resolvins) and from 

DHA (D-series resolvins, docosatrienes and neuroprotectins). The corresponding reaction 

pathways involve COX and LOX enzymes (Calder, 2006, 2010). Considering PUFA intake, 

previous studies were focused on n-6 to n-3 PUFA ratio in meat, which should be less than 4 

(Wood et al., 2004), but, more recently, a balanced intake of n-6 and n-3 PUFA was 

recommended (FAO, 2010) because not only n-3 PUFA but also n-6 PUFA have been 

associated with beneficial effects. In fact, n-6 LC-PUFA were shown to have anti-

inflammatory properties, mainly through the production of PGE2 (Calder, 2006). The 

adequate daily intake of total PUFA for an adult was proposed to be 6-11% of E (FAO, 2010) 

with n-6 and n-3 PUFA corresponding to 5-8% and 1-2%, respectively (WHO, 2003). So, the 

ingestion of total PUFA should be 19.9 to 36.5 g for male and 15.7 to 28.8 g for female adults 
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with moderate activity. Attending to essential FA, the minimum intake values to prevent 

deficiency symptoms were estimated to be 2.5% of E for 18:2n-6 and 0.5% of E for 18:3n-3. 

The reference intake for EPA plus DHA, mainly found in oily fish and fish oils (Calder, 2006), 

was established to be 250 mg/day, although a variation between countries, depending on the 

sustainability of fish supply, might occur (FAO, 2010), as it is the case of UK where this value 

is 450 mg/day (d) (Givens, 2009). 

 

 

1.3. Lipid metabolism in the rumen 

 

The ruminal lipid metabolism is responsible for an extensive transformation of dietary lipids, 

consisting in two major processes: lipolysis and BH. It allows the conversion of PUFA into 

UFA and SFA, which are known to be more predominant in ruminant dairy products and 

meat comparing with the non-ruminant ones (Jenkins, Wallace, Moate & Mosley, 2008). 

However, there is a proportion of PUFA that is not biohydrogenated and bypasses the rumen 

intact, being absorbed and deposited in body fat, contributing to the enrichment of meat on 

PUFA (Scollan et al., 2006). 

 

1.3.1. Lipolysis 

The dietary lipids that enter the rumen, including TAG (predominating in cereals and plant 

oils) and sulfo-, galacto- and phospholipids (mostly present in forages) are converted into 

non-esterified free FA (FFA) through a process denominated lipolysis, which consists in the 

hydrolysis of the ester linkages of dietary acyl lipids. This process allows for the presence of 

a free carboxyl group that is essential for the BH to proceed. The lipolysis is mainly due to 

lipases produced by rumen microorganisms, although plant endogenous lipases might play a 

minor role. Generally this metabolic pathway occurs rapidly but its extent might be partial 

inhibited by certain conditions, such as the presence of low rumen pH (Jenkins et al., 2008; 

Lourenço, Ramos-Morales & Wallace, 2010). 

 

1.3.2. Biohydrogenation 

The first evidence of ruminal BH was obtained with a decrease of 18:3n-3 present in linseed 

oil, when the oil was incubated with sheep rumen contents (Reiser, 1951). After that, 

Shorland, Weenink and Johns (1955) described that the BH of 18:3n-3 in the rumen of sheep 

orginates 18:2 and 18:1 isomers, including trans-18:1, and 18:0. In the in vitro study reported 

by Shorland, Weenink, Johns and McDonald (1957), the BH of 18:3n-3 was demonstrated in 

more detail, together with the conversion of 18:2n-6 and c9-18:1 into BI and 18:0. Later, 
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Ward, Scott and Dawson (1964) incubated 14C-labeled 18:3n-3, 18:2n-6 and c9-18:1 with 

ovine rumen contents and found similar results for the BH of 18:3n-3 to the ones reported by 

Shorland et al. (1955) and Shorland et al. (1957), with 18:2n-6 and c9-18:1 being mostly 

converted into 18:0 and small amounts of trans-18:1. Subsequently, Wilde and Dawson 

(1966) proposed a scheme for the BH pathways of 14C-labeled 18:3n-3. More recently, the 

complexity of BH pathways of 13C-labeled 18:3n-3 (Lee & Jenkins, 2011) and c9-18:1 and 

14C-labeled 18:2n-6 (Jenkins et al., 2008) was analysed in some in vitro and in vivo studies. 

The BH of 18:2n-6 and 18:3n-3 consist of a first step of c12 double bonds isomerization 

proceeded by the reduction of the respective products into several 18:2 and 18:1 BI until the 

formation of 18:0. The most common 18:1 BI produced are trans-18:1, mainly the t11-18:1 

(Harfoot & Hazlewood, 1997; Bessa et al., 2000). Generally, the main FA leaving the rumen 

is 18:0 but the incompleteness of BH, due to the fact that the conversion of 18:1 into 18:0 is a 

rate limiting step, leads to a high amount of 18:1 BI available for intestinal absorption 

(Shingfield & Wallace, 2014). Considering the majority of diets, the proportional BH of 18:2n-

6 and 18:3n-3 ranges from 70% to 95% and 85% to 100%, respectively (Shingfield, Bonnet & 

Scollan, 2013). 

Although the initial isomerization of 18:2n-6 BH mostly originates c9,t11-18:2, several other 

CLA isomers have been identified with double bond positions varying between C7,9 and 

C12,14, such as t10,c12-18:2 and t9,t11-18:2. The production of t10,c12-18:2 is more 

relevant when animals are fed with concentrate-based diets. Moreover, the 18:2n-6 can be 

subsequently converted into non-conjugated t9,c12-18:2 or the oxygenated FA 13-OH-c9-

18:1, 13-OH-18:0 and 13-oxo-18:0 (Jenkins et al., 2008; Shingfield, Bernard, Leroux & 

Chilliard, 2010a). Also, one study reported the formation of 10-OH-c12-18:1, resulting from 

the BH of this PUFA, that was suggested to be oxidized into c9,t11-18:2, although that was 

only carried out by washed cells of cultured Lactobacillus acidophilus (Ogawa, Matsumura, 

Kishino, Omura & Shimizu, 2001). 

The isomerization of 18:3n-3 originates conjugated triene isomers, mainly c9,t11,c15-18:3 

but also t9,t11,c15-18:3 and c9,t13,c15-18:3 (Shingfield et al., 2010a). Additionally, other 

18:3 isomers (c9,t12,c15-18:3; c9,t12,t15-18:3; t9,t12,t15-18:3) were observed in the rumen 

of dairy cows by Loor, Ueda, Ferlay, Chilliard and Doreau (2004).The sequential reduction of 

18:3 BI leads to the formation of non-conjugated dienes, such as t11,c15-18:2 and c9,t13-

18:2 (Destaillats, Trottier, Galvez & Angers, 2005) and the conjugated t13,c15-18:2. 

Moreover, Lee and Jenkins (2011) reported the conversion of 18:3n-3 into c9,t11-18:2, which 

was previously found to be only produced from 18:2n-6. Then, the reduction of 18:2 isomers 

originates 18:1 isomers including t11-18:1 and minor amounts of c15-18:1. It is to notice that, 

before t11,c15-18:2 is reduced, it can be isomerised to form t11,c13-18:2 (Vasta & Bessa, 
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2012). Other studies have demonstrated an even more complexity of 18:3n-3 BH pathways 

compared with the initially described simplicity (Jenkins et al., 2008). In fact, new BI were 

proposed, such as c12,c15-18:2 (Bessa et al., 2007) and t10,c15-18:2 (Alves & Bessa, 

2014). Both these non-conjugated 18:2 were found in the muscle of lambs and t10,c15-18:2 

was also observed in their digestive contents. However, the basal diet fed to the animals 

varied between studies, since c12,c15-18:2 was present with dehydrated lucerne and 7.4% 

of linseed oil and t10,c15-18:2 was produced with a complete diet supplemented with 8% of 

an oil blend (soybean oil plus linseed oil, 1:2 vol/vol). The t10,c15-18:2 was suggested to be 

a BI of t10-shifted BH pathways. Recently, Honkanen et al. (2016) reported the formation of 

other 18:3n-3 BI, in incubated rumen contents, such as c7,c12,c15-18:3 and c8,c12,c15-

18:3, which provides an evidence that the isomerization of 18:3n-3 may involve migration of 

c9, and not only of c12, double bond. In this study, small amounts of t9,t11,c13-18:3 and the 

conjugated t11,c13-18:2; t11,t13-18:2 and t11,t14-18:2 were also identified as a result of 

18:3n-3 BH. 

The extent of c9-18:1 BH is lower than that for 18:2n-6 and 18:3n-3 and generally varies 

between 58% and 87% (Shingfield et al., 2013). The c9-18:1 has been described as being 

directly reduced into 18:0 but a previous isomerization of this FA into numerous trans-18:1 

isomers with double bond positions from C6 to C16 might also occur. Moreover, other BI of 

c9-18:1 may be present including derivatives of 18:0, such as the hydroxystearic acid 10-OH-

18:0, which is further oxidized into the ketostearic acid 10-oxo-18:0 (Jenkins et al., 2008; 

Shingfield et al., 2010a). 

In order to explain the occurrence of ruminal BH, some hypotheses have been proposed. 

The first one evaluated, consisted on the fact that the BH would be a mechanism for 

reducing power disposal, serving as hydrogen acceptor pathways. Nevertheless, this 

explanation does not seem probable, since a small proportion of hydrogen equivalents are 

removed by BH. Other more accurate hypotheses considered that BH could serve the 

purpose of PUFA detoxification associated or not with trans-18:1 production as an adaptive 

response to stress stimuli (Bessa et al., 2000). In fact, the toxic effects of PUFA to rumen 

bacteria have been demonstrated with a higher sensitivity of 18:0 producers (Maia, 

Chaudhary, Figueres & Wallace, 2007; Paillard et al., 2007). The incorporation of trans-18:1 

into cell membranes may increase their stability and so, it was suggested as being a 

protective mechanism against environmental conditions including rumen lipid overload 

(Bessa et al., 2000; Vasta & Bessa, 2012). 
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1.3.3. The role of rumen microorganisms on lipolysis and biohydrogenation 

The lipolytic activity has been reported in rumen bacteria and protozoa. In some metabolic 

studies concerning bacteria, Anaerovibrio lipolytica was able to hydrolyze diglycerides and 

triglycerides but not phospholipids and galactolipids. The lattest were shown to be 

hydrolysed by Butyrivibrio spp. and, posteriorly, the presence of esterase activity was even 

observed in Butyrivibrio fibrisolvens. So, A. lipolytica and Butyrivibrio spp. probably dominate 

the ruminal lipase activity in ruminants fed concentrate- and forage-based diets, respectively 

(Jenkins et al., 2008; Lourenço et al., 2010; Vasta & Bessa, 2012). There is a lack of 

knowledge about the role of the protozoa in lipolysis. Early studies suggested that 30% to 

40% of the rumen lipolytic activity was caused by Epidinium spp. (Wright, 1961). However, it 

is possible that bacteria or feed chloroplasts ingested by protozoa were the main responsible 

for this activity (Harfoot & Hazlewood, 1997; Lourenço et al., 2010). 

The principal bacteria described as being involved in rumen BH are cellulolytic bacteria 

belonging to the Butyrivibrio group, including the genera Butyrivibrio and Pseudobutyrivibrio 

(Vasta & Bessa, 2012). The importance of these bacteria in BH was initially verified by 

microbiological studies, which allowed the identification of B. fibrisolvens as responsible for 

the production of c9,t11-18:2 and t11-18:1 (Polan, Tove & Mcneill, 1964; Kepler, Hirons, 

Mcneill & Tove, 1966). 

Afterwards, a phenotypical and functional classification of bacteria was proposed as follows: 

group A bacteria that hydrogenate 18:2n-6 and 18:3n-3 to 18:1 isomers, mainly t11-18:1, and 

group B bacteria that hydrogenate the same PUFA to 18:0. The B. fibrisolvens was 

considered as belonging to group A, while group B bacteria were initially classified as 

Fusocillus spp. (Kemp, White & Lander, 1975; Kemp & Lander, 1984). Nevertheless, in a 

later study by van de Vossenberg and Joblin (2003), a strain of a bacterium phenotypically 

similar to Fusocillus spp. that was able to produce 18:0 was described as phylogenetically 

close to Butyrivibrio hungatei. However, the classification of group B bacteria as Fusocillus 

spp. or B. hungatei was incorrect. In fact, phylogenetic analyses using 16S rRNA sequences 

of rumen bacterial strains identified the 18:0 producers as Clostridium proteoclasticum 

(Wallace et al., 2006; Paillard et al., 2007), which was reclassified as Butyrivibrio 

proteoclasticus by Moon et al. (2008). Interestingly, some in vivo studies on rumen bacterial 

diversity in cows and ewes suggested that B. fibrisolvens and B. proteoclasticus might not 

play a major role in BH, considering that other uncultured bacteria phylogenetically classified 

as Prevotella spp. and Lachnospiraceae incertae sedis, as well as some unclassified 

Bacteroidales, Clostridiales, and Ruminococcaceae are probably more relevant in these 

metabolic pathways (Belenguer, Toral, Frutos & Hervas, 2010; Huws et al., 2011; Castro-

Carrera et al., 2014). In fact, according to Huws et al. (2011), Prevotella genus and 
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Lachnospiraceae and Ruminococcaceae families might be involved in the ruminal production 

of c9,t11-18:2, t11-18:1 and 18:0. Also, bacterial species belonging to the genera 

Treponema-Borrelia, Micrococcus, Megasphaera and Eubacterium have been associated 

with BH (Patra & Saxena, 2011). These recent advances are only possible due to the 

development of 16S rRNA based molecular analysing methods that allow for a more 

accurate estimation of bacteria diversity comparing with the traditional microbiological 

methods (Deng, Xi, Mao & Wanapat, 2008).  

The structural modification of bacterial populations might be indirectly evaluated by the 

amount of odd- and branched-chain fatty acids (OBCFA) (Bessa et al., 2009; Fievez, 

Colman, Castro-Montoya, Stefanov & Vlaeminck, 2012) and dimethylacetals (DMA) (Saluzzi, 

Colin, Flint & Smith, 1995) present in the rumen. In fact, both DMA and OBCFA have the 

potential to be internal microbial markers, although DMA might even have a greater potential 

than OBCFA, since DMA are exclusively formed from structural lipids of bacteria, while 

OBCFA can result not only from de novo bacterial synthesis for incorporation into cell 

membranes (Fievez et al., 2012) but also from feedstuffs (Alves, Cabrita, Jeronimo, Bessa & 

Fonseca, 2011). In fact, DMA are originated from the acid catalysis of the vinyl-ether (alk-1´-

enyl) chain present in plasmalogens, which constitute a special class of phospholipids 

characterized by the presence of a vinyl-ether bond at the sn-1 position of glycerol. The 

plasmalogens are also composed by aliphatic moieties at sn-1 and sn-2 positions (Brites, 

Waterham & Wanders, 2004), which consist of OBCFA with 15 to 18 carbons or even- and 

linear- chain FA (ECFA) (Miyagawa, 1982; Alves, Santos-Silva, Cabrita, Fonseca & Bessa, 

2013b). Also, some BI, such as trans-18:1, can be incorporated in plasmalogens. These 

ether-phospholipids may have the role of providing plasticity to bacterial cell membranes, 

regulating their permeability (Goldfine, 2010). Several rumen bacteria were reported as 

containing great amounts of DMA, particularly strains of B. fibrisolvens, Streptococcus bovis 

and Bifidobacterium thermophilus, but also Ruminococcus flavefaciens, Eubacterium 

ruminantium and Ruminococcus albus. Moreover, Miyagawa (1982) reported the presence of 

anteiso-15:0, as the main DMA, in bacteria belonging to Butyrivibrio genus. The dietary 

substrate may alter the DMA composition of rumen contents (Saluzzi et al., 1995; Alves et 

al., 2013b) and, in one study, only modifications on the amount of individual DMA were found 

with the total of DMA remaining constant (Alves et al., 2013b). Considering the OBCFA, 

there are other difficulties when using these FA in the evaluation of the bacterial composition 

of rumen contents, especially considering the “iso-FA/anteiso-FA” ratio. In fact, although iso-

FA, such as iso-17:0, were mostly associated with cellulolytic bacteria and anteiso-FA, 

mainly anteiso-15:0, were related to amylolytic bacteria (Fievez et al., 2012), in a report from 

Vlaeminck, Fievez, van Laar and Demeyer (2004), anteiso-15:0 and anteiso-17:0 were 
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produced by cellulolytic and odd- and linear-chain FA (OCFA) (15:0 and heptadecanoic acid, 

17:0) by amylolytic bacteria.  

The role of protozoa on BH is not completely understood due to the lack of studies 

concerning this issue comparing with the ones related to bacteria. However, these 

microorganisms are important sources of UFA to the host, accounting for 30 to 43% of the 

CLA and 40% of the t11-18:1 reaching the duodenum (Yáñez-Ruiz, Scollan, Merry & 

Newbold, 2006). In fact, protozoa were described as containing at least two to three times 

more UFA than bacteria (Devillard, McIntosh, Newbold & Wallace, 2006). Although one study 

verified that mixed rumen protozoa were able to convert 18:2n-6 into c9,t11-18:2 (Or-Rashid, 

AlZahal & McBride, 2008), other reports did not detect a participation of protozoa in BH 

(Devillard et al., 2006; Boeckaert et al., 2009). So, the most acceptable explanation for the 

high content of BI in protozoa consists in the association of these microorganisms with 

bacteria (endo- and ectosymbionts) or on the ingestion of bacteria by protozoa (Williams & 

Coleman, 1992; Vasta & Bessa, 2012). Some protozoan species were identified as being 

involved in BH, such as Ophryoscolex caudatus, Entodinium nannelum and the holotrich 

Isotricha prostoma, although the latter was described as only containing low concentrations 

of CLA and t11-18:1 (Devillard et al., 2006). Indeed, bacteria associated with I. prostoma 

were reported as responsible for the conversion of a limited amount of 18:2n-6 and c9,t11-

18:2 into t11-18:1 (Boeckaert et al., 2009). 

Reports concerning the involvement of fungi in BH are scarce. According to Nam and 

Garnsworthy (2007), one isolate belonging to Orpinomyces genus presented the highest rate 

of BH compared to other fungi isolates, playing a role in the formation of c9,t11-18:2 and t11-

18:1. Moreover, Maia et al. (2007) considered the participation of Neocallimastix frontalis and 

Piromyces communis in these metabolic pathways but found that only N. frontalis could 

convert 18:2n-6 into c9,t11-18:2. 

Another important group of microorganisms present in rumen microbiota are the 

methanogens that belong to Archaea domain and were described as responsible for ruminal 

methane production using CO2 and H2 as substrates (Johnson & Johnson, 1995). Although 

their involvement in BH is unknown, a modification of the abundance of methanogens might 

affect protozoa (Guo et al., 2008) and bacteria (Goel, Makkar & Becker, 2009). Indeed, Guo 

et al. (2008) verified a decrease of methane production together with a reduction of protozoa 

but without an inhibition of archaeal microorganisms in in vitro incubated rumen fluid, which 

evidences an association between methanogens and protozoa. As a matter of fact, the 

attachment of Archaea in the exterior surface of ciliate protozoa (Vogels, Hoppe & Stumm, 

1980) and the endosymbiotic relation between the two groups of microorganisms (Finlay et 

al., 1994) were reported with methanogens from the most abundant methanogenic family in 
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the rumen (Methanobacteriaceae) appearing to be free-living or associated with protozoa 

(Sharp, Ziemer, Stern & Stahl, 1998). Moreover, Goel et al. (2009) observed a diminishment 

of the abundance of R. flavefaciens when methanogens were decreased in rumen contents 

from fermentation systems, which might be explained by an influence of a higher partial 

pressure of hydrogen on the metabolism of bacterial species caused by the reduction of 

Archaea (Wolin, Miller & Stewart, 1997).  

 

1.3.4. The t10-shifted biohydrogenation pathways 

Feeding ruminants in the fattening phase with high-starch and low-forage diets has been 

reported to lead to a shift from t11 to t10 BH pathways that is known as the t10-shift. The 

major consequence of the shift is the predominance of t10-18:1 to the detriment of t11-18:1, 

as the main trans monoene isomer in the rumen and tissues (Aldai et al., 2013; Bessa et al., 

2015). The dietary supplementation with PUFA was described as not essential for the 

establishment of the shift (Bessa et al., 2005), although it was shown to exacerbate the 

accumulation of t10-18:1 that can reach up to 10% of meat FA (Bessa et al., 2005; Oliveira, 

Alves, Santos-Silva & Bessa, 2014). To date, there are three proposed t10-shifted BH 

pathways. Initially, Griinari and Bauman (1999) considered that both 18:2n-6 and 18:3n-3 

could be converted into t10-18:1 as a final product. Before the formation of t10-18:1, these 

FA would be isomerized into t10,c12-18:2 and t10,c12,c15-18:3, respectively, with an 

additional reduction of t10,c12,c15-18:3 into t10,c15-18:2 (Figure 1). Lately, Mosley, Powell, 

Riley and Jenkins (2002) and Proell, Mosley, Powell and Jenkins (2002) suggested that t10-

18:1 could be originated by an extensive double bond migration and cis/trans isomerization 

of 18:1 isomers, mainly t11-18:1 and c9-18:1. More recently, Kishino, Ogawa, Yokozeki and 

Shimizu (2009) and Kishino et al. (2013) described a multi-component enzyme system 

composed of four enzymes (hydratase, dehydrogenase, isomerase and saturase) from 

Lactobacillus plantarum that could produce t10,c12-18:2 and t10-18:1 from 18:2n-6 and 

t10,c15-18:2 from 18:3n-3, although no reduction of t10,c15-18:2 into t10-18:1 was verified. 

Also, 10-OH,c12-18:1 and 10-OH-18:0 would be hydrated into t10,c12-18:2 and t10-18:1, 

respectively. The BH pathways that allow for the conversion of 18:3n-3 into t10-18:1 are not 

clear and Zened, Enjalbert, Nicot and Troegeler-Meynadier (2013b) even reported their 

absence. Also, the presence of t10,c12,c15-18:3 in pure cultures, digesta or tissues was 

never verified (Bessa et al., 2015). However, Kemp et al. (1975) described the production of 

t10-18:1; t10,c15-18:2 and c10,c15-18:2 in a medium with 18:3n-3 and, in a study by Alves 

and Bessa (2014), the t10,c15-18:2 was found in digestive contents and meat of lambs 

expressing t10-shifted BH pathways.  
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The t10-shift can be evaluated by the “t10-/t11-18:1” ratio in tissues or more appropriately in 

abomasum or rumen contents. Nevertheless, a high variability of ratio values can be found 

among animals due to a variation in susceptibility to t10-shift induction, even with the same 

dietary conditions (Bessa et al., 2015). This fact might be caused by differences on individual 

rumen microbiota (Rosa et al., 2014; Santos-Silva et al., 2016) and breeds (Costa et al., 

2013). Moreover, some studies have attempted to establish an association between the 

occurrence of t10-shift and a reduction of rumen pH but the results obtained were 

inconsistent (Piperova et al., 2002; Troegeler-Meynadier, Nicot & Enjalbert, 2007; Colman, 

Tas, Waegeman, De Baets & Fievez, 2012; Zened et al., 2013b). The relevance of these 

reports consists of the fact that t10-shift leads to milk fat depression syndrome in dairy 

ruminants (Griinari et al., 1998; Bauman & Griinari, 2003) and can be related other metabolic 

disorders, such as ruminal acidosis (Bessa et al., 2015). Although, it seems that a largely 

fluctuating low pH is necessary to promote the establishment of the shift (Bauman & Griinari, 

2003; Colman et al., 2012), fast changes of pH in opposition to the progressive development 

of the shift makes difficult to relate pH and t10-shift (Zened et al., 2013b; Bessa et al., 2015). 

Also, a predominance of t11 BH pathways might occur at low pH, considering that the activity 

of linoleate isomerase that converts 18:2n-6 into c9,t11-18:2 and is produced by B. 

fibrisolvens has been described at a wide range of pH (5.5 to 8.7) (Kim, Liu, Bond & Russell, 

2000). The time required for the occurrence of t10-shift was reported to be about 8 to 18 

days, after starting to feed the animals with a high-starch plus sunflower oil diet, and then it 

remains constant (Roy, Ferlay, Shingfield & Chilliard, 2006; Zened et al., 2013b). Moreover, 

Zened et al. (2013b) verified a gradual increase of t10-18:1 until day 8 and an abrupt 

decrease of t11-18:1 on day 2, which probably indicates an adaptation of rumen microbiota 

in order to establish the t10-shift. 

The rumen microbiota responsible for the t10-shift has been scarcely studied. However, 

some strains of Megasphaera elsdenii, mostly M. elsdenii YJ-4, were found to produce 

t10,c12-18:2 from 18:2n-6, when non-lactating dairy cows were fed a diet with grain at 90% 

dry matter (DM) (Kim, Liu, Rychlik & Russell, 2002). Nevertheless, in a study by McKain, 

Shingfield and Wallace (2010), Propionibacterium acnes was the only bacterial species that 

could form t10,c12-18:2 , being also able to convert t10-18:1 into 10-OH-18:0 and to 

dehydrate 10-OH-18:0 into 10-oxo-18:0. In fact, Verhulst, Janssen, Parmentier and Eyssen 

(1987) and Wallace, McKain, Shingfield and Devillard (2007) had already reported the 

production of t10,c12-18:2 from pure rumen cultures of P. acnes and Liavonchanka, 

Hornung, Feussner and Rudolph (2006) even described the structure and mechanism of a 

isomerase from P. acnes that catalyses the conversion of 18:2n-6 into t10,c12-18:2. 

Moreover, the involvement of other species of Propionibacterium, P. freudenreichii, in this BH 

step was verified by Jiang, Bjorck and Fonden (1998). Also, Lactobacillus genus, including L. 
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bulgaricus and eight strains of Lactobacillus plantarum were identified as producers of 

t10,c12-18:2, although these bacteria mainly formed c9,t11-18:2 and t9,t11-18:2, in the 

report by Yang et al. (2014). Similarly, Kishino et al. (2009) and Kishino et al. (2013) found 

that L. plantarum could be involved in the production of those BI and of t10-18:1, even 

though this bacterium has not been considered as major and specialized in the rumen. 

However, a great abundance of Lactobacillus spp. was verified when animals were fed high 

grain diets, as reviewed by Bessa et al. (2015). Little is known about bacteria responsible for 

the reduction of t10,c12-18:2 into t10-18:1 but McKain et al. (2010) identified B. fibrisolvens 

as associated with this BH step and also as a producer of small amounts of t12-18:1 and 

c12-18:1. Moreover, the unclear t10 BH pathways of 18:3n-3 might be established by 

Ruminococcus albus F2/6 (Kemp et al., 1975) or Lactobacillus plantarum (Kishino et al., 

2009; Kishino et al., 2013). Bacteria belonging to Ruminococcaceae and Lachnospiraceae 

families and to Prevotella genus were found in the rumen of animals fed concentrate based-

diets. Considering that Prevotella and Lachnospiraceae were described as possibly involved 

in t10 BH pathways (Toral et al., 2016), other bacteria present in high grain feeds may also 

play a role in the t10-shift.  

 

 

Figure 1. Major (left side) and t10-shift (right side) biohydrogenation pathways of 18:2n-6 

and 18:3n-3. Adapted from Bessa et al. (2015).  
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1.4. Fatty acid uptake, metabolism and deposition in tissues 

 

1.4.1. Fatty acid uptake 

Fatty acids leave the rumen as non-esterified FA (NEFA) and small amounts of 1,2-

diacylglycerols and monoacylglycerols. After adsorption in the small intestine, most of them 

are esterified, in the enterocytes, into TAG, phospholipids and cholesterol esters, which are 

transported in the lymph as chylomicrons and very low density lipoproteins (VLDL) and 

further in the blood plasma as LDL and HDL (Vernon & Flint, 1988; Demeyer & Doreau, 

1999; Shingfield et al., 2013). The majority of FA circulating in the plasma consists of 

cholesterol esters and phospholipids within HDL with NEFA generally accounting for only 3.5 

to 5.8 mg/100 mL of plasma (Moore & Christie, 1979). However, TAG is the predominant 

lipid in the lymphatic system, comprising 70-80% of total lipid in sheep and cattle, and is the 

main source of FA for tissues (Vernon & Flint, 1988). 

 

1.4.2. Fatty acid de novo synthesis 

Fatty acids incorporated into the adipose tissue, such as the subcutaneous, intramuscular 

and mammary fat, are not only a result of NEFA and TAG uptake from plasma but also of de 

novo FA synthesis in the tissue (Shingfield et al., 2013). 

The adipose tissue is the predominant site of de novo FA synthesis in ruminants but, during 

lactation, the mammary gland assumes more importance. This metabolic pathway occurs in 

the cytoplasm and consists in a series of decarboxylative condensation reactions with 

NADPH as a hydrogen donor. Initially, acetyl units derived mostly from acetate but also from 

glucose or lactate are added to acetyl-CoA that is transformed into malonyl-CoA by the 

acetyl-CoA carboxylase (ACC). Then, the FASN converts the malonyl-CoA into 16:0 and, to 

a minor extent, into 14:0 with the involvement of glucose-6-phosphate dehydrogenase or 

malic enzyme. The final products can serve as a substrate for further elongation and 

desaturation into LC-PUFA and desaturation into MUFA (Demeyer & Doreau, 1999; Nguyen 

et al., 2008; Shingfield et al., 2013). Two isoforms of ACC, ACCα or ACACA and ACCβ or 

ACACB, were reported in sheep with the first originating malonyl-CoA (Alvarenga, Chen, 

Furusho-Garcia, Perez & Hopkins, 2015). 
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1.4.3. Desaturation of monounsaturated and saturated fatty acids 

De novo synthesized SFA and, probably in a lesser extent, exogenous SFA are desaturated 

in the muscle and mammary gland but mainly in the adipose tissue by SCD. This 

endoplasmic reticulum membrane bound enzyme (Shingfield & Wallace, 2014) is considered 

a marker of adipocyte differentiation (Graugnard, Berger, Faulkner & Loor, 2010) and is 

responsible for the desaturation of saturated or trans-monounsaturated fatty acyl-CoA 

substrates by introducing a cis double bond at carbon 9 position of the acyl chain, originating 

cis-9 MUFA and cis-9,trans-x dienes. The catalysis by SCD requires O2, cytochrome b5 

reductase and the electron acceptor cytochrome b5. The substrates include mainly 14:0, 

16:0, 18:0 and t11-18:1 but also 17:0 and t7-18:1 and presumably t13-, t14-, and t15-18:1 

(Shingfield et al., 2013; Shingfield & Wallace, 2014; Bessa et al., 2015). The t7,c9-18:2 

(CLA) and c9,t11-18:2 are produced from t7-18:1 and t11-18:1, respectively. In fact, it was 

reported that about 20 to 30% of the t11-18:1 absorbed is desaturated into c9,t11-18:2 

(Bessa et al., 2015) and that the endogenous conversion is responsible for up to 87% of this 

CLA in tissues (Palmquist et al., 2004). However, the major product of the SCD enzyme is 

c9-18:1, which contributes to the maintenance of membrane fluidity when incorporated into 

phospholipids (Shingfield & Wallace, 2014). Moreover, it was proposed that t9-16:1 can also 

be a substrate to produce c9,t11-18:2 through an elongation process due to FA elongases 5 

(ELOVL5) and 6 (ELOVL6) followed by desaturation (Kadegowda, Burns, Miller & Duckett, 

2013). Recently, Vahmani, Rolland, Gzyl and Dugan (2016) reported several other products 

of the SCD enzyme in the adipose tissue of steers, including c9,t12-18:2 and c9,t13-18:2, as 

well as some 18:2 isomers (c9,t15-18:2, c9,t14-18:2) that have been previously tentatively 

identified by Pollard, Gunstone, James and Morris (1980) and the novel c9,t16-18:2 and 

t6,c9-18:2. 

In ruminants, two isoforms of SCD gene (SCD1 and SCD5) are present but the contribution 

of SCD5 to the desaturation of FA remains unclear. The expression of SCD1 gene is higher 

in the adipose tissue than in the muscle, being that the adipose tissue is the major site of 

desaturase activity in growing ruminants (Shingfield & Wallace, 2014; Bessa et al., 2015). 

 

Measurement of stearoyl-CoA desaturase activity and expression 

Some assays have been performed in order to directly measure SCD protein activity using 

labelled radioactive subtracts. These assays consisted in the exposure of adipose tissue 

homogenates from mice to 14C-18:0 (Enser, 1975) and from steers to 14C-palmitoyl-CoA; 

(Archibeque, Lunt, Gilbert, Tume & Smith, 2005). However, the direct evaluation of SCD 

activity is difficult to conduct due to the fragile nature and close association with the 

endoplasmic reticulum membrane of this enzyme. So, the complex procedures for the 

measurement of activity must be conducted very quickly after tissue sampling. Moreover, the 
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lability of SCD might be enhanced by its denaturation caused by the successive detergent 

extractions that should be performed in order to isolate SCD from microsomes. Also, a 

microsomal protease may be responsible for a decline in SCD activity making its evaluation 

even more difficult (Hodson & Fielding, 2013). For these reasons, the quantification of SCD 

mRNA expression has been more extensively applied than the direct evaluation of SCD 

activity. However, the circadian nutrient absorption cycles with postprandial stimulation 

followed by under-expression of the gene makes a single measurement of SCD expression, 

as it is obtained with samples collected from ruminants slaughtered in standard commercial 

conditions that usually are submitted to a fasting period up to 24 h, hardly representative of 

the overall finishing period. So, a better alternative consists in the use of SCD 

product/substrate ratios, which allows an evaluation of SCD activity during the whole period 

of fat deposition. The “c9-17:1/(17:0 + c9-17:1)” ratio, named SCDi17, was suggested to be a 

suitable index to evaluate SCD activity, because it is mostly free of confounding effects. In 

fact, c9-17:1 is virtually absent in feedstuffs and is not detectable or is present in trace 

amounts in rumen and abomasum contents. Moreover, SCDi17 can explain about 80-90% of 

the “c9,t11-18:2/(t11-18:1 + c9,t11-18:2)” ratio, even considering that a low supply of t11-18:1 

with an increased SCD activity is common in finishing ruminants fed with concentrate based-

diets. Attending to the fact that a higher response of SCD activity to dietary treatments is 

present in NL than in PL fractions, the application of SCDi17 in relation to FA present in 

adipose tissue or muscle TAG is more accurate compared to FA in total meat (Bessa et al., 

2015). Noticeable, it is possible to calculate isotopic desaturation indices. Indeed, Chong et 

al. (2008) proceeded to the intravenous administration of the stable isotope [2H2-16:0] in 

humans and calculated the “[2H2] c9-16:1/[2H2]-16:0” ratio. Nevertheless, the ratio values 

obtained by this method were considerably lower than the ones calculated from the non-

isotopic measurement, because the isotopic index considers the fasting rather than the 

average SCD activity and does not reflect the desaturation of de novo synthesized 16:0. 

Consequently, although less confounding effects are present in the isotopic evaluation, the 

non-isotopic measurement seems to be a better approach to determine SCD activity 

(Hodson & Fielding, 2013). 

 

1.4.4. Synthesis of long chain polyunsaturated fatty acids 

The main focus of FA elongation and desaturation pathways has been on the conversion of 

dietary n-3 and n-6 PUFA, mostly 18:3n-3 and 18:2n-6, into LC-PUFA. These reactions are 

catalyzed by an enzymatic system consisting in fatty acyl-CoA synthetases, Δ6 and Δ5 

desaturases and elongases (Barceló-Coblijn & Murphy, 2009). Contrarily to de novo FA 

synthesis, some studies indicated that the liver is the predominant site of LC-PUFA formation 

instead of the adipose tissue (Gruffat, Gobert, Durand & Bauchart, 2011; Cherfaoui et al., 
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2012). In fact, Cherfaoui et al. (2012) reported that several proteins involved in the synthesis 

of n-3 LC-PUFA, such as elongases 2 and 5, were present in the intermuscular fat at a 10-

fold lower abundance than in the liver.  

For the conversion of 18:3n-3 and 18:2n-6, there is a competition for the same enzymes, 

although 18:3n-3 appears to be a stronger suppressor of n-6 LC-PUFA than 18:2n-6 of n-3 

LC-PUFA formation. First, both 18:3n-3 and 18:2n-6 are desaturated into 18:4n-3 and 18:3n-

6 by Δ6 desaturase, following a chain-elongation into 20:4n-3 and 20:3n-6 and desaturation 

by Δ5 desaturase into EPA and AA, respectively. Then, two elongation, one desaturation and 

one β-oxidation steps originate DHA and 22:5n-6 as final products corresponding to n-3 and 

n-6 series reactions, respectively. The elongation of 20:5n-3 is catalysed by elongase-2, 

forming docosapentaenoic acid (DPA; 22:5n-3) (Barceló-Coblijn & Murphy, 2009) (Figure 2). 

The elongation and desaturation pathways occur in two cellular compartments, such as the 

mitochondria, for FA synthesized de novo, and the endoplasmic reticulum (microsomes), for 

FA with at least 18 carbons. The β-oxidation step is present in the peroxisomes (Demeyer & 

Doreau, 1999; Barceló-Coblijn & Murphy, 2009). Several studies reported a low efficiency of 

conversion of 18:3n-3 into n-3 LC-PUFA, which contributes to the relevance of 

supplementing ruminants’ diet with sources of n-3 LC-PUFA and not only of 18:3n-3. In fact, 

Scollan et al. (2001) described that, comparing with the incorporation of linseed oil as a 

source of 18:3n-3, the dietary inclusion of algae that are rich in DHA led to a 5-fold increase 

of DHA in the phospholipid fraction of Longissimus muscle of lambs, while a more modest 

enhancement of EPA (from 3.84 to 8.73% of total FA) was verified with a combination of fish 

oil and algae containing EPA in their compositions. Moreover, Scollan et al. (2001) observed 

that, in the phospholipids of muscle and compared to control treatment, the proportion of 

DHA was not modified by feeding steers with linseed oil, whereas fish oil caused a 2-fold 

increment of this FA. Additionally, a greater increase of EPA was reported for fish oil (2.31 to 

4.87% of total FA; 10 to 24 mg/100g muscle), although an EPA proportion of 3.6% of total FA 

(15 mg/100g muscle) was still verified with linseed oil. 

 

 

 

 

 

 

 



 

26 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

Figure 2. Pathways of n-6 and n-3 LC-PUFA biosynthesis. Adapted from Barceló-Coblijn and 

Murphy (2009). 

 

 

 

1.4.5. Factors affecting the fatty acid metabolism in tissues 

The FA synthesis, desaturation and elongation can be affected by dietary and hormonal 

factors. Attending to FA desaturation of SFA and MUFA, concentrate feeds have been 

described as responsible for an increased expression of SCD gene, contrarily to forage diets 

(Duckett, Pratt & Pavan, 2009; Joseph et al., 2010; Buchanan et al., 2013; Costa et al., 2013; 

Bessa et al., 2015). This fact is mainly due to an insulinemic effect caused by a higher 

glucose availability promoted by the starch rich content of the concentrates. The influence of 

insulin is expected, considering its powerful activator effect on transcription factors that 

regulate SCD1 expression, mostly the sterol regulatory element-binding protein (SREBP)-1c 

and the nuclear factor Y (NF-Y). Interestingly, glucose and fructose may directly activate 

SCD1 transcription but the mechanism is not clear. The SCD enzyme has an adipogenic 

activity increasing TAG deposition in tissues, which leads to an increment of IMF content with 

the concentrate feed. This can be associated with a higher deposition of c9,t11-18:2 in this 

fat reservoir when the ruminal production of t11-18:1 is not compromised by the occurrence 

of t10-shifted BH pathways (Bessa et al., 2015). Indeed, Daniel, Wynn, Salter and Buttery 

(2004) verified a decrease of c9,t11-18:2 in the muscle and adipose tissue depots of 
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concentrate comparing with forage-fed lambs due to a reduced availability of t11-18:1 in the 

abomasum with the concentrate diet. Moreover, a lower insulinemia may not be the only 

reason for the decreased expression and activity of SCD with forage diets. In fact, the high 

content of PUFA, mainly n-3 PUFA such as 18:3n-3, might also act as an inhibitor (Waters, 

Kelly, O'Boyle, Moloney & Kenny, 2009; Herdmann, Nuernberg, Martin, Nuernberg & Doran, 

2010; Corazzin, Bovolenta, Sacca, Bianchi & Piasentier, 2013), as well as the increase of 

t10,c12-18:2 (Chung, Choi, Kawachi, Yano & Smith, 2006; Shingfield & Wallace, 2014) and 

c9-18:1, the dietary addition of plant oils, the administration of cobalt EDTA or cobalt acetate 

and the influence of glucagon and thyroid hormone (Shingfield & Wallace, 2014). However, 

in some studies, the impact of these factors cannot be verified, as it is the case of n-6 PUFA 

(Shingfield et al., 2013), c9-18:1 (Shingfield et al., 2013; Choi et al., 2014), t10,c12-18:2 and 

even n-3 PUFA (Choi et al., 2014). Although SCD is mainly influenced by modifications of the 

diet, the ruminants’ age and breed have also been reported to exert effects on the 

expression of this gene (Shingfield et al., 2013). In fact, in one study that evaluated the 

distinction between two Portuguese bovine breeds (Barrosã and Alentejana), a higher SCD 

expression in the subcutaneous adipose tissue of Barrosã was verified probably due to a 

higher adipocyte maturity found in this breed (Costa et al., 2013). Considering the age, a 6-

fold higher SCD1 gene expression at sixteen than at twelve months of age in steers was 

described in literature (Choi et al., 2014). Indeed, the greatest SCD1 gene expression 

observed with older ages has been also associated with an increased differentiation and 

volume of adipocytes (Chung, Lunt, Kawachi, Yano & Smith, 2007). The factors that affect 

FA synthesis are mostly the same that alter FA desaturation (Nguyen et al., 2008). In fact, 

similarly to SCD, a higher ACACA (da Costa, Pires, Fontes & Mestre Prates, 2013) and 

FASN (Nguyen et al., 2008; Joseph et al., 2010) expression has been described with an 

increase of concentrate level in the diet, although, in one study, the ACACA gene expression 

was not affected by differences of the energy source and level in the feeds (Joseph et al., 

2010). Also, the ACACA activity is not always influenced by dietary n-3 PUFA (Herdmann et 

al., 2010). Moreover, Kadegowda et al. (2013) and Chung et al. (2007) reported that the 

inhibition of SCD1 activity might be associated with reduced activity of enzymes responsible 

for FA de novo synthesis, but, in the study by Chung et al. (2007), this phenomenon was only 

found in forage fed animals. Additionally, genetic factors may alter the expression of ACACA 

and FASN and the animal gender can even play a role as it was shown a higher expression 

of these genes in females compared to males (Alvarenga et al., 2015). 

In some studies, a mechanism of negative feedback seems to regulate the expression and 

activity of SCD, ACACA and FASN. Indeed, a decrease of the endogenous c9,t11-18:2 

synthesis by SCD was verified when the exogenous supply of CLA increased (Palmquist et 

al., 2004). Also, a negative effect of malonyl-CoA on the expression of ACACA has been 
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reported (Bernard, Leroux & Chilliard, 2008) and, in one study, a lower amount of 16:0 and 

14:0 caused an increase of FASN. The fact that the latter results were observed with a 

forage based diet and not with a concentrate feed is understandable, if the occurrence of a 

plateau in FASN expression originated by the high starch level feeding is considered 

(Buchanan et al., 2013).  

Similarly to FA synthesis and desaturation, the LC-PUFA formation can be affected by many 

genetic and environmental factors, even though the FA composition of the diet is considered 

to be the most important one. Identically to SCD, ACACA and FASN, the expression of Δ5 

(FADS1) and Δ6 (FADS2) FA desaturases genes was shown to be decreased by dietary 

PUFA, mainly due to a suppression of SREBP-1c (Nakamura & Nara, 2002; Herdmann et al., 

2010). Also, peroxisome proliferators (PPs) might induce the expression of these genes, 

although this effect is enigmatic because the major role of PPs is to stimulate FA oxidation 

enzymes by activating the transcription factor PP-activated receptor-α (PPARα) (Nakamura & 

Nara, 2002). In addition, FA elongases and desaturases may be subjected to negative 

feedback by their end products. In fact, both AA and DHA were reported to suppress the 

conversion of 18:2n-6 and 18:3n-3 into n-6 and n-3 LC-PUFA, respectively (Shingfield et al., 

2013). 

 

 

1.5. Modulation of ruminal biohydrogenation and muscle fatty acid profile 

Several nutritional strategies have been applied to improve the FA composition of ruminants’ 

meat (Sinclair, 2007; Vasta & Bessa, 2012). Dietary manipulation can modify ruminal BH, 

allowing for an accumulation in the muscle of bioactive FA with health promoting functions, 

such as t11-18:1 and c9,t11-18:2 to the detriment of t10-18:1 and t10,c12-18:2, without 

compromising animal performance (Aldai et al., 2013). Also, some strategies have been 

used in order to increase n-3 PUFA deposition in tissues, contributing for the enhancement 

of meat nutritional value (Shingfield et al., 2013).  

 

1.5.1. The type and proportion of dietary forage and concentrate 

The modulation of BH and muscle FA composition in ruminants by modifying the proportion 

of forage and concentrate in the diet has been described in literature. Forages and pasture 

generally have a high content of 18:3n-3 in contrast with concentrate feeds, which are rich in 

18:2n-6 (Shingfield et al., 2013). This fact can explain the increase of 18:3n-3 (Santos-Silva 

et al., 2002a; Bessa et al., 2005) and, in some studies, also the reduction of 18:2n-6 

(Sinclair, 2007; Wood et al., 2008; Shingfield et al., 2013) found in the muscle of lambs 

reared and finished on grass comparing with the ones on concentrate, respectively. Different 
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forage species may also distinctively influence the proportion of these PUFA. In fact, it was 

reported that grazing legumes, such as lucerne or red clover, led to an enhancement of 

18:3n-3 and particularly of 18:2n-6 in the muscle, compared to perennial ryegrass. Moreover, 

forage feeding has been associated with a decrease of 16:0 and c9-18:1 and with a higher 

proportion of 18:0 in the muscle (Sinclair, 2007). This modification of c9-18:1 and 18:0 might 

be related to a lower activity of SCD with forage diets than with concentrates. So, an 

increased t11-18:1 and a decreased c9,t11-18:2 deposition in the muscle might occur with 

forage-based diets due to a reduced endogenous conversion of t11-18:1 into c9,t11-18:2. 

The inferior amount of c9,t11-18:2 may also be caused by its lower ruminal production from 

18:2n-6, the main PUFA converted into this CLA (Bessa et al., 2015). However, it was 

reported a higher proportion of both t11-18:1 and c9,t11-18:2 in the muscle of lambs fed 

ground and pelleted lucerne comparing with the ones fed concentrate (Bessa et al., 2005). 

This fact can be explained by the occurrence of t10-shifted BH pathways with high starch 

diets that leads to a substitution of t11-18:1 by t10-18:1. Even with a higher activity of SCD 

promoted by concentrate, the t10-18:1 cannot be converted into any CLA and simply 

accumulates in tissues as the main trans monoene isomer. The greater deposition of t10-

18:1 might be accompanied by an increase of t10,c12-18:2 (Bessa et al., 2005; Aldai et al., 

2013; Bessa et al., 2015). In some studies, the impact of modifications of dietary 

“forage/concentrate” ratio on ruminal BH and muscle FA composition was analysed. For 

instance, Lee, Tweed, Dewhurst and Scollan (2006) verified no effect of a diminishment of 

the ratio (80/20 to 20/80) on the duodenal flow of total trans-18:1 with only a tendency for an 

enhancement of t10-18:1. Moreover, Vlaeminck, Fievez, Demeyer and Dewhurst (2006) 

reported an increase of t10-18:1, from 4.1 to 22.9 mg/g of total FA, in liquid associated 

bacteria (LAB) in the rumen of dairy cows when the ratio was decreased from 80/20 to 35/65 

but, in the duodenal content and solid associated bacteria (SAB), t10-18:1 was only 2-fold 

higher with the concentrate-based diet comparing with the highest ratio treatment. Similarly 

to Lee et al. (2006) and Vlaeminck et al. (2006), an absence of effect of the proportion of 

forage on the amount of t11-18:1 was observed by Alfaia et al. (2009), together with an 

increase of t10-18:1 in the Longissimus muscle of bulls fed exclusively or finished with 

concentrate (2 or 4 months) related to that of animals from pasture feeding. Also, Alfaia et al. 

(2009) reported a decrease of c9,t11-18:2 with forage feed and forage added with 

concentrate for 2 months comparing with the other feeding regimes (feedlot or 4 months of 

concentrate). Moreover, Rosa et al. (2014) verified a higher proportion of t10-18:1 in the 

muscle with the addition of ground maize at 4 kg/day to a forage-based diet compared to no 

addition (5.5 and 2.5 mg/g of total FA, respectively) and that was even more pronounced with 

increasing levels of incorporation (4 to 8 kg/day) (5.5 and 14.8 mg/g of total FA, respectively). 

Although t11-18:1 only decreased with the absence of maize, the c9,t11-18:2 tended to be 
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lower with the higher compared to the lower level of maize. Concerning the amount of 

t10,c12-18:2, no differences were found with modifications of “forage/concentrate” ratio in the 

studies by Lee et al. (2006), Alfaia et al. (2009) and Rosa et al. (2014).  

Ruminants fed with forage- and concentrate-based diets are characterized by different rumen 

microbiota populations and the first normally have a higher bacterial diversity (Fernando et 

al., 2010). Fernando et al. (2010) reported a decrease of bacteria from Fibrobacteres and 

Firmicutes phyla and an increase of the ones belonging to Bacteroidetes and Proteobacteria 

in the rumen of steers fed with incremental levels of grain (20% to 80% DM). In fact, it was 

found a reduction of B. fibrisolvens (Firmicutes) and Fibrobacter succinogenes 

(Fibrobacteres). Conversely, Prevotella bryantii (Bacteroidetes), M. elsdenii, Selenomonas 

ruminantium were increased, although the last ones are included in Firmicutes phylum. The 

amylolytic Streptococcus bovis did not significantly change with the gradual increase of grain 

level in the diet and, in a study conducted by Klieve et al. (2003), its abundance remained 

constant when steers were fed with grain at 75% DM, which demonstrates the importance of 

this bacteria in both forage- and concentrate-based diets. Also, Klieve et al. (2003) reported 

an increase of M. elsdenii and a decline of B. fibrisolvens with the grain-based diet. Similarly 

to Fernando et al. (2010), Tajima et al. (2001) verified an increase of S. ruminantium and P. 

bryantii and a decrease of F. succinogenes when forage- was changed to concentrate-based 

diet. Noticeably, Castro-Carrera et al. (2014) suggested that the amylolitic S. ruminantium 

might occupy a special ecological niche in the rumen and, although its participation in BH is 

not clear, this bacterium is known to be involved in FA hydration, particularly, in the 

conversion of c9-18:1 into 10-OH-18:0 (Hudson, MacKenzie & Joblin, 1995). Moreover, a 

reduction of bacteria belonging to Fibrobacteres phylum was also found by Zened et al. 

(2013a), when starch was added to cows’ diet from 22% to 33% DM. Additionally, Tajima et 

al. (2001) verified a decrease of R. flavefaciens and Zened et al. (2013a) described a general 

decline of Ruminococcaceae, together with a decrease of other cellulolytic bacteria, including 

Butyrivibrio-Pseudobutyrivibrio genera from Lachnospiraceae family. A reduction of 

unclassified Clostridiales and Rikenellaceae_RC9 with an increase of Bifidobacterium was 

also reported by Zened et al. (2013a). Besides Clostridiales and Ruminococcaceae, bacteria 

from Bifidobacterium genus were recently suggested to play a role on BH, since they were 

implicated in the production of CLA and CLNA isomers (Gorissen et al., 2010; Park et al., 

2011). 
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1.5.2. Dietary lipid supplementation  

Besides modifications of the proportion of forage and concentrate in the diet, dietary 

supplementation with plant oils or seeds rich in n-3 or n-6 PUFA has the potencial to allow for 

a higher concentration of these FA in tissues. However, the inclusion of FA rich supplements 

is limited to a maximum of around 60 g/kg DM, in order to avoid impairment of rumen 

function (Scollan et al., 2006). Lipid sources presenting high amounts of 18:2n-6 include 

safflower, sunflower, canola or rapeseed and soybean oils, while 18:3n-3 is only 

commercially available in linseed or flaxseed, rapeseed and soybean oils. The linseed oil has 

the greatest content of 18:3n-3. These dietary PUFA supplements can be protected or 

unprotected from ruminal BH. Although protected sources are more efficient in promoting 

PUFA accumulation in tissues, the majority of studies evaluated the effect of the unprotected 

ones. In some of these reports, the supplementation with oils rich in 18:2n-6 has been 

associated with an increase of this FA in the muscle by approximately 0.5-fold (Sinclair, 

2007) but the incorporation of whole linseed was shown to double the proportion of 18:3n-3 

in the muscle and subcutaneous adipose tissue (Wachira et al., 2002). The higher variation 

of 18:3n-3 might be due to the more selective incorporation of 18:2n-6 in phospholipids (De 

Smet et al., 2004; Sinclair, 2007; Wood et al., 2008). Moreover, the replacement of sunflower 

oil by linseed oil was related to an increase of 18:3n-3, c9-18:1 and n-3 LC-PUFA and a 

concomitant decrease of 18:2n-6 and n-6 LC-PUFA in the muscle, in order to maintain the 

degree of unsaturation of C18 FA in cell membranes (Jerónimo et al., 2009), following the 

homeoviscous adaptation mechanism suggested by Scislowski, Durand, Gruffat-Mouty, 

Motta and Bauchart (2004). Also, there was a diminishment of c9,t11-18:2 with this 

substitution, which is probably caused by the decrease of 18:2n-6 (Jerónimo et al., 2009). 

However, the supplementation with sources rich in 18:3n-3 is not always responsible for an 

enhancement of n-3 LC-PUFA in tissues and it can even be coupled with a decrease of n-3 

LC-PUFA, which suggests an inhibition of 18:3n-3 metabolism, as demonstrated by Bessa et 

al. (2007) when linseed oil at 7.4% DM was added to a lucerne-based diet. So, the dietary 

incorporation of n-3 LC-PUFA sources is a more effective manner of increasing these FA 

(Sinclair, 2007), considering the extensive ruminal BH of n-3 PUFA and the low efficiency of 

elongation and desaturation enzymatic systems (Bessa et al., 2015). The n-3 LC-PUFA 

supplements include marine products, mostly fish oils and meals and microalgae, with 

microalgae leading to considerable increases of n-3 LC-PUFA in the muscle of ruminants 

(Alvarenga et al., 2015; Bessa et al., 2015). In fact, DHA and EPA present in microalgae and 

also in encapsulated fat from fish oil were shown to have a lower rate of BH than the ones 

found in fish oil (Sinclair et al., 2005). However, the addition of fish oil to a forage feed was 

reported to increase EPA and DHA from 0.7 to 2.3 and 0.3 to 0.8, respectively, in the muscle 

of lambs (Wachira et al., 2002). Even though DHA is usually present in much lower 
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concentrations in ruminant meat than other C20 and C22 FA (Bessa et al., 2015), its 

increase was reported to be up to 3.7-fold with fish oil and to 10.6-fold with fish oil plus 

marine algae in the muscle (Sinclair, 2007). Noticeably, the dietary supplementation with fish 

oils may also modify ruminal BH, since they have been considered as potent inhibitors of 

18:0 production, leading to an increased flow of trans-18:1 and trans-18:2 leaving the rumen 

(Shingfield et al., 2003; Lee et al., 2008; Shingfield et al., 2010b; Shingfield et al., 2012). 

Moreover, Shingfield et al. (2012) reported an enhancement of C20 and C22 FA in the 

omasal digesta with the addition of fish oil, which was due to an extensive BH of DHA and 

EPA. The supplement even promoted an increase of 10-OH-18:0 + 9-oxo-18:0, 10-oxo-18:0, 

trans-16:1 and trans/trans-16:2. The effect on C16 FA was probably caused by an inhibition 

of their ruminal reduction into 16:0 (Shingfield et al., 2010b; Shingfield et al., 2011). 

Moreover, another methodological approach to increase the metabolic availability of n-3 LC-

PUFA in tissues consists in the direct infusion of these FA in the abomasum, since it allows 

for n-3 LC-PUFA to bypass ruminal BH (Fortin et al., 2010; Bessa et al. 2015).  

The dietary lipid supplementation was reported to interact with the basal diet and induce 

changes in rumen bacterial populations possibly involved in BH. Attending to plant oils, 

Zened et al. (2013a) verified that the interaction between starch (33% DM) and sunflower oil 

(5% DM) caused an increase of Lachnospiraceae incertae sedis and a tendency for a higher 

abundance of Prevotella, as well as a decrease of unclassified or uncultured 

Ruminococcaceae, uncultured Lachnospiraceae and unclassified Firmicutes.  

Moreover, a higher abundance of Prevotella in goats and Lachnospiraceae in cows was also 

found with a diet containing a high starch level (32.5% DM; cereal grain at 75.3% DM) plus 

sunflower oil (9% DM) and it was suggested that these bacteria were related to t10-shifted 

BH pathways, leading to an enhancement of t10-18:1 in the rumen, in relation with the 

control diet (without oil supplementation) (Toral et al., 2016). The concomitant addition of 

plant oil (sunflower oil) (2.5 % DM) and marine algae (16% and 24% DM) in a basal diet with 

48.5% of forage and 51.5% of concentrate fed to ewes was reported by Toral et al. (2012) as 

causing an increase of uncultured Lachnospiraceae (Butyrivibrio-related bacteria) and 

Veillonellaceae (Quinella-related bacteria) that might have been responsible, respectively, for 

an enhancement of t10-18:1 (McKain et al., 2010) and, considering the phylogenetic 

similarity between Quinella ovalis and S. ruminantium, 10-oxo-18:0 (Krumholz et al., 1993; 

Hudson et al., 1995) in the rumen. Concerning fish oils, a gradual decrease of the 

abundance of B. fibrisolvens and Pseudobutyrivibrio in the omasal digesta of cows was 

related to an increase of fish oil level from 75 to 300 g/d added to a 58:42 forage-to-

concentrate basal diet (Shingfield et al., 2012). Conversely, there was a tendency for a dose-

dependent increase of P. acnes and this bacterium might have been related to the 

occurrence of t10-shift (Bessa et al., 2015) in the study by Shingfield et al. (2012), although 
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the ability of P. acnes to produce t10-18:1 was never clearly demonstrated. In the report by 

Toral et al. (2016), a concentrate-based diet (starch level of 23.9% DM; cereal grain at 54.9% 

DM) plus fish oil (3.6% DM) led to a decrease of some bacterial species, such as bacteria 

related to Ruminococcaceae family in cows and to Pseudobutryrivibrio genus in goats, 

comparing with the control treatment.  

 

1.5.3. Plant secondary compounds – Tannins 

 

Characterization, localization and nutritional effects of tannins 

Tannins are polyphenolic compounds that constitute secondary metabolites of plants with 

variable but relatively high molecular weights. They have the ability to form complexes with 

proteins and to a lesser extent with carbohydrates. Based on the molecular structure, tannins 

are classified into hydrolysable (HT) and condensed tannins (CT). The HT include 

gallotannins and ellagitannins that result from the esterification of a central core (polyol) with 

phenolic groups (gallic acid and hexahydroxydiphenic acid, respectively), while the CT 

consist of proanthocyanidins and are polymers of flavan-3-ol units ((epi)catechin and 

(epi)gallocatechin). Tannins may be present in forage trees, shrubs and legumes, cereals 

and grains and their concentrations are normally higher in new leaves and flowers. Beneficial 

or detrimental nutritional effects can be promoted by the presence of tannins in ruminants’ 

diets. The benefits include increased milk yields and fertility, higher growth rates due to an 

enhanced amount of protein that is available for digestion in the small intestine, increased 

wool growth, improved animal welfare through prevention of bloat and parasitism and 

inhibition of methanogenesis (Waghorn & McNabb, 2003; Mueller-Harvey, 2006; Patra & 

Saxena, 2011). The deleterious effects consist of lower digestibility of protein and dry matter 

with carbohydrate, starch and plant cell wall being less affected. The decrease of diet´s 

digestibility with polyphenolic compounds can be caused by their binding to dietary 

substracts and digestive enzymes and also by their toxicity towards intestinal and rumen 

microorganisms (Mueller-Harvey, 2006; Patra & Saxena, 2009). In particular, the depression 

of fibre digestion by tannins might lead to a decrease of rumen fermentative activity, 

including a lower total volatile fatty acid (VFA) production (Patra & Saxena, 2011), while that 

effect on protein may originate a reduction of branched-chain VFA (Bhatta et al., 2009; 

Hassanat & Benchaar, 2013) as these FA result from the breakdown of the carbon skeleton 

of amino acids (Van Soest, 1994). Overall, the influence of tannins on digestibility of dietary 

compounds can cause an impaired animal productive performance characterized by lower 

live weight gains, milk yield and wool growth (Mueller-Harvey, 2006). Hydrolysable tannins 

can be hydrolysed by microbial cleavage of ester bonds and depside linkages but no 
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depolymerisation of CT has been demonstrated under anaerobic conditions (McSweeney, 

Palmer, McNeill & Krause, 2001b). So, HT were considered to have a higher toxicity than 

CT, since products resulting from their hydrolysis might be toxic to ruminants once they are 

absorbed (Reed, 1995). The occurrence of beneficial or detrimental effects of tannins 

depends on the molecular type, dose and time of administration and the animal species 

involved (Frutos et al., 2004; Toral et al., 2013). 

 

Influence of tannins on biohydrogenation 

The inclusion of tannins in ruminants’ diets may be responsible for a modulation of BH. In 

fact, these polyphenolic compounds have been shown to inhibit the last step of BH, reducing 

the production of 18:0 and consequently promoting the accumulation, in the rumen, of trans-

18:1, mostly of t11-18:1 in vitro (Khiaosa-Ard et al., 2009; Vasta, Makkar, Mele & Priolo, 

2009a; Buccioni, Minieri, Rapaccini, Antongiovanni & Mele, 2011; Carreño, Hervas, Toral, 

Belenguer & Frutos, 2015) and in vivo (Vasta et al., 2009b; Vasta et al., 2010a) but also of 

t10-18:1, in some in vivo reports (Vasta et al., 2009b; Alves, Francisco, Costa, Santos-Silva 

& Bessa, 2017), when tannins were added to a concentrate-based diet. However, these 

results are inconsistent, considering that other studies suggested a depression of the first 

steps of BH that led to an enhancement of 18:3n-3 in the ruminal fluid (Kronberg et al., 2007) 

and an accumulation of 18:2 and 18:3 in the milk of dairy ewes fed with sulla (Hedysarum 

coronarium) (Roy et al., 2002; Cabiddu et al., 2009) or even a stimulation of BH with 

decreased 18:2n-6 and 18:3n-3 and increased t11-18:1; c9,t11-18:2 and 18:0 in the rumen 

content of lactating ewes, when grape seed was incorporated in the diet (Correddu et al., 

2015). The influence of tannins on BH can be conditioned by the same factors that determine 

the occurrence of beneficial or detrimental effects caused by these compounds. Indeed, in an 

in vitro study by Carreño et al. (2015), different doses of condensed (Schinopsis lorentzii - 

quebracho and Vitis vinifera - grape) and hydrolysable (Castanea sativa - chestnut and 

Quercus spp. - oak) tannin extracts were analysed (20 to 80 g/kg DM). Curiously, although 

both tannin types promoted an accumulation of 18:2n-6, 18:3n-3 and a decrease of 18:0 with 

a tendency for an increase of t11-18:1, these effects were more pronounced with the lowest 

doses of tannins, particularly with oak extract at 20 g/kg DM. Similarly, Buccioni et al. (2011) 

found an increment of t11-18:1 and c9,t11-18:2 in SAB present in rumen contents with tannin 

extracts from chestnut and quebracho at 49 g/kg DM comparing with the same compounds 

at 82 g/kg DM, except for an increased accumulation of c9,t11-18:2 with CT at 82 g/kg DM 

after 18h of incubation. A reduction of 18:0 production was also verified with both tannin 

types until 18h but this effect was more evident with the higher concentration of HT. So, in 

general, only marginal differences were found between the two types of tannins, regardless 
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their doses in the diet. However, in the report by Vasta et al. (2009a), the higher dose (1 

mg/mL) of CT from carob (Ceratonia siliqua), acacia (Acacia cyanophylla) and quebracho led 

to a greater inhibition of the last BH step than the lower one (0.6 mg/mL). Moreover, Buccioni 

et al. (2011) verified a more pronounced effect of tannins with an increase of the incubation 

time from 6h to 18h. Conversely, in an in vivo experiment by Toral, Hervas, Bichi, Belenguer 

and Frutos (2011), a 1:1 (wt/wt) mixture of quebracho and chestnut tannin extracts did not 

considerably influence the FA profile in milk and no differences between times of exposition 

of dairy ewes to these compounds were observed. Nevertheless, the markedly low dose of 

tannins (10 g/kg DM) or the combination of two sources used by Toral et al. (2011) might be 

the reason for the discrepancies of these results. So, the combined influence of dose and 

time should be considered when evaluating the effect of tannins on BH, since a gradual 

adaptation of rumen microbiota to the presence of polyphenolic compounds can occur 

(Makkar, 2003). Noticeably, the diet´s composition can also modulate the action of tannins. 

In fact, in one in vivo study, only when tannins were added to a concentrate-based diet and 

not to herbage feed, an inhibition of 18:0 production with a consequent accumulation of 

trans-18:1 occurred in the rumen. The lower effects of tannins on ruminal BH observed in 

forage-fed lambs were probably caused by the higher neutral detergent fibre (NDF) and 

PUFA intakes promoting a more favourable environment for the development of BH with the 

treatment, although feed selection and a consequent inferior ingestion of tannins could not 

be exclude for that diet (Vasta et al., 2009b).  

One of the factors that might be responsible for the modulation of BH by tannins consists of a 

modification of rumen bacterial growth and activity. This mechanism was suggested to be 

species-specific with a maintenance of total microbial protein (Min et al., 2002) and bacterial 

abundance (Vasta et al., 2010a), although Khiaosa-Ard et al. (2009) described an 

enhancement of bacterial counts in rumen contents incubated with Acacia mearnsii extract 

(79 g/kg DM of CT). In the study by Vasta et al. (2010a), feeding lambs with 95.7 g/kg DM of 

quebracho tannin extract increased the relative quantity of B. fibrisolvens and tended to 

decrease the one of B. proteoclasticus in the rumen. However, a reduction of B. fibrisolvens 

C211a and also of B. proteoclasticus B316, Eubacterium sp. C12b and S. bovis B315 was 

reported when Lotus corniculatus (CT at 32 g/kg DM) was incorporated in sheep´s diet (Min 

et al., 2002). Additionally, an inhibition of B. fibrisolvens growth was found by Jones, 

Mcallister, Muir and Cheng (1994) with sainfoin (Onobrychis viciifolia) containing CT from 

200 to 600 µg/mL. Moreover, the latter authors verified a floculation of S. bovis (CT≥100 

µg/mL) and a little effect of tannins on the abundance of Prevotella ruminicola and 

Ruminobacter amylophilus. Moreover, Wang, Alexander and McAllister (2009) reported an 

increase of the non-cellulolytic S. ruminantium, P. bryantii and R. amylophilus, a decrease of 

the cellulolytic F. succinogenes and R. albus and no effect on R. flavefaciens during 24h of 
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incubation with phlorotannins (500 μg/mL) from the algae Ascophyllum nodosum. The effect 

of tannins on cellulolytic bacteria is in agreement with their predominant influence on SAB, 

which include the majority of these microorganisms (Michalet-Doreau, Fernandez, Peyron, 

Millet & Fonty, 2001) and have been characterized by a high proportion of BI (Vlaeminck et 

al., 2006; Bessa et al., 2009), compared to LAB (Buccioni et al., 2011; Minieri et al., 2014).  

The structure of tannins and in particular their degree of polymerization may influence the 

effect of these compounds on rumen bacteria. Indeed, Sivakumaran et al. (2004) described a 

higher inhibition of the abundance of B. fibrisolvens CF3 with low and medium molecular 

weight (MW) proanthocyanidins fractions from Dorycnium rectum at 100 µg/mL of medium 

than with the high MW fraction. The last one even stimulated the growth of this bacterium 

during the first 6h of incubation. The greater inhibition of bacterial growth with low and 

medium MW fractions was also reported for B. proteoclasticus B316T with proanthocyanidins 

at 200 µg/mL. Conversely, Durmic et al. (2008) found a higher susceptibility of B. 

proteoclasticus P 18 to tannins than that of B. fibrisolvens JW 11, but the discrepancies 

between results might be due to the use of different bacterial strains. Other bacteria possibly 

involved in BH have shown resistance to tannins. Indeed, Selenomonas species, particularly 

S. ruminantium, were found to be tolerant to CT present in Acacia angustissima (Odenyo et 

al., 2001; Krause, Smith & McSweeney, 2004) and Calliandra calothyrsus (Odenyo et al., 

2001). Moreover, Odenyo et al. (2001) identified two isolates that were resistant to these 

tannin sources, one was classified as Streptococcus spp., with the same profile as S. 

caprinus, and the other was indicated as B. fibrisolvens. Oppositely, strains of B. fibrisolvens 

analysed by Krause et al. (2004) were sensitive to tannins. Still, the latter authors verified 

that Streptococcus gallolyticus, a S. bovis-related species, was tolerant to these compounds. 

Additionally, Brooker et al. (1994) described the resistance of S. caprinus in the rumen of 

feral goats browsing tannin-rich Acacia aneura. 

Besides the influence of tannins on bacterial abundance, the action of these compounds on 

enzymes responsible for FA production has been evaluated. In fact, tannins might not only 

induce morphological changes on the cell wall and consequently alter the growth of some 

bacteria but they have also the ability to adhere to bacterial cell wall binding extracellular 

enzymes and to enzymes secreted by microorganisms (Makkar, 2003; Patra & Saxena, 

2011). Additionally, the phenolic compounds may inhibit lipolysis and PUFA BH by 

entrapping lipids within protein-phenol complexes. This mechanism was proposed for the 

oxidation products of these compounds (quinones) present in red clover (Trifolium pratense) 

and produced through the action of polyphenol oxidase (PPO) (Lee, Tweed, Cookson & 

Sullivan, 2010; Van Ranst, Lee & Fievez, 2011). Moreover, Cabiddu et al. (2010) described a 

stronger inhibition of lipolysis and BH with tannic polyphenols from vetch (Vicia sativa) and 

especially from crimson clover (Trifolium incarnatum) than with quinones. Considering the 
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linoleic acid isomerase (LA-I), Vasta et al. (2009a) found that the activity of this enzyme was 

not affected by tannins, although there was a decrease of total CLA produced by LA-I. 

However, Vasta et al. (2010a) reported a decrease of LA-I activity but the presence of 

tannins did not influence the production of CLA and even caused an accumulation of c9,t11-

18:2. This lack of relation between LA-I activity and CLA produced in the rumen, together 

with an effect of tannins on VFA production (Vasta et al., 2009a) and on the concentration of 

microbial protein (Vasta et al., 2009a; Vasta et al., 2010a) probably indicate that tannins 

interfered with bacterial activity and not with LA-I per se. The influence of polyphenolic 

compounds on VFA production described by Vasta et al. (2009a) consisted of a 

diminishment of iso-butyric (iso-4:0) and iso-valeric (iso-5:0) acids, which are precursors of 

BCFA (Fievez et al., 2012), and of “acetate (2:0)/propionate (3:0)” ratio that might be 

associated with a reduction of cellulolytic bacteria (Vasta & Bessa, 2012). Attending to SCD, 

in the in vivo study by Vasta et al. (2009c), there was a higher expression of the enzyme 

when lambs were fed a forage based diet supplemented with quebracho tannin extract at 

89.3 g/kg DM. This response was verified with forage but not with concentrate feed, which 

can be due to a different effect of tannins on the FA (Vasta et al., 2009b) and protein (Priolo, 

Micol & Agabriel, 2001) absorbed depending on the type of diet. Also, an increase of SCD 

activity (Rana, Tyagi, Hossain & Tyagi, 2012) and indices (Whitney, Lupton & Smith, 2011; 

Rana et al., 2012) under the influence of tannins was reported. 

 

Influence of tannins on muscle fatty acid profile 

The modulation of ruminal BH by tannins affects the muscle FA profile. In fact, the 

supplementation of male goat kids’ diet with extract of Terminalia chebula containing 497.1 

g/kg of total tannins led to an increase of total CLA, particularly of c9,t11-18:2, and a 

decrease of 18:0 in the Longissimus muscle. The effect of the phenolic compounds on BH 

was more pronounced with the higher (3.18 g/kg of BW) than with the lower (1.06 g/kg BW) 

dose of plant extract. These results are probably due to an inhibition of the last step of BH, 

since the same pattern was observed in the ruminal fluid with even an enhancement of 

ruminal t11-18:1, and the increased activity of SCD. An improvement of the nutritional value 

of meat was also obtained when tannins were added to the diet, with a greater deposition of 

total MUFA and PUFA and a decrease of SFA content in the muscle (Rana et al., 2012). 

Similar results were reported by Whitney et al. (2011) when cottonseed hulls replaced 

redberry juniper (Juniperus pinchotii) leaves in lambs’ diet. These authors verified an 

increase of c9,t11-18:2 and a tendency for a reduction of 18:0 in the muscle with the 

increment of the total CT incorporated (31 to 44 g/kg DM). Previously, an enhancement of 

c9,t11-18:2 was also observed by Jerónimo et al. (2010), together with an increase of t11-

18:1 in the muscle, after feeding lambs with rockrose (C. ladanifer) at 250 g/kg of DM (21 g 
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of CT/kg DM) in combination with 6% of sunflower and linseed oils (1:2, vol/vol). However, a 

decrease of 18:0 was only present in abomasal digesta. In the latter study, the inclusion of 

grape seed extract at 25 g/kg of DM (averaging 14 g of CT/kg DM) in the diet did not cause 

major effects on the FA profile of abomasum and muscle. The distinct influence of the two 

tannin sources on the BI pattern was probably due to differences of CT structure and dose or 

the presence of other secondary compounds in leaves and soft stems of C. ladanifer 

(Gomes, Mata & Rodrigues, 2005; Sosa, Alias, Escudero & Chaves, 2005). In a recent study, 

an interaction between increasing levels of C. ladanifer and oil blend (soybean and linseed 

oils; 1:2, vol/vol) was also described but, instead of promoting the accumulation of c9,t11-

18:2 and t11-18:1 in the muscle, it induced an increment of t10-18:1; t10,t12-18:2; t10,c12-

18:2 and t7,c9-18:2 deposition, which can be probably explained by the establishment of t10-

shift caused by a lower forage:concentrate proportion (1:1) (Francisco et al., 2016) than the 

one (9:1) considered in the report by Jerónimo et al. (2010). 

 

1.5.4. Alternative energy sources – Agro-industrial by-products 

The use of agro-industrial by-products in ruminants’ nutrition has been recently adopted as 

an alternative to cereals, in order to reduce feeding costs and to recycle waste material 

without the need for costly waste disposal, as well as to diminish the dependence of animal 

diets on grains that can be consumed by humans. These compounds, including citrus pulp, 

sugar beet pulp and soybean hulls, may replace the cereal without compromising animal 

performance (Bampidis & Robinson, 2006; Vasta et al., 2008). Citrus and sugar beet pulps 

have a high content of pectic substances, which are part of the soluble fibre, and sugars 

(Fegeros, Zervas, Stamouli & Apostolaki, 1995; Leiva, Hall & Van Horn, 2000; Bampidis & 

Robinson, 2006). The sugar beet pulp also presents great amounts of structural fibre, mainly 

NDF composed of readily fermentable polysaccharides (Vasta et al., 2008), but soybean 

hulls are richer in this type of fibre (Garleb, Fahey, Lewis, Kerley & Montgomery, 1988) 

(Table 1). 
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Table 1. Chemical composition of agro-industrial by-products (g/kg dry matter). Adapted from 

Feedipedia (2017). 

Chemical composition 
Dehydrated citrus 

pulp 
Dehydrated beet 

pulp 
Soybean hulls 

Dry matter
1
  896 892 891 

Crude protein 70 93 131 

NDF
2
 211 481 644 

ADF
3
 154 241 462 

Ether extract 24 9 22 

Starch 75 5 52 

Sugar 245 76 16 

Ash 69 77 52 

1
g/kg feed; 

2
neutral detergent fibre; 

3
acid detergent fibre 

 

Influence of alternative energy sources on animal productivity and meat quality 

The replacement of cereal by 24% to 35% of citrus pulp (Caparra, Foti, Scerra, Sinatra & 

Scerra, 2007; Rodrigues et al., 2008; Inserra et al., 2014) or the concomitant substitution of 

forage and 30% of concentrate in the diet (Scerra, Caparra, Foti, Lanza & Priolo, 2001) by 

this by-product showed no adverse effects on lambs’ productivity and meat quality. However, 

a higher incorporation of citrus pulp (45%) caused impaired feed conversion efficiency and 

lower carcass weights and dressing percentage (Caparra et al., 2007), even considering that, 

in a study by Bueno, Dos Santos, Da Cunha, Neto and Veríssimo (2004), the total 

replacement of maize by the alternative energy source did not affect animal performance. 

Moreover, there was no effect of citrus pulp on meat colour in the report by Scerra et al. 

(2001), but Caparra et al. (2007) described a decrease of a* and C* values in the meat with 

the by-product. A similar modification of colour with a reduction of b* was reported by Inserra 

et al. (2014), although the meat colour stability was maintained over storage time. This fact 

might be associated with a decrease of lipid oxidation (Faustman, Sun, Mancini & Suman, 

2010) promoted by high levels of bioactive compounds with antioxidant properties, such as 

polyphenols and flavonoids, found in citrus pulp (Abeysinghe et al., 2007; Tripoli, La Guardia, 

Giammanco, Di Majo & Giammanco, 2007). Moreover, no effect on L* value was observed 

by Inserra et al. (2014). Conversely, Lanza, Priolo, Biondi, Bella and Salem (2001) verified 

an increase of this value with the dietary incorporation of carob and orange pulps (10% of 

each), which was probably due to the presence of CT in citrus pulp (Bampidis & Robinson, 

2006). Additionally, meat sensorial characteristics were not affected in the studies by Scerra 

et al. (2001) and Caparra et al. (2007), even though Scerra et al. (2001) suggested that there 

was probably a slightly increase of meat tenderness, since shear force tended to be lower 

with citrus pulp (Shackelford et al., 1991; Shackelford, Wheeler & Koohmaraie, 1995). 
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There was no effect of beet pulp incorporation in lambs’ diet (70% DM) on subcutaneous fat 

colour and productive performance (Normand et al., 2001). Also, Olfaz, Ocak, Erener, Cam 

and Garipoglu (2005) found no impairment of sheep’s productivity and carcass traits with the 

replacement of forage by 40% and 60% of the by-product. In fact, a beneficial effect of beet 

pulp was even observed by Olfaz et al. (2005), since higher feed efficiency and lower “DM 

intake (DMI)/ average daily gain (ADG)” ratio values were obtained with both dietary 

inclusion levels. Moreover, meat colour and sensorial and physical characteristics were not 

influenced by the incorporation of the by-product, except for a decreased pH with 40% and 

60% of replacement and an increased L* value with the higher level. However, these results 

might be due to stress conditions before slaughter, chilling regime or carcass processing and 

not caused by a direct influence of beet pulp (Olfaz et al., 2005). 

The effect of replacing maize with soybean hulls (up to 15%) was evaluated by Santos et al. 

(2010) and a higher NDF intake with the by-product without any other effect on intake and 

digestibility were described. Moreover, Zervas, Fegeros, Koytsotolis, Goulas and Mantzios 

(1998) and Ludden, Cecava and Hendrix (1995) reported that the inclusion of soybean hulls 

at 20 to 60% DM caused an increase of NDF digestibility. Additionally, Ipharraguerre, Shabi, 

Clark and Freeman (2002) observed an enhancement of NDF and acid detergent fibre (ADF) 

intake and digestibility, together with lower non-structural carbohydrates digestibility, when 

the by-product replaced maize from 10 to 40% DM and these findings were even more 

evident with the highest level of substitution. The results described are mainly due to the 

distinct composition of soybean hulls and cereal (Vasta et al., 2008), which can also affect 

the productive performance of ruminants. In fact, soybean hulls present lower energy content 

(National Research Council [NRC], 2007), as well as smaller size and higher specific gravity 

of particles than cereals (Ipharraguerre & Clark, 2003), and that can contribute a different 

influence of these energy sources on animal growth. Hsu et al. (1987) reported a decrease of 

ADG and feed efficiency of lambs with soybean hulls at 50% of DM in a concentrate-based 

diet comparing with the same amount of maize, but there was no difference between energy 

sources when they were used at higher levels (70% of DM), except for an enhancement of 

DMI. Posteriorly, Ludden et al. (1995) observed an association between increasing levels of 

soybean hulls (up to 60% of DM) and lower ADG and feed efficiency and higher DMI in 

steers. Similar results were found by Ferreira et al. (2011a), although no effect of the energy 

source on ADG of lambs were presented when soybean hulls were gradually incorporated to 

32.4% of DM. The discrepancies among results might be due to distinct levels of dietary 

supplementation with soybean hulls or even to differences between animal species. The 

composition of the basal diet may also constrain the impact of soybean hulls on productive 

performance, considering that, in general, no effect of the by-product on ADG (Anderson, 

Merrill & Klopfenstein, 1988a; Anderson, Merrill, Mcdonnell & Klopfenstein, 1988b), DMI and 
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feed to gain ratio (Anderson et al., 1988b) was found in steers fed forage based-diets, 

although higher DMI and lower feed efficiency with ground soybean hulls at the rate of 2.1 kg 

DM/hd/d than maize were reported in the study by Anderson et al. (1988b). Considering 

meat quality, Rossi et al. (2016) described no modification of this factor when maize was 

replaced for an average of 23% of soybean hulls, except for a decreased meat shear force 

that might indicate an increase of meat tenderness (Shackelford et al., 1991; Shackelford et 

al., 1995). 

 

Influence of alternative energy sources on biohydrogenation and tissue fatty acid 

profile 

The partial replacement of barley by 24% and 35% of citrus pulp was responsible for an 

increase of c9,t11-18:2 in the Longissimus muscle and of t11-18:1 in the plasma of lambs, 

according to Lanza et al. (2015). Additionally, the higher level of incorporation led to an 

enhancement of c9,t11-18:2, together with a decrease of 18:0, in the plasma. A possible 

explanation for these results consists in the presence of phenolic compounds in citrus pulp 

(Abeysinghe et al., 2007) that might include tannins with an influence on ruminal BH (Vasta & 

Luciano, 2011). The increase of c9,t11-18:2 in the muscle was mostly originated by a higher 

activity of SCD, since the desaturation-CLA index (Aldai et al., 2006) was greater with 24% of 

citrus pulp. Moreover, EPA and DHA were increased in the muscle with 35% and 24% of 

cereal replacement, respectively. Also, an increment of “PUFA/SFA” ratio with both levels 

was found probably due to a higher intake of PUFA, particularly of 18:3n-3, with the by-

product (Lanza et al., 2015). 

The reduction of dietary starch content with the replacement of cereal by alternative energy 

sources might prevent the occurrence of the t10-shift. In fact, the incorporation of citrus pulp 

at 24% DM instead of barley and maize in dairy ewes’ diet led to a stimulation of t11 and, 

consequently, to a suppression of the t10 BH pathways. However, the high animal variability 

in the establishment of the t10-shift did not allow for an average of “t10-18:1/t11-18:1” ratio 

value below one with the by-product (Santos-Silva et al., 2016).  

The partial replacement of barley and wheat by 70% (Normand, Bas, Berthelot & Sauvant, 

2005) and barley by 12% (Bodas et al., 2007) of beet pulp was shown to decrease 18:2n-6 

and increase 18:0 in the caudal adipose tissue and muscle of lambs, respectively. In the 

study by Normand et al. (2005), there was also a reduction of 18:3n-3 and 18:1 isomers with 

the by-product. These results may be due to a higher stimulation of BH with beet pulp 

compared to cereals, since the alternative energy source has a greater content of NDF 

(Vasta et al., 2008), which might promote the activity of cellulolytic bacteria involved in BH 

(Vasta & Bessa, 2012). Moreover, Normand et al. (2005) and Bodas et al. (2007) described 
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an increase of 16:0 with beet pulp. This result may be explained by an enhancement of 

“acetate/propionate” ratio, although that was only evaluated by Bodas et al. (2007). In fact, 

the highest acetate and the lowest propionate productions obtained with the replacement of 

cereal by alternative energy sources were reported by Ipharraguerre et al. (2002) and 

Bampidis and Robinson (2006). Oppositely to Normand et al. (2005) and Bodas et al. (2007), 

Olfaz et al. (2005) verified an increase of 18:2n-6 and a decrease of 18:0 in the muscle of 

rams. However, these discrepancies might be due to a substitution of forage instead of 

cereal by beet pulp (40 and 60%) in the study by Olfaz et al. (2005). Also, Olfaz et al. (2005) 

found a reduction of c9-18:1 with 60% and of AA with both levels of the by-product. Although, 

to date, there are no studies evaluating the influence of beet pulp on the establishment of 

t10-shift, Renna, Collomb, Munger and Wyss (2010) described lower t7,c9-18:2; t10,c12-18:2 

and t10,t12-18:2 and higher t11,c13-18:2; t9,t11-18:2 and t7,t9-18:2 in the milk of beet pulp- 

than cereal-supplemented cows but no differences of t11-18:1 and c9,t11-18:2 were 

observed between dietary treatments. 

Recently, Rossi et al. (2016) reported an increase of SFA and a decrease of UFA in the 

muscle with the replacement of cereal by soybean hulls, similarly to that obtained with beet 

pulp in the study by Bodas et al. (2007). Also, an enhancement of 16:0, t9-18:1 and 18:3n-3 

and a reduction of c9-18:1 was observed with soybean hulls diet.  
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1.6. Objectives 

 

The general objective of the present study was to acquire insight about ruminal BH and how 

it can be modulated by stress stimuli promoted by tannins and high starch content in the 

diets. The two main specific objectives consisted in evaluating the modulation of BH by 

tannin extracts, particularly the stimulation of t11-18:1 production in the rumen (in vitro and in 

vivo experiments), and understanding the biological process that leads to the establishment 

and development of t10-shift (two in vivo trials). So, the following purposes were 

accomplished:  

 

Experiment 1 – In vitro batch incubation of fistulated sheep’s rumen content with condensed 

(quebracho, grape seed and C. ladanifer) and hydrolysable (chestnut) tannin extracts at 100 

g/kg DM (Chapter 2):  

 

- Evaluate the hypothesis of a more effective modulation of BH by C.ladanifer than by 

the other most common sources of tannins in stimulating t11-18:1 production. 

 

- Compare modifications on ruminal BH caused by the addition of the four tannin 

extracts, giving emphasis to C. ladanifer. 

 

Experiment 2 – Supplementation of fistulated sheep’s diet with extracts of hydrolysable 

(chestnut) and condensed (mimosa) tannins and a mixture of the two sources at 100 g/kg 

DM (Chapter 3): 

 

- Compare the influence of the two types of tannins on ruminal BH.  

 

- Evaluate if the mixture of both tannin sources was more effective in modulating BH 

than their isolated use. 

 

- Analyse the impact of the tannin extracts in specific rumen bacteria possibly involved in 

BH. 

 

- Evaluate the impact of the tannin extracts on rumen bacterial biomass. 
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Experiment 3 – Feeding fistulated sheep with a wheat grain-based diet (723 g/kg DM) 

supplemented with sunflower oil at 41 g/kg DM, in order to analyse the establishment and 

progression of t10-shift and, consequently, to have a better knowledge of how to prevent 

its occurrence (Chapter 4): 

 

- Evaluate the time necessary for the onset of t10-shift and the constancy of the t10-

shifted metabolic pathways. 

 

- Relate the animal feed intake and rumen pH with the progression of t10-shift 

 

Experiment 4 – Replacement of cereal with alternative energy sources (dehydrated 

citrus pulp, dehydrated beet pulp or soybean hulls) in lambs’ finishing diets incorporated 

with a blend of soybean (59 g/kg DM) and fish (10 g/kg DM) oils (Chapter 4): 

 

- Evaluate if the substitution of cereal with low starch energy sources prevents the 

establishment of t10-shift, leading to a reduction of t10-18:1 and a concomitant 

increase of t11-18:1 and c9,t11-18:2 in the meat and subcutaneous fat.  

 

- Analyse the effect of alternative energy sources on animal productive performance 

and meat quality traits.  
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CHAPTER 2 – Modulation of in vitro rumen biohydrogenation by Cistus 

ladanifer tannins compared with other tannin sources 
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ABSTRACT 

Tannins are polyphenolic compounds able to modify the ruminal BH of unsaturated fatty 

acids, but their activity may vary among different tannin sources. The effect of rockrose 

(Cistus ladanifer) on BH has never been compared with other more common tannin sources. 

Tannin extracts (100 g/kg substrate DM) from chestnut (CH, Castanea sativa) (750 g/kg of 

mostly hydrolysable tannins), quebracho (QB, Schinopsis spp.) (720 g/kg of condensed 

tannins), grape seed (GS, Vitis vinifera) and rockrose (CL, Cistus ladanifer) (950 g/kg of 

condensed tannins) were incubated in vitro for 6 h with ruminal fluid using as substrate a 

feed containing 60 g/kg of sunflower oil. A control treatment with no added tannins was also 

included. Compared to control, GS and CL, but not CH and QB, increased (P < 0.05) the 

disappearance of 18:2n-6 with a consequent higher production of c9,t11-18:2 and t11-18:1. 

However, no differences among treatments (P > 0.05) were observed for the disappearance 

of c9-18:1 and 18:3n-3. The production of 18:0 was not different (P > 0.05) among 

treatments, although its proportion in the total BH products was lower (P < 0.05) for GS than 

for the other treatments. Condensed tannins from GS and, in less extent, from CL stimulates 

the first steps of BH, without a clear inhibition of 18:0 production.  

 

Keywords: Biohydrogenation; tannins; fatty acids; rumen; Cistus ladanifer 

 

 

2.1. Introduction 

 

Tannins are phenolic compounds that represent an important class of plant secondary 

metabolites, presenting a variety of molecular weights and structures. Based on their 

molecular structure, tannins are classified as hydrolysable, condensed or a combination 

thereof (Schofield, Mbugua & Pell, 2001). It has been suggested that these compounds 

modify rumen microbial activity (McSweeney et al., 2001b), including the BH of dietary UFA 

(Vasta & Bessa, 2012). Ruminal BH involves an extensive metabolization of dietary UFA by 

sequential isomerizations, hydrogenations, as well as hydrations and dehydrations, 

originating numerous BH products, including CLA isomers, trans-octadecenoates, OH- and 

oxo-C18 FA and, as the major end product, the 18:0 (Shingfield & Wallace, 2014; Bessa et 

al., 2015). Therefore, BH is the main determinant of the occurrence of trans-FA, conjugated 

FA, and of the highly saturated nature of ruminant edible fats. The potential of tannins to 

modulate BH has recently received considerable attention, but inconsistent results have 

been reported (Kronberg et al., 2007; Benchaar & Chouinard, 2009; Cabiddu et al., 2009; 

Jayanegara, Kreuzer, Wina & Leiber, 2011). Factors that may be responsible for the 
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variability of tannin effects on BH include their molecular nature and quantity in the diet, the 

basal diet composition and the duration of utilization (Toral et al., 2011; Toral et al., 2013; 

Carreño et al., 2015). Quebracho (Schinopsis spp.) and chestnut (Castanea sativa) tannin 

extracts are commercially available and the most studied sources of condensed and 

hydrolysable tannins, respectively (Vasta et al., 2009a; Vasta et al., 2010a; Buccioni et al., 

2011). Despite their commercial availability, grape seed (Vitis vinifera) tannin extracts or 

ground grape seeds have been scarcely studied in vivo (Jerónimo et al., 2010; Correddu et 

al., 2015; Correddu, Gaspa, Pulina & Nudda, 2016) and only one in vitro study was published 

recently (Carreño et al., 2015). Rockrose (Cistus ladanifer) is an evergreen spontaneous 

Mediterranean tanniferous shrub reported to modulate ruminal BH and to modify the FA 

composition of lamb meat when incorporated in oil supplemented diets (Jerónimo et al., 

2010; Jerónimo et al., 2012; Francisco et al., 2015). The effects of C. ladanifer plant on FA 

metabolism are mostly due to its high content of condensed tannins, which range from 40 to 

160 g/kg DM (Guerreiro et al., 2016b). Considering the influence of C. ladanifer on ruminal 

lipid metabolism, we hypothesize that its tannins will be more effective in modulating the BH 

than the most common sources of tannins. Attending to the fact that C. ladanifer tannins are 

not commercially available and that their effects on BH have never been directly compared 

with other tannin sources, the present study aimed to compare the modifications on ruminal 

BH evaluated in vitro caused by the addition of four tannin extracts, including that from C. 

ladanifer.  

 

 

2.2. Material and methods 

 

2.2.1.  Animal handling and management  

Animal handling followed EU Council Directive 2010/63/EU (EC, 2010) concerning animal 

care and rumen-fistulated animals were used after approval of the ethical committee of the 

Faculty of Veterinary Medicine, University of Lisbon. Two sheep approximately 1 year old 

and of 40 kg live weight were used as rumen content donors. The animals were fed 500 g of 

a commercial compound feed and 800 g of grass hay, both divided into two equal meals per 

day (9h30 and 17h00). The compound feed comprised maize, soybean, sunflower, wheat, 

wheat bran and rape and contained 219 g/kg DM of crude protein; 95 g/kg DM of crude fibre; 

67 g/kg DM of ash; 35 g/kg DM of ether extract; 4 g/kg DM of sodium and a vitamin pre-mix 

providing 7500 IU/kg of vitamin A; 1,500 IU/kg of vitamin D3 and 7.5 mg/kg of vitamin E. The 

grass hay contained 35 g/kg DM of crude protein and 764 g/kg DM of neutral detergent fibre. 
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2.2.2. Tannin extracts 

We used commercial extracts including a crude extract of quebracho (Unitán, Argentina) 

declared to contain 720 g/kg of condensed tannins and a crude extract of chestnut 

(Farmatan®; Tanin Sevnica, Slovenia) described as having 750 g/kg of tannins of which 

637.5 g/kg were hydrolysable and 112 g/kg were condensed tannins. The other two extracts 

were purified in Sephadex LH 20 (Amersham Pharmacia Biotech, Portugal) in our laboratory 

according to Dentinho, Belo and Bessa (2014) and included a grape seed extract (AHD 

international LLC, Atlanta, GA, USA) and a C. ladanifer extract containing 950 g/kg of 

condensed tannins.  

 

2.2.3. In vitro procedures 

Before the morning meal, about 1 L of ruminal content was collected from each fistulated 

sheep and immediately transferred to the laboratory in a thermostatic box at 39 ºC. It was 

then immediately filtered through four layers of cheesecloth and mixed with McDougall buffer 

solution, under CO2 flux and warming at 39 ºC, in a proportion of 1:2 (ruminal fluid:buffer 

solution, vol/vol). The rumen buffered solution was distributed into Hungate tubes (15 cm×2.5 

cm) containing 60 mg of feed substrate, with no added tannins (Control) or with 6 mg of 

chestnut (CH), quebracho (QB), grape seed (GS) or C.ladanifer (CL) tannin extract. The 

substrate used was a ground pellet feed containing dehydrated alfalfa (700 g/kg), wheat 

grain (105 g/kg), soybean meal (110 g/kg) and sunflower oil (60 g/kg), as well as minerals 

and premix (25 g/kg). The chemical composition of the substrate was 902 g/kg DM, 175 g/kg 

DM of crude protein, 113 g/kg DM of starch, 81 g/kg DM of ether extract and 213 g/kg DM of 

crude fibre. The final concentration of tannin extract was 100 g/kg DM, considering that the 

substrate presented 894 g/kg DM. The Hungate tubes were filled with CO2, closed with a 

butyl rubber stopper and screw cap, then incubations were conducted on a water bath 

(Unitronic, J.P. Selecta, Barcelona, Spain) at 39 ºC with gentle agitation for 6 h. In each run, 

duplicate tubes from each treatment and incubation time (0 and 6h) were obtained, with one 

tube being used for pH measurement and VFA analysis and the other for long chain FA 

analysis. Both 0 and 6 h tubes were directly frozen and stored at -20 ºC until further analysis. 

The tubes for FA analysis were freeze-dried (ScanVac CoolSafe, LaboGene ApS, Lynge, 

Denmark), weighted and stored at -20 ºC until analysis. The incubation procedure was 

replicated six times in six consecutive weeks. 
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2.2.4. Analytical procedures  

Feed chemical composition was determined using routine and widespread methods 

described previously (Francisco et al., 2015). Volatile fatty acids were directly analysed by 

gas chromatography with flame ionization detection (GC-FID) in a Shimadzu GC-2010 Plus 

chromatograph (Shimadzu, Kyoto, Japan) equipped with a Nukol capillary silica column (30 

m; 0.25 mm i.d.; 0.25 µm film thickness, Supelco Inc., Bellefonte, PA, USA) as described in 

the literature (Oliveira, Alves, Santos-Silva & Bessa, 2016). Freeze-dried rumen samples 

were transesterified into FA methyl esters by using a combined basic followed by acidic 

catalysis (Alves et al., 2013b). The internal standard was 19:0 (1 mg/mL). Fatty acid methyl 

esters were separated by GC-FID using a Shimadzu GC-2010 Plus chromatograph equipped 

with a TR-CN100 silica capillary column (100 m; 0.25 mm i.d.; 0.20 µm film thickness; 

Tecknokroma, Barcelona, Spain) according to procedures described in the literature.(Oliveira 

et al., 2016) Identification of FA methyl esters (FAME) and DMA was achieved by 

comparison of retention times with those of authentic standards (FAME mix 37 components 

from Supelco Inc., Bellefont, PA, USA, and a Bacterial FAME mix from Matreya LLC, 

Pleasant Gap, PA, USA) and by confirmation with gas chromatography-mass spectrometry 

(GC-MS) in a Shimadzu GC-MS QP 2010 Plus chromatograph (Kyoto, Japan) (Alves et al., 

2013b). 

 

2.2.5. Calculations and statistical analysis  

Balances of the VFA and FA (except C18 FA) during the incubation period were calculated 

directly from their concentrations at 6 h minus 0 h incubation times. In each treatment and 

incubation run, the direct balance between the amounts present in the pairs of tubes from 0 h 

and 6 h was occasionally inconsistent owing to the random variation of the total amount of 

FA in each independent tube. Thus, we averaged the content of C18 FA (in µg/g DM of tube 

contents) present in the pair of tubes (0 h and 6 h) of each treatment in each incubation run, 

assuming that no C18 FA undergo carbon chain elongation or shortening and that the de 

novo synthesis of C18 FA would be negligible owing to the abundance of C18 FA in 

substrate (Demeyer, Henderson & Prins, 1978). The differences between 6 h and 0 h were 

then computed using the mean C18 FA content in each pair of tubes and the relative 

distribution of C18 FA (in % of total C18 FA) present in the tube from 0 h and 6 h incubation 

times. 
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The calculations for the balance of 18:0 are given here as an example:  

1) [∑C18m] = ([∑C180h] + [∑C186h])/2 

 

2) [18:0m0h] = ([∑C18m] × P(18:00h)/100) and [18:0m6h] = ([∑C18m] × P(18:06h)/100) 

 
3) [18:0B] = [18:0m6h] - [18:0m0h] 

 

Where 

 [∑C180h] and [∑C186h], content (µg/g DM) of total C18 FA in 0 h and 6 h incubation tubes, 

respectively. 

 [∑C18m], averaged content (µg/g DM) of total C18 FA in both 0 h and 6 h incubation 

tubes 

P(18:00h) and P(18:06h), % of 18:0 in total C18 FA in 0 h and 6 h tubes, respectively. 

[18:0m,0h] and [18:0m,6h], content of 18:0 (µg/g DM) expressed on [∑C18m] basis 

[18:0B], balance (µg/g DM) of 18:0 during incubation period (6 h – 0 h). 

 

The proportional disappearance of dietary unsaturated C18 FA was then calculated as: 

4) Disappearance of FA (%) = (([FAm,0h] - [FAm,6h])/ [FAm,0h]) × 100 

Where FAm can be any dietary unsaturated FA. 

 

All C18 FA that displayed a positive balance during the 6 h of incubation were considered 

here as BH products. The relative yields of the main classes of BH products (18:0, 18:1 

isomers; 18:2 isomers and oxo-FA) were computed from the C18 FA balance data and 

expressed in % of total BH products, as exemplified for 18:0: 

5) (18:0Y) = ([18:0B] × 100)/ [BHPB] 

Where,  

(18:0Y), relative yield of 18:0 expressed as percentage of total BH products; 

[BHPB], sum of BH products. 
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Volatile FA and FA differences between 6 and 0 h were computed and analysed as a 

randomized complete block design using the MIXED procedure of SAS (SAS Inst. Inc., 2002, 

Cary, NC), where each run was treated as a random block and inclusion of tannin extracts as 

a fixed factor. The variance homogeneity was checked and, when justified, the variance 

heterogeneity structure was accommodated in the model. When significant effects of 

treatments were detected, the least square means were compared using the pairwise Tukey 

comparison test.  

 

 

2.3. Results 

 

2.3.1. Fermentation pattern 

The total VFA production averaging 8.1 mmol/L was not affected by inclusion of tannin 

extracts (Table 2). Consistently, no individual VFA differed among treatments and the acetic 

acid (2:0) predominated in all treatments. Minor but significant differences in the pH variation 

were observed between CL and Control, with a slight pH increase for CL and a decrease for 

Control treatments.  

 

 

Table 2. Effect of tannin extracts on volatile fatty acids (VFA) balance (mmol/L) and pH 

change during incubation (difference between 6 and 0h). 

1
, Control, no added tannins; CH, chestnut; QB, quebracho; GS, grape seed; CL, Cistus ladanifer 

tannins; 
2
, standard error of mean. Means within a row with different letters are significantly different (P 

˂ 0.05).  
 

 

Item 
Treatments

1 

SEM
2
 P-value 

Control CH QB GS CL 

VFA        

      2:0 4.14 3.83 4.20 3.83 4.29 0.406 0.884 

      3:0 2.84 2.60 2.82 2.55 2.08 0.214 0.127 

iso-4:0 0.07 0.03 0.03 0.09 -0.03 0.065 0.686 

      4:0 1.19 1.18 1.19 1.16 1.08 0.122 0.957 

iso-5:0 0.12 0.04 0.06 0.15 0.10 0.047 0.494 

      5:0 0.23 0.22 0.30 0.20 0.19 0.065 0.749 

      Total  8.59 7.85 8.61 7.93 7.67 0.590 0.699 

pH -0.07
b
 -0.04

ab
 -0.05

b
    0.04

ab
 0.08

a
 0.032 0.008 
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2.3.2. C18 fatty acid balance and biohydrogenation 

Table 3 shows the effect of tannin extracts on the balance of C18 FA during the 6 h of 

incubation. The c9-18:1, 18:2n-6 and 18:3 (mostly c9,c12,c15 isomer but also including 

minor non identified 18:3 isomers) presented large negative balances in all treatments, but 

significant differences among treatments were only observed for 18:2n-6. The disappearance 

of 18:2n-6 was larger (P < 0.05) for GS than for Control, CH and QB treatments, whereas the 

disappearance of 18:2n-6 with CL did not differ (P > 0.05) from Control and GS but was 

larger (P < 0.05) than for CH and QB treatments. The c11-18:1, the unresolved peak of 

conjugated t,t-18:2 and c9,t11-18:2 also presented negative balances, except for c9,t11-18:2 

in the GS and CL treatments. All other C18 FA presented positive balances, with 18:0 (≈1120 

µg), unresolved 10-/9-oxo 18:0 (≈340 µg), c12-18:1 (≈169 µg) and t11-18:1 showing the 

largest increases. The t11-18:1 production was affected by the treatments, with larger (P < 

0.05) increases with GS and CL than with Control, CH and QB treatments. The t10-18:1 

production was significantly higher with GS compared with Control but not different from CL 

treatment. The t10-/t11-18:1 ratio remained low (0.34) and did not differ (P = 0.605) among 

treatments (data not shown). Grape seed treatment also presented lower production of 

unresolved 10-/9-oxo-18:0 when compared with CH and QB, although not differing from 

Control and CL treatments.  
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Table 3. Effect of tannin extracts on C18 fatty acids (FA) balance (µg/g DM of fermenters 

content) during incubation (difference between 6 and 0h). 

Item 
Treatments

1
 

SEM
2
 P-value 

Control CH QB GS CL 

C18 FA loss        
c9-18:1  -789 -734 -740 -851 -907 48.5 0.060 
c11-18:1    -41

b
 -31

b
 -20

ab
 -2

a
 -29

b
 5.7 0.002 

18:2n-6  -897
ab

 -842
a
 -808

a
 -1212

c
 -1149

bc
 70.5 0.001 

conj.t,t-18:2
3
    -38

b
 -31

ab
 -30

ab
 -20

a
 -25

ab
 3.5 0.024 

c9,t11-18:2
4
 -24

b
±2.2 -10

ab
±7.4 -15

b
±2.6 --

a
 --

a
  0.001 

18:3
5
 -325±18 -300±18 -288±20.1 -344±18 -333±18 18.4 0.232 

C18 FA loss -2147
ab

 -1926
a
 -1909

a
 -2387

ab
 -2467

b
 122.2 0.008 

C18 FA gain        
18:0 1205±59 1143±59 1082±66 986±144 1200±59  0.480 
18:1 isomers        

t6/t7/t8 33
b
 31

b
 31

b
 77

a
 72

a
 8.0 <0.001 

t9 69
b
 41

c
 67

b
 93

a
 58

bc
 5.4 <0.001 

t10 50
b
 37

b
 41

b
 107

a
 80

ab
 10.1 0.001 

t11 135
b
 141

b
 123

b
 300

a
 244

a
 18.6 <0.001 

t15 31 26 19 13 25 4.6 0.125 
t16 21 15 14 13 16 2.5 0.174 

∑trans-18:1
6
 356

b
 312

b
 299

b
 595

a
 475

ab
 46.8 0.001 

c12 150 129 132 219 213 33.6 0.112 
∑cis-18:1

7
 158 136 124 225 217 27.6 0.055 

18:2 isomers        
t11,c15-18:2 3 9 8 11 6 2.1 0.083 

n.c.-18:2
8
 19

ab
±4.4       8

b
±4.4        9

b
±4.9     43

ab
±10     30

a
±4.4  0.011 

c9,t11-18:2
4
 --

b
 --

ab
 --

b
     11

a
±7.4     13

a
±7.4  0.001 

oxo-18:0         
8-oxo- 20 17 18 17 14 1.6 0.246 

10-/9-oxo- 340
abc

 300
c
 306

bc
 400

a
 365

ab
 16.3 0.001 

12-/13-oxo- 84 70 72 74 71 5.5 0.167 
C18 FA gain 2147

ab
 1926

b
 1909

b
 2387

ab
 2467

a
 122.2 0.008 

1
, Control, no added tannins; CH, chestnut; QB, quebracho; GS, grape seed; CL, Cistus ladanifer 

tannins; 
2
, standard error of mean; 

3
, conjugated trans, trans-18:2 isomers; 

4
, the c9,t11-18:2 line is 

spited between loss and gain balance, although the statistical analysis is common; 
5
, c9,c12,c15-18:3 

plus other minor 18:3 isomers; 
6
, also includes t4- and t5-18:1 isomers; 

7
, also includes the c13- and 

c15-18:1 isomers; 
8
, other non-conjugated 18:2 isomers. Means within a row with different letters are 

significantly different (P ˂ 0.05). 

 

Proportional disappearances of c9-18:1, 18:2n-6 and 18:3 are presented in Table 4. The 

proportional disappearance of c9-18:1 was quite low and did not differ (P > 0.05) among 

treatments. Proportional disappearances of 18:2n-6 and 18:3 were higher (P < 0.05) with GS 

and CL than with Control and the other tannin extracts. The proportional distribution of the 

BH products is also presented in Table 3. The 18:0 comprises about 58% of BH products for 

Control, Chestnut and Quebracho. Grape tannins reduced (P < 0.05) the proportion of 18:0 

formed to 42% and C. ladanifer presented an intermediate value (52%), not differing from 

any other treatment. Consistently, the 18:1 BH products were lower for Control, CH and QB 

treatments (≈22%) and higher for GS (36%) with CL presenting an intermediate value (28%). 

The 18:2 BH products only had a positive, but small, contribution to the BH products in GS 
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and CL treatments, presenting negative values for the other treatments. The oxo-18:0 FA 

represented a large proportion of BH products (≈21%) with CL treatment presenting a slightly 

but significantly lower contribution than Control. 

 

 

Table 4. Effect of tannin extracts on biohydrogenation (%) and relative distribution of 

biohydrogenation products (%) between 0 and 6h of incubation. 

Item 
Treatment

1
 

SEM
2
 P-value 

Control CH QB GS CL 

Disappearance (%)        
c9-18:1

3
 18.5 17.8 18.0 20.8 22.2 1.15 0.037 

18:2n-6 31.6
b
 27.8

b
 28.9

b
 41.9

a
 45.3

a
 1.58 <0.001 

18:3
4
 41.0

b
 41.2

b
 41.1

b
 51.1

a
 48.9

a
 1.76 0.001 

Products (%)        
18:0 56.6

a
 59.1

a
 57.6

a
 41.7

b
 52.5

ab
 2.62 0.001 

18:1        
t11 6.5

b
 7.1

b
 6.6

b
 13.4

a
 9.6

b
 0.79 <0.001 

t10 2.4
b
 1.9

b
 2.2

b
 4.6

a
 3.3

ab
 0.37 <0.001 

Other trans 7.4
ab

 6.2
b
 7.0

ab
 8.5

a
 7.1

ab
 0.47 0.033 

Total cis 7.8 6.8 6.9 9.8 8.9 1.01 0.198 
Total 23.0

b
 21.2

b
 22.3

b
 35.7

a
 27.7

ab
 2.40 0.003 

18:2 -2.2
c
 -1.1

bc
 -1.6

bc
 2.1

a
 0.7

ab
 0.60 <0.001 

c9,t11 -1.1
b
 -0.5

ab
 -0.7

b
 0.6

a
 0.5

a
 0.22 <0.001 

Total -2.2
c
 -1.1

bc
 -1.6

bc
 2.1

a
 0.7

ab
 0.60 <0.001 

oxo-18:0 22.6
a
 20.8

ab
 21.8

ab
 20.5

ab
 19.1

b
 0.99 0.030 

1
, Control, no added tannins; CH, chestnut; QB, quebracho; GS, grape seed; CL, Cistus ladanifer 

tannins; 
2
, standard error of mean; 

3
, no significant differences among means were detected in the pos 

hoc multiple comparison; 
4
, c9,c12,c15-18:3 plus other minor 18:3 isomers. Means within a row with 

different letters are significantly different (P ˂ 0.05).  
 

 

2.3.3. Microbial structural fatty acids and dimethylacetals 

The balance between 0 and 6h of incubation of other non-C18 FA, mostly derived from 

microbial de novo synthesis, and DMA are presented in Table 5. Most of these FA and DMA 

presented a positive balance and only four FA (iso-13:0, anteiso-15:0, 15:0 and 17:0) and 

two DMA (anteiso-15:0 and iso-16:0) presented differences among treatments. The CH and 

QB treatments showed consistently similar balance values to Control for all FA and DMA 

except iso-13:0 FA, which presented lower (P < 0.05) values than Control. Most of the 

treatment differences observed was associated with GS and CL treatments. Grape seed 

presented lower (P < 0.05) balances of 15:0, 17:0 and iso-16:0 DMA than Control and lower 

(P < 0.05) anteiso-15:0 than CH treatment. The CL treatment presented lower balances of 

anteiso-15:0 and 17:0 than the Control treatment. Curiously, the pattern observed regarding 

the influence of the treatments on 15:0 and iso-16:0 DMA was symmetric to that described 

for the proportional contribution of trans-18:1 isomers to the total BH products. 
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Table 5. Effect of tannin extracts on other fatty acids (FA) and dimethylacetals (DMA) 

balance (µg/g DM of fermenters content) during incubation (difference between 6 and 0h). 

Item 
Treatment

1
 

SEM
2
 P-value 

Control CH QB GS CL 

FA        
14:0 15.7  16.7 14.1 16.1 16.1 3.03 0.956 
16:0 318.9 372.7 414.2  448.8 383.9 76.27 0.794 

cyclo-17:0 7.5 0.9 6.6 5.3 9.4 2.85 0.360 
20:0 23.9   25.9 32.0 32.6 31.4 6.57 0.825 
22:0 11.7 16.0 13.3 18.8 16.8 5.16 0.874 
23:0 -4.0

b
 -2.9

b
 -6.8

ab
 19.5

a
 -13.7

b
 4.77 0.011 

24:0 7.6 23.9 23.7 16.0   6.4 9.51 0.468 
26:0 24.2 23.0 13.9 62.6 43.1 14.93 0.194 

OBCFA
3
        

i-13:0 4.2
a
 0.6

b
 0.4

b
 2.9

ab
 1.9

ab
 0.81 0.018 

13:0 3.9 3.9 2.8 3.9 3.3 1.67 0.987 
i-14:0 6.3 6.0 4.8 5.1 4.9 1.41 0.925 
i-15:0 9.9 3.4 13.7 7.9 6.7 3.48 0.372 

a-15:0 55.4
a
 42.3

ab
 52.6

ab
 37.2

ab
 35.3

b
 4.80 0.025 

15:0 36.3
a
 30.6

a
 31.1

a
 12.1

b
 23.2

ab
 4.46 0.009 

i-16:0 15.5 11.4 16.1 10.3 10.9 2.10 0.205 
i-17:0

4
 13.7 8.6 21.6 8.2 10.0 3.91 0.170 

a-17:0 26.9 21.8 25.9 16.9 18.7 3.67 0.310 
17:0 34.9

a
 27.8

abc
 33.4

ab
 20.5

bc
 17.5

c
 3.41 0.006 

∑OBCFA 171.4
a
 130.4

ab
 159.6

ab
 101.4

b
 106.6

ab
 16.26 0.021 

DMA        
i-15:0 4.1 1.7 -2.8 -1.1 -1.5 1.96 0.159 
a-15:0 2.6

ab
 6.7

a
 1.5

ab
 -5.4

b
 -1.0

ab
 2.65 0.011 

15:0 5.3 3.6 1.3 2.5 4.0 1.70 0.571 
i-16:0 37.0

a
 45.8

a
 44.7

a
 9.6

b
 28.7

ab
 5.49 0.001 

16:1
5
 4.2 11.5 13.3 3.9 4.1 2.28 0.018 

17:0 0.4 -6.7 -3.4 -2.2 -4.5 1.79 0.078 
18:1 -0.7 3.4 4.7 -1.8 1.2 3.31 0.641 

Total DMA
6
 49.1

a
 51.5

a
 42.4

ab
 -4.7

b
 23.0

ab
 12.07 0.021 

1
, Control, no added tannins; CH, chestnut; QB, quebracho; GS, grape seed; CL, Cistus ladanifer 

tannins; 
2
, standard error of mean; 

3
, odd- and branched-chain FA; 

4
, also includes c9-16:1; 

5
, no 

significant differences among means were detected in the pos hoc multiple comparison; 
6
,
 
also 

includes 12:0, 13:0, i-14:0, 14:0 DMA. Means within a row with different letters are significantly 
different (P ˂ 0.05). 
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2.4. Discussion 

 

In the small-scale and short-term (6h) in vitro system used, the high dose of tannin extracts 

(100 g/kg DM) incorporated in the substrate did not reduce the fermentative activity, as 

revealed by the absence of effects on VFA production compared with Control.  

Quebracho and chestnut commercial-grade tannins have been reported to modulate ruminal 

BH (Buccioni et al., 2011; Carreño et al., 2015). Thus, the use of these tannin sources was 

expected to provide some comparability with the literature, allowing the evaluation of the 

relative efficacy of the less studied grape seed and particularly C. ladanifer tannins. 

However, our results clearly indicate that, in our experimental conditions, GS and CL were 

effective in modulating ruminal BH, whereas QB and CH were not. It is not clear why both 

QB and CH did not modify the BH in the present experiment. The purity of GS and CL 

extracts used in this trial was greater than that of CH and QB extracts, since GS and CL 

were purified in Sephadex whereas CH and QB extracts were from a commercial grade, 

which resulted in a higher dose of tannins in both GS and CL than in CH or QB. This 

suggests that the difference observed between commercial-grade and purified tannin extract 

might be due to the dose of tannins effectively applied in the incubation tubes, although the 

effect of distinct procedures of tannin extraction and purification might also influence their 

activity as BH modulators. In fact, the dose of tannins supplied by commercial-grade extracts 

is large enough to be expected to elicit an effect in ruminal BH (Vasta et al., 2009a).  

Recently, it was shown that the effects of tannins on BH might be dose dependent and that 

there are interactions between the tannin type and the dose used (Buccioni et al., 2011; 

Carreño et al., 2015). Commercial tannin extract from quebracho seems to be more active on 

BH at lower doses and its effects disappear when included at 80 g/kg DM (Carreño et al., 

2015), which might explain the absence of effect at 100 g/kg DM reported by us and by other 

authors (Ishlak, Gunal & AbuGhazaleh, 2015). Also, the effects of GS and CH on BH were 

described to be tendentiously attenuated at higher doses, although not disappearing 

completely at 80 g/kg DM (Carreño et al., 2015). In our experiment, the CH was ineffective at 

100 g/kg DM but GS was highly effective at even a higher dose, considering that we used 

purified grape seed extract. There is no available information about the effects of CL on BH 

at lower doses but at 100 g/kg DM it was only slightly less effective than GS in modulating 

ruminal BH. It is not clear to us how higher doses of tannins might induce milder effects on 

BH than low doses. Nevertheless, it is striking that in our experiment the purified extracts, 

that supplied higher tannin dose than the commercial tannin extracts, elicited a stronger 

response on BH.  

The reported effects of tannins on in vitro ruminal BH generally involve an inhibition of the 

last step of BH with reduced formation of 18:0 and accumulation of trans-18:1 isomers and 
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sometimes a reduction of the disappearance of 18:2n-6 and 18:3n-3 (Khiaosa-Ard et al., 

2009; Buccioni et al., 2011; Carreño et al., 2015). In our study, the effects of GS and CL on 

ruminal BH point to a higher disappearance of 18:2n-6 and 18:3 and an increased 

accumulation of t11-18:1 at 6h of incubation. The formation of t10-18:1 and other minor 

trans-18:1 isomers also increased with GS, but the relation between t10-/t11-18:1 remained 

fairly constant, which indicates a general accumulation of trans-18:1 isomers without 

modification of the common BH pathways.  

Despite the increase in trans-18:1 observed in GS and CL, the formation of 18:0 was not 

reduced. The relative contribution of 18:0 for the total BH products formed was reduced for 

GS treatment, which can be explained by a stimulation of the initial steps of BH and not by 

an inhibition of 18:0 formation. Similarly, increased production of t11-18:1 induced by CL was 

mostly due to the increased BH of 18:2n-6 and clearly not by the inhibition of 18:0 

production, which confirms our previous data (Guerreiro et al., 2016a). It is not clear if the 

tannin stimulation of initial steps of BH reported here was a dose dependent effect or a 

transient effect explained by the short incubation time. In fact, the effect of quebracho and 

chestnut tannins in reducing 18:0 accumulation have been reported to increase with the 

length of in vitro incubation, being small at 6h but becoming clearer after 12 and 18h of 

incubation (Buccioni et al., 2011). Moreover, the FA composition of abomasal digesta from 

lambs fed C. ladanifer plant suggests that an inhibition of the last step of BH was present, 

with a clear reduction of 18:0 concentration (Jerónimo et al., 2010). In order to clarify these 

alternatives, the effects of C. ladanifer on BH must be studied at lower dosages and at 

several incubation times.  

In all treatments, the production of oxo-FA represented a high proportion of the BH products. 

In fact, the amount of oxo-18:0 produced was larger than those reported in other in vitro 

batch rumen incubations (Carreño et al., 2015) but consistent to those reported by us using 

the same in vitro system (Guerreiro et al., 2016a). The occurrence of oxo-C18 FA formation 

in the rumen linked to BH metabolism is well established (Hudson et al., 1995; Jenkins, 

AbuGhazaleh, Freeman & Thies, 2006; Alves et al., 2013b), despite the fact that these FA 

are not usually reported in the literature. 

Odd- and branched-chain FA present in the rumen are mostly derived from bacterial de novo 

synthesis and are incorporated into their cell membranes (Kaneda, 1991). Rumen bacteria 

also present significant amounts of plasmalogen phospholipids (Miyagawa, 1982) that can be 

detected by the presence of DMA, which are formed from the vinyl ether chain of 

plasmalogens released under acid catalysis. The DMA from microbial plasmalogens also 

contain odd- and branched-chains that might participate in the maintenance of the optimal 

membrane fluidity and stability (Alves et al., 2013b). Thus, the production of both odd 

branched chain FA and DMA should reflect microbial anabolism and eventually changes in 
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rumen microbiota (Saluzzi et al., 1995; Vlaeminck et al., 2006). Increased BH activity and 

consequent accumulation of t11-18:1 observed with GS and CL treatments seemed to be 

associated with a decreased de novo synthesis of some OBCFA by rumen bacteria. For GS, 

these effects were also extended to a decrease in the production of iso-16:0-DMA and 

anteiso-15:0-DMA. It is not clear if the changes in microbial structural lipids indicate a 

modification of microbial species abundance in the rumen or simply a remodelling of bacterial 

membranes structure promoted by an increased availability of t11-18:1.  

The exact mechanism explaining the effects of tannins on BH is unknown and might involve: 

i) a target toxic effect to bacteria catalysing trans-18:1 isomers’ reduction (Durmic et al., 

2008); ii) a shift on rumen microbiota composition that disfavours a specific bacterial 

community or iii) a more general adaptive response involving the increase of trans-18:1 

availability to be used in an extensively remodelling of bacterial membranes. In the present 

study, the increase of trans-18:1 under the influence of CT from grape seed and slightly from 

C. ladanifer corroborates with the third hypothesis. In fact, the higher production of trans-18:1 

with grape seed extract was mainly due to an increase of t11-18:1 and t10-18:1, which might 

indicate a general adaptive response of rumen microbiota instead of a shift that would lead to 

a different BH pathway (Alves & Bessa, 2014). Moreover, some studies suggest that tannins 

may have an impact on bacterial membranes and, consequently, stimulate trans-18:1 

production probably as an adaptive response of bacteria to stress stimuli. In fact, the UFA 

and polyphenols were described as possible causes of membrane damages and, curiously, 

both may promote the accumulation of trans-18:1 in the rumen (Smith, Zoetendal & Mackie, 

2005; Maia et al., 2007). The generation of trans-18:1 in response to stress stimuli in the 

rumen ecosystem was hypothesised as one of the roles of BH in the rumen (Bessa et al., 

2000). Also, adaptive changes of non-rumen bacteria to stress stimuli with trans-FA 

formation and its incorporation into cell membranes have been reported (Keweloh & 

Heipieper, 1996; Endo, Kamisada, Fujimoto & Saito, 2006). Although the third hypothesis 

seems to be the most probable, the three hypotheses are possible as we cannot prove either 

of them since more studies on rumen microbiome are needed (Keweloh & Heipieper, 1996; 

Bessa et al., 2000; Smith et al., 2005; Endo et al., 2006; Maia et al., 2007).  
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2.5. Conclusions 

 

The purified condensed tannins from grape seed and, to lesser extent, from C. ladanifer 

induced an increased BH of 18:2n-6 and 18:3, coupled with an accumulation of t11-18:1, and 

no reduction in 18:0 production. The commercial grade quebracho and chestnut tannin 

extracts did not display any effects on ruminal BH. Grape seed and C. ladanifer tannins also 

induced slight modifications in microbial structural lipids. It can be concluded that, in these 

experimental conditions, C. ladanifer tannins have only slightly lower potential to modulate 

rumen BH than grape seed extract. 
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CHAPTER 3 – Mimosa condensed tannins induce higher variability of 

ruminal biohydrogenation than chestnut hydrolysable tannins 
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Abstract 

It was hypothesized that condensed tannins would have a higher inhibitory effect on ruminal 

BH than hydrolysable tannins and that would be reflected in an accumulation of trans-18:1 

isomers in rumen contents and bacteria. Condensed tannin extract from mimosa (M, Acacia 

mearnsii) and hydrolysable tannin extract from chestnut (C, Castanea sativa) or their mixture 

(MC) (100 g/kg dry matter (DM)) were incorporated in a diet with an oil blend (40 g/kg DM). 

The diet was fed to rumen fistulated sheep, following a change-over design with 3 diets, 4 

sheep and 4 periods. The fatty acid (FA) and dimethylacetal (DMA) composition of rumen 

contents, bacterial biomass fractions and blood plasma were analysed by gas-

chromatography. Selected rumen bacteria were also analysed by quantitative real time PCR. 

Mimosa led to lower rumen fermentative activity, DMA and 16S rRNA copy number of 

Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio 

proteoclasticus and higher Selenomonas ruminantium copy number, as well as lower total 

trans-18:1 and “trans-/cis-18:1” ratio in bacterial biomass than chestnut. Also, in plasma and 

rumen, total oxo-18:0 was higher with M comparing with C. An almost complete inhibition of 

BH was detected in few samples from MC and M but never with C. The M and MC 

treatments resulted in higher variability of ruminal BH, suggesting that condensed tannins 

had a more inhibitory effect on BH than hydrolysable tannins. However, the highest 

accumulation of trans-18:1 in bacterial biomass with C suggested that trans-18:1 might 

participate in an adaptive stress response in rumen bacteria. 

 

Keywords: biohydrogenation; fatty acids; rumen; hydrolysable tannins; condensed tannins 

 

 

3.1. Introduction 

 

The inclusion of tannins in ruminant diets has been reported to modulate ruminal BH (Vasta 

& Bessa, 2012). In general, the effects of tannins on rumen microbiota have been attributed 

to the ability of these phenolic compounds to form complexes with polymers of protein and 

carbohydrates and to directly interact with bacterial cell membranes (Smith et al., 2005). 

However, the effects of tannins are dependent on several factors including their molecular 

structure. Concerning the molecular structure, tannins can be classified into HT and CT. 

Hydrolysable tannins (mainly gallotannins and ellagitannins) have a polyol as a central core, 

which is esterified with a phenolic group, while condensed tannins (proanthocyanidins) are 

composed of flavan-3-ol (epi)catechin and (epi)gallocatechin units that are linked by 

interflavonoid linkages (Patra & Saxena, 2011). Hydrolysable tannins are readily susceptible 
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to depolymerisation in the rumen whereas the depolymerisation of condensed tannins by 

rumen bacteria has not been clearly demonstrated (McSweeney et al., 2001b). 

Depolymerisation can convert oligomeric hydrolysable tannins into low MW monomeric 

subunits that exhibit a lower affinity for extracellular or intracellular proteins, such as 

enzymes, or for cellular lipoproteins within the membrane lipid bilayers of bacteria (Field & 

Lettinga, 1992). Conversely, CT might continue to inhibit the activity and growth of 

microorganisms causing modifications of bacterial membrane fluidity, such as a decrease of 

membrane permeability due to an interaction with lipoproteins, or even a disruption of 

membranes when added at high concentrations (Ikigai, Nakae, Hara & Shimamura, 1993; 

Hashimoto, Kumazawa, Nanjo, Hara & Nakayama, 1999; Smith et al., 2005). However, it is 

possible that monomeric subunits resulting from the hydrolysis of hydrolysable tannins 

continue to exert some toxicity towards bacteria (Field & Lettinga, 1987; Scalbert, 1991; Field 

& Lettinga, 1992), causing instability in membrane fluidity but allowing bacteria to build a 

stress response. In the presence of toxic stimuli that affect membrane integrity, some 

bacteria are able to reduce membrane fluidity enriching their membrane lipids with trans-FA 

(Keweloh & Heipieper, 1996; Endo et al., 2006). The increased rumen availability of trans-FA 

and its incorporation into microbial cell membranes were suggested to be the main purposes 

of ruminal BH (Bessa et al., 2000). In the present study, we hypothesized that CT will exert a 

stronger inhibitory action on rumen microbial ecosystem than hydrolysable tannins, but the 

low MW products of hydrolysable tannin hydrolysis will lead to a more evident stress 

response of bacteria with modifications of cell membranes. Altogether, this will lead to 

different effects of the two types of tannins on ruminal BH, FA composition of rumen bacteria 

and population of selected bacterial species. Thus, a condensed tannin extract from mimosa 

(Acacia mearnsii) and a hydrolysable ellagitannin extract from chestnut (Castanea sativa) or 

their mixture were incorporated in an oil-supplemented basal diet and fed to rumen fistulated 

sheep, in order to compare their effects on FA composition of rumen digesta and bacteria, as 

well on the population of selected rumen bacteria. 

 

 

3.2. Material and methods 

 

3.2.1. Animal handling and management  

Animal handling followed EU Council Directive 2010/63/EU (EC, 2010) concerning animal 

care and rumen fistulated animals were used after approval of the ethical committee of the 

Faculty of Veterinary Medicine, University of Lisbon. Four rumen fistulated approximately 2-

year old sheep (52±3.03 kg of live weight) were used in a change-over design with 3 
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treatments and 4 experimental periods. The animals were kept in individual crates and 

bedded with wood shavings. The dietary treatments were defined by the inclusion of tannin 

extract in common basal feed ingredients: 1) Mimosa (M) (100 g/kg DM of mimosa tannin 

extract), 2) Chestnut (C) (100 g/kg DM of chestnut tannin extract), 3) Mimosa plus chestnut 

(MC) (50 g/kg DM of each mimosa and chestnut tannin extracts). The tannin extracts were 

commercial extracts containing 683 to 723 g/kg of CT from A. mearnsii (Mimosa extract ME 

powder®; Mimosa Extract Company (Pty) Ltd, Pietermaritzburg, South Africa) and ≥ 650 g/kg 

of hydrolysable ellagitannins from C. sativa (Gallo Tanin B®; Lamothe – Abiet, Canejan, 

France). The compound feeds containing the tannin extracts were pelleted and fed ad 

libitum, and were provided twice daily (09h00 and 17h00), along with grass hay at 100 g/kg 

of DM intake. Grass hay contained 35 g/kg DM of crude protein and 764 g/kg DM of neutral 

detergent fiber. The feed offered was adjusted according to the amount of feed refused. The 

ingredients and chemical and FA composition of the pelleted experimental compound feed 

are presented in Table 6. The four experimental periods had consisted of 2 weeks of 

adaptation to the diets and 1 week of sample collection. 

 

 

Table 6. Proximal, chemical (g/kg DM) and fatty acids (FA) composition (% of total fatty 

acids) of pelleted experimental diets. 

 

Item 
Treatments

1
 

M C MC 

Ingredients    
Barley 270 270 270 

Mimosa 100 - 50 
Chestnut - 100 50 

Soybean meal 120 120 120 
Dehydrated alfalfa 468 468 468 

Linseed oil 20 20 20 
Sunflower oil 20 20 20 

Minerals and vitamins 2 2 2 
Chemical composition    

Dry matter 913 911 912 
Crude protein 156 164 143 
Ether extract 44 59 45 

NDF 338 319 325 
Ash 83 77 80 

Total FA (mg/g DM) 39.40 41.69 39.00 
16:0 12.73 12.22 12.65 
18:0 4.88 4.38 4.69 

c9-18:1 24.95 24.34 24.95 
18:2n-6 38.57 40.05 38.75 
18:3n-3 18.87 19.00 18.97 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts. 
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3.2.2. Sample collection  

Rumen samples were collected on days 18 and 21 of each experimental period. On the first 

day, total rumen contents were directly collected through rumen cannula before the morning 

meal and used for isolation of bacterial biomass fractions and FA analysis. On the second 

day, total rumen contents were collected as described for the first day and used for the 

evaluation of fermentative activity (pH and volatile FA analysis) and also for FA analysis. On 

both sampling days, sub-samples of total rumen contents were preserved for DNA extraction. 

Jugular venous blood samples were also collected from each animal into heparinized syringe 

tubes (S-Monovette®; Nümbrecht, Germany) on day 21 of each experimental period, before 

and 3h after the morning meal. Blood samples were immediately transported to the 

laboratory and centrifuged at 1650 xg for 15 min at 4 ºC using a Universal 32 R, Hettich Lab 

Technology (Tuttlingen, Germany) centrifuge, to separate blood plasma for FA analysis.  

Liquid (LAB) and solid (SAB) associated bacteria were obtained by fractionation and 

differential centrifugation of rumen contents using a Beckman Coulter, Avanti J-26 XPITM 

(Indianapolis, IN, USA) centrifuge, according to the procedure reported by Bessa et al. 

(2009) with slight modifications. These modifications included the use of four layers of 

surgical gauze to filter the rumen contents, as well as the re-suspension and homogenization 

of rumen washed particles in saline solution with carboximetilcellulose at 0.1%, which were 

then incubated at 39ºC for 15 min. At the end, LAB and SAB pellets were washed, at least 

three times, with saline solution until the washing solution became clear.  

The aliquots of total rumen contents used for FA analysis and DNA extraction, as well as the 

bacterial pellets, were immediately stored at -20ºC, freeze-dried (ScanVac CoolSafe, 

LaboGene ApS, Lynge, Denmark) and preserved at -20ºC until analyzed. The aliquots of 

rumen contents for evaluation of fermentation activity were immediately filtered through four 

layers of cheesecloth and then used either for pH measurement (Digital pH meter “pH-2005”; 

JP Selecta S.A, Barcelona, Spain) or stored at -20ºC for further volatile fatty acids (VFA) 

analysis. Moreover, feed chemical composition was determined using the methods described 

by Francisco et al. (2015) 

 

3.2.3. Fatty acid analysis 

Volatile fatty acids were analysed by GC-FID in a Shimadzu GC-2010 Plus chromatograph 

(Shimadzu, Kyoto, Japan) equipped with a Nukol capillary silica column (30 m; 0.25 mm i.d.; 

0.25 µm film thickness, Supelco Inc., Bellefonte, PA, USA), as previously described (Oliveira 

et al., 2016). For long chain FA analysis, 250 mg of each sample was weighted and 

transesterified into FA methyl esters using a combination of basic followed by acidic catalysis 

(Alves et al., 2013b). The internal standard was 19:0 (1 mg/mL). Fatty acid methyl esters 
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were separated by GC-FID using a Shimadzu GC-2010 Plus chromatograph equipped with a 

SP-2560 capillary column (100 m, 0.25 mm i.d., 0.20 μm film thickness; Supelco Inc., 

Bellefont, PA, USA). Identification of FA methyl esters and DMA was achieved by 

comparison of retention times with those of authentic standards (FAME mix 37 components 

from Supelco Inc., Bellefont, PA, USA, and a Bacterial FAME mix from Matreya LLC, 

Pleasant Gap, PA, USA) and by confirmation with GC-MS using a Shimadzu GC-MS QP 

2010 Plus chromatograph (Kyoto, Japan) equipped with a SP-2560 column (Alves, 

Raundrup, Cabo, Bessa & Almeida, 2015). 

 

3.2.4. Quantification of microbial 16S rRNA marker genes by qPCR 

Total DNA was extracted from freeze-dried ruminal contents (30 mg) using a Qiagen 

QIAamp DNA Stool Mini Kit (Qiagen Inc., Valencia, CA, USA), according to manufacturer’s 

instructions and with small modifications to enhance lysis of Gram-positive bacteria (Oss et 

al., 2016). However, other alterations included the addition of 400 µl of the supernatant to 30 

µl of proteinase K (Qiagen Inc., Valencia, CA, USA), with the resulting lysates being added to 

400 µl of buffer AL (Lysis buffer; Qiagen Inc., Valencia, CA, USA) and 400 µl of ethanol. The 

eluted DNA was confirmed with agarose gel (0.8%) electrophoresis and quantified using the 

Quant-iTTM PicoGreen® dsDNA Assay Kit (Invitrogen Canada Inc., Burlington, ON, Canada) 

with a NanoDrop 3300 fluorometer (ThermoScientific, Wilmington, DE, USA). 

The extracted DNA was subjected to real-time quantitative polymerase chain reaction 

(qPCR), using a StepOnePlus thermocycler PCR (Applied Biosystems, Foster City, CA, 

USA), for quantification of copies of 16S rRNA sequences specific for Fibrobacter 

succinogenes subsp. S85, Prevotella bryantii B14, Ruminococcus albus 7, Ruminococcus 

flavefaciens C94, Selenomonas ruminantium subsp. Lactilytica (ATCC19205), Ruminobacter 

amylophilus (ATCC 29744), Butyrivibrio fibrisolvens JW 11(Wallace & Brammall, 1985) and 

Butyrivibrio proteoclasticus PI 18 (Wallace et al., 2006). The PCR standards for Butyrivibrio 

spp. were created with genomic DNA from reference bacterial strains of the Rowett Institute 

of Nutrition and Health, University of Aberdeen (UK) and cultured in Abel Salazar Biomedical 

Science Institute (ICBAS) (Portugal), while the standards for the other bacteria were done 

with plasmid DNA containing DNA amplicons derived from strains that came from Lethbridge 

Research Centre culture collection. The genomic DNA was extracted from 50 mg of freeze-

dried bacterial pellets of pure cultures (ICBAS, Culture Collection) using a Qiagen DNeasy 

Blood & Tissue Kit (Qiagen Inc., Valencia, CA, USA), according to manufacturer’s 

instructions. Detailed information about plasmid standards have already been reported by 

Wang et al. (2009), as well as the primers and cycling conditions for F. succinogenes, P. 

bryantii, R. flavefaciens, S. ruminantium, R. amylophilus (Tajima et al., 2001) and R. albus 
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(Wang, Cao & Cerniglia, 1997). For plasmid standards, the amplicons were used at 

concentrations from 2.0×108 to 2.0×106 and from 1.0×106 to 1.0×102 copies per reaction. For 

genomic DNA standards, the number of copies considered was 3.72×107 to 3.72×101 for B. 

fibrisolvens and 1.90×107 to 1.90×101 for B. proteoclasticus. All concentrations of the 

standards were obtained by serial 10-fold dilutions. For Butyrivibrio group, the following 

conditions were applied: 95 ºC for 10 min; 40 cycles of 95 ºC for 15 s, annealing temperature 

of 58 ºC for 1 min (B. fibrisolvens) or 55 ºC for 30 s with a final extension step at 72 ºC for 30 

s (B. proteoclasticus). For these two bacteria, the real-time PCR reaction mixtures (15 µl) 

contained 1 × Taqman universal PCR master mix (Applied Biosystems®, Foster City, CA, 

USA), 10 µM of each primer to a final concentration of 100 and 300 nM of forward and 

reverse primers for B. fibrisolvens and B. proteoclasticus, respectively, 250 nM of both 

Taqman probes and 100 × purified BSA (BioLabs® Ipswich, MA, USA). For the other 

bacteria, each qPCR reaction (25 µl) contained 1 × iQ SYBR Green Supermix (Bio-Rad 

Laboratories®, Hercules, CA, USA), 100 × purified BSA (BioLabs®, Ipswich, MA, USA) and 

10 µM of each primer to a final concentration of 300 nM. For all bacteria, BSA was used to 

overcome the presence of tannins as PCR inhibitors. The primers and probes for Butyrivibrio 

spp. were designed using Primer Express 2.0 software (Applied Biosystems®, Foster City, 

CA, USA) and the homology of their sequences was searched against genetic sequence 

database GenBank (GenBank®, Bethesda, MD, USA), showing that they were specific for 

sequences of 16S rRNA of the corresponding bacterial species. The sequences of the 

primers and probes were as follows: 5´-CCGCGTCAGATTAGCCAGTT-3´ (forward), 5´-

GTAGGAGTTTGGGCCGTGTCT-3´ (reverse) and 5´-FAM-CCAAAGCAACGATCTGTA 

GCCGGACTG-TAMRA-3´ (probe) for B. proteoclasticus; 5´-ACACACCGCCCGTCACAC-3´ 

(forward), 5´-TCCTTACGGTTGGGTCACAGA-3´ (reverse) and 5´-JOE-CATGGGAG 

TTGGGAATGCCCGA-TAMRA-3´ (probe) for B. fibrisolvens. Primers were synthesised by 

NZYTech (Lisbon, Portugal) and probes were synthesised by Stabvida (Almada, Portugal). 

For all qPCR reactions, 2 µl of extracted DNA template was added to a final amount of 20 ng 

or 10 ng per reaction and was amplified in duplicate. 

 

3.2.5. Statistical analysis and calculations 

Data were analysed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC, USA) 

considering a change-over design with 3 diets, 4 sheep and 4 periods. The animal and 

period were included in the model as random blocks. Measurements repeated within the 

same animal and period were treated as subsampling considering either the unstructured or 

compound symmetry covariance matrix depending on the best model fit. The variance 

homogeneity was tested and, when significant, the variance heterogeneity structure was 

accommodated in the model. The effects of treatments were evaluated using 2 orthogonal 
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contrasts: 1) “M vs. C” contrasting the least square means of M against C and 2) MC vs. (M + 

C)/2, contrasting the least square means of MC against the average of M and C. 

Data of rumen bacterial 16S rRNA copy numbers were averaged for each animal (period) 

and analysed with Proc GLIMMIX using a negative binomial distribution and log as link 

function and considering the effect of treatment, animal and period as fixed effects.  

The ruminal BH (% of disappearance) of dietary c9-18:1, 18:2n-6 and 18:3n-3 and the BH 

completeness (18:0 concentration relative to potential 18:0 concentration assuming a 

complete BH of substrates) were calculated as previously reported (Alves et al., 2017). The 

concentrations of microbial structural FA in rumen bacterial fractions were used as microbial 

biomass markers to estimate the crude bacterial biomass in the rumen as follows: 

Biom = 
Mrumen

(0.5×MSAB+0.5×MLAB)
 

 

Where, Biom is the estimated bacterial biomass (mg/g DM), Mrumen, MSAB and MLAB are the 

concentrations (mg/g DM) of the selected FA marker in the rumen, SAB and LAB fractions, 

respectively. 

 

 

3.3. Results  

 

3.3.1. Feed intake and rumen fermentation 

The DMI was about 200 g/d lower (P = 0.025) with M than with C treatment and intermediate 

with MC treatment (Table 7). Rumen pH measured before the morning meal averaged 6.80 

and did not differ among treatments (Table 7). Consistently with DMI, the VFA concentration 

(mmol/L) was greater (P < 0.001) with C than with M and was greater (P = 0.014) with MC 

than the average of M and C treatments (Table 7). The molar proportions of linear chain VFA 

(2:0, 3:0, 4:0 and 5:0) did not differ (P > 0.10) between M and C treatments, but the branched 

chain VFA (iso-4:0 and iso-5:0) presented higher (P < 0.04) proportions with C than with M. 

The MC treatment presented higher 3:0 (P = 0.027) and lower 2:0 (P = 0.004) and 4:0 (P = 

0.049) proportions than the average of M and C treatments. The ratio between acetate and 

propionate was higher (P = 0.029) with C than with M and much lower (P = 0.001) with MC 

than the average of M and C.  
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Table 7. Effect of tannin extracts on DMI (dry matter intake) (g/d), rumen pH and total volatile 

fatty acid (VFA) concentration (mmol/L) and composition (mmol/100 mmol of total VFA). 

Item 
Treatments

1
 

SEM
2
 

Contrasts
3
 

M C MC C1 C2 

DMI 743 927 849 134.1 0.025 0.737 
Rumen pH 6.77 6.79 6.83 0.120 0.761 0.475 
       
Total VFA 79.3 152.2 136.1 8.43 <0.001 0.014 
      2:0 44.6 46.1 42.1 1.37 0.121 0.004 
      3:0 26.4 22.3 31.4 3.41 0.118 0.027 
      iso-4:0 1.38 2.72 1.52 0.309 0.014 0.172 
      4:0 23.6 23.6 20.2 2.97 0.997 0.049 
      iso-5:0 1.89 3.54 1.80 0.509 0.036 0.138 
      5:0 2.06 1.78 2.93 0.527 0.711 0.154 
2:0/3:0 ratio 1.79 2.11 1.41 0.210 0.029 0.001 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts; 

2
, standard error of means; 

3
, 

C1, mimosa versus chestnut; C2, (mimosa + chestnut)/2 versus mimosa plus chestnut treatments. 
Contrasts were significantly different for P ˂ 0.05. 

 

 

3.3.2. Abundance of selected rumen bacteria and the microbial biomass estimate 

The abundance of selected bacterial species expressed as the number of copies×105 of 16S 

rRNA per mg DM of rumen content is presented in Table 8. The abundance of specialized 

fibrolytic bacteria (i.e. F. succinogenes, R. albus, R. flavefaciens, B. proteoclasticus) was 

reduced (P ≤ 0.020) more with M than with C treatments. Conversely, S. ruminantium was 

more (P = 0.019) abundant with M than with C with no differences (P > 0.100) between these 

two treatments for B. fibrisolvens, P. bryantii and R. amylophilus. The abundances of F. 

succinogenes, R. flavefaciens and S. ruminantium were higher (P < 0.050) with MC than the 

average of abundances for M and C. 

The crude bacterial biomass in the rumen was estimated using the sum of DMA that showed 

no significant differences between bacterial fractions (iso-14:0; 14:0, anteiso-15:0, 15:0, 16:0, 

Table 5). The crude bacterial biomass was lower (P = 0.019) with M than with C (218 vs. 301 

g/kg DM of rumen content).  
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Table 8. Effect of tannin extracts on bacterial species (nº copies×105/mg dry matter) of 

rumen contents. 

 

Item 
Treatments

1
 Contrasts

2
 

M C MC C1 C2 

Rumen bacteria      

F. succinogenes 2.78±1.52
 

207±113 153±66 0.018 0.043 

P. bryantii 36.7±25.8 2.23±1.57 15.5±8.96 0.103 0.539 

R. albus 0.04±0.02 6.69±3.14 0.31±0.16 0.005 0.547 

R. amylophilus 2.15±3.46 0.59±1.61 0.65±1.05 0.722 0.877 

R. flavefaciens 2.96±0.98 30.9±10.2 37.8±11.5 0.020 0.037 

S. ruminantium 37.6±7.9 8.80±1.86 52.3±10.5 0.019 0.023 

B. fibrisolvens 3.18±0.97 5.05±1.54 4.63±1.48 0.371 0.749 

B. proteoclasticus 19.1±1.02 27.7±1.48 21.0±1.12 0.016 0.266 

Biomass estimate (g/kg DM)       

DMA
3 

21.8±2.43 30.1±2.43 23.1±2.43 0.019 0.256 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts; 

2
, C1, mimosa versus chestnut; 

C2, (mimosa + chestnut)/2 versus mimosa plus chestnut treatments; 
3
, dimethylacetals (iso-14:0; 14:0, 

anteiso-15:0, 15:0, 16:0). Contrasts were significantly different for P ˂ 0.05. 

 

 

3.3.3. Fatty acid and dimethylacetals of rumen content 

The FA and DMA composition of rumen content is presented in Table 9, whereas the 

detailed distribution of C18 FA is shown in Table 10. Total FA concentration and C18 FA 

proportion in the rumen presented no significant differences among treatments. Total FA 

averaged 43.7 mg/g DM and total C18 FA averaged 82.7% of total FA. The sum of 

branched-chain FA (BCFA) did not differ among treatments, although there were higher 

concentrations of iso-14:0, iso-16:0 and a lower concentration of iso-13:0 with C than with M. 

The sum of odd-chain FA (OCFA) was higher (P = 0.040) with C than with M treatments, 

exclusively due to the contribution of 15:0. Although the sum of even-chain FA was not 

significantly different between C and M, a higher (P = 0.023) concentration of 16:0 was found 

with C than with M treatments. The differences between M and C treatments were more 

extensive for DMA. In fact, eight DMA (anteiso-15:0¸15:0, 16:0, 13:0, iso-14:0, 14:0, c9-18:1, 

c11-18:1) and the sum of DMA were present in higher (P < 0.022) concentration with C than 

with M treatments. In general, for DMA, the MC treatment did not differ from the average of 

M and C treatments but concentrations of 13:0 and c11-18:1-DMA were higher (P < 0.02) 

with MC than the average of M and C.  
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Table 9. Effect of tannin extracts on total fatty acids (FA) and C18 FA (mg/g DM), FA and 

dimethylacetals (DMA) composition (mg/100g DM) of rumen contents. 

 

Item 
Treatments

1
 

SEM
2
 

Contrasts
3
 

M C MC C1 C2 

∑FA 40.9 48.1 42.1 4.25 0.171 0.549 
∑C18 FA  33.2 38.2 34.0 3.37 0.201 0.582 
BCFA

4 
      

i-13:0 4.12 1.88 1.66 0.473 0.011 0.030 
i-14:0 3.58 6.16 5.61 0.541 0.005 0.075 
i-15:0 10.6 13.3 12.3 2.20 0.288 0.875 
a-15:0 20.3 23.5 22.0 2.12 0.315 0.973 
i-16:0 6.44 15.2 7.51 1.829 0.008 0.172 
i-17:0 7.04 7.87 6.05 1.806 0.620 0.373 
a-17:0 7.62 12.9 5.72 1.753 0.061 0.063 
i-18:0 0.74 1.00 0.84 0.297 0.489 0.922 
Total 60.9 82.6 61.8 8.64 0.121 0.375 

OCFA
5 

      
13:0 0.76 0.85 1.20 0.143 0.545 0.010 
15:0 18.4 24.9 24.6 1.38 0.013 0.124 
17:0 11.2 13.1 12.6 0.89 0.167 0.660 
21:0 2.01 1.99 2.04 0.105 0.818 0.613 
23:0 5.03 5.08 5.13 0.271 0.575 0.403 
Total 37.3 45.8 45.4 2.33 0.040 0.215 

ECFA
6 

      
14:0 21.8 22.8 20.0 1.38 0.575 0.190 
16:0 482 625 501 48.6 0.023 0.171 
20:0 22.5 25.2 22.5 2.70 0.243 0.472 
22:0 27.8 29.3 28.0 2.10 0.335 0.619 
24:0 19.9 20.3 19.3 1.43 0.679 0.404 
26:0 25.5 34.5 34.7 6.26 0.130 0.303 
28:0 11.5 12.6 13.8 0.01 0.249 0.065 
Total 30.9 40.3 33.6 4.68 0.114 0.629 

DMA
7 

      
13:0 0.61 1.16 1.02 0.165 0.021 0.401 
i-14:0 3.02 8.01 4.42 0.772 0.001 0.143 
14:0 6.71 9.50 5.59 0.789 0.020 0.017 

a-15:0 5.13 9.45 6.35 1.069 0.019 0.492 
15:0 2.14 4.47 3.28 0.412 0.005 0.953 
16:0 15.1 27.7 20.4 2.64 0.008 0.754 
16:1 10.6 8.83 11.5 0.85 0.180 0.131 
18:0 2.21 3.40 2.14 0.461 0.090 0.244 

t11-18:1 0.57±0.045 1.19±0.388 0.77±0.045  0.210 0.630 
c9-18:1 3.44 5.20 4.01 0.345 0.011 0.488 
c11-18:1 1.32 2.76 1.76 0.252 ˂0.001 0.018 

Total 50.8 81.8 61.1 5.16 0.002 0.434 
Others

8
 0.13 0.16 0.19 0.019 0.061 0.167 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts; 

2
,
 
standard error of means; 

3
, 

C1, mimosa versus chestnut; C2, (mimosa + chestnut)/2 versus mimosa plus chestnut treatments; 
4
, 

branched-chain FA; 
5
, odd-chain FA; 

6
, even and linear-chain fatty acids; 

7
, dimethylacetals; 

8
, includes 

16:0-3,7,11,15Me; 5, 11-cyclohexyl-11:0; total 16:1 and 20:1. Contrasts were significantly different for 
P ˂ 0.05. 
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The means of all C18 FA, except the 10-oxo-18:0, did not differ significantly between M and 

C treatments. However, M and MC treatments consistently presented greater variances for 

the majority of C18 FA than C treatment, as perceived by the largest standard errors of the 

means (Table 10). Such higher variance found with M and MC than with C treatments 

derived from a suppression of BH (animal 2, period 2, sampling day 1, treatment M; animal 3, 

period 1, sampling day 1, treatment MC; animal 4, period 2, sampling day 1, treatment MC). 

In these samples, dietary unsaturated FA (i.e. c9-18:1, 18:2n-6, and 18:3n-3) remained quite 

high, comprising collectively more than 40 % of total C18 FA in the rumen. Consequently, the 

estimates of disappearance of unsaturated FA (i.e. biohydrogenation, %), as well as the BH 

completeness were numerical higher and much less variable with C treatment than with M or 

MC treatments. Despite such variance pattern, the 10-oxo-18:0 was higher (P = 0.027) with 

M than with C.  
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Table 10. Effect of tannin extracts on C18 fatty acid (FA) composition (% of total C18 FA) 

and biohydrogenation estimates (%) of rumen contents. 

Item 
Treatments

1
 Contrasts

2
 

M C MC C1 C2 

18:0 56.9±6.81 62.2±5.95 52.7±6.81 0.627 0.460 
trans-18:1      

t2 0.13±0.028 0.16±0.028 0.15±0.028 0.294 0.781 
t4 0.17±0.025 0.21±0.003 0.21±0.025 0.187 0.421 
t5 0.07±0.031 0.10±0.015 0.12±0.031 0.902 0.326 

t6/ t7/ t8 0.92±0.155 0.98±0.022 0.99±0.155 0.696 0.824 
t9 0.45±0.055 0.55±0.016 0.50±0.055 0.139 0.953 
t10 2.64±1.62 0.78±0.72 1.95±1.62 0.485 0.911 
t11 9.6±1.76 12.6±0.23 10.8±1.76 0.121 0.903 
t12 1.08±0.21 1.11±0.10 1.38±0.21 0.908 0.301 
t15 1.41±0.154 1.13±0.154 1.40±0.154 0.296 0.541 
t16

3 
1.25±0.19 1.16±0.12 1.16±0.18 0.725 0.848 

Total 17.6±2.57 18.8±0.64 18.6±2.56 0.702 0.909 
cis-18:1      

c9 9.6±1.81 8.5±0.35 10.7±1.81 0.573 0.442 
c11 0.39±0.132 0.32±0.017 0.64±0.132 0.639 0.081 
c12 0.87±0.093 0.78±0.093 1.02±0.093 0.518 0.185 
c13 0.09±0.006 0.07±0.006 0.09±0.006 0.093 0.615 

c15 0.43±0.059 0.31±0.008 0.52±0.059 0.065 0.061 

c16 0.21±0.037 0.17±0.037 0.22±0.037 0.453 0.648 
Total 11.6±1.95 10.2±0.35 13.1±1.95 0.614 0.437 

Total 18:1 29.2±2.43 29.0±0.39 31.7±2.43 0.928 0.351 
18:2 isomers      

n-6 6.52±2.24 4.51±0.58 7.42±2.24 0.403 0.466 
trans/trans 0.08±0.079 0.07±0.005 0.20±0.079 0.878 0.271 

c9,t12 0.10±0.041 0.08±0.002 0.17±0.041 0.459 0.721 
c9,t11 0.22±0.035 0.19±0.035 0.27±0.035 0.585 0.214 

t11,c15
4 

1.24±0.29 0.63±0.29 2.18±1.40 0.149 0.438 
c9,c15 0.05±0.039 0.05±0.039 0.12±0.039 0.406 0.001 
c12,c15 0.10±0.015 0.07±0.015 0.22±0.058 0.258 0.038 
Others

5 
0.09±0.025 0.09±0.025 0.11±0.025 0.794 0.460 

Total 8.42±2.98 5.68±0.61 10.67±2.98 0.386 0.301 
18:3 isomers      

n-3 2.67±1.08 1.40±0.28 3.23±1.08 0.277 0.342 
c9,t11,c15 0.07±0.013 0.04±0.013 0.07±0.013 0.183 0.422 

Total 2.74±1.09 1.45±0.29 3.32±1.09 0.272 0.339 
oxo-18:0 isomers      

10-oxo
6
 2.10±0.37 1.13±0.11 1.16±0.37 0.027 0.304 

13-oxo 0.34±0.052 0.35±0.044 0.27±0.052 0.887 0.258 
15-oxo 0.08±0.012 0.09±0.009 0.06±0.017 0.457 0.275 
Total 2.52±0.40 1.56±0.12 1.49±0.40 0.041 0.248 

Total BI
7
 23.9±2.83 23.1±0.37 25.3±2.83 0.787 0.527 

Biohydrogenation       
Disappearance       

c9-18:1 66.5±6.41 69.3±1.37 62.7±6.41 0.670 0.476 
18:2n-6 85.2±5.06 90.1±1.46 83.3±5.06 0.357 0.446 
18:3n-3 87.6±5.19 93.5±1.64 85.1±5.19 0.276 0.350 

Completeness  67.8±6.17 72.6±1.39 65.4±6.17 0.439 0.492 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts; 

2
,
 
C1, mimosa. 
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3.3.4. Fatty acid and dimethylacetals of rumen bacterial fractions 

The FA and DMA composition of SAB and LAB is presented in Table 11, whereas the 

detailed C18 FA composition of bacterial fractions is presented in Table 12. The total of FA 

and C18 FA did not differ among treatments and not even between SAB and LAB. The FA 

and C18 FA content of bacterial fractions averaged 106 and 85 mg/g DM, respectively. The 

majority of FA corresponded to C18 FA followed by 16:0, which also did not differ among 

treatments or bacterial fractions. Considering the FA composition in more detail, the sum of 

BCFA was higher (P = 0.019) in LAB than in SAB, and this was due to the higher 

concentrations of iso-13:0 and mostly of anteiso-15:0 in LAB. The treatments did not affect 

the sum of BCFA but iso-14:0 and iso-16:0 were lower (P < 0.01) and iso-13:0 was higher (P 

= 0.009) with M than with C. 

Odd- and linear-chain FA (OCFA) were higher (P = 0.022) in LAB than in SAB, mostly due to 

15:0 and 17:0. The only OCFA that differed between M and C treatments was the 23:0, 

which was higher (P = 0.003) with M compared to C. However, the bacterial 15:0 and 17:0 

contents were higher (P < 0.05) with MC than the average of contents of M and C.  

Rumen bacteria presented a considerable amount of ECFA with carbon chain length ranging 

from 20 to 28 carbons. The concentrations of 22:0 and 24:0 were higher (P < 0.020) with M 

than with C and those of 26:0 and 28:0 were greater (P < 0.010) with MC than the average of 

M and C.  

The total DMA content of bacteria averaged 240 mg/100 g DM and did not differ between 

LAB and SAB, although the concentrations of c11-18:1, c9-18:1 and 16:1-DMA (P < 0.040) 

were higher in LAB than in SAB and that of 18:0-DMA was greater (P = 0.023) in SAB than in 

LAB. Nevertheless, the sum of DMA and most of individual DMA (i.e. 13:0-, iso-14:0-, 15:0-, 

16:0-, 18:0- and c11-18:1- DMA) were higher (P ˂ 0.030) with C than with M treatments with 

only an opposite response for 16:1-DMA (P < 0.001). Also, the 16:1-DMA was higher (P < 

0.001) with MC than the average of M and C treatments.  
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Table 11. Effect of tannin extracts on total fatty acids (FA) and C18 FA (mg/g DM), FA and 

dimethylacetals (DMA) composition (mg/100g DM) of solid (SAB) and liquid (LAB) associated 

bacterial fractions. 

 

Item 
Treatments

1 
P-value

 
Bacterial fractions P-

value M C MC C1
2
 C2 SAB LAB 

∑FA 109±8.9 100±8.9 107±8.9 0.475 0.817 105±7.2 106±7.2 0.890 
∑C18 FA 88±8.5 73±8.5 93±8.5 0.240 0.234 82±7.0 87±7.0 0.612 
BCFA

3 
        

i-13:0 15±2.3 6.6±0.24 5.9±0.24 0.009 0.004 8.4±0.79 10±0.79 0.002 
i-14:0 14±1.0 26±1.4 21±4.6 <0.001 0.931 18±1.9 22±1.9 0.075 
i-15:0 45±9.7 54±1.8 42±1.8 0.397 0.204 46±3.6 47±3.6 0.613 
a-15:0 87±9.6 107±9.6 80±9.6 0.155 0.176 73±7.8 110±7.8 0.005 
i-16:0 23±5.1 48±5.1 26±5.1 0.003 0.153 34±4.2 31±4.2 0.550 
i-17:0 22±4.6 23±0.7 20±0.7 0.958 0.260 22±1.7 21±1.7 0.951 
a-17:0 25±7.8 37±4.2 20±4.2 0.139 0.019 30±4.7 25±4.7 0.070 
i-18:0 3.8±0.37 3.9±0.37 4.0±0.37 0.833 0.815 3.5±0.30 4.3±0.30 0.091 
Total 235±51 305±11 218±11 0.219 0.096 229±19 276±19 0.019 

OCFA
4 

        
13:0 4.4±0.62 4.4±0.62 6.6±1.39 0.992 0.165 4.5±0.71 5.8±0.71 0.173 
15:0 71±8.6 82±8.6 96±8.6 0.174 0.013 76±8.0 90±8.0 0.037 
17:0 37±3.2 35±3.2 46±3.2 0.798 0.023 35±2.6 44±2.6 0.023 
21:0 4.6±0.32 3.6±0.32 4.6±0.32 0.053 0.231 4.3±0.26 4.1±0.26 0.594 
23:0 14±0.85 9.8±0.85 13±0.85 0.003 0.473 13±0.69 12±0.69 0.535 
Total 131±12 136±12 166±12 0.708 0.006 132±11 157±11 0.022 

ECFA
5 

        
14:0 87±8.1 77±8.1 84±8.1 0.393 0.838 72±6.7 93±6.7 0.033 
16:0 1509±205 1467±85 1434±85 0.857 0.707 1497±99 1443±99 0.664 
20:0 61±4.8 52±4.8 60±4.8 0.197 0.533 56±3.9 59±3.9 0.628 
22:0 70±4.7 51±4.7 66±4.7 0.014 0.341 62±3.9 63±3.9 0.966 
24:0 51±3.1 37±3.1 47±3.1 0.007 0.358 45±2.5 45±2.5 0.874 
26:0 53±11 52±11 72±11 0.891 0.005 55±11 62±11 0.248 
28:0 25±1.8 20±1.8 29±1.8 0.098 0.008 24±1.5 26±1.5 0.346 
Total 1887±157 1792±157 1845±157 0.676 0.979 1920±129 1763±129 0.401 

DMA
6 

        
13:0 1.5±0.19 2.5±0.19 3.5±1.3 0.007 0.293 2.5±0.46 2.5±0.46 0.910 
i-14:0 14±1.5 26±1.4 18±4.6 <0.001 0.666 17±1.9 21±1.9 0.169 
14:0 28±2.4 29±1.4 21±3.9 0.684 0.125 25±2.1 27±2.1 0.596 

a-15:0 26±1.1 33±5.2 30±5.2 0.196 0.997 31±2.7 28±3.7 0.207 
15:0 9.4±0.60 15±0.60 13±1.7 <0.001 0.632 12±0.77 13±0.77 0.361 
16:0 70±8.5 95±8.5 90±1.5 0.029 0.617 84±8.9 87±8.9 0.773 
16:1 33±2.7 22±2.0 34±2.7 <0.001 <0.001 21±2.2 32±2.2 <0.001 
18:0 8.1±0.51 12±0.51 9.4±3.1 0.001 0.889 11±1.1 8.7±1.1 0.023 

t11-18:1 3.3±0.71 5.1±0.71 4.2±0.71 0.081 0.959 3.4±0.57 5.1±0.57 0.057 
c9-18:1 15±2.8 14±0.62 17±2.8 0.921 0.448 12±1.5 19±1.5 0.008 
c11-18:1 6.0±0.63 10±0.63 12±2.8 0.001 0.248 8.2±1.1 11±1.1 0.033 

Total 213±14 264±14 242±30 0.006 0.922 230±16 250±16 0.176 
Others

7
 52.0±1.10 59.6±8.38 64.9±8.38 0.396 0.363 44.8±6.24 72.9±6.24 <0.001 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts; 

2
, C1, mimosa versus chestnut; 

C2, (mimosa + chestnut)/2 versus mimosa plus chestnut treatments; 
3
, branched-chain FA; 

4
, odd-

chain FA
 5

, even and linear-chain fatty acids; 
6
, dimethylacetals; 

7
, includes 16:0-3,7,11,15Me; 5, 11-

cyclohexyl-11:0; total 16:1 and 20:1; standard error of means (±). Contrasts were significantly different 
for P ˂ 0.05.  
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Attending to C18 FA composition, 18:0 was the main C18 FA and tended to be higher (P = 

0.074) in LAB than in SAB but it was unaffected by treatments (Table 12). The C18 FA 

composition of LAB was fairly similar to that of SAB, although SAB presented higher (P < 

0.020) proportions of some BH-derived FA than LAB (i.e. t11-18:1, c9,t11-18:2, c9,t11,c15-

18:3 and 10-oxo-18:0). The sum of trans-18:1, with significant contributions of the 

proportions of t6-/t7-/t8-18:1, t9-18:1, t11-18:1, was higher (P = 0.003) with C than with M, 

whereas the opposite was found for t15-18:1, t16-18:1, c13-18:1, t,t-18:2, and c9,c15-18:2 (P 

< 0.050) with a tendency for c15-18:1 (P = 0.058). Overall, the sum of BH intermediates 

tended to be higher (P = 0.055) with C than with M. Moreover, the “trans-/cis-18:1” ratio was 

greater (P = 0.002) with C comparing with M. The C18 FA composition with MC was mostly 

similar to the average of M and C treatments, although with a lower (P = 0.039) total of oxo-

18:0 and higher (P < 0.040) c9,c15-18:2 and c12,c15-18:2. 
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Table 12. Effect of tannin extracts on C18 FA composition (% total C18 FA) of solid (SAB) and liquid (LAB) associated bacterial fractions. 

 

Item 
Treatments

1
 P-value Bacterial fractions 

P-value 
M C MC C1

2
 C2 SAB LAB 

18:0 62.6±5.95 65.7±1.11 59.1±5.95 0.612 0.463 59.5±3.05 65.3±3.05 0.074 
trans-18:1         

t2 0.15±0.01 0.16±0.003 0.15±0.01 0.361 0.914 0.15±0.006 0.15±0.006 0.523 
t4 0.26±0.04 0.26±0.01 0.29±0.04 0.935 0.503 0.26±0.02 0.29±0.02 0.207 
t5 0.14±0.06 0.09±0.001 0.22±0.06 0.479 0.172 0.15±0.03 0.15±0.02 0.324 

t6/ t7/ t8 0.56±0.10 0.97±0.01 0.75±0.10 0.002 0.888 0.75±0.05 0.77±0.05 0.592 
t9 0.29±0.08 0.55±0.05 0.38±.0.08 0.001 0.556 0.43±0.06 0.38±0.06 0.186 
t10 0.99±0.16 0.97±0.05 1.18±0.16 0.907 0.281 1.04±0.09 1.06±0.09 0.803 
t11 4.57±1.57 10.9±0.38 6.63±0.38 0.007 0.257 8.30±0.62 6.41±0.62 0.011 
t12 1.33±0.36 1.16±0.02 2.09±0.36 0.650 0.063 1.50±0.17 1.55±0.117 0.288 
t15 1.70±0.07 1.22±0.02 1.32±0.07 <0.001 0.121 1.36±0.04 1.47±0.04 0.059 
t16

3 
1.40±0.06 1.20±0.06 1.15±0.06 0.037 0.057 1.20±0.05 1.29±0.05 0.213 

Total 11.4±1.35 17.4±0.35 14.±0.35 0.003 0.756 15.1±0.54 13.6±0.54 0.017 
cis-18:1         

c9 11.7±2.44 7.6±0.40 10.4±2.44 0.122 0.789 11.1±1.23 8.7±1.23 0.056 
c11 0.56±0.53 0.61±0.09 1.59±0.53 0.921 0.124 0.72±0.27 1.12±0.27 0.112 
c12 1.26±0.27 0.88±0.02 0.97±0.02 0.219 0.487 0.99±0.09 1.08±0.09 0.017 
c13 0.11±0.018 0.06±0.002 0.08±0.018 0.027 0.945 0.08±0.009 0.08±0.008 0.902 
c15 0.64±0.15 0.31±0.01 0.78±0.15 0.058 0.102 0.56±0.07 0.58±0.07 0.408 
c16 0.23±0.015 0.17±0.015 0.22±0.015 0.023 0.289 0.20±0.01 0.22±0.01 0.259 

Total 14.5±3.18 9.6±0.44 14.1±3.18 0.156 0.589 13.7±1.57 11.8±1.57 0.114 
Total 18:1 25.9±2.86 27.1±0.72 28.2±2.86 0.698 0.602 28.9±1.55 25.3±1.55 0.076 

trans/cis ratio 1.01±0.15 1.84±0.15 1.40±0.55 0.002 0.896 1.33±0.12 1.50±0.12 0.333 
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Table 12. Effect of tannin extracts on C18 FA composition (% total C18 FA) of solid (SAB) and liquid (LAB) associated bacterial fractions 

(continuation). 

 

Item 
Treatments

1
 P-value Bacterial fractions 

P-value  
M C MC C1

2
 C2 SAB LAB 

18:2         
n-6 3.78±0.59 2.84±0.18 3.83±0.59 0.157 0.451 3.79±0.34 3.18±0.34 0.193 

trans/trans 0.08±0.004 0.02±0.022 0.33±0.19 0.047 0.212 0.14±0.066 0.14±0.066 0.763 
c9,t12 0.13±0.03 0.07±0.003 0.24±0.11 0.147 0.263 0.16±0.04 0.14±0.04 0.064 
c9,t11 0.27±0.08 0.61±0.19 0.30±0.08 0.129 0.286 0.54±0.09 0.24±0.09 0.015 

t11,c15
4 

1.45±0.43 0.55±0.03 4.63±2.52 0.093 0.201 2.25±0.85 2.17±0.85 0.228 
c9,c15 0.08±0.004 0.05±0.004 0.11±0.016 0.001 0.036 0.09±0.006 0.08±0.006 0.355 
c12,c15 0.09±0.006 0.07±0.006 0.14±0.006 0.106 <0.001 0.10±0.005 0.11±0.005 0.207 
Others

5
 0.08±0.01 0.06±0.01 0.23±0.11 0.086 0.215 0.13±0.04 0.12±0.04 0.254 

Total 5.96±0.854 4.37±0.54 9.82±3.66 0.060 0.249 7.42±1.30 5.95±1.30 0.092 
18:3         

n-3 1.18±0.27 0.78±0.05 1.34±0.27 0.173 0.261 1.19±0.14 1.01±0.14 0.151 
c9,t11,c15 0.05±0.02 0.10±0.02 0.08±0.02 0.263 0.771 0.12±0.02 0.04±0.02 0.019 

Total 1.23±0.28 0.87±0.07 1.42±0.28 0.241 0.271 1.33±0.16 1.02±0.16 0.114 
oxo-18:0         

10-oxo-
6 

3.82±1.35 1.38±0.04 1.09±0.04 0.114 0.059 2.18±0.45 2.01±0.45 0.013 
13-oxo- 0.39±0.005 0.39±0.019 0.26±0.068 0.965 0.107 0.35±0.024 0.35±0.024 0.699 
15-oxo- 0.09±0.003 0.09±0.003 0.05±0.013 0.933 0.017 0.08±0.005 0.08±0.005 0.901 

Total 4.35±1.35 2.07±0.04 1.49±0.04 0.137 0.039 2.75±0.45 2.53±0.45 0.011 
Total BI

7
 20.0±0.73 22.3±0.73 23.6±4.02 0.055 0.573 22.9±1.48 21.0±1.48 0.108 

1
, M, mimosa; C,chestnut; MC, mimosa plus chestnut tannin extracts; 

2
, contrasts: C1, mimosa versus chestnut; C2, (mimosa + chestnut)/2 versus mimosa 

plus chestnut treatments; 
3
, includes c14-18:1; 

4
, includes t10,c15-18:2; 

5
, conjugated trans,cis/cis,trans-18:2 isomers; 

6
, includes oxo-12 as minor component; 

7
, biohydrogenation intermediates, sum of total 18:1, 18:2, 18:3 and 18:0-oxo except c9-18:1, c11-18:1, 18:2n-6 and 18:3n-3; standard error of means (±). 

Contrasts were significantly different for P ˂ 0.05. 
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3.3.5. Fatty acid and dimethylacetal composition of blood plasma 

The FA and DMA composition of blood plasma is presented in Table 13. The total FA and 

total C18 FA concentrations averaged 1.91 and 1.53 mg/mL, respectively, and did not differ 

among treatments. The sums of 18:2 and 18:3 were slightly but not significantly higher with 

M than with C, although the concentration of t11,c15-18:2 was higher (P = 0.039) and that of 

c9,c15-18:2 tended (P = 0.084) to be higher with M than with C treatments. The sums of 

trans-18:1 and cis-18:1 did not differ among treatments, but c16-18:1 was higher (P = 0.037) 

and c15-18:1 tended (P = 0.082) to be higher with MC than the average of M and C. The 

oxo-18:0 was higher (P = 0.015) with M than with C. Attending to other FA, the only 

differences found were for the sum of FA with more than 18 carbons (LC-FA) and for the sum 

of DMA, which tended (P ˂ 0.060) to be higher with M than with C treatments.  
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Table 13. Effect of tannin extracts on total C18 fatty acids (FA), total FA (mg/mL) and other 

C18 FA and FA (µg/mL) of blood plasma. 

Item 
Treatments

1
 

SEM
2
 

Contrasts
3
 

M
 

C MC C1 C2 

Total C18 FA  1.61 1.51 1.48 0.092 0.480 0.486 
18:0 337 308 324 49.4 0.585 0.969 
trans-18:1       

t6/ t7/ t8 5.74 4.93 6.16 1.168 0.455 0.390 
t9 5.02 4.02 4.63 0.557 0.177 0.854 
t10 6.77 0.65 4.90 2.877 0.145 0.719 
t11 34.3 33.7 40.5 8.46 0.930 0.325 
t12 8.82 6.75 8.28 1.843 0.310 0.762 
t15 4.74 2.88 3.90 1.168 0.172 0.932 
t16 5.87 4.08 5.32 1.276 0.226 0.763 

Total 73.4 59.4 78.6 15.18 0.323 0.321 
cis-18:1       

c9 264 225 209 30.9 0.351 0.332 
c11 7.15 6.17 7.07 0.783 0.255 0.567 
c12 19.2 14.1 20.3 5.06 0.302 0.390 
c13 0.88 0.59 0.88 0.306 0.409 0.624 
c15 0.80 0.88 1.15 0.180 0.626 0.082 
c16 0.95 0.95 1.64 0.454 0.989 0.037 

Total 294 248 240 32.8 0.329 0.447 
Total 18:1 397 338 339 37.9 0.301 0.555 
18:2       

18:2n-6 609 552 621 62.1 0.447 0.534 
c9,t11 3.89 4.10 4.40 0.442 0.674 0.387 

t11,c15
4 

3.54 1.84 3.57 0.758 0.039 0.166 
c9,c15 0.77 0.38 0.69 0.139 0.084 0.513 
c12,c15 1.38 0.77 1.38 0.375 0.277 0.506 

Other 18:2
5
 12.8 11.2 11.5 1.69 0.388 0.734 

Total 539 465 551 30.7 0.189 0.282 
18:3 46.6 43.2 53.5 10.93 0.794 0.467 

18:3n-3 36.1 32.2 42.7 9.09 0.662 0.313 
18:3n-6 4.78 4.57 5.42 1.176 0.817 0.390 

c9,t11,c15
6 

1.50 1.58 1.64 0.307 0.850 0.799 
Total       

Oxo-18:0 1.92 0.53 1.03 0.395 0.015 0.463 
Total BI

7
 128 105 131 24.2 0.391 0.528 

Total FA  2.02 1.87 1.83 0.125 0.416 0.474 
Total ECFA

8
 572 506 528 60.1 0.307 0.837 

Total OCFA
9
 21.2 19.4 21.1 2.03 0.502 0.721 

Total BCFA
10 

10.2 11.5 9.95 1.231 0.475 0.568 
Total DMA

11 
10.4 7.70 8.47 1.752 0.055 0.585 

Total LC-FA
12

 97.3 75.0 86.2 8.05 0.053 0.995 
Others

13 
20.2 19.3 20.5 2.37 0.722 0.726 

1
, M, mimosa; C, chestnut; MC, mimosa plus chestnut tannin extracts; 

2
,
 
standard error of means; 

3
, 

C1, mimosa versus chestnut; C2, (mimosa + chestnut)/2 versus mimosa plus chestnut treatments; 
4
, 

includes t10,c15-18:2; 
5
, conjugated trans,cis-/cis,trans/trans,trans-18:2 isomers and 5, 11-cyclohexyl-

11:0; 
6
, includes 20:3n-9; 

7
, biohydrogenation intermediates, sum of total 18:1, 18:2, 18:3 and 18:0-oxo 

except c9-18:1, c11-18:1; 18:2n-6; 18:3n-3; and 18:3n-6;
 8

, even and linear-chain FA; 
9
, odd-chain FA; 

10
, branched-chain FA;

11
, dimethylacetals; 

12
,
 
long chain FA with higher than 18 carbons; 

13
, 16:0-

3,7,11,15Me and total 16:1. Contrasts were significantly different for P ˂ 0.05. 
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3.4. Discussion  

 

The dietary incorporation of mimosa condensed tannins led to lower DMI, VFA concentration 

in the rumen, abundance of rumen specialized fibrolytic bacteria and DMA-based estimates 

of bacterial biomass than that of chestnut hydrolysable ellagitannins. Thus, condensed 

tannins led to a general depression of rumen activity when compared with hydrolysable 

tannins, confirming that condensed tannins exert a more inhibitory action on rumen 

microorganisms than hydrolysable tannins (O'Donovan & Brooker, 2001; Krause, Smith, 

Brooker & McSweeney, 2005; Bhatta et al., 2009; Buccioni et al., 2015). 

The differential effect of tannin extracts on DMI was partially due to the lowest palatability of 

M pelleted diet as compared to C and MC diets. In fact, throughout the experiment, it was 

clear that the appetence for M pellets of all sheep was lower than that for C and even MC 

pellets. Additionally, the eventual greater ability of condensed tannins to bind to organic 

matter and thus to inhibit its digestibility may have also contributed to the lowest DMI of 

sheep fed M diet, as other authors have also observed post-ingestive adverse effects in 

ruminants fed condensed tannins (Silanikove, Perevolotsky & Provenza, 2001). 

The stronger affinity of condensed tannins for proteins and, consequently, the more markedly 

reduced rumen degradability of dietary protein with condensed tannins as compared to 

hydrolysable tannins was clearly evident by the quantitative and proportional reductions of 

iso-4:0 and iso-5:0, as previously reported (Bhatta et al., 2009; Buccioni et al., 2015). In fact, 

iso-VFA derived from the fermentation of branched-chain amino acids (Mackie & White, 

1990). Other reports have also described a more marked decrease of VFA, mostly of 

acetate, with condensed in relation with hydrolysable tannins (Makkar, Blummel & Becker, 

1995; Getachew et al., 2008; Buccioni et al., 2015; Jayanegara, Goel, Makkar & Becker, 

2015). It seems that the highest dose of mimosa tannins (100 g/kg DM) was the main factor 

for the inhibition of ruminal fermentation, considering that the MC treatment presented a 

higher total VFA production than that of the mean of M and C treatments.  

The reduced growth of specialized fibrolytic bacteria with condensed comparing with 

hydrolysable tannins was shown by lower abundance of F. succinogenes, R. albus, R. 

flavefaciens and B. proteoclasticus with M than with C treatments. These results contrast 

with those obtained in vitro using tannin sources extracted and purified in laboratorial 

conditions, as Jayanegara et al. (2015) reported that the abundance of R. flavefaciens was 

more reduced with chestnut hydrolysable tannins than mimosa condensed tannins and that 

of F. succinogenes was similarly reduced by both mimosa and chestnut tannins. Factors like 

the type of extract (commercial vs. purified extracts), dose (100 vs. 73 g/kg of DM) and 

experimental model (in vivo vs. in vitro) make it difficult to make comparisons across studies, 
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even though the effects of tannins on rumen metabolism are largely inconsistent in the 

literature (Makkar, 2003). 

Beside the specialized fibrolytic bacteria, S. ruminantium was more abundant with M than 

with C treatments. Moreover, S. ruminantium seems to be consistently favoured by the 

presence of mimosa tannins, since its abundance was also higher with MC treatment. 

Conversely, the F. succinogenes was consistently favoured by the presence of chestnut 

extract, being more abundant with C and MC treatments. The explanation for differential 

responses of rumen bacteria to condensed and hydrolysable tannins is unclear, but it has 

been described that some species of rumen bacteria are more susceptible than others to the 

effects of tannins. In fact, Gram-negative bacteria, S. ruminantium in the present study, were 

shown to be less affected by condensed tannins than Gram-positive bacteria (Smith & 

Mackie, 2004). This response likely reflects the greater affinity of tannins for bacteria with 

Gram-positive as compared to Gram-negative cell walls (Smith et al., 2005). Although F. 

succinogenes is also a Gram-negative bacterium, its susceptibility to condensed tannins has 

been documented (Bae, Mcallister, Yanke, Cheng & Muir, 1993; McSweeney, Palmer, Bunch 

& Krause, 2001a). This observation may explain why the 16S rRNA copy numbers of this 

bacterium were higher in the presence of hydrolysable as compared to condensed tannins. 

In the present study, the crude microbial biomass in rumen contents was estimated using 

DMA as an internal microbial marker. Previously, Saluzzi et al. (1995) evaluated the DMA 

profile of bacterial fractions and, more recently, Alves et al. (2013b) suggested the utility of 

DMA as a microbial marker. The DMA are not exclusively of bacterial origin as their presence 

has also been reported in ciliate protozoa (Harfoot & Hazlewood, 1997). Thus, microbial 

biomass estimates based only on DMA concentration of mixed rumen bacterial fractions can 

be influenced by both bacterial and protozoal populations. Nevertheless, the biomass was 

estimated to account for 22 to 30% of rumen DM content shortly before feeding, which is 

consistent with previous estimates obtained using other methods (Craig, Brown, Broderick & 

Ricker, 1987; Legay-Carmier & Bauchart, 1989; Bessa et al., 2009). The rumen biomass 

estimates also pointed to a general microbial depression with mimosa than with chestnut 

tannin extracts.  

Overall, these results probably reflect a higher effectiveness of condensed tannins to bind to 

polymers, mainly proteins and carbohydrates, than hydrolysable tannins, reducing rumen 

microbial activity and population. These differential tannin effects were probably due to 

differences in the molecular structures of mimosa condensed as compared to chestnut 

hydrolysable tannins. Indeed, commercial polyflavonoid tannins of mimosa were described to 

be oligomers, mainly trimers and tetramers of 809, 906 and 1179 Da, respectively, with 

prorobinetinidin (288 Da) as the predominant repeat unit (Pasch, Pizzi & Rode, 2001). In 

contrast, commercial hydrolysable tannins from chestnut were reported to be composed 
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mostly of ellagitannins, with castalagin and vescalagin of molecular weights of 935 Da being 

the main constituents (Pasch & Pizzi, 2002). Hydrolysable tannins have been shown to be 

extensively hydrolysed in the rumen into simpler units, while mimosa oligomers linked by 

carbon-carbon bonds are less susceptible to hydrolysis. Thus, the high MW and large 

number of phenolic hydroxyl groups of mimosa tannins are expected to form strong 

complexes via hydrogen bonds with carboxyl groups of aliphatic and aromatic side chains of 

proteins and other macromolecules, including lipoproteins from cell membranes and bacterial 

enzymes (Field & Lettinga, 1992; McAllister et al., 2005; Patra & Saxena, 2011).  

Despite the general depressive effects on rumen fermentation of mimosa condensed tannins 

when compared with chestnut hydrolysable tannins, it was not possible to detect clear effects 

of these compounds on ruminal BH or impacts on blood plasma FA profiles. The estimated 

BH extent (disappearance of substrates) and completeness were fairly high and comparable 

to what was expected (Fievez, Vlaeminck, Jenkins, Enjalbert & Doreau, 2007). Ruminal BH 

can be considered a response to stress stimuli towards rumen microbiota induced by high 

concentration of UFA in the rumen milieu (Bessa et al., 2000) and, eventually, also by 

additional stress factors like high tannin concentrations. Several studies reported a 

modulation of BH by tannins usually with increased BH intermediates, particularly trans-18:1 

isomers, in the rumen (Vasta et al., 2009a; Buccioni et al., 2011; Carreño et al., 2015). Our 

experimental model intended to induce such cumulative environmental stress in the rumen 

(i.e. high PUFA and high tannins) but, due to low statistical power of the experiment, the only 

clear response detected was the increased variability in BH with M and MC treatments. This 

increased variability was mostly caused by an occasional disruption of BH pathways 

observed over a few of the sampling days. This response was not clearly associated with the 

individual sheep, period or even with the DMI from the previous day. Such high variability 

was not reflected in the amount of bacterial species quantified by real time PCR, including 

those of Butyrivibrio spp., which have been considered to be the major bacteria responsible 

for BH in the rumen (Jenkins et al., 2008; Lourenço et al., 2010). Nevertheless, the 

abundance of B. proteoclasticus, a 18:0-producer, was higher with C compared to M and MC 

treatments and that might explain the highest numerical and less variable BH completeness 

(i.e. recover as 18:0 of biohydrogenated UFA) with C treatment.  

Interestingly, a higher abundance of S. ruminantium with M than with C treatments might 

have contributed to a greater accumulation of oxo-18:0 FA in the rumen and blood plasma 

with condensed than with hydrolysable tannins. Indeed, this bacterium has the ability to 

hydrate c9-18:1 to 10-OH-18:0 (Hudson et al., 1995), which is a precursor of 10-oxo-18:0 

(Jenkins et al., 2006). However, a higher abundance of S. ruminantium in the rumen together 

with a lower sum of oxo-18:0, mainly 15-oxo-18:0 and slightly 10-oxo-18:0, in bacterial 
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fractions with MC than the average of M and C might reflect the involvement of other rumen 

bacteria in the production of oxo-18:0.  

It has been proposed that the accumulation of trans-18:1 and its incorporation into microbial 

cell membranes or a direct cis to trans isomerisation in the membranes favours the 

adaptation of bacteria to compounds, like PUFA and tannins, that can alter cell membrane 

integrity (Keweloh & Heipieper, 1996; Heipieper, Fischer & Meinhardt, 2010). Consistently 

with our hypothesis, the suppression of BH observed with condensed as compared to 

hydrolysable tannins may reflect their ability to more readily form complexes with lipoproteins 

from bacterial cell membranes and with enzymes (Field & Lettinga, 1992). However, 

hydrolysable tannins are easily hydrolysed into membrane-disturbing compounds (Field & 

Lettinga, 1987; Scalbert, 1991) that could potentially stimulate the incorporation of trans-18:1 

into bacterial cell membranes, which might explain the higher “trans-/cis-18:1” ratio with 

hydrolysable than with condensed tannins in bacterial biomass. The increased bacterial 

incorporation of trans-18:1 with hydrolysable tannins was mainly due to a higher production 

of t11-18:1 during ruminal BH comparing with condensed tannins rather than cis to trans 

isomerisation. 

 

 

3.5. Conclusions  

 

In the present study, mimosa tannin extract led to lower rumen fermentative activity and 

abundance of specialized fibrolytic bacteria compared with chestnut tannin extract, when 

both were incorporated at high doses (100 g/kg DM) in sheep’s diet. These results were 

possibly caused by the stronger ability of condensed tannins to bind to dietary and microbial 

polymers, causing a general inhibition of rumen microbial activity. Moreover, the instability of 

bacterial cell membrane caused by tannins was more evident with hydrolysable than with 

condensed tannins with a greater production of trans-18:1 by rumen bacteria and possible 

incorporation into their cell membranes. Further studies are needed to evaluate the influence 

of the two types of tannins, from the same or from different sources, at less than 100 g/kg 

DM in the diet, on ruminal BH. 

 

 

 

 

 



 

89 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

Acknowledgements 

 

The authors want to thank Fundação para a Ciência e Tecnologia (FCT) through research 

grants to MC (SFRH/BD/90468/2012) and SPA (SFRH/BPD/76836/2011) and through 

PTDC/CVT/120122/2010 and UID/CVT/00276/2013 projects and to John Wallace (Rowett 

Institute of Nutrition and Health) and Margarida Maia (Abel Salazar Biomedical Science 

Institute - ICBAS) for providing reference bacterial strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 

 

  



 

91 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

 

 

 

 

 

 

 

 

 

CHAPTER 4 – The induction of trans-10 shift in sheep fed with a 

concentrate-based diet supplemented with sunflower oil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

  



 

93 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

The induction of trans-10 shift in sheep fed with a concentrate-based diet 

supplemented with sunflower oil  

 

 

M. Costa†, S. P. Alves†, A. Cabo†, G. Stilwell†, A. Troegeler-Meynadier‡, F. Enjalbert‡ & R. J. 

B. Bessa† 

 

†CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina 

Veterinária, Universidade de Lisboa; Avenida da Universidade Técnica 1300-477, Lisboa, 

Portugal. 

‡Université de Toulouse INPT ENVT, UMR1289 Tissus Animaux Nutrition Digestion 

Ecosystème et Métabolisme, Toulouse, France.  

 

 

 

 

Article in preparation 

 

 

 

 

 

 

 

Contribution of Mónica Costa to this article:  

Mónica Costa participated in the animal experiment and management and sample collection. 

Also, she determined the FA content and performed the data processing and statistical 

analysis. Furthermore, Mónica Costa participated in the interpretation and discussion of the 

results, as well as in the writing of the manuscript.  

 



 

94 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

ABSTRACT 

The hypothesis of gradual occurrence and maintenance of the shift from t11 to t10 ruminal 

BH pathways (t10-shift) associated with rumen pH reduction and an impact on FA 

composition of blood plasma was tested. Two rumen fistulated rams were housed in 

metabolic cages and adapted to a diet composed of 723 g/kg dry matter (DM) of ground 

wheat grain with sunflower oil (41 g/kg DM) (t10-shift inducing concentrate), 191 g/kg DM of 

commercial compound feed and 191 g/kg DM of forage, for 29 days of experimental period. 

Rumen contents were collected before and 3h after the morning meal. Once a week, rumen 

contents were obtained every 1h30 from 9h30 to 20h00 and blood plasma was collected at 

9h30 and 12h30. The t10-shift appeared between days 8 and 11 and on day 15 in ram 1 and 

from days 15 to 17 in ram 2. The shift was associated with an increase of feed intake 

following its decrease and, only in ram 1, to an increase of PUFA in rumen contents. Also, 

there was an increment of the total of trans-18:1 and a decrease of 18:0 during the t10-shift 

and an increase of oxo-18:0 before the shift. No clear associations between t10-shift´s 

induction and rumen pH or blood plasma FA profiles were found, but ram 2 presented a 

higher post-prandrial t10-/t11-18:1 ratio together with a lower pH in the rumen. These 

differences between animals are probably due to variability of rumen microbiota. During a 

selected period of the trial, there was an inferior rumen bacterial diversity with lower 

abundance of Bacteroidetes and Firmicutes and higher abundance of Actinobacteria and, to 

a lesser extent, of Spirochaetae phyla in ram 1 compared to ram 2.  

Keywords: t10-shift´s induction, fatty acids, ruminal biohydrogenation, starch, lipid 

supplementation 

 

 

4.1. Introduction 

 

The occurrence of a shift from t11 to t10 ruminal BH pathways (t10-shift) has been reported 

when high-starch diets with or without supplementation with oils rich in PUFA are fed to 

ruminants (Loor et al., 2004; Bessa et al., 2005; Rosa et al., 2014). The major consequences 

of the t10-shift are a higher accumulation of t10-18:1 at the expense of t11-18:1 and the 

diminishment of c9,t11-18:2 to the detriment of t10,c12-18:2 in the rumen and tissues (Aldai 

et al., 2013; Bessa et al., 2015). A better understanding of shift’s establishment is essential 

to prevent its occurrence, considering the potential beneficial effects of c9,t11-18:2 and t11-

18:1 and detrimental effects of t10,c12-18:2 and t10-18:1 in human health (Aldai et al., 

2013). Also, the t10-shift might lead to milk fat depression in dairy ruminants (Griinari et al., 
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1998; Bauman & Griinari, 2003) and is possibly associated with rumen acidosis (Bessa et al., 

2015). The importance of t10-shift in human and animal health leads to the necessity of 

predicting its presence even before the analysis of rumen content, which might be 

accomplished by evaluating the “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio in the plasma, as 

reported in a recent study (Alves et al., 2017). The “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio 

might be a better indicator of the presence of t10-shift than “t10-/t11-18:1 ratio, since it 

considers the post absorptive desaturation of t11-18:1 into c9,t11-18:2 (Shingfield & Wallace, 

2014). Moreover, studies about the development of t10-shift are scarce and its relation with 

rumen pH has been difficult to establish. In fact, the time required for the occurrence of the 

shift was reported to be about 8 to 18 days and then it remains constant (Roy et al., 2006; 

Zened et al., 2013b), oppositely to fast changes in rumen pH (Zened et al., 2013b; Bessa et 

al., 2015). The progressive establishment of the shift, reflected by the strong time dependent 

modifications in the “t10-/t11-18:1” ratio, suggests an adaptation of rumen microbiota (Roy et 

al., 2006; Zened et al., 2013a; Bessa et al., 2015). In the present study, we hypothesized that 

the t10-shift will appear gradually within the first two weeks of feeding rams with a high-

starch diet supplemented with sunflower oil and will remain constant afterwards due to 

changes in the microbiota, accompanied by higher t10-18:1 in the plasma and rumen pH 

reduction. Also, dietary effects on rumen bacterial community and its individual variability 

were evaluated using FLX amplicon pyrosequencing, in order to relate modifications of 

bacterial taxonomic groups with the development of t10-shift.  

 

 

4.2. Material and methods 

 

4.2.1. Animal handling and management  

Animal handling followed EU Council Directive 2010/63/EU (EC, 2010) concerning animal 

care and rumen fistulated animals were used after approval of the ethical committee of the 

Faculty of Veterinary Medicine, University of Lisbon. Two rumen fistulated approximately 2-

year old rams (50 kg of live weight) were housed in individual metabolic cages. Before the 

experimental period, animals were fed with 500 g of commercial compound (CC) feed and 

800 g of grass hay, both divided into two equal meals per day (9h30 and 17h00). The 

ingredients and chemical composition of grass hay and CC feed were previously described 

by Costa et al. (2016). The experimental diet was composed of 723 g/kg DM of ground wheat 

grain supplemented with 41 g/kg DM of sunflower oil (t10-shift inducing concentrate; T10C), 

191 g/kg DM of CC feed and 191 g/kg DM of grass hay. The diet was provided twice daily 

(9h30 and 17h00) and grass hay was also fed at 12h30. The amount of feed refused was 
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weighed at every meal for all the experimental period, but the feed offered was only 

accordingly adjusted on the first week. During the rest of the experimental period, the feed 

offered per meal was constant and corresponded to 378.5 g of ground wheat grain 

supplemented with 21.5 g of sunflower oil (T10C) together with 100 g of CC feed. The grass 

hay was provided as 50 g at 9h30, 50 g at 17h00 and 100 g at 12h30. The grass hay and CC 

feed contained 899 and 851 g/kg DM, respectively. The ground wheat grain presented 870 

g/kg DM. The experimental period had consisted of 29 days, after one week of adaptation of 

rams to the cages. On the first four days of the experimental period, rams were gradually 

transitioned from the initial diet to the experimental wheat-based diet, with the last week 

corresponding to the dietary transition from the experimental diet to the initial diet (CC feed 

and grass hay). 

 

4.2.2. Sample collection  

For each day of the experimental period, total rumen contents were collected directly though 

rumen cannula before the morning meal and 3h after feeding and were immediately 

transferred to the laboratory. On the third day of every week, total rumen contents were 

collected every 1h30, from 9h30 (before feeding) to 20h00. Rumen samples were stored at -

20 ºC, freeze-dried (ScanVac CoolSafe, LaboGene ApS, Lynge, Denmark) and preserved at 

-20 ºC for long chain FA analysis and, the samples from days 8 and 10, also for 16S rRNA 

gene amplicon pyrosequencing analysis. Sub-samples of total rumen contents from days 12 

to 29 were filtered through four layers of cheesecloth for pH measurement (Digital pH meter 

“pH-2005”; JP Selecta S.A, Barcelona, Spain). On the third day of every week, blood 

samples were collected from each ram into heparinized syringe tubes (S-Monovette®; 

Nümbrecht, Germany), before the morning meal and 3h after feeding, and centrifuged at 

1650 xg and 4 ºC for 15 min using a Universal 32 R, Hettich Lab Technology (Tuttlingen, 

Germany) centrifuge. The blood plasma was separated and preserved at -20 ºC for long 

chain FA analysis. Feed chemical composition was determined using the methods described 

by Francisco et al. (2015). 

 

4.2.3. Fatty acid analysis 

For long chain FA analysis, 250 mg of each sample was weighted and transesterified into FA 

methyl esters using a basic followed by acidic catalysis (Alves et al., 2013b) with 19:0 (1 

mg/mL) as internal standard. Fatty acid methyl esters were separated by GC-FID using a 

Shimadzu GC-2010 Plus chromatograph equipped with a 100% cyanopropyl polysiloxane 

capillary column (SP-2560, 100 m, 0.25 mm i.d., 0.20 μm film thickness; Supelco Inc., 

Bellefont, PA, USA). Identification of FA methyl esters was achieved by comparison of the 
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retention times with those of authentic standards (FAME mix 37 components from Supelco 

Inc., Bellefont, PA, USA, and a Bacterial FAME mix from Matreya LLC, Pleasant Gap, PA, 

USA) and by confirmation with GC-MS in a Shimadzu GC-MS QP 2010 Plus chromatograph 

(Kyoto, Japan) equipped with a SP-2560 column (Alves et al., 2013b; Alves et al., 2015). 

Also, for long chain FA analysis, 200 µL of blood plasma from each sample was used for 

direct in situ transesterification as descrided by Glaser, Demmelmair and Koletzko (2010).  

 

4.2.4. Pyrosequencing for 16S rRNA gene amplicon and analysis of data 

The following procedures were done in collaboration with the authors Troegeler-Meynadier, 

A. and Enjalbert, F., as described by Zened et al. (2013a). Briefly, total DNA was extracted 

from 200 mg of freeze-dried rumen contents and quantified using NanoDrop ND-1000 

spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA). Amplicons from V3 to 

V4 regions of 16S rRNA genes (460 bp on Echerichia coli, GenBank number J01695) were 

amplified by conventional PCR with universal bacterial forward 343F 

(TACGGRAGGCAGCAG) (Liu, Lozupone, Hamady, Bushman & Knight, 2007) and reverse 

784R (TACCAGGGTATCTAATCCT) (Andersson et al., 2008) primers. After purification of 

PCR products, DNA was quantified using Quant-iT PicoGreen dsDNA Assay kit (Invitogen, 

Saint Aubin, France) on a ABI Prism 7900 HT sequence detection system (Life 

Technologies, Invitrogen Applied Biosystems, Villebon-sur-Yvette, France) and, for each 

amplicon library, 1000 ng/L of final DNA concentration was obtained. The pooled amplicons 

were pyrosequenced using a 454 FLX Titanium (454 Life Sciences – a Roche Company, 

Branford, CT) sequencer at the GeT (Genomic and Transcriptomic) platform of National 

Institute for Agricultural Research (INRA), Toulouse, France. For taxonomical classification of 

bacterial groups, filtered gene sequences were aligned using SILVA alignment database 

(MOTHUR software Inc., Ann Arbor, MI, USA) and clustered into Operational Taxonomic 

Units after calculating a pairwise distance between sequences.  

 

4.2.5. Statistical analysis and calculations 

Data corresponding to pre- and post-prandial effects on pH and “t10-/t11-18:1” ratio in the 

rumen and “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio in the plasma were analysed using the 

MIXED procedure of SAS (SAS Institute Inc., Cary, NC, USA). The single fixed factor was 

the hour and the experimental unit was the animal. Each sample was treated as subsampling 

within the day using a compound symmetry covariance matrix as the best model generated. 

The effect of the treatment was considered as significant for P˂0.05. All graphical 

representations were done with GraphPad Prism (GraphPad Software Inc., La Jolla, CA, 

USA). Shannon bacterial diversity and numerical species richness indices were calculated 
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using the Instat-3.37 Software (Statistical Services Centre, University of Reading, UK, 2010), 

as desbrided by Magurran (2004).  

 

 

4.3. Results 

 

4.3.1. Development of t10-shift - influence on feed intake, rumen C18 FA and pH 

Figure 3 shows a graphical representation of the establishment and development of t10-shift 

and its relation with the concentrate intake and some major C18 FA concentrations in the 

rumen for ram 1. The shift was present between days 8 (14h) and 11 and during all day 15. 

In the first occurrence, the “t10-/t11-18:1” ratio averaged 1.86, reaching a maximum of 2.50 

on day 8 (20h), whereas, in the second one, the ratio averaged 1.32 and its maximum was 

1.52 on day 15 (11h). As expected, the concentrations of t10-18:1 and t11-18:1 followed a 

similar pattern of their ratio and, when ratio≈2.50, the amount of t10-18:1 was 7.66 mg/g DM 

and that of t11-18:1 was 3.06 mg/g DM, while the ratio value of 1.52 was associated with 

3.31 mg/g DM of t10-18:1 and 2.18 mg/g DM of t11-18:1. The appearance of t10-shift on day 

8 was preceded by a decrease of intake of dietary concentrate from days 5 (17h) to 6 (9h30) 

(480 to 4 g/meal), even though a temporary increase from 103 g on day 7 (17h) to 469 g on 

day 9 (9h30) was found. Before the second occurrence of the shift, a slight reduction of 

intake was verified, although, during all day 15, the intake was at a high level (average of 472 

g/meal). The “t10,c12-/c9,t11-18:2” ratio considerably increased at the same time that “t10-

/t11-18:1” ratio, but it was only above 1 from days 8 (20h) to 9 (12h30) (averaging 1.26) and 

on day 15 (11h) (ratio ≈1.13) with a higher variance of its values comparing with “t10-/t11-

18:1” ratio. There was a post-prandial increase of the sum of PUFA (18:2n-6 and 18:3n-3) 

followed by its decrease. The relation between PUFA and the shift was similar to that 

reported for intake, considering an abrupt decrease of these FA just before the occurrence of 

the shift followed by their enhancement during the shift. In fact, the amount of PUFA was 

1.39 mg/g DM on day 8 (9h30) and averaged 10.16 mg/g DM between days 8 (11h) and 10 

(12h30). Also, the average of PUFA was 3.23 mg/g DM from days 13 (12h30) to 15 (9h30) 

but increased until 8.05 mg/g DM on day 15 (17h). Nevertheless, the maximum amount of 

PUFA (19.29 mg/g DM) was obtained on day 4 (12h30) of the adaptation period to wheat-

based diet. The 18:0 decreased and the total of trans-18:1 increased during the shift, mainly 

from days 8 (20h) to 11 (12h30) (average of 10.20 mg/g DM for 18:0 and 19.16 mg/g DM for 

trans-18:1). However, at the second establishment of the shift, this modification was only 

more evident on day 15 (11h), although 18:0 was still approximately 1.66-fold higher than 

trans-18:1. Before the first occurrence of the shift, a considerable increase of oxo-18:0 was 
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found, between days 5 and 7 comparing with the previous days, from an average of 0.58 to 

2.88 mg/g DM. The maximum concentration of these FA (4.50 mg/g DM) was present with 

the lowest intake of concentrate (day 6, 9h30). Also, a slighter increment of oxo-18:0 was 

verified from days 10 (12h30) to 11 (9h30) (0.50 to 2.56 mg/g DM). 
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Figure 3. Effect of the experimental wheat-based diet in the development of t10-shift and its 

influence on major C18 fatty acids in the rumen of ram 1. 
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The period of feeding with the experimental wheat-based diet corresponds to the time between 
interrupted lines. The transition from the initial diet (commercial compound feed and forage) to the 
experimental diet occurred over the first 4 days and the transition back to the initial diet occurred from 
days 22 to 29. The threshold for the occurrence of t10-shift is represented by a horizontal line and the 
shaded area indicates the period of time in which the t10-shift was established. 
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Figure 4 represents the same as figure 3 but for ram 2. The t10-shift occurred between days 

15 and 17 with “t10-/t11-18:1” ratio averaging 1.68 and reaching a maximum of 1.96 on day 

15 (12h30), although the ratio was already close to 1 on day 17 (average of 1.01). The 

concentrations of t10-18:1 and t11-18:1 varied according to a similar pattern of their ratio 

and, when ratio ≈1.96, the amount of t10-18:1 was 3.70 mg/g DM and that of t11-18:1 was 

1.89 mg/g DM. The appearance of t10-shift was preceded by a decrease of the intake of 

dietary concentrate from days 14 (17h) to 15 (9h30) (500 to 281 g/meal) and, even though 

the intake returned to its maximum in the beginning of day 15, it suddenly decreased from 

days 15 (17h) to 16 (9h30) and it was maintained at a low level until day 18 (9h30) 

(averaging 236 g/meal). Similar to “t10-/t11-18:1” ratio but with a higher variance of its 

values, the “t10,c12-/c9,t11-18:2” ratio increased during the shift, reaching a maximum of 

0.51 on day 15 (20h). However, the greatest ratio was present before and after the shift and 

it was never above 1.  

There was a post-prandial increase of the sum of PUFA (18:2n-6 and 18:3n-3) followed by its 

decrease. Identically to the intake of concentrate, these FA decreased from 7.53 to 4.22 

mg/g DM just before the occurrence of the shift, although the transitory increase of the intake 

at the time of the shift did not lead to an enhancement of the sum of 18:2n-6 and 18:3n-3. In 

fact, the concentration of PUFA remained low during the shift (averaging 3.37 mg/g DM). 

Moreover, the maximum total of PUFA (25.54 mg/g DM) was obtained on day 4 (12h30) of 

the adaptation period to wheat-based diet. The 18:0 was considerable higher than the total of 

trans-18:1, during the shift (average of 33.16 mg/g DM for 18:0 and 4.83 mg/g DM for trans-

18:1). Before the establishment of the shift, there were increases alternated with decreases 

of total oxo-18:0 between days 9 (12h30) and 14 (averaging 0.76 mg/g DM), reaching 1.44 

mg/g DM on day 11 (9h30). Afterwards, the amount of oxo-18:0 remained low with an 

average of 0.32 mg/g DM at the time of the shift. Nevertheless, the maximum of these FA 

(2.13 mg/g DM) was verified on day 4 (9h30). The progression of the shift and its relation 

with the concentrate intake and some C18 FA in the rumen between days 5 and 7 could not 

be evaluated, since rumen contents were not collected on these days. 
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Figure 4. Effect of the experimental wheat-based diet in the development of t10-shift and its 

influence on major fatty acids and the pH in the rumen of ram 2. 
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The period of feeding with the experimental wheat-based diet corresponds to the time between 
interrupted lines. The transition from the initial diet (commercial compound feed and forage) to the 
experimental diet occurred over the first 4 days and the transition back to the initial diet occurred from 
days 22 to 29. The threshold for the occurrence of t10-shift is represented by a horizontal line and the 
shaded area indicates the period of time in which the t10-shift was established, although “t10-/t11-
18:1” ratio≈0.98 between 16 day and 17 day.  
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4.3.3. Relation between the development of t10-shift and rumen pH - Pre- and post-

prandial effects  

Figure 5 shows the progression of pH during the trial, as well as pre- and post-prandial 

effects on pH and “t10-/t11-18:1” ratio in the rumen. For both rams, there was no clear 

association between the presence of t10-shift on day 15 and rumen pH, which averaged 5.97 

for ram 1 and 6.35 for ram 2. The post-prandial pH was significantly lower than the pre-

prandial pH, for both animals (P < 0.001). In fact, before the mourning meal, the average of 

pH values was 6.82±0.062 for ram 1 and 7.10±0.077 for ram 2 and, 3 h after the meal, it 

averaged 5.68±0.062 for ram 1 and 5.86±0.077 for ram 2. Considering the “t10-/t11-18:1” 

ratio, it significantly increased (P ˂ 0.001) for ram 2 after the mourning meal (0.43 to 

0.52±0.083), but only a slight and non-significant (P ≈ 0.342) increment of the ratio was 

verified for ram 1 (0.60 to 0.63±0.103).  

 

 

Figure 5. Relation between the development of t10-shift and rumen pH. Pre- and post-

prandial effects on t10-shift and pH.  
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The period of feeding with the experimental wheat-based diet corresponds to the time until the 
interrupted vertical line and, afterwards, the transition to the initial diet (commercial compound feed 
and forage) took place. The shaded area indicates the period of time in which the t10-shift was 
established. ** P˂0.001. 
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4.3.3. Relation between the development of t10-shift in the rumen and its expression 

in the blood plasma 

Figure 6 represents weekly, pre- and post-prandial effects on “t10-18:1/(t11-18:1 + c9,t11-

18:2)” ratio in the blood plasma, as well as the relation between that ratio and t10-/t11-18:1 

ratio in the rumen. In ram 2, an evidence of t10-shift´s occurrence was verified in the plasma, 

after the meal at the third week (day 22) of trial, but the “t10-18:1/(t11-18:1 + c9,t11-18:2)” 

ratio was only slightly higher than 1 (1.09). A plasmatic evidence of shift was not so clear for 

ram 1, although the ratio reached its maximum value at the same time as for ram 2 and was 

close to 1. Moreover, no significant differences were found between pre- and post-prandial 

“t10-18:1/(t11-18:1 + c9,t11-18:2)” ratios, but a tendency (P = 0.073) for a higher ratio after 

(0.47±0.139) than before (0.43±0.139) the meal was observed for ram 1. Also, there was no 

association between “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio in the plasma and “t10-/t11-

18:1” ratio in the rumen.  
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Figure 6. Weekly, pre- and post-prandial effects on “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio 

in the blood plasma and relation between that ratio and t10-/t11-18:1 ratio in the rumen. 
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4.3.4. Relative abundance and diversity of bacterial groups 

The taxonomic evaluation of rumen bacteria according to phylum, class and order is 

presented in Figure 7. At the phylum level, there was a high abundance of bacteria belonging 

to Actinobacteria and Bacteroidetes phyla for ram 2, which corresponded to an average of 

18.3% and 42.1%, respectively. Generally, Actinobacteria was the most predominant phylum 

for ram 1, reaching a maximum of 86.8%, but, in two samples (days 8 and 10 at 12h30), 

Spirochaetae was the major phylum and averaged 56.6%. The presence of bacteria 

belonging to Bacteroidetes was also proeminent for ram 1, being the second most abundant 

phylum in three samples (day 8; 14h00, 18h30, 20h00) with an average of 17.4%. The 

Firmicutes phylum was the fourth most abundant phylum for both rams, contributing to an 

average of 3.04% for ram 1 and 5.54% for ram 2. There was a highly variable increase of the 

abundance of Actinobacteria with an increment of “t10-/t11-18:1” ratio, ranging from 28.7% 

(ratio ≈ 2.12) to 86.8% (ratio ≈ 2.10) in ram 1. The contribution of Firmicutes was lower for 
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ram 1 than for ram 2, although this was not found for one sample of ram 1 (ratio ≈ 1.33; day 

8, 14h00) that corresponded to 12.0%, conversely to an average of 1.76% for the other 

samples of ram 1. Also, a lower abundance of Bacteroidetes was found for ram 1 compared 

to ram 2. 

Concerning the bacterial class, the abundance of Actinobacteria presented a similar pattern 

to that observed for Actinobacteria phylum, ranging from 67.0 (ratio ≈ 2.10) to 15.7% (ratio ≈ 

2.12) in ram 1. The Clostridia class was generally lower for ram 1, reaching a proportion as 

low as 0.76%, than for ram 2 (minimum of 3.99%), except in one sample of ram 1 (ratio ≈ 

1.33) with a contribution of Clostridia (11.7%) almost twice the maximum percentage (6.22%) 

found for ram 2. Moreover, there was a lower abundance of Bacteroidia for ram 1 (average of 

17.7%) than for ram 2 (average of 41.8%). Although the abundance of Spirochaetes was 

variable for both rams, a higher variation was found for ram 1 with proportions ranging from 

0.06 (day 8, 14h00) to 62.1% (day 8, 12h30). Another proemient class was Coriobacteriia 

that ranged between 16.9 (day 10, 9h00) and 24.3% (day 8, 9h00) for ram 2 and between 

8.28 (day 8, 12h00) and 20.9% (day 8, 15h30) for ram 1.  

Considering the bacterial order, the main responsible for the variable increase of 

Actinobacteria phylum and class associated with an increment of “t10-/t11-18:1” ratio was 

Actinomycetales, since its abundance ranged between 4.76 and 32.5% in ram 1 and only 

reached a maximum of 1.00% in ram 2. The major contribution of Actinobacteria was also 

determined by slightly differential abundance of Bifidobacteriales. In fact, although 

Bifidobacteriales contributed to up to about 20.0% of total sequences for both rams, its 

greatest proportion (23.5%) was found with the highest ratio (ratio ≈ 2.50) that corresponded 

to one sample from ram 1 (day 8, 20h00). Moreover, the abundance of Bifidobacteriales was 

variable, ranging from 4.27 to 23.5% for ram 1 and 4.52 to 20.2% for ram 2. Also, the 

contribution of Corynebacteriales was variable and generally more abundant for ram 1 than 

for ram 2, being as high as 28.9% for ram 1 but always below 1.00% for ram 2 except in one 

sample (day 10, 9h30) (11.3%). 
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Figure 7. Contribution of 16S rRNA sequences evaluated at bacterial phylum (a), class (b) 

and order (c) levels to the total number of sequences related to “t10-/t11-18:1” ratio in the 

rumen content.  
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Figure 8 shows the taxonomic evaluation of rumen bacteria according to family and genus. 

Concerning the bacterial family, there was a lower abundance of Porphyromonadaceae for 

ram 1 than for ram 2, corresponding to 0.35 and 1.20%, respectively. The contribution of 

Prevotellaceae for the total sequences was inferior in ram 1 (7.55%) compared with ram 2 

(15.5%). The abundance of Rikenellaceae was variable in both rams, although it was 

generally lower for ram 1 than for ram 2, ranging from 0.23 to 7.16% and from 3.51 to 10.4%, 

respectively. Also, an inferior abundance of Rikenellaceae was found in the three samples 

presenting the lowest “t10-/t11-18:1” ratio, with an average of 0.68%. The abundance of 

unclassified Bacteroidales for ram 2 was more than twice that for ram 1 and averaged 17.5 

and 5.82%, respectively. The abundance of Bacteroidaceae family was highly variable for 

both rams and generally lower for ram 1 (< 1.00% in most of the samples) than for ram 2 (up 

to 2.44%), although its highest proportion (3.74%) was found in one sample from ram 1 (day 

10, 12h30). Spirochaetaceae, Corynebacteriaceae, Bifidobacteriaceae and Actinomycetales 

incertae sedis families followed the same pattern as their orders.  

Considering the bacterial genus, the abundance of Prevotella was variably lower for ram 1 

than for ram 2 and ranged between 1.86 and 10.7% and between 6.84 and 13.3%, 

respectively. The uncultured Prevotellaceae genus followed a similar pattern to Prevotella 

but with a generally lower contribution, ranging from 0.37 to 4.54% for ram 1 and from 3.63 to 

8.74% for ram 2. The abundance of uncultured Coriobacteriaceae was higher for ram 1 (0.63 

to 4.83%) than for ram 2 (< 0.3%). The contribution of this genus was variably increased with 

an increment of “t10-/t11-18:1” ratio, as it averaged 4.34% for ratio ≈ 2.10 (day 8, 18h30) and 

2.15 (day 8, 20h) but considerably decreased to 1.24% when ratio ≈ 2.12. The 

Enterorhabdus genus was mostly abundant in ram 1, mainly in three samples (day 8, 18h30; 

day 8, 20h00 and day 10, 12h30) with the highest ratio, reaching a maximum of 7.48% when 

ratio ≈ 2.12. The contribution of Denitrobacterium genus was variably higher for ram 1 than 

for ram 2, ranging from 0.17 to 2.17% and from 0.25 to 0.65%, respectively. The Atopobium 

genus showed a similar pattern to Denitrobacterium, even though with a higher variable 

abundance for ram 1 (0.20 to 3.44%) compared to ram 2 (0.22 to 0.67%). The abundance of 

Olsenella was generally lower for ram 1 than for ram 2, reaching a maximum of 7.52% and 

13.5%, respectively. Although there was no clear relation between modifications of Olsenella 

proportion and of “t10-/t11-18:1” ratio, the lowest contribution of this genus was found in two 

samples of ram 1 with the highest ratio and averaged 1.23%. Treponema, Corynebacterium, 

Bifidobacterium, Bacteroides and uncultured Actinomycetales genera followed the same 

pattern as their orders and families, since they were the only genera belonging to them. 

Moreover, other bacterial genera, which included uncultured and unidentified Rikenellaceae, 

mostly Rikenellaceae_RC9 genus, and Porphyromonadaceae, were lower and more variable 

for ram 1 than for ram 2, ranging from 6.18 to 17.1% and from 23.9 to 27.1% respectively. 
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The unkown genera had a considerable contribution for the total number of sequences, 

corresponding to up to 11.8% for ram 1 and 24.1% for ram 2. 

 

 

Figure 8. Contribution of 16S rRNA sequences evaluated at bacterial family (a) and genus 
(b) levels to the total number of sequences related to “t10-/t11-18:1” ratio in the rumen 
content. 
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The relation between bacterial diversity and “t10-/t11-18:1” ratio is presented in Figure 9. The 

numerical species richness index was variable for both rams, especially for ram 1, and was 

lower for ram 1 than for ram 2, ranging from 98 to 558 and from 319 to 635 respectively. An 

inferior and less constant Shannon diversity index was also found for ram 1 (2.66 to 4.17) 

than for ram 2 (average of 4.54). There was a tendency for a lower (P = 0.100) numerical 

species richness index, as well as a significantly lower Shannon diversity index (P = 0.016), 

with a higher “t10-/t11-18:1” ratio, in ram 1. However, the species richness index (P = 0.593) 

and Shannon diversity index (P = 0.357) were not related to the ratio, in ram 2. 

 

 

Figure 9. Relation between estimators of bacterial diversity and t10-/t11-18:1 ratio in the 
rumen. 
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4.4. Discussion 

 

To our knowledge, this is the first study describing a more detailed induction of the t10-shift 

in sheep, since there are only few studies about this issue in dairy cows (Roy et al., 2006; 

Zened et al., 2013b). As we hypothesized, the t10-shift was present within the first two weeks 

of feeding rams with a high-starch plus sunflower oil diet, but, oppositely to what was 

expected, it was only maintained during a short period of time. This discrepancy between our 

results and the ones reported by Roy et al. (2006) and Zened et al. (2013b) might be due to 

different species’ metabolism and levels of feed intake. The lowest feed intake observed in 

the present study may be caused by an increase of starch content in the diet (Colman et al., 

2012) and, as suggested by Zened et al. (2013b), it can be responsible for a lack of t10-shift. 

Indeed, in our study, the t10-shift only occurred during an increase of intake that followed its 

decrease. This fact was particularly evident for the first appearance of the shift in ram 1 and 
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was accompanied by an enhancement of trans-18:1 together with a decrease of 18:0 in the 

rumen. A lower efficiency of trans-18:1 reduction was previously found to be associated with 

a saturation of the conversion of trans-18:1 into 18:0 in the rumen (Troegeler-Meynadier, 

Bret-Bennis & Enjalbert, 2006). Also, a diminished activity of bacteria responsible for this 

reduction might be present (Zened et al., 2013a) but it is possible that those bacteria had 

become more active and adapted to wheat-based diet with the progression of the trial, since, 

after day 6 for ram 2 and day 15 for ram 1, the ruminal BH was more complete with a much 

higher concentration of 18:0 than trans-18:1. The fact that the abundance of Butyrivibrio 

genus was considerably low (0 to 0.25%) on days 8 and 10 for both rams with even B. 

proteoclasticus, which is the main bacterium described as responsible for the production of 

18:0 (Wallace et al., 2006; Paillard et al., 2007), not being identified, evidences that other 

bacteria are probably involved in the formation of 18:0 (Huws et al., 2011). Additionally, the 

highest production of trans-18:1 may have been a protective mechanism against stress 

stimuli in the rumen ecosystem caused by a higher feed intake associated with acidotic 

environmental conditions. In fact, the generation of trans-18:1 and its incorporation into 

bacterial cell membranes in response to stress stimuli were hypothesized as one of the roles 

of ruminal BH. The increase of PUFA, when the intake was re-established during the t10-shift 

in ram 1, may have also exacerbated the trans-18:1 production as a protection from lipid 

overload (Bessa et al., 2000; Vasta & Bessa, 2012). Nevertheless, for both rams, the highest 

total of 18:3n-3 and 18:2n-6 in the rumen was verified during the adaptation to wheat-based 

diet, which can be explained by the concomitant introduction of oil rich in PUFA.  

Furthermore and as hypothesized, the t10-shift appeared progressively with an increase of 

t11-18:1 previously to that of t10-18:1, as described by Zened et al. (2013b), which probably 

indicates a gradual adaptive change on the structure or activity of rumen microbiota towards 

the production of t10-FA (Zened et al., 2011; Zened et al., 2013a). This fact was evident in 

ram 1, considering an increment of t11-18:1 between days 2 and 5 followed by its decrease 

until day 8, whereas t10-18:1 increased from days 8 to 11. Not only was this progression 

clearer for ram 1 than for ram 2, but also the “t10-/t11-18:1” ratio reached a higher value in 

ram 1 comparing with ram 2 (2.50 versus 1.86). The differences between the two rams in the 

patterns of t10-shift are in accordance to an individual variation in susceptibility to shift´s 

induction already described by Rosa et al. (2014) and Santos-Silva et al. (2016), which can 

be related to a variability of rumen microbiota among animals (Bessa et al., 2015). This 

variability was more evident with the analysis of diversity of bacterial groups identified by 

short-length pyrosequencing. In fact, the lower numerical species richness and Shannon 

diversity indices for ram 1 compared to ram 2 on days 8 and 10 indicate an inferior rumen 

bacterial diversity in ram 1. The differential bacterial diversity was accompanied by different 

proportions of bacterial taxonomic groups between animals, which might not only be caused 
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by an individual variability of rumen microbiota (Chen, Penner, Li, Oba & Guan, 2011) but 

also by dietary effects (Mao, Zhang, Wang & Zhu, 2013; Petri et al., 2013; Zened et al., 

2013a). In fact, although both animals were fed with a high-starch diet, the more variable 

feed intake in ram 1 might have contributed to greater stress stimuli in the rumen induced by 

the presence of starch and, consequently, to a higher modification of rumen microbiota in this 

animal. So, it is possible that, in ram 2, rumen bacteria were more adapted to the new 

environmental conditions than in ram 1. Generally, there was a predominance of 

Actinobacteria, Bacteroidetes, Spirochaetae and Firmicutes phyla. However, higher 

abundances of Actinobacteria and, in some samples, Spirochaetae, as well as lower 

abundance of Bacteroidetes and a slight reduction of Firmicutes were found in ram 1 

compared to ram 2. Similarly, in some previous studies, an increase (Mao et al., 2013; Petri 

et al., 2013) or a tendency for an increase (Zened et al., 2013a) of Actinobacteria and a 

decrease of Bacteroidetes (Mao et al., 2013) were also reported when high-starch diets were 

fed to ruminants.  

In the present study, the main bacterial order that contributed to a high abundance of 

Actinobacteria phylum in ram 1 (up to 62.0%) was Actinomycetales that included only one 

family (Actinomycetales incertae sedis) and one proposed genus (Actinomycetales 

uncultured). The participation of bacteria from Actinomycetales order on feed digestion 

occurring in the rumen has never been explored, although Tan, Deng & Cao (2009) reported 

that some of them have amylolytic activity, which could explain their high abundance with 

starch feedstuff. However, it is not possible to conclude about an involvement of 

Actinomycetales on t10-shifted BH pathways due to an absence of knowledge about the role 

of these bacteria on ruminal BH, even with its highest abundance being associated with an 

increase of “t10-/t11-18:1” ratio. Other families that contributed to a greater abundance of 

Actinobacteria in ram 1 than in ram 2 were, in a variable extent, Coriobacteriaceae, mainly 

Atopobium, Enterorhabdus, Denitrobacterium and uncultured genera, Bifidobacteriaceae and 

Corynebacteriaceae. Although the role of some bacteria belonging to Coriobacteriaceae 

family, such as Enterorhabdus, is unknown, others, including Atopobium, were shown to 

ferment carbohydrates to lactic acid (Harmsen et al., 2000; Kraatz, Wallace & Svensson, 

2011). The Atopobium genus was also found to be increased in the rumen with high-grain 

diets (Mao et al., 2013; Petri et al., 2013). The Denitrobacterium genus and, specifically, its 

only identified species (D. detoxificans) can enhance detoxication in the rumen by 

metabolizing nitrocompounds, although that was not demonstrated for concentrate feed 

(Anderson, Rasmussen, Jensen & Allison, 2000). Interestingly, there was a lower 

contribution of Olsenella genus for ram 1 than for ram 2, despite the fact that this genus was 

described as having similar acitivity in the rumen to Atopobium (Kraatz, et al., 2011). 

However, these results might be due to an individual variation of rumen microbiota or some 
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differences between Olsenella and Atopobium in respect to rumen metabolism under acidotic 

conditions. The Bifidobacteriaceae family that included only the Bifidobacterium genus had a 

predominant contribution (4.27 to 23.5%) to the total of bacteria for both animals, which can 

be explained by the ability of Bifidobacterium spp. to metabolize carbohydrates into acetic 

and lactic acids (Nagaraja & Titgemeyer, 2007). Also, Mao et al. (2013) and Zened et al. 

(2013a) reported an increase of Bifidobacterium spp. in the rumen with starch feedstuffs. The 

Bifidobacterium spp. may still participate on ruminal BH, since this genus was described as a 

producer of CLA and CLNA (Gorissen et al., 2010; Park et al., 2011), although it was never 

reported as being associated with t10-shift. The high contribution of Corynebacteriaceae 

family, including only Corynebacterium genus, mostly in ram 1 (up to 28.9%), may be due to 

the ability of these bacteria to produce organic acids, such as lactic and succinic acids, from 

glucose (Okino, Inui & Yukawa, 2005; Fukui et al., 2011). Considering Spirochaetae phylum 

and mostly Spirochaetaceae family and Treponema genus, the variable high abundance 

(0.06 to 62.1%) of bacteria belonging to these groups might be due to the variability of 

concentrate feed intake between days 8 and 10 in ram 1, since Treponema genus can be 

involved in an adaptation to high-grain diets. In fact, these bacteria were previously 

described as being increased with 72% and 89% DM of dietary grain (Chen et al., 2011) and 

decreased with a lower proportion of grain (45% DM) (Mao et al., 2013). 

The bacterial families that mostly contributed to the lower abundance of Bacteroidetes 

phylum, Bacteroidia class and Bacteroidales order in ram 1 were uncultured Bacteroidales, 

Bacteroidaceae, Porphyromonadaceae, Rikenellaceae (uncultured Rikenellaceae_RC9 

genus) and Prevotellaceae (uncultured Prevotellaceae and Prevotella genera). Considering 

that the majority of these bacteria are Gram negative, the predominance of Gram positive 

comparing with Gram negative bacteria with a high influence of starch on rumen microbiota 

(Nagaraja & Titgemeyer, 2007) might help to explain the inferior contribution of Bacteroidetes 

phylum in ram 1. Moreover, a decrease of Rikenellaceae_RC9 genus in the rumen was 

already described with starch feedstuffs (Zened et al., 2013a). Although inconsistent results 

have been reported for the contribution of Prevotella genus to total rumen bacteria (Tajima et 

al., 2001; Bekele, Koike & Kobayashi, 2010), some studies revealed a lower diversity (Bekele 

et al., 2010; Pitta et al., 2010) and abundance (Mao et al., 2013) of these bacteria with 

concentrate- than with forage-based diets. However, none of these bacterial groups has 

been previously associated with t10-shift, despite the fact that, in the present study, a higher 

abundance of Rikenellaceae_RC9 genus was observed with an increment of “t10-/t11-18:1” 

ratio. Still, uncultured Bacteroidales and Prevotella genera were recently related to the 

formation of c9,t11-18:2 and t11-18:1 in the rumen (Huws et al, 2011). 

Attending to Firmicutes phylum, bacterial groups with a slightly lower abundance in ram 1 

were Clostridia class, Clostridiales order and particularly Lachnospiraceae family and 
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uncultured Lachnospiraceae genera. Consistently, Zened et al. (2013a) reported a negative 

effect of high starch plus oil addition in the diet on the proportion of uncultured 

Lachnospiraceae in the rumen. Interestingly, in the present study, Selenomonas genus 

presented a low abundance in both animals (up to 0.26%) and especially in ram 1 (0 to 

0.02%) on days 8 and 10. These results may be associated with the decrease of oxo-18:0 

production observed during this period, considering that S. ruminantium was reported to 

participate in the hydration of c9-18:1 into 10-OH-18:0 (Hudson et al., 1995) that is a 

precursor of 10-oxo-18:0 (Shingfield et al., 2010a). Also, P. acnes, another bacterial genus 

described as capable of producing 10-OH-18:0 (McKain et al., 2010), was not even detected 

in both rams, although it belongs to a predominant phylum (Actinobacteria). However, the 

involvement of other bacteria in the formation of oxo-18:0 cannot be excluded. Additionally, 

bacteria involved in t10-shifted BH pathways might be somehow associated with the ones 

responsible for the production of oxo-18:0, since there was a consistent increase of oxo-18:0 

before the establishment of t10-shift. Overall, more studies are needed for a better 

comprehension about the bacterial diversity in the rumen, as well as the role of bacteria on 

ruminal BH.  

Moreover, conversely to what was hypothesized, no clear association between rumen pH 

and t10-shift was found, although there was a post-prandial increase of “t10-/t11-18:1” ratio 

in ram 2 that was related to a reduction of pH. These results might have been caused by the 

absence of a continuous measurement of pH values that is essential to evaluate the variation 

of pH all along the day. Indeed, not only a low but also a fluctuating pH was described as 

being necessary for the development of the shift (Colman et al., 2012). Additionally, the 

presence of t10-shift in the rumen could not be predicted by the evaluation of the “t10-

18:1/(t11-18:1 + c9,t11-18:2)” ratio in the plasma, since there was only an evidence of the 

shift in the plasma after its establishment in the rumen. Conversely, Aldai, Dugan, Rolland 

and Aalhus (2012), Mapiye et al. (2013) and Alves et al. (2017) found that the blood 

proportions of t10-18:1 and t11-18:1 were predictors of t10-shift, although Aldai et al. (2012) 

and Mapiye et al. (2013) evaluated correlations of t10-18:1 and t11-18:1 between 

erythrocytes and adipose tissue with only Alves et al. (2017) reporting an association 

between “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio in the plasma and “t10-/t11-18:1” ratio in the 

rumen. The transient behaviour of t10-shift and the individual variation on its appearance 

might explain the discrepancies between the present results and the ones observed in the 

previous studies.  
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4.5. Conclusions 

 

In the present study, the t10-shift appeared progressively within the first two weeks of 

feeding rams with a wheat-based diet supplemented with oil and was accompanied by an 

enhancement of t10-18:1 after that of t11-18:1 in the rumen. These results, together with an 

increase of oxo-18:0 before the t10-shift, probably indicate an adaptation of rumen 

microbiota to starch feedstuffs. In fact, there was a lower rumen bacterial diversity during the 

shift, which can be due to individual variability of microbiota or dietary effects. Moreover, the 

t10-shift´s induction was also variable between animals and the shift was only maintained 

during a short period of time, which might have contributed to the difficulty in predicting the 

occurence of t10-shift in the rumen by evaluating the t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio 

in the blood plasma. Also, no clear association between rumen pH and t10-shift was found, 

but one ram showed a post-prandial (lower pH) increase of “t10-/t11-18:1” ratio. Further 

studies are needed for a more detailed evaluation of the biology behind the development of 

t10-shift.  
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ABSTRACT  

The experiment was conducted to test the hypothesis that the replacement of cereal with 

low-starch feed ingredients in lambs’ finishing diets supplemented with oils could prevent the 

accumulation of t10-18:1 in meat. Forty lambs were fed with one of 4 diets supplemented 

with soybean oil (59 g/kg dry matter, DM) and fish oil (10 g/kg DM) during 6 weeks before 

slaughter. Control diet contained barley at 42% DM (cereal, C) and, in the other diets, barley 

was completely replaced for dehydrated citrus pulp (DCP), dehydrated beet pulp (DBP) or 

soybean hulls (SH). Growth performance, feed intake, carcass and meat quality traits were 

analyzed. At slaughter, Longissimus muscle (LM) samples were collected for gene 

expression evaluation and, 3 days after slaughter, LM and subcutaneous fat samples were 

obtained and analyzed for fatty acid (FA) composition. None of the diets affected meat 

quality, but DCP diet reduced ADG (P < 0.05) and DCP and SH diets decreased feed 

efficiency (P < 0.01). The DCP diet increased (P < 0.05) the risk of occurrence of 

parakeratosis and the severity of the lesions. Moreover, DBP led to larger a* (redness) and 

b* (yellowness) color parameters values of subcutaneous fat than C treatment (P < 0.05). 

Lipid content of LM did not differ (P > 0.05) with treatments and averaged 34.4 g/kg of meat. 

Diets had no effect (P > 0.05) on SFA, PUFA and cis-MUFA sums and on “n-6/n-3” ratio in 

both LM and subcutaneous fat. A lower expression of FASN gene was found with DCP than 

with the other treatments (P ˂ 0.001). All treatments showed a high accumulation of t10-18:1, 

averaging 90.5 mg/g FA in LM and 147.3 mg/g FA in subcutaneous fat. The concentration of 

t11-18:1 in the tissues was considerably lower than that of t10-18:1, and thus the “t10-/t11-

18:1” ratio was above 3 with all treatments. Despite that, SH treatment clearly promoted a 

larger deposition of t11-18:1 and c9,t11-18:2 in the tissues compared to the other treatments. 

Stearoyl-CoA desaturase gene expression and SCD activity index in LM were reduced with 

SH diet compared with C and DCP diets. Overall, these results clearly showed, for the first 

time, that the establishment of t10-shifted biohydrogenation pathways in the rumen, 

evaluated by the deposition of biohydrogenation intermediates in meat and fat, is not 

exclusively dependent of starch level in the diet. 

Keywords: t10-shift, fatty acids, biohydrogenation, meat, starch, lipid supplementation 
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5.1. Introduction  

 

Public health implications of trans-FA from ruminant products are controversial as trans-11 

FA, i.e. vaccenic (t11-18:1) and rumenic acids (c9,t11-18:2), are known to be beneficial to 

human health (Gebauer et al., 2011; Lim et al., 2014), whereas t10-18:1 are thought to 

increase the risk of cardiovascular diseases (Hodgson et al., 1996).  

Ruminant edible fats are the richest natural dietary sources of trans-18:1 fatty acids (FA) and 

of CLA isomers (mostly c9,t11-18:2) as consequence of ruminal BH of dietary unsaturated 

FA (Shingfield & Wallace, 2014). Strategies to enrich ruminant meat with t11-18:1 and 

c9,t11-18:2 have been extensively researched, and supplementation of high- forage diets 

with C18 unsaturated FA has been defined as the most effective approach (Bessa et al., 

2005). Simultaneous dietary inclusion of marine oils also reduces the completeness of BH 

resulting in large rumen outflow of t11-18:1 (Shingfield et al., 2011). However, high-starch 

finishing diets used in intensive ruminant production are known to alter ruminal BH pathways 

through a shift towards the formation of t10-18:1 at the expense of t11-18:1 as the major BI 

(hereafter t10-shift). When the t10-shift is established in the rumen, the supplementation with 

C18 PUFA fails to increase the t11-18:1 and c9,t11-18:2 in meat, and a large accumulation 

of the undesirable t10-18:1 isomer is observed in tissues (Bessa et al., 2015). Very little is 

known about microbiological and metabolic mechanisms that determine the occurrence of 

t10-shift, but a high-starch/low-fibre diet seems to be mandatory (Bessa et al., 2005; Rosa et 

al., 2014). Thus, we hypothesize that the reduction of starch content of oil supplemented 

finishing diets for lambs, via replacing cereals with low-starch feed ingredients, will prevent 

the establishment of t10-shift in the rumen, resulting in higher proportions of c9,t11-18:2 and 

t11-18:1 in the meat and subcutaneous fat.  
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5.2. Materials and methods 

 

5.2.1. Animals, diets and management 

Animal were raised and handled in compliance with the EU Council Directive 2010/63/EU 

(EC, 2010) concerning animal care. The experiment was conducted at the facilities of 

National Institute of Agronomic and Veterinary Research (INIAV), Portugal. Forty Merino 

Branco ram lambs approximately 90 days of age were randomly assigned to 20 pens, with 2 

lambs per pen and 5 pens per treatment. The treatments consisted of 4 ground complete 

diets composed of forage (dehydrated alfalfa) and a concentrate meal containing either 

barley (cereal, C), dehydrated citrus pulp (DCP), dehydrated sugar beet pulp (DBP) or 

soybean hulls (SH) as the main energy source. All diets included 59 g/kg DM of soybean oil 

and 10 g/kg DM of fish oil. The ingredients and chemical composition of the diets are 

presented in Table 14. The trial started after 7 d of adaptation to the experimental conditions 

and lasted for 6 weeks. The BW of lambs at the beginning of the trial was 26.6 ± 1.05 kg. 

Feed was offered ad libitum, and feed intake was daily controlled by weighing the amounts of 

feed offered and refused, considering 10% orts. The animals were weighed weekly just 

before feeding. Two composite samples of each diet were obtained from a daily collection of 

feed samples and were analyzed for DM, CP, NDF, ADF, FA, ether extract, ash, starch and 

sugar composition as described by Santos-Silva et al. (2016). 
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Table 14. Ingredients, chemical composition and fatty acid (FA) profile of the experimental 

diets. 

Item 
Diets

1
 

C DCP DBP SH 

Ingredients, g/kg DM
2 

    
Barley 416 - - - 

Citrus pulp - 426 - - 
Beet pulp - - 436 - 

Soybean hulls - - - 446 
Wheat bran 114 59 94 89 

Soybean meal 178 223 178 173 
Dehydrated alfalfa 198 198 198 198 

Soybean oil 59 59 59 59 
Fish oil 10 10 10 10 

Calcium carbonate 13 13 13 13 
Sodium bicarbonate 5 5 5 5 

Salt 4 4 4 4 
Premix 3 3 3 3 

Chemical composition, g/kg DM     
DM

3
 893 886 901 896 

CP
4 

178 181 181 174 
Ether extract 105 99 92 100 

FA
5 

70.8 77.0 74.3 73.2 
Starch 318 50 56 54 
Sugar 68 229 106 74 
NDF

6 
260 236 369 463 

ADF
7 

124 159 188 261 
Ash 74 93 86 85 

FA profile, g/kg FA
 

    
16:0 183 150 157 154 
18:0 50.7 41.8 42.8 49.4 

c9-18:1 235 233 236 239 
18:2n-6 453 482 475 475 
18:3n-3 49.7 60.0 55.2 59.0 
20:3n-6 6.1 5.7 5.6 5.7 
20:4n-6 1.1 1.5 1.6 0.9 
20:5n-3 8.0 9.8 9.5 6.1 
22:5n-3 1.0 1.3 1.1 0.7 
22:6n-3 12.3 15.9 15.4 10.4 

1 
C, cereal; DCP, dehydrated citrus pulp; DBP, dehydrated beet pulp; SH, soybean hulls;

 2
, dry matter; 

3
, g/kg feed, 

4
, crude protein; 

5
, fatty acids; 

6
, neutral detergent fibre; 

7
, acid detergent fibre.  

 

 

5.2.2. Slaughter, carcass evaluation and sample collection 

At the end of experimental period, lambs were weighed and transported to the experimental 

abattoir of INIAV, located in the same facilities, to be stunned and slaughtered by 

exsanguination. After slaughter, the rumen content was strained through four layers of 

cheesecloth and the rumen pH was measured (pH meter - Metrohm, 744, Herisau, 

Switzerland). Also, rumen mucosa parakeratosis lesions were evaluated using a 4 point 

visual scale (with 0 being normal rumen papillae and 3 representing strong parakeratosis 

lesions), according to Tamate, Nagatani, Yoneya, Sakata and Miura (1973). Samples of 

Longissimus muscle (LM) were excised from the right side of carcasses (at the level of 12th 
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vertebra) within 10 min post-slaughter, snap-frozen in liquid nitrogen and stored at -80ºC until 

mRNA expression analysis. The hot carcass weight was recorded and the carcasses were 

kept at 10 ± 1°C for 24 h, to prevent cold-induced shortening. Thereafter, cold carcass 

weights were recorded, and the carcasses were graded for conformation and fat cover 

according to EUROP classification systems for lamb carcasses (EC, 2011) and chilled at 

2±1ºC for 48 h. On the third day after slaughter, kidney knob channel fats and kidneys were 

removed; the carcasses were split along the spine and their left sides were separated into 

eight joints (Santos-Silva et al., 2002b). The weights of the individual joints were recorded 

and the proportion of the higher priced joints (leg + chump + loin + ribs) was determined. The 

chump and shoulders were totally dissected to determine the proportions of muscle, 

subcutaneous and intermuscular fats and bone. 

In the left halves of carcasses, the loin joints containing LM were vacuum-packed and frozen 

at -20°C until shear force analysis. In the rib joint, at the level of 12th vertebra, a sample of 

LM with 1.5 cm thickness was collected to evaluate the color after 1 h of blooming. The 

remaining portion of LM was isolated and, after the removal of the epimysium, was minced in 

a food processor (3 × 5 s), vacuum-packed, freeze-dried, and stored at -20°C until lipid 

analysis.  

In the right halves, the subcutaneous fat of rib joints was detached and used for color 

evaluation in the inner face. Afterwards, samples of subcutaneous fat were stored at -20°C 

until lipid analysis. The right loin joints containing LM were vacuum packed and stored at -

20°C to be used for sensory analysis.  

 

5.2.3. Color, pH and shear force determinations 

Muscle color was measured using a Chroma Meter CR-400 (Konica Minolta, Inc., Japan), 

calibrated with white plate (Y = 84.9; x = 0.3199; y = 0.3359) using illuminant D65, 1 cm 

diameter observed area, 2°-viewing angle. Three measurements per sample were recorded 

according to CIE L*, a*, b* system, where L* is lightness, a* redness and b* yellowness. For 

muscle pH determination, 5 g of LM samples were homogenized in 50 mL of 0.1 M 

potassium chloride solution (ISO-2917, 1999). The pH of suspended samples was 

determined using a pH meter (Metrohm, 744, Herisau, Switzerland) equipped with a 

combined glass electrode. For shear force determinations, the frozen loin joints were thawed 

for 24 h at 2±1°C. Thereafter, the LM was isolated from vertebra bones, weighed, and 

roasted in an electric oven at 170 °C until the internal meat temperature reached 70 °C, 

which was individually monitored with a type T thermocouple (Thermometer, Eomega 

RDXL4SD, Manchester, USA). After cooling for 24 h at 2±1°C, each meat sample was cut 

longitudinally in the direction of fibers into subsamples with 1 cm2 of section for shear force 

determination using a Warner-Bratzler shear device mounted in a Texture Analyser (TA-tx2i 
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Texture Analyser, Stable Micro Systems, Surrey, UK), according to procedures described by 

Francisco et al. (2015). The measurement of cores from each loin was recorded as the 

average of a minimum of 15 repeats. 

 

5.2.4. Sensory analysis 

Meat sensory characteristics were evaluated in 7 sessions by a trained sensory panel 

composed of 9 members of INIAV. For each session, 5 or 6 LM samples were randomly 

selected and were allowed to thaw for 24h at 2°C. The LM was cooked in the same way as 

for shear force determinations and samples were prepared according to procedures 

previously described by Francisco et al. (2015). The meat attributes evaluated were odor, 

tenderness, juiciness, flavor and overall acceptability. The scale applied in the sensory 

analysis was structured into eight points, where: 1 – extremely soft (odor and flavor), 

extremely tough (tenderness), extremely dry (juiciness) or extremely inacceptable (overall 

acceptability); 8 – extremely intense (odor and flavor), extremely tender (tenderness), 

extremely juicy (juiciness) or extremely acceptable (overall acceptability). 

 

5.2.5. Fatty acid analysis 

Fatty acid methyl esters of feed lipids were prepared by one-step extraction using 10% HCl 

in methanol and 19:0 as internal standard (Sukhija & Palmquist, 1988). Muscle and 

subcutaneous fat lipids were extracted with dichoromethane:methanol (2:1, vol/vol) from 

freeze-dried tissue samples and transesterified into FA methyl esters using a combined basic 

and acidic catalysis as described by Oliveira et al. (2016). Fatty acid methyl esters were 

analyzed by GC-FID (Shimadzu GC-2010 Plus, Kyoto, Japan) using a 100% cyanopropyl 

polysiloxane capillary column (SP-2560, 100 m, 0.25 mm i.d., 0.20 μm film thickness; 

Supelco Inc., Bellefont, PA, USA). Identification of FA methyl esters was achieved by 

comparison of retention times with those of authentic standards (FAME mix 37 components 

from Supelco Inc., Bellefont, PA, USA, and a Bacterial FAME mix from Matreya LLC, 

Pleasant Gap, PA, USA) and, particularly in the case of non-terminal mono-methyl BCFA, 

with published chromatograms (Alves et al., 2013a). In addition, identifications were 

confirmed by GC-MS in a GC-MS QP 2010 Plus chromatograph (Shimadzu, Kyoto, Japan) 

with a SP-2560 column. The GC-MS and GC-FID conditions were as described previously 

(Alves et al., 2015; Oliveira et al., 2016). For quantification of individual CLA isomers present 

in the muscle, a combination of gas chromatography and silver high performace liquid 

chromatography (3 Ag+ - HPLC) was used as reported by Bessa et al. (2007).  

 

 



 

125 

Doctoral Thesis in Veterinary Science – Mónica Mendes da Costa 

5.2.6. Gene expression 

Total RNA was isolated from LM samples using QIAzol lysis reagent and further purified with 

RNeasy mini columns with on-column DNase digestion (Qiagen, Valencia, CA). First-strand 

cDNA was synthesized from 0.5 µg total RNA using High-Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems CA, USA) according to manufacturer´s instructions. 

Real-time PCR was performed as described previously (Francisco et al., 2016) using a 

StepOnePlus Real Time PCR System (Applied Biosystems, Foster City, CA, USA). Primer 

sequences used for amplification of SCD and ACACA genes were reported by Madeira et al. 

(2013) and Francisco et al. (2016). Gene-specific intron-spanning primers for FASN were 

designed as described by Madeira et al. (2013) and Francisco et al. (2016) and their 

sequences (from 5’ end to 3’ end) were CCAAGTACAATGGCACCCTGA and 

TCTCCTCGGTGAGCTGCG for forward and reverse primer, respectively. For each gene, a 

standard curve was established using a series of 5-fold dilutions of pooled cDNA samples. 

The standard curve was used to determine the relative gene expression variation after 

normalization with the geometric mean of two housekeeping genes (ACTB and RPLP0). 

Subsequently the specificity of the amplification was verified and relative expression levels of 

mRNAs were calculated as a variation of the Livak method (Livak & Schmittgen, 2001). 

 

5.2.7. Statistical analysis 

Data were analyzed as completely randomized design using the MIXED procedure of SAS 

(SAS Institute Inc., Cary NC). A single fixed factor was the type of diet and a pen was the 

experimental unit. Lambs within pens were treated as sub-sampling using either a compound 

symmetry or an unstructured covariance matrix depending on the best model generated. The 

variance homogeneity was tested for a level of P = 0.01 and, when significant, the variance 

heterogeneity was accommodated in the model. When significant effects of treatments were 

detected, least square means were compared using the pairwise Tukey comparison test. 

Weekly BW data were analyzed by random intercept regression model considering a pen as 

the experimental unit and lambs within pens as subsampling in order to estimate ADG (i.e. 

slopes). Daily DMI data, collected in each pen, was the observational unit and was averaged 

per week and divided by 2, to obtain mean intake values expressed as g/d per lamb. A 

repeated measurements model was adjusted in order to estimate the average DMI per lamb 

during the experiment. Slaughter BW, hot and cold carcass weights were adjusted to initial 

BW, and FA composition of LM was adjusted to lipid content of LM. Dressing, carcass cuts 

and chump and shoulder composition were adjusted to hot carcass weight. Data from meat 

sensory evaluation were analyzed considering observations from each panelist as the 

repeated measurement and assuming a first-order autoregressive covariance matrix. The 
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probability of occurrence of different grades of rumen parakeratosis was analyzed using the 

PROC GLIMMIX (SAS Institute Inc., Cary NC), considering the multinomial distribution and 

the cumulative logit as link function. 

 

 

5.3. Results 

 

5.3.1. Intake and productive performance 

As planned, the experimental diets allowed large differences in starch, sugar and NDF intake 

(Table 15). The dietary replacement of barley with citrus pulp, beet pulp or soybean hulls 

reduced (P < 0.05) the starch intake from an average of 377 to 68 g/d. Moreover, the DCP 

diet resulted in the largest sugar intake (P < 0.05) and the SH diet led to the largest (P < 

0.05) NDF and ADF intake. The DBP diet allowed an intermediate intake of sugar and NDF 

between DCP and SH. The intake of starch + sugar decreased (P < 0.05) gradually from C to 

DCP to DBP and to SH. Despite those differences, DMI did not differ (P = 0.14) among diets. 

Nevertheless, ADG of lambs was lower (P < 0.05) with DCP diet than with C and DBP diets 

(Table 15). Lambs fed SH diet presented an intermediate ADG that did not differ (P > 0.05) 

from those observed with the other diets. Thus, feed efficiency (kg gain/kg DMI) observed 

with DCP was lower (P < 0.05) than those attained with C and DBP, but similar (P > 0.05) to 

SH. Slaughter BW did not differ among treatments, averaging 40.7±0.73 kg.  
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Table 15. Effect of replacing cereal in the diet with low starch feed ingredients on nutrient 

intake and growth performance of lambs. 

a-c
,
 
Means within a row with different superscripts differ (P < 0.05); 

1
,
 
C, cereal; DCP, dehydrated citrus 

pulp; DBP, dehydrated beet pulp; SH, soybean hulls; 
2
, standard error of means; 

3
, neutral detergent 

fibre; 
4
, acid detergent fibre; 

5
,
 
BW, body weight; 

6
, average daily gain; 

7
, kg gain/kg dry matter intake. 

 

 

The occurrence and severity of rumen parakeratosis lesions are presented in Figure 10. The 

probability of developing rumen parakeratosis was influenced by diets and it was higher (P < 

0.05) for DCP (0.94±0.083) than for the other diets (0.44±0.083). Also, more severe lesions 

(grades 2 and 3) were found for DCP (average of 24.2%) comparing with the other 

treatments (averaging 2.2%). Rumen pH measured post-mortem was below 6.1 for all the 

treatments, being lower for DBP (5.55) than for DCP (6.09) and intermediate for C and SH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item 
Diets

1
 SEM

2
 P-value 

C DCP DBP SH 
 

 

Intake, g/d       
Dry matter 1177 1231 1306 1276 39.7 0.144 

Crude protein 209 222 235 222 7.1 0.107 
Ether extract 123 121 121 128 4.0 0.613 

Starch 377
a
 62

b
 74

b
 68

b
 8.0 <0.001 

Sugar 80
d
 280

a
 138

b
 95

c
 4.4 <0.001 

Starch + sugar 452
a
 343

b
 213

c
 165

d
 10.8 <0.001 

NDF
3 

306
c
 292

c
 480

b
 587

a
 14.4 <0.001 

ADF
4 

146
d
 196

c
 245

b
 332

a
 7.9 <0.001 

Initial BW, kg  25.7 26.5 27.5 26.6 1.05 0.697 
Slaughter BW

5
, kg 41.1 38.9 42.0 40.6 0.73 0.064 

BW gain, kg
 

14.6 12.4 15.3 14.1 0.74 0.073 
ADG

6
, g/d 349

a
 288

b
 354

a
 324

ab
 17.7 0.035 

Feed efficiency
7 

0.29
a
 0.23

c
 0.27

ab
 0.25

bc
 0.008 0.002 

Rumen pH 5.97
ab 

6.09
a 

5.55
b 

5.84
ab 

0.121 0.035 
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Figure 10. Effect of dietary energy source on the probability of occurrence of rumen mucosa 

parakeratosis evaluated by analysis of the severity of lesions.  
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Treatments: C, cereal; DCP, citrus pulp; DBP, beet pulp; SH, soybean hulls. The patterns observed 
with C, DBP, and SH diets were similar (P > 0.05). The pattern observed with DCP diet differed (P < 
0.03) from that of other diets. 
 

 

5.3.2. Carcass traits and meat quality traits 

There was no effect of treatments on carcass traits (Table 16). Hot carcass weight, cold 

carcass weight, dressing and higher priced cuts percentages averaged 20.2±0.44 kg, 

19.7±0.41 kg, 49.7±0.44% and 52.9±0.46%, respectively. Dissection of chump and shoulder 

cuts showed that treatments had no effect on the percentages of muscle (P = 0.526), bone 

(P = 0.423) and intermuscular (P = 0. 493) and subcutaneous (P = 0.484) fat. For carcass 

conformation, 88.9% of the carcasses were graded as class R (good) and 11.1% as O 

(regular). For fat cover, 56.7% was graded as 5 (very high) and 43.3% as 4 (high). 

Subcutaneous fat color was influenced by diet. In fact, the redness parameter (a*) was 

higher (P < 0.001) for DBP than for the other treatments. Moreover, the yellowness 

parameter (b*) was higher for DBP (P < 0.05) than for SH, presenting intermediate values for 

C and DCP.  

Treatments did not affect LM quality traits (Table 16). Meat pH average was 5.65±0.009 and 

did not differ (P = 0.71) among treatments. Shear force average was 3.93±0.428 kgF/cm2 

and did not differ (P = 0.79) among treatments with LM color not being affected (P > 0.25) by 

treatments, averaging in 41.3±0.73 for L*, 17.3±0.42 for a* and 8.6±0.37 for b*. Meat 

sensorial evaluation was not affected (P > 0.40) by the treatments either, and the sensory 

panel considered the meat as tender (6.51±0.116), with moderate juiciness (5.81±0.119), 

soft odor (3.42±0.114), soft flavor (3.96±0.15) and good overall acceptability (6.28±0.109). 
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Table 16. Effect of replacing cereal in the diet with low starch feed ingredients on carcass 

composition and meat quality of lambs. 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

Carcass traits       
Hot carcass weight, kg 20.7 19.3 20.9 20.0 0.44 0.063 
Cold carcass weight, kg 20.0 18.8 20.3 19.5 0.41 0.101 
Dressing, % 50.2 49.8 49.3 49.3 0.44 0.334 
KKCF

3
, %

 
4.2 3.5 3.6 4.1 0.29 0.333 

Higher priced cuts
4
, % 52.8 53.1 53.3 52.4 0.46 0.574 

Chump and shoulder tissues
5
, %       

Muscle 51.0 51.6 52.9 50.6 1.11 0.526 
Bone 18.7 18.6 18.4 18.0 0.33 0.423 

Intermuscular fat 16.2 15.8 15.0 17.1 0.94 0.493 
Subcutaneous fat 17.0 16.6 15.9 17.9 0.87 0.484 

Meat quality traits       
Subcutaneous fat color       

L* 74.4 74.7 74.8 77.6 1.31 0.324 
a* 3.4

b
 2.9

b
 4.8

a
 2.9

b
 0.29 0.001 

b* 7.4
ab

 8.2
ab

 8.7
a
 6.8

b
 0.38 0.018 

Longissimus muscle       
Color       

L* 39.9 42.0 41.7 41.6 0.73 0.252 
a* 17.6 17.4 17.4 16.8 0.42 0.530 
b* 8.3 8.7 8.7 8.6 0.37 0.851 

pH 5.65 5.65 5.64 5.65 0.009 0.714 
Shear force, kgF/cm

2
 3.85 3.95 3.63 4.27 0.428 0.794 

Sensorial evaluation       
Tenderness 6.51 6.46 6.50 6.57 0.116 0.912 

Juiciness 5.76 5.80 5.76 5.91 0.119 0.756 
Odor intensity 3.48 3.22 3.48 3.49 0.114 0.409 
Flavor intensity 4.04 4.06 3.80 3.95 0.145 0.606 

Flavor acceptability 6.37 6.35 6.50 6.39 0.105 0.795 
Overall acceptability 6.29 6.30 6.32 6.19 0.109 0.800 

a-b
,
 
Means within a row with different superscripts differ (P < 0.05); 

1 
C, cereal; DCP, dehydrated citrus 

pulp; DBP, dehydrated beet pulp; SH, soybean hulls; 
2
, standard error of means; 

3
, kidney knob 

channel fat; 
4
,
 
leg + chump + loin + ribs;

 5
, data from the dissection of rump and shoulder cuts.

 

 

 

5.3.3. Fatty acid composition of muscle 

The lipid content and general FA composition of LM are presented in Table 17. Lipid and FA 

content of LM averaged 34.3 and 27.4 g/kg in fresh meat respectively, and did not differ (P > 

0.05) among treatments, although the variability with DBP and SH was larger (P < 0.01) than 

in C and DCP. The linear chain SFA averaged 402 mg/g FA in LM for all the treatments. The 

major linear SFA present was 16:0 and its content was higher (P < 0.05) in case of DCP 

treatment (259 mg/g FA) and lower (P < 0.05) with SH treatment (233 mg/g FA). This was 

followed by 18:0 (ranging from 122 to 136 mg/g FA) that was lower (P < 0.05) with DBP (122 

mg/g FA) than with C treatment (136 mg/g FA). Several terminal and non-terminal BCFA 

have been identified in LM lipids and, although all of them were present in residual amounts, 

collectively they averaged 11 mg/g FA for C, DBP and SH treatments and only in 8.8 mg/g 
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FA for DCP (P < 0.05). In general, terminal BCFA (i.e. iso and anteiso) were higher for SH, 

lower for DCP (P < 0.05) and intermediate for the other treatments. Otherwise, NT-BCFA 

were higher for C, lower for SH (P < 0.05) and intermediate for the other treatments. 

The major FA present in LM lipids was c9-18:1 with an average value of 301 mg/g FA across 

treatments. However, c9-18:1 least square means did not differ (P > 0.05) among treatments 

and the variance was much larger (P < 0.001) for DCP treatment than for the other 

treatments. This larger variance found with DCP treatment was due to 3 lambs that 

presented consistently high c9-18:1 content and low BI in both, LM and subcutaneous fat. It 

was not possible to relate that variability with pen, ADG, intramuscular lipid content or rumen 

parakeratosis lesions of lambs. Some other minor cis-MUFA (i.e. c9-14:1, c9-16:1 and c11-

20:1) presented small but significant differences among treatments. 

The total PUFA content of LM was lower (P < 0.05) with DCP treatment (84 mg/g FA) and 

higher (P < 0.05) with DBP treatment (111 mg/g FA), being the other 2 treatments 

intermediate. This pattern arose from differences observed in the 18:2n-6, the major PUFA 

present in LM. Most of other PUFA did not present significant differences among treatments 

(including all n-3 PUFA), or present only small, although significant, differences.  

The sum of trans-FA (excluding the t11-18:1 and CLA isomers) present in LM was fairly high, 

averaging in 122 mg/g FA among treatments. Trans-FA did not differ (P > 0.05) among 

treatments but the variance was much higher (P < 0.001) for DCP treatment than for the 

other treatments. 
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Table 17. Effect of replacing cereal in the diet with low starch feed ingredients on lipids and 

fatty acid (FA) profile (mg/g of total fatty acids) of Longissimus muscle of lambs. 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

Lipids, g/kg meat 33.5±1.27 31.0±1.27 35.1±3.03 37.8±2.75  0.196 
FA, g/kg meat  24.5±1.13 24.0±1.13 27.4±3.12 30.0±3.12  0.326 
FA profile       
LC-SFA

3
       

10:0 1.12
ab

 1.28
a
 1.02

ab
 0.92

b
 0.037 0.087 

12:0 0.62 0.67 0.53 0.52 0.046 0.115 
14:0 19.6

ab
 21.9

a
 18.0

ab
 16.8

b
 1.12 0.033 

15:0 1.93 1.90 2.15 2.01 0.084 0.234 
16:0 236

ab
 259

a
 238

ab
 233

b
 6.1 0.037 

17:0 6.76 6.72 7.05 6.76 0.229 0.753 
18:0 136

a
 127

ab
 122

b
 134

ab
 3.1 0.028 

20:0 0.79
b
 0.75

b
 0.85

ab
 0.98

a
 0.033 0.002 

Sum 404 420 391 394 7.3 0.055 
T-BCFA

4
       

iso-14:0 0.09
b
 0.08

b
 0.21

a
 0.19

a
 0.016 <0.001 

iso-15:0 0.34
b
 0.35

b
 0.43

b
 0.73

a
 0.050 <0.001 

anteiso-15:0 0.59
b
 0.45

b
 0.83

a
 0.83

a
 0.043 <0.001 

iso-16:0 0.71
b
 0.54

c
 0.96

a
 0.79

ab
 0.040 <0.001 

iso-17:0 1.98
b
 1.65

b
 1.83

b
 2.66

a
 0.131 <0.001 

anteiso-17:0 3.01
a
 2.25

b
 3.29

a
 3.18

a
 0.091 <0.001 

iso-18:0 0.94
ab

 0.79
b
 1.15

a
 0.94

ab
 0.059 0.007 

Sum 7.64
b
 6.12

c
  8.67

ab
 9.32

a
 0.332 <0.001 

NT-BCFA
5
       

6 Me-14:0 0.14
a
 0.13

ab
 0.12

ab
 0.07

b
 0.015 0.047 

8 Me-14:0 0.10 0.10 0.08 0.07 0.095 0.247 
4 Me-14:0 0.23 0.23 0.18 0.13 0.031 0.152 
10 Me-14:0 0.09 0.07 0.05 0.06 0.013 0.222 
2 Me-16:0 0.12 0.15 0.15 0.10 0.019 0.277 
6 Me-16:0 0.31

ab
 0.33

a
 0.25

ab
 0.21

b
 0.024 0.017 

8 Me-16:0 0.15
ab

 0.19
a
 0.14

ab
 0.10

b
 0.017 0.023 

4 Me-16:0 0.79 0.76 0.70 0.65 0.046 0.216 
12 Me-16:0 1.02

a
 0.84

b
 0.92

ab
 0.80

b
 0.042 0.010 

Sum 2.92
a
 2.70

ab
 2.49

ab
 2.06

b
 0.172 0.024 

Total BCFA 10.55
a
 8.80

b
 11.15

a
 11.40

a
 0.372 <0.001 
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Table 17. Effect of replacing cereal in the diet with low starch feed ingredients on lipids and 

fatty acid (FA) profile (mg/g of total fatty acids) of Longissimus muscle of lambs 

(continuation). 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

cis-MUFA
6
       

c9-14:1 0.54
ab

 0.61
a
 0.46

ab
 0.39

b
 0.048 0.031 

c7-16:1 1.54 1.68 1.60 1.46 0.050 0.063 
c9-16:1 12.0

a
 13.0

a
 11.3

ab
 9.7

b
 0.54 0.005 

c9-17:1 3.24 3.44 3.13 2.75 0.198 0.168 
c9-18:1 304±6.0 322±17.6 286±6.4 290±6.5  0.167 
c11-18:1 14.1 12.7 13.9 12.9 0.45 0.113 
c11-20:1 1.35

ab
 1.22

b
 1.51

a
 1.43

ab
 0.057 0.024 

Sum 323±6.4 341±18.4 304±6.7 306±6.6  0.150 
n-6 PUFA

7
       

18:2n-6 69.7
ab

 55.2
b
 76.0

a
 62.8

ab
 4.18 0.021 

18:3n-6 0.33
a
 0.26

b
 0.33

a
 0.29

ab
 0.015 0.001 

20:2n-6 0.73 0.76 0.87 0.71 0.045 0.132 
20:3n-6 1.75 1.72 1.77 1.62 0.094 0.732 
20:4n-6 10.03 9.10 10.65 9.27 0.908 0.613 
22:4n-6 0.60

b
 0.71

ab
 0.82

a
 0.71

ab
 0.044 0.035 

22:5n-6 1.64 1.29 1.74 1.78 0.128 0.085 
Sum 84.9

ab
 69.1

b
 92.6

a
 77.1

ab
 5.16 0.037 

n-3 PUFA       
18:3n-3 4.81 4.41 5.12 4.84 0.177 0.085 
20:4n-3 0.71 0.64 0.90 0.71 0.107 0.427 
20:5n-3 3.33 2.95 3.59 2.95 0.360 0.542 
22:5n-3 3.96 4.03 4.38 3.78 0.259 0.465 
22:6n-3 3.84 2.67 3.55 2.85 0.284 0.189 

Sum 15.6 14.7 17.6 15.2 1.08 0.285 
Total PUFA

8
 100.5

ab
 83.9

b
 110.5

a
 92.2

ab
 6.14 0.048 

Total trans-FA
9
 123±8.7 99±16.0 138±8.9 128±8.9  0.301 

Total C18 FA
10

 674
ab

 650
b
 670

ab
 683

a
 6.82 0.030 

Total DMA
11

 1.39 1.04 1.80 1.07 0.406 0.538 

a-c
,
 
Means within a row with different superscripts differ (P < 0.05); 

1 
C, cereal; DCP, dehydrated citrus 

pulp; DBP, dehydrated beet pulp; SH, soybean hulls; 
2
,
 
standard error of means; 

3
,
 
linear chain 

saturated FA;
 4

,
 
terminal branched chain FA (iso and anteiso); 

5
, non-terminal branched chain FA; 

6
, 

cis-monounsaturated FA excluding biohydrogenation intermediates,
7
, polyunsaturated FA; 

8
, sum of all 

cis, methylene interrupted PUFA; 
9
, sum of trans-FA excluding t11-18:1 and conjugated linoleic acid 

isomers; 
10

, sum of all C18 FA;
 11

, sum of dimethylacetals.
 

 

 

The detailed profile of C18 BI in LM is presented in Table 18. The main BI was the t10-18:1 

that did not differ among the treatments and averaged 91 mg/g FA. About 67% of all the 

t18:1 BI and 59% of all the BI consisted of t10-18:1. The t11-18:1 was the second most 

abundant BI, but differed widely among the treatments, being lower for C (9.1 mg/g FA), 

higher for SH (35.6 mg/g FA) and intermediate for the other treatments. Thus, t10-/t11-18:1 

ratio was greater than 1 in all the treatments and was higher (P < 0.05) for C than for DCP 

and SH and intermediate for DBP (Figure 11). Only two animals, both fed SH diet, presented 

a “t10-/t11-18:1” ratio close to 1. The level of some of the minor octadecenoic isomers 

differed between the treatments with the lowest value in DCP. Nevertheless, the sum of 18:1 
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BI did not differ among treatments and averaged 135 mg/g FA with a larger variance in DCP 

treatment (P < 0.001) compared to the other treatments.  

The major 18:2 BI were non-conjugated isomer t10,c15-18:2 (which included t11,c15-18:2), 

that averaged 5.8 mg/g FA across treatments; and conjugated isomer c9,t11-18:2 (rumenic 

acid) that ranged from 2.8 in C to 8.3 mg/g FA in SH. The content of c9,t11-18:2 was higher 

(P < 0.05) in SH than in the other treatments. Generally, 18:2 BI were higher with SH (23.1 

mg/g FA), lower with C and DCP (≈16.5 mg/g FA) and intermediate with DBP (18.2 mg/g 

FA). 
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Table 18. Effect of replacing cereal in the diet with low starch feed ingredients on C18 

biohydrogenation intermediates (mg/g of total fatty acids) present in Longissimus muscle of 

lambs. 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

18:1 isomers       
t4 0.14 0.19 0.19 0.19 0.027 0.550 
t5 0.23 0.23 0.30 0.26 0.030 0.358 

t6 /t7 /t8 7.70
a
 3.89

b
 5.37

ab
 6.63

a
 0.591 0.002 

t9 6.37
a
 3.16

b
 4.00

b
 5.09

ab
 0.529 0.003 

t10 91.1 74.1 106.1 90.5 9.24 0.165 
t11 9.1

c
 17.7

b
 16.2

b
 35.6

a
 2.51 <0.001 

t12 6.33
ab

 5.01
b
 6.86

a
 6.18

ab
 0.425 0.049 

t15 0.82 0.71 0.87 1.28 0.154 0.109 
c12 2.31 2.27 2.48 2.82 0.307 0.637 
c13 0.88 0.88 0.85 0.89 0.037 0.875 
t16

3
 1.31

b
 1.30

b
 1.24

b
 1.80

a
 0.109 0.010 

c15 1.72
a
 1.38

b
 1.68

ab
 1.81

a
 0.076 0.008 

c16 1.09 0.91 1.09 0.89 0.082 0.179 
Sum 128±8.6 110±18.0 147±8.8 156±8.8  0.122 

18:2 isomers       
t8,c12 0.35 0.34 0.34 0.28 0.043 0.368 
c9,t13 0.25 0.27 0.32 0.26 0.021 0.226 
t8,c13 0.65

ab
 0.56

b
 0.51

b
 0.77

a
 0.058 0.037 

c9,t12 0.52
b
 0.53

b
 0.58

ab
 0.69

a
 0.038 0.035 

t9,c12 0.72
b
 1.03

ab
 1.03

ab
 1.45

a
 0.113 0.004 

t10,c15
4
 4.49 5.65 6.17 6.08 0.565 0.192 

t12,t14 0.028
c
 0.048

ab
 0.051

a
 0.033

bc
 0.0036 <0.001 

t11,t13 0.049
b
 0.064

ab
 0.063

ab
 0.085

a
 0.0071 0.031 

t10,t12 0.099 0.116 0.116 0.132 0.0105 0.261 
t9,t11 0.103

b
 0.135

ab
 0.134

ab
 0.187

a
 0.0152 0.015 

t8,t10 0.040 0.044 0.048 0.057 0.0048
 

0.179 
t7,t9 0.076 0.060 0.071 0.081 0.0096 0.481 
t6,t8 0.054 0.059 0.064 0.067 0.0034 0.107 

c/t12,14 0.019 0.023 0.018 0.020 0.0028 0.648 
t11,c13 0.039

b
 0.076

a
 0.062

ab
 0.090

a
 0.0080 0.003 

c11,t13 0.011 0.017 0.015 0.018 0.0029 0.431 
t10,c12 0.384 0.563 0.568 0.488 0.0714 0.262 
c9,t11 2.77

b
 4.98

b
 4.33

b
 8.28

a
 0.632 ˂0.001 

t9,c11 0.83
ab

 0.65
b
 0.90

a
 0.69

ab
 0.052 0.012 

t7,c9 1.87
a
 0.86

c
 1.21

bc
 1.64

a
 0.152 0.001 

Sum 15.1
b
 17.8

b
 18.2

ab
 23.1

a
 1.19 0.004 

18:3 isomer       
c9,t11,c15

5
 0.99 1.16 1.05 1.02 0.089 0.613 

Total BI
6
 144±9.3 129±19.7 166±9.6 180±9.5  0.079 

t10/t11ratio
7
 10.7

a
 6.4

b
 7.3

ab
 3.6

b
 0.88 <0.001 

a-c 
Means within a row with different superscripts differ (P < 0.05); 

1 
C, cereal; DCP, dehydrated citrus 

pulp; DBP, dehydrated beet pulp; SH, soybean hulls; 
2
, standard error of means; 

3
, includes small 

amounts of c14-18:1; 
4
, includes t11,c15-18:2 isomer;

 5
, includes 20:3n-9;

 6
, Sum of biohydrogenation 

intermediates (i.e. all FA listed in the table);
 7
, ratio between t10-18:1 and t11-18:1.
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Figure 11. Effect of replacing cereal in the diet with low starch feed ingredients on t10-/t11-

18:1 ratio in Longissimus muscle (LM) and subcutaneous fat. 
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Lowercase superscripts indicate differences among means of treatments in LM (P < 0.05). Uppercase 
superscripts indicate differences among means of treatments in subcutaneous fat (P < 0.05). 
Treatments: C, cereal; DCP, citrus pulp; DBP, beet pulp; SH, soybean hulls. 
 

 

5.3.4. Fatty acid composition of subcutaneous fat 

The lipid content and general FA composition of subcutaneous fat are presented in Table 19. 

The lipid content of subcutaneous fat samples did not differ among treatments and averaged 

843 mg/g tissue DM, whereas the FA content was larger (P < 0.05) for C than for DBP (697 

vs. 660 mg/g tissue DM) and it had an intermediate value for DCP and SH treatments. The 

sum of LC-SFA did not differ among treatments and averaged 380 mg/g FA. The major LC-

SFA were 16:0 (averaging in 208 mg/g FA across treatments) and 18:0 that ranged from 128 

to 162 mg/g FA; it was higher (P < 0.05) for C compared to DCP and DBP and had 

intermediate values for SH treatment. The content of both, terminal and non-terminal BCFA 

was high across treatments with an average value of 31 mg/g FA. There were no significant 

differences between the treatments in the content of NT-BCFA and the average value was 

16.7 mg/g FA. Some differences were observed for terminal BCFA, with the DCP treatment 

resulting in consistently lower proportion of these FA compared to DBP (i.e. iso-16:0), SH 

(iso-15:0 and iso-17:0) or both (i.e. iso-14:0) treatments. However, the sum of terminal BCFA 

did not differ among the treatments and averaged 14.5 mg/g FA. The major FA present in 

subcutaneous fat was c9-18:1, averaging 236 mg/g FA across treatments, and it made up 

the majority of cis-MUFA. Although the least square means of c9-18:1 did not differ (P > 

0.05) among treatments, the variance was much larger (P < 0.001) for DCP treatment than 

for the other treatments. There were small but significant differences between the treatments 

in the content of some other minor cis-MUFA (i.e. c7-16:1 and c11-20:1). 
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The total PUFA content of subcutaneous fat did not differ among treatments and averaged 

57 mg/g FA. The major PUFA present across treatments was 18:2n-6 with an average value 

of 45 mg/g FA. In the case of DBP and C, 18:2n-6 values tended (P = 0.054) to be larger 

(50.4 and 48 mg/g FA, respectively) compared to the other treatments (41.2 mg/g FA). The 

18:3n-3 was the major n-3 PUFA and did not differ among the treatments, averaging in 5.2 

mg/g FA. Despite of very low content of n-3 LC-PUFA, some differences (P > 0.05) among 

the treatments were observed. The largest values of 20:5n-3 and 22:5n-3 were observed for 

DBP and the lowest values were found for SH, with intermediate values for the other 

treatments. The 22:6n-6 was also higher for DBP but lower for C, with intermediate values for 

the other treatments. 

The sum of trans-FA (excluding t11-18:1 and CLA isomers) in subcutaneous fat was fairly 

high, ranging from 167 to 222 mg/g FA, and had a tendency to be lower for DCP than for 

DBP, with no differences for the other treatments.  

 

 

Table 19. Effect of replacing cereal in the diet with low starch feed ingredients on 

subcutaneous fat lipids and fatty acid (FA) composition (mg/g of total fatty acids) of 

subcutaneous fat. 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

Lipids, mg/g DM 839 842 843 848  6.6 0.800 
FA, mg/g DM 697

a
 679

ab
 660

b
 668

ab
 8.1 0.029 

FA profile, mg/g FA       
LC-SFA

3
       

10:0 1.13 1.36 1.09 1.22 0.093 0.194 
12:0 0.67 0.70 0.60 0.65 0.057 0.617 
14:0 21.1 24.2 21.8 22.9 1.646 0.555 
15:0 5.10 6.00 5.94 5.42 0.639 0.723 
16:0 202 218 203 208 7.083 0.393 
17:0 15.1 19.2 15.9 14.6 1.87 0.317 
18:0 162

a
 132

b
 128

b
 141

ab
 5.2 0.002 

20:0 1.19
ab

 1.07
b
 1.24

ab
 1.35

a
 0.056 0.017 

Sum 391 384 363 380 11.2 0.413 
T-BCFA

4
       

iso-14:0 0.22
b
 0.18

b
 0.45

a
 0.39

a
 0.027 <0.001 

iso-15:0 0.60
b
 0.58

b
 0.77

b
 1.35

a
 0.087 <0.001 

anteiso-15:0 1.64 1.63 2.38 2.09 0.193 0.042 
iso-16:0 1.42

ab
 1.26

b
 1.90

a
 1.46

ab
 0.143 0.037 

iso-17:0 2.68
ab

 2.12
b
 2.34

b
 3.06

a
 0.163 0.004 

anteiso-17:0 5.77 5.85 6.63 5.80 0.602 0.719 
iso-18:0 1.25 1.18 1.55 1.04 0.127 0.073 

Sum 13.5 12.8 16.3 15.2 1.18 0.184 
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Table 19. Effect of replacing cereal in the diet with low starch feed ingredients on 

subcutaneous fat lipids and fatty acid composition (mg/g of total fatty acids) of subcutaneous 

fat (continuation). 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

NT-BCFA
5
       

6 Me-14:0 1.10 1.77 1.26 1.05 0.273 0.248 
8 Me-14:0 0.74 1.18 0.90 0.73 0.197 0.334 
4 Me-14:0 1.65 2.77 1.98 1.66 0.419 0.216 

10 Me-14:0 0.56 0.91 0.75 0.55 0.158 0.334 
2 Me-16:0 1.07 1.93 1.25 1.04 0.264 0.090 
6 Me-16:0 1.56 3.27 2.20 1.60 0.509 0.096 
8 Me-16:0 1.08 2.07 1.37 1.04 0.293 0.080 
4 Me-16:0 2.37 3.95 2.77 2.34 0.519 0.126 

12 Me-16:0 3.25 4.67 3.75 3.12 0.547 0.203 
Sum 13.7 23.0 16.5 13.4 3.27 0.143 

Total BCFA 27.2 35.8 32.7 28.6 4.35 0.473 
cis-MUFA

6
       

c9-14:1 0.33 0.46 0.36 0.42 0.035 0.086 
c7-16:1 2.26

b
 2.77

a
 2.45

ab
 2.10

b
 0.118 0.018 

c9-16:1 7.47 7.76 7.58 7.24 0.251 0.512 
c9-17:1 3.80 4.89 4.38 4.33 0.743 0.758 
c9-18:1 232±5.4 261±18.6 226±5.4 226±5.4  0.369 
c11-18:1 11.6 11.0 11.2 10.5 0.29 0.102 
c11-20:1 2.21

a
 1.89

ab
 2.31

a
 1.95

b
 0.074 0.004 

Sum 260±5.9 293±20.3 255±5.9 253±5.9  0.351 
n-6 PUFA

7 
      

18:2n-6 48.0 41.6 50.4 40.8 2.67 0.056 
18:3n-6 0.16 0.17 0.17 0.15 0.021 0.921 
20:2n-6 0.50

ab
 0.51

ab
 0.63

a
 0.45

b
 0.029 0.004 

20:3n-6 0.65 0.67 0.75 0.68 0.035 0.245 
20:4n-6 0.85 0.86 1.00 0.90 0.069 0.459 
22:4n-6 0.15 0.21 0.19 0.12 0.027 0.058 
22:5n-6 0.74 0.68 0.88 0.85 0.108 0.531 

Sum 51.0 44.7 53.9 43.9 2.79 0.054 
n-3 PUFA       

18:3n-3 5.26 5.11 5.55 4.74 0.297 0.309 
20:5n-3 0.62

ab
 0.65

ab
 0.86

a
 0.57

b
 0.065 0.039 

22:5n-3 1.43
ab

 1.47
ab

 1.78
a
 1.31

b
 0.111 0.064 

22:6n-3 0.84
b
 0.97

ab
 1.44

a
 0.99

ab
 0.127 0.032 

Sum 8.15 8.25 9.59 7.65 0.509 0.084 
Total PUFA

8
 59.1 52.9 63.5 51.6 3.20 0.057 

Total trans-FA
9,10

 214±8.3 167±20.3 222±8.3 190±8.3  0.047 
Total C18 FA

11
 705

a
 663

b
 687

ab
 694

ab
 8.1 0.011 

a-c
,
 
Means within a row with different superscripts differ (P < 0.05); 

1 
C, cereal; DCP, dehydrated citrus 

pulp; DBP, dehydrated beet pulp; SH, soybean hulls; 
2
,
 
standard error of means; 

3
,
 
linear chain 

saturated FA;
 4

,
 
terminal branched chain FA (iso and anteiso); 

5
, non-terminal branched chain FA; 

6
, 

cis-monounsaturated FA excluding biohydrogenation intermediates, 
7
, polyunsaturated FA; 

8
, sum of 

all cis, methylene interrupted PUFA; 
9
, sum of trans-FA excluding t11-18:1 and conjugated linoleic acid 

isomers; 
10

; no differences among means were present after Tukey adjustment for multiple 
comparisons;

11
, sum of all C18 FA.  
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The detailed profile of C18 BI in subcutaneous fat is presented in Table 20. Taken together, 

FA derived from ruminal BH did not differ among the treatments (P = 0.097) and averaged 

246 mg/g FA across treatments. The main BI was t10-18:1 ranging from 124 to 172 mg/g FA. 

The amount of t10-18:1 was higher (P < 0.05) for DBP than for SH, and the amount of this 

isomer for the other treatments did not differ from both DBP and SH. The variance of t10-

18:1 found for DCP was much larger (P < 0.001) than for the other treatments. The t11-18:1 

was the second major BI and was higher for SH treatment (60±5.6 mg/g FA) and lower for C 

treatment (17±1.4 mg/g FA). Moreover, the variance of t11-18:1 was higher (P < 0.001) for 

DCP and SH, intermediate for DBP and lower for C treatment. The “t10-/t11-18:1” ratio 

ranged from 3 to 9.8, being lower (P < 0.05) for SH than for C and DBP and there was no 

difference between DCP and the other treatments due to the largest variability found with 

DCP treatment (Figure 11). Significant differences were observed for some minor 18:1 BI 

between treatments with DCP treatment generally resulting in lower values than SH (i.e. t6-

/t7-t8-18:1, t9-18:1, t15-18:1, t16-18:1, c15-18:1) and C (i.e. t6-/t7-t8-18:1, t9-18:1, c15-18:1) 

treatments.  

The concentration of 18:2 BI present in subcutaneous fat ranged from 20 to 28 mg/g FA, 

being the lowest (P < 0.05) for C, the highest for SH with intermediate values for the other 

treatments. The major 18:2 BI were the coeluted peaks containing the non-conjugated 

t10,c15- and t11,c15-18:2 isomers and the conjugated c9,t11- and t7,c9-18:2 isomers. The 

c9,t11-/t7,c9-18:2 peak was higher for SH (11.3 mg/g FA) than for the other treatments (≈5.9 

mg/g FA).  
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Table 20. Effect of replacing cereal in the diet with low starch feed ingredients on C18 

biohydrogenation intermediates (mg/g of total fatty acids) present in subcutaneous fat of 

lambs. 

Item 
Diets

1
 

SEM
2 

P-value 
C DCP DBP SH 

18:1 isomers       
t4 0.47 0.72 0.58 0.56 0.072 0.137 
t5 0.42 0.47 0.42 0.43 0.045 0.839 

t6 /t7 /t8 14.8
a
 7.1

c
 9.8

bc
 11.6

ab
 0.90 <0.001 

t9 9.44
a
 4.71

c
 6.13

bc
 8.40

ab
 0.684 0.001 

t10 158
ab

±7.6 124
ab

±17.7 172
a
±7.6 135

b
±7.1  0.024 

t11 16.8
b
±1.42 31.0

b
±6.54 27.6

b
±2.47 59.7

a
±4.38 4.08 <0.001 

t12 10.2 8.6 10.0 9.6 0.47 0.124 
t15 1.79

ab
 1.44

b
 1.44

b
 2.35

a
 0.155 0.002 

c12 3.26 3.20 3.54 3.77 0.212 0.236 
c13 0.81 0.90 0.89 0.92 0.041 0.353 
t16

2
 2.03

b
 1.59

b
 1.67

b
 2.66

a
 0.155 0.001 

c15 2.55
a
 2.04

b
 2.53a 2.70

a
 0.104 0.002 

c16 1.47 1.17 1.26 1.05 0.121 0.138 
Sum 223±6.8 186±23.9 238±6.8 239±6.8  0.158 

18:2 isomers       
t8,c12 1.80 1.67 1.82 2.16 0.115 0.161 
c9,t13 0.70 0.82 0.70 0.58 0.096 0.383 
t8,c13 0.66

ab
 0.58

ab
 0.54

b
 0.81

a
 0.060 0.029 

c9,t12 0.62 0.64 0.68 0.81 0.065 0.201 
t9,c12 0.96

b
 1.22

ab
 1.16

ab
 1.62

a
 0.580 0.034 

t10,c15
4
 7.58 9.70 9.90 8.88 0.839 0.247 

c9,t11
5
 5.13

b
 6.12

b
 6.55

b
 11.32

a
 0.624 <0.001 

t9,c11 0.63 0.62 0.77 0.63 0.058 0.211 
t10,c12 0.64 1.11 0.93 0.70 0.108 0.050 

Sum 20.0
b
 23.0

ab
 24.1

ab
 28.1

a
 1.43 0.009 

18:3 isomers       
c9,t11,c15 0.18 0.17 0.18 0.14 0.023 0.619 

Total BI
6
 244±7.6 211±25.8 263±7.6 268±7.0  0.097 

t10/t11 ratio
7
  9.8

a
±0.71 7.2

ab
±1.41 6.8

a
±0.71 3.0

b
±0.67  <0.001 

a-c
,
 
Means within a row with different superscripts differ (P < 0.05); 

1 
C, cereal; DCP, dehydrated citrus 

pulp; DBP, dehydrated beet pulp; SH, soybean hulls; 
2
, standard error of means; 

3
, includes small 

amounts of c14-18:1;
 4

, includes t11,c15-18:2 isomer; 
5
, includes t7,c9-18:2 isomer;

 6
, sum of 

biohydrogenation intermediates (i.e. all FA listed in the table); 
7
, ratio between t10-18:1 and t11-18:1. 

 

 

5.3.5. Gene expression and SCD activity indices 

The relative mRNA expression levels of SCD, ACACA and FASN in the LM are presented in 

Figure 12. The expression of ACACA did not differ between the treatments. The expression 

of SCD was twice higher in C and DCP when compared to DBP and SH treatments (P < 

0.05). The expression of FASN was twice lower in DCP than in the other treatments (P < 

0.05). The SCD activity index calculated using c9-17:1 FA and 17:0 product and substrate 

pair (SCDi-17) in LM is given in Figure 12. The SCDi-17 was lower (P < 0.05) for SH than for 

C and DCP treatments. The DBP treatment had a lower SCDi-17 compared to DCP but a 

SCDi-17 similar to that in SH and C treatments.  
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Figure 12. Effect of replacing cereal in the diet with low starch feed ingredients on relative 

mRNA expression level (arbitrary units) of codifying genes and on SCD activity index in 

Longissimus muscle. 
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Means with different superscripts differ among treatments (P < 0.05); *, no differences among means 
were present after Tukey adjustment for multiple comparisons. Treatments: C, cereal; DCP, 
dehydrated citrus pulp; DBP, dehydrated beet pulp; SH, soybean hulls. ACACA, acetyl-CoA 
carboxylase; FASN, fatty acid synthase; SCD, stearoyl-CoA desaturase or Δ

9
-desaturase; SCDi17, 

SCD activity index, c9-17:1/(c9-17:1 + 17:0))×100.  

 

 

5.4. Discussion 

 

The use of dehydrated citrus pulp, sugar beet pulp and soybean hulls in ruminant diets is 

well known as an alternative to cereals (Ludden et al., 1995; Bampidis & Robinson, 2006; 

Vasta et al., 2008). In the present study, DBP resulted in a productive performance similar to 

that achieved with the C diet. However, ADG was reduced for the DCP diet and the feed 

efficiency ratio was lower under both DCP and SH diets compared to C diet. The reduced 

productive performance for DCP may be related to the highest probability of developing 

rumen parakeratosis lesions, which might have led to a decreased capacity for VFA 

absorption (Hinders & Owen, 1965). In fact, it was reported that the incorporation of large 
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proportions of dehydrated citrus pulp into low-forage diets increases the occurrence of rumen 

parakeratosis lesions (Loggins, Ammerman, Moore & Simpson, 1968; Martinez-Pascual & 

Fernandez-Carmona, 1980) and our results are in agreement with these studies. The 

diminished feed efficiency observed with SH diet compared to C diet is consistent with a 

lower digestible energy value of soybean hulls compared to cereals (Ludden et al., 1995; 

Ferreira et al., 2011b). 

In the present study, it was not found any impact of the diets investigated on carcass quality 

parameters. This is in agreement with several reports that concluded that the replacement of 

cereals with DCP (Prado et al., 2000; Lanza et al., 2001; Bampidis & Robinson, 2006), DBP 

(Normand et al., 2001; Cuvelier et al., 2006) or SH (Lage et al., 2014) in the diets of growing 

ruminants has a small or null impact on carcass quality. Moreover, meat quality traits like 

color, shear force and sensorial evaluation were not affected by the diets in our study. Our 

results on meat color parameters are consistent with reports on meat color for Portuguese 

lambs (Santos-Silva, Mendes, Portugal & Bessa, 2004; Teixeira et al., 2015). The redness of 

subcutaneous fat (a*) in the present study was more intense for DBP than for SH. DBP also 

resulted in a higher value of b* compared to SH, indicating a higher level of fat pigmentation 

probably due to deposition of beet pigments as vulgaxantines and betanins (Gasztonyi, 

Daood, Hajos & Biacs, 2001). However, the differences in effects of the diets on the color of 

subcutaneous fat were not detectable by visual examination and therefore unlikely to have 

impact on meat appreciation by consumers. Meat shear force averaged 3.93 kgF/cm2, which 

is consistent with our previous data (Francisco et al., 2015), and sensorial evaluation 

indicated that all the meats had a good overall acceptability.  

To the best of own knowledge, this is the first study on effect of total replacement of dietary 

cereals with dried beet pulp or soybean hulls on accumulation of BI in lamb tissues. 

However, it should be noted that there have been recent communications on effects of 

replacing cereals with dehydrated citrus pulp on accumulation of BI in lamb tissues (Lanza et 

al., 2015) and ewe milk (Santos-Silva et al., 2016). Our main objective was to test the 

hypothesis that the occurrence of t10-shift in lambs fed complete finishing diets 

supplemented with oil can be prevented by replacing cereals (i.e. barley) with low-starch feed 

ingredients. The t10-shift was evaluated by calculating the tissue t10-/t11-18:1 ratio which 

reflects BH pathways established in the rumen during the feeding period. In order to enhance 

accumulation of 18:1 BI in tissues, our diets were supplemented with a blend of soybean and 

fish oils. It is known that, inclusion of marine oils in ruminant diets consistently disrupts the 

the completion of BH of C18 UFA resulting in a large increase of 18:1 BI, mainly trans-18:1, 

leaving the rumen (Shingfield and Wallace, 2014). Thus, the very high levels of tissue 18:1 BI 

observed in the present study (135 mg/g FA in LM and 222 mg/g FA in subcutaneous fat) is 

consistent with the level and type of lipid supplementation used. Moreover, our diets were 

javascript:void(0)
javascript:void(0)
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designed to have two extreme points; high-starch/low-NDF content (C, barley, 318 g of 

starch and 260 g of NDF per kg DM) and low-starch/high-NDF content (SH, 54 g of starch 

and 463 g of NDF per kg DM); and intermediate points where starch was replaced by pectin 

rich by-products with various sugar and NDF contents (DCP and DBP). The extreme diets, C 

and SH, were expected to induce t10-18:1 and t11-18:1 accumulation, respectively, in 

tissues and we anticipated intermediate responses in case of DCP and DBP diets. These 

assumptions were supported by the widely accepted concept that high starch diets favor t10-

18:1 production and high fiber diets favor t11-18:1 production in the rumen (Griinari et al., 

1998; Sackmann et al., 2003). However, the presented results were unexpected and 

contradict our hypothesis as all the treatments induced a clear t10-shifted pattern, with “t10-

/t11-18:1” ratio considerably above 1 in LM and subcutaneous fat. To the best of our 

knowledge, this is the first report of t10-shift´s induction by a low-starch/low-sugar/high-NDF 

diet (i.e. SH). There is a general lack of knowledge regarding both, bacteria and metabolic 

pathways involved in t10-shift and until now the only consistent inducing factor of t10-shift 

was the high-starch, low-fibre diets coupled with PUFA supplementation as an amplifying 

factor (Bessa et al., 2015). Low rumen pH might also induce t10-shift. However, it is known 

that an increasing content of dietary starch results in decrease of rumen pH, and therefore 

the two factors are generally confounded in vivo. A few publications reported results of in 

vitro experiments which attempted to discriminate the effects of starch availability and low 

rumen pH on the establishment of t10-shifted BH pathways (Fuentes, Calsamiglia, Cardozo 

& Vlaeminck, 2009; Maia, Bessa & Wallace, 2009; Zened, Enjalbert, Nicot & Troegeler-

Meynadier, 2012). In the present study, all the treatments resulted in a low rumen pH. In fact, 

the rumen pH only did not drop below 6.0 under DCP. However, taking into account the high 

incidence of rumen parakeratosis in case of DCP and, as previously reported (Kleen, Hooijer, 

Rehage & Noordhuizen, 2003), the close association between rumen mucosa lesions and 

rumen acidosis, the rumen pH in DCP group can be viewed as fairly low throughout the 

experiment.  

Our results suggest that the low rumen pH may have a more significant role in the production 

of t10-18:1 when compared to the dietary starch content. However, although none of the 

diets studied were able to prevent t10-shift (evaluated by the t10-/t11-18:1 ratio in tissues), 

the SH diet allowed for a much greater t11-18:1 deposition in the tissues than the other 

treatments. Moreover, the reduction of the t10-/t11-18:1 ratio under SH diet was mainly due 

to an increase t11-18:1 level rather than reduced content of t10-18:1 in the tissues. Some 

fibrolytic bacteria, such as B. fibrisolvens and B. proteoclasticus have been known as the 

major contributors to t11-shifted BH pathways (Shingfield & Wallace, 2014), and thus the 

stimulatory effect of dietary NDF on t11-18:1 production might be due to the sustenance of 

those fibrolytic biohydrogenation bacteria, despite the low rumen pH. It still remains unknown 
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what are the main bacteria responsible for conducting t10-shifted BH pathways. It has been 

reported that few strains of M. elsdenii (Kim et al., 2002) and P. acnes (Shingfield & Wallace, 

2014) are able to produce t10,c12-18:2 in pure cultures. However, the role of the above 

bacteria in the rumen is questionable. The rumen microbiome studies on animals expressing 

t10-shifted BH pathways suggest that unculturable rumen microbes might play the major role 

in this process (Zened et al., 2012). 

Taken together, results of our study suggest that the high dietary starch (or low NDF) inhibits 

t11-18:1 production in the rumen, but high dietary NDF (or low starch) does not an inhibit t10-

18:1 production in the rumen. The small feed particle size from ground diets probably did not 

properly stimulate the rumination and salivation in lambs. This lack of physically effective 

NDF may be the explanation for the failure of the high-NDF diet in preventing the t10-shift. 

However, when ground dehydrated alfalfa was used as a basal diet, very low t10-/t11-18:1 

ratios were consistently reported in the rumen, abomasum and tissues of lambs (Bessa et 

al., 2007; Jerónimo et al., 2010; Alves et al., 2013b). Thus, factors other than fibre particle 

size (e.g. the rate of NDF fermentation in the rumen) might be playing an important role in 

this process and need to be further investigated. 

One of the consequences of t10-shift in ruminants is the low concentration of c9,t11-18:2 in 

tissues (Bravo-Lamas, Barron, Kramer, Etaio & Aldai, 2016; Oliveira et al., 2016; Oliveira, 

Alves, Santos-Silva & Bessa, 2017). Consistently, we observed a relatively low concentration 

of c9,t11-18:2 in LM and subcutaneous fat for all treatments. As expected, the c9,t11-18:2 

concentration in tissues followed the concentration pattern of t11-18:1 (Palmquist et al., 

2004), and thus the concentration of c9,t11-18:2 was lower under C diet (0.30% of total FA in 

LM) and higher under SH diet (0.85% of total FA in LM). 

A detailed analysis of CLA isomers demonstrated that in addition to c9,t11-18:2, there also 

were t7,c9-18:2, t9,c11-18:2 and t10,c12-18:2 CLA isomers present in LM. This confirms 

association between high-starch diets and production of these specific CLA isomers 

(Shingfield et al., 2005; Alfaia et al., 2009). Moreover, significant amounts of nonconjugated 

18:2 isomers were identified in LM and subcutaneous fat for all treatments, and some of 

them, such as c9,t12-18:2 and c9,t13-18:2, were recently found to be products of SCD 

activity (Vahmani et al., 2016). 

Lambs fed barley-based diets have been reported to have abnormally soft subcutaneous 

adipose tissue due to a considerable concentration of NT-BCFA (Duncan, Lough, Garton & 

Brooks, 1974; Berthelot, Normand, Bas & Kristensen, 2001). Therefore, in the present study, 

we anticipated that replacing barley with non-starchy feed ingredients would decrease the 

proportion of NT-BCFA. However, the proportion of these FA in subcutaneous fat remained 

low and was similar across treatments. One possible explanation of these results might be 
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that accumulation of NT-BCFA in tissues varies between ovine breeds (Alves et al., 2013a), 

and Merino Branco breed used in the present study does not largely express that feature. 

High-starch finishing diets are positively associated with intramuscular fat deposition and up-

regulation of SCD (Daniel et al., 2004; Pethick, Harper & Oddy, 2004; Costa et al., 2013). 

Both, low intramuscular fat deposition and down-regulation of SCD can be limiting factors for 

the enrichment of ruminant meat with t11-18:1 and c9,t11-18:2 (Bessa et al., 2015). The 

relative expression of SCD gene and the SCD activity index evaluated by the proportions of 

c9-17:1 and 17:0 as described by Bessa et al. (2015) were lower in LM for SH diet compared 

to DCP and C diets, which is consistent with the lowest content of insulinemia promoting 

nutrients (i.e. starch and sugar) in SH diet. The possible downregulation of SCD is supported 

by a lower level of SCD products c9-14:1, c9-16:1 and c9-17:1, but not c9-18:1, when 

feeding the SH diet compared with C and DCP diets. The tissue c9,t11-18:2 mostly derives 

from the reaction catalyzed by SCD with t11-18:1 as the substrate. However, our results 

suggest that the main reason for a higher c9,t11-18:2 content observed in the case of SH 

diet is the largest substrate availability rather than increased SCD activity (Daniel et al., 

2004). Interestingly, despite of the common insulin-related regulatory mechanisms for SCD 

and ACACA expression, the expression of ACACA followed the pattern opposite to that for 

SCD e.g. with ACACA expression being lower in case of diets providing a higher level of 

insulinemia promoting nutrients (C and DCP). It is not clear why the above changes in the 

gene expression patterns occurred especially in the absence of differences in dietary effects 

on intramuscular fat and 16:0 content. It should be noted that, in the present experiment, de 

novo FA synthesis was expected to be reduced as all the diets were supplemented with 

6.9% of oil blend in DM. However, there was a lower expression of FASN in the muscle of 

DCP-fed lambs, which might be related to inferior feed efficiency and ADG. Overall, these 

data suggest that a lower metabolizable energy (ME) provided by DCP diet as a result of 

diminished rumen absorption caused by parakeratosis lesions leads to reduced growth 

performance of lambs and affects the expression of FASN. 
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5.5. Conclusions 

 

Our results indicate that the reduction of starch content in lambs’ diet by replacing barley with 

low-starch feed ingredients does not prevent the establishment of t10-shifted BH pathways in 

the rumen, as reflected by the large accumulation of t10-18:1 in tissues. SH was more 

effective in promoting t11 BH pathways compared to the other diets studied, as evidenced by 

an increased deposition of t11-18:1 and c9,t11-18:2 in muscle and subcutaneous fat. These 

results demonstrate that low-starch/high-NDF diets on their own are not sufficient to prevent 

the occurrence of t10-shifted BH pathways evaluated by deposition of BI in lamb meat and 

fat. 
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General discussion 

 

In the present chapter, the effect of the two methodological approaches (four experiments) 

described in the thesis, which included the incorporation of tannin extracts (Chapters 2 and 

3) in the diet and the modification of the dietary starch level (Chapters 4 and 5), on ruminal 

BH will be discussed.  

The first main objective of the present experimental work was to acquire more knowledge 

about the effects of tannins on ruminal BH pathways. In both experiments with tannin 

extracts, the effects of condensed and hydrolysable tannins on BH were compared, although, 

in vitro, the two molecular types of tannins were mainly evaluated in relation to a control 

treatment (without tannins). Overall, condensed tannins showed a greater influence on BH 

than hydrolysable tannins. In fact, in the in vitro experiment, condensed tannin extracts from 

grape seed and C. ladanifer caused a higher proportional disappearance of 18:3 and 18:2n-6 

than hydrolysable tannin extract from chestnut, while, in the in vivo experiment, condensed 

tannin extract from mimosa led to a higher variability of the disappearance of c9-18:1, 18:2n-

6 and 18:3n-3 and BH completeness comparing with hydrolysable tannin extract from 

chestnut. The effects of tannins were reported to be influenced by their molecular nature, 

dose and duration of utilization (Toral et al., 2011; Toral et al., 2013; Carreño et al., 2015) 

and those factors might also explain the differences among hydrolysable and condensed 

tannins observed in both experiments.  

Considering the molecular nature, the ability of tannins to bind to polymers has been 

described to be influenced by their MW (Poncet-Legrand, Gautier, Cheynier & Imberty, 2007; 

Patra & Saxena, 2011) and chemical structural conformations (Poncet-Legrand et al. 2006). 

In in vitro and in vivo experiments, the average MW of hydrolysable tannins from chestnut 

extract was probably lower than that presented by condensed tannins from grape seed, C. 

ladanifer and mimosa, since olygomeric units from chestnut tannins are prone to be 

hydrolysed into monomeric subunits with less than 500 Da (Pasch & Pizzi, 2002) that 

corresponds to the minimum MW for tannins to be able to bind to polymers (Field & Lettinga, 

1992), while the hydrolysis of condensed tannins has not been clearly demonstrated 

(McSweeney et al., 2001b). Moreover, the formation of tannin oligomers, due to 

polymerization reactions, with up to 2000 Da from chestnut extract depends of internal 

rearrangements of monomers formed by tannin hydrolysis (Pasch & Pizzi, 2002), whereas 

mimosa and grape seed tannins are mainly composed by oligomers with mimosa tannins 

showing an average degree of polymerization from 4.9 (Thompson & Pizzi, 1995) to 5.4 and 

a maximum of 2333 Da (Pasch et al., 2001) and those of grape seed presenting an average 

degree of polymerization from 3.3 (Vivas et al., 2004) to 3.8 (Poncet-Legrand et al., 2007). 

Attending to the chemical structure, tannins from mimosa and grape seed have 
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conformational flexibility and stability provided by the presence of prorobinetinidins 

polyflavonoids composed of considerable proportions of favanyl units with angular 

configuration in mimosa tannins (Steenkamp, Ferreira, Roux & Hull, 1983; Pasch et al., 

2001) and the high level of galloylation of grape seed tannins (Vivas et al., 2004; Poncet-

Legrand et al., 2006). These fexible structural conformations and the higher MW of 

condensed tannins might confer them a more effective binding to substract (Poncet-Legrand 

et al., 2006; Poncet-Legrand et al., 2007; Hagerman, 2012), such as lipoproteins from cell 

membranes and enzymes of bacteria and dietary compounds, than hydrolysable tannins 

(Field & Lettinga, 1992), although that phenomenon has been more clearly shown for grape 

seed tannins (Ikigai et al., 1993; Hashimoto et al., 1999; Poncet-Legrand et al., 2007). The 

results from the in vitro experiment evidences a similar ability of condensed tannins from C. 

ladanifer and from grape seed to bind to polymers and, consequently, modify ruminal BH, but 

further studies are needed for a better knowledge about the chemical structure of C. ladanifer 

tannins.  

Attending to the different abitilities of the two molecular types of tannins to form complexes 

with proteins and carbohydrates, the stronger binding properties of condensed tannins might 

lead to an inactivation of bacteria through unavailability of substracts and inhibition of 

enzymes necessary for bacterial growth and activity comparing with hydrolysable tannins. 

Also, the ligation of tannins with lipoproteins from bacterial cell membranes may cause a 

decrease of membrane permeability and a disruption of essential cell processes (Ikigai et al., 

1993; Hashimoto et al., 1999; Smith et al., 2005). Moreover, when condensed tannins are 

present at high doses, they may lead to an increase of membrane permeability due to 

membrane disruption, exerting not only a bacteriostatic but also a bactericidal effect (Ikigai et 

al., 1993; Smith et al., 2005; Trentin et al., 2013). Nevertheless, the low MW monomeric 

subunits resulting from the hydrolysis of hydrolysable tannins might present a stronger 

toxicity towards bacteria (Field & Lettinga, 1987; Scalbert, 1991), since they possibly 

penetrate more easily through cell membrane (Field & Lettinga, 1992), causing a higher 

instability of membrane fluidity and stimulation of homeoviscous adaptation of bacteria with 

the formation of trans-FA during ruminal BH to be incorporated into bacterial cell membranes 

(Keweloh & Heipieper, 1996; Endo et al., 2006), as compared to condensed tannins.  

Indeed, in the in vivo study, the greater total trans-18:1, mainly t11-18:1, and a consequent 

higher “trans-/cis-18:1” ratio in bacterial biomass fractions was found with chestnut 

hydrolysable tannins in relation with mimosa condensed tannins. Conversely, an inibition of 

microbial rumen ecosystem was obtained with mimosa compared with chestnut tannin 

extracts, being associated with a reduction of intake, fermentative activity in the rumen, 

abundance of specialized fibrolytic bacteria (F. succinogenes, R. albus, R. flavefaciens and 

B. proteoclasticus) and bacterial biomass estimates using DMA. However, these differential 
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effects between condensed and hydrolysable tannins cannot explain the greatest in vitro 

formation of t11-18:1 in the rumen with grape seed and C. ladanifer comparing with chestnut 

tannin extracts. Nevertheless, this ocurrence might have been related to a short duration of 

utilization of condensed tannins in the in vitro experiment, as it is possible that the ruminal 

BH occurring in the incubation tubes was still in the step of accumulation of BI. Also, the high 

dose (100 g/kg DM) of tannins used might have stimulated the BH of PUFA, although that is 

not well understood.  

Considering the rumen microbial biomass, the lower bacterial biomass estimate using DMA 

with mimosa might indicate an inferior general abundance of rumen bacteria with condensed 

tannins from mimosa than with hydrolysable tannins from chestnut. Additionally, in the in vitro 

study, there was a lower total of DMA in the rumen with grape seed tannins and a slightly 

inferior total of DMA with C. ladanifer tannins comparing with chestnut tannins. Overall, these 

results may indicate a lower bacterial biomass in the rumen with condensed tannins 

comparing with hydrolysable tannins, even without a determination of biomass estimates in 

the in vitro experiment. Moreover, the importance of DMA as internal microbial markers and 

the fact that DMA might be a better marker than OCFA, as previously suggested by Alves et 

al. (2013b), was evident in both experiments, since there was a more pronounced effect of 

tannins on DMA than OCFA and, in the in vivo experiment, only the total of all DMA did not 

differ between bacterial fractions.  

Conversely to what was found for fibrolytic bacteria, the mimosa tannin extract promoted a 

higher abundance of the amylolytic S. ruminantium than chestnut extract, which was 

probably associated with a higher proportion of 10-oxo-18:0 in the rumen and of oxo-18:0 in 

the blood plasma with condensed than with hydrolysable tannins, since this bacterial species 

can hydrate c9-18:1 into a precursor of 10-oxo-18:0 (i.e. 10-OH-18:0) (Hudson et al., 1995). 

Similarly to the in vivo experiment, the production of 10-/9-oxo-18:0 was higher with grape 

seed and C. ladanifer than with chestnut tannin extracts and that might also indicate a higher 

abundance of bacteria that produce oxo-18:0 with condensed comparing with hydrolysable 

tannins in the in vitro experiment. Considering these results, other studies are needed for a 

better comprehension of the influence of tannins on the production of oxo-18:0 FA in the 

rumen. 

Moreover, the effect of condensed tannins on rumen ecosystem indicates a general 

inactivation of bacteria, although without the presence of t10-shift. In fact, the “t10-/t11-18:1” 

ratio, which is an indicator of the occurrence of t10-shift (Bessa et al., 2015), was inferior to 1 

in both experiments. In the in vitro experiment, that ratio value was probably explained by the 

fact that the rumen inoculum was derived from rumen contents that had already a 

predominance of t11 BH pathways, since the sheep were fed with a high-forage and low-

concentrate diet. Indeed, a preponderance of t11 BH pathways has been described with 
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forage-based diets, while concentrate feed might stimulate t10 BH pathways with or without 

the addition of oil (Bessa et al., 2005; Rosa et al., 2014). The inclusion of increasing levels of 

C. ladanifer and oil in a 1:1 forage-to-concentrate diet was described as leading to a higher 

t10-18:1 than t11-18:1 accumulation in the rumen (Alves et al., 2017) and in the Longissimus 

muscle of lambs (Francisco et al., 2016), whereas Jerónimo et al. (2010) reported a much 

greater increase of t11-18:1 comparing with t10-18:1 in the abomasal digesta and muscle of 

lambs fed with a similar diet but with a higher proportion of lucerne. Nevertheless, in the 

present in vivo experiment, the predominance of t11 BH pathways, even with a basal diet 

presenting a balanced proportion of forage and concentrate (1:1), was probably explained by 

the fact that the animals used in the experiment were adult sheep fed with a diet for 

mantainance and with a low DMI, while the results reported by Alves et al. (2017) and 

Francisco et al. (2016) were obtained with lambs fed with a finishing diet and with a high 

DMI. 

Moreover, once a better comprehension of the effects of tanins on ruminal BH is acquired, it 

is important to notice that, if applied in pratical ruminant nutrition, the high dose (100 g/kg 

DM) of tannin extracts used in both experiments would lead to an impairment of animal 

productive performance, as suggested by a lower DMI with mimosa comparing with chestnut 

tannin extracts. However, the use of such high dose had the purpose of exarcebate the 

influence of tannins on ruminal BH, as an attempt to understand the differential mechanism 

of action of these compounds. So, lower doses should be considered, regarding that 

approximately 21 g/kg DM of condensed tannins from C. ladanifer (Jerónimo et al., 2010; 

Vasta et al. 2010b) and, in general, condensed tannins at doses up to 60 g/kg DM (Aerts, 

Barry & McNabb, 1999) were not associated with a diminishment of growth performance. 

Nevertheless, attending to the great variability and inconsistency of tannin effects on ruminal 

BH found in literature (Kronberg et al., 2007; Benchaar & Chouinard, 2009; Cabiddu et al., 

2009; Jayanegara et al., 2011) and also reported in this thesis, they cannot be recommended 

to practical feeding conditions in ruminants. However, the tannins are able to induce stress in 

the rumen ecosystem and potentially modulate BH and, consequently, will continue to be 

very useful in experimental models to study ruminal BH. In order to disclose the mechanism 

of action of tannins, more detail about the structure of several tannins from different plants or 

even from the same plant with different origins, as well as a deeper knowledge about the 

structural modifications that might occur when tannins are exposed to different extraction 

methods and processes of preparation of diets that include the granulation of feeds, are 

needed. In fact, the high temperature used during the pelleting of diets might inactivate the 

tannins, as the formation of complexes between tannins and proteins is sensitive to 

temperature (Hagerman, 2012), and that could contribute to the mild influence of tannins on 

ruminal BH observed in the in vivo experiment. 
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The second main objective of the present experimental work was to obtain more knowledge 

about the factors that lead to the establishment of t10-shift and the dynamics of t10-shift´s 

induction. In fact, very little is known about the biology behind the t10-shift with no general 

consensus about what are the t10-shifted BH pathways that might occur in the rumen and 

the microorganisms that have a determinant role in the occurrence of t10-shift (Bessa et al., 

2015). The determinant factors for the establishment of t10-shift are also not well 

understood, although the high starch level of the diet has been described, in previous studies 

(Bessa et al., 2005; Rosa et al., 2014), as fundamental for the predominance of t10 BH 

pathways. Moreover, only Zened et al. (2011) evaluated the progression of t10-shift in the 

rumen and there are no reports about possible circadian oscillations of t10-shift. 

In the third experiment, the t10-shift was induced in 2 rumen fistulated rams and, as 

expected, it was present within the first 2 weeks of feeding rams with a starch-rich diet 

supplemented with oil but, conversely to what was already described, it was transient 

(maximum of 4 days) (Roy et al., 2006; Zened et al., 2013b). Furthermore, there was an 

individual variability in the pattern of shift’s induction, as reported by Rosa et al. (2014) and 

Santos-Silva et al. (2016), with ram 1 being more susceptible to the occurrence of t10-shift 

than ram 2, and this can be related to differences in rumen microbiota between animals 

(Bessa et al., 2015). Moreover, there was no clear relation between pH and t10-shift, even 

though ram 2 showed a higher “t10-/t11-18:1” ratio at 3h after the mourning meal 

accompanied by a reduction of rumen pH comparing with that before the mourning meal. 

Also, conversely to what was reported by Alves et al. (2017), the presence of t10-shift was 

not evidently reflected in blood plasma, since no association between “t10-/t11-18:1” ratio in 

the rumen and “t10-18:1/(t11-18:1 + c9,t11-18:2)” ratio in the plasma was found for both 

rams. 

In experiment 4 and identically to experiment 3, an individual variation on the establishment 

of t10-shift was found, although that was only concluded by the analysis of its reflection in 

meat FA composition. Also, there was a high averaged proportion of trans-18:1 in LM 

(144±10.9 mg/g FA) and subcutaneous fat (213.7±10.9 mg/g FA) and a “t10-/t11-18:1” ratio 

considerably higher than 1 in both tissues from lambs with barley and with alternative energy 

sources to barley (dehydrated citrus pulp, dehydrated beet pulp or soybean hulls) in a basal 

diet supplemented with an oil blend. Moreover, soybean hulls with high NDF level led to a 

higher deposition of c9,t11-18:2 and t11-18:1 in LM and subcutaneous fat, probably due to a 

stimulation of t11 BH pathways, than that obtained with other energy sources, although its 

low starch content could not inhibit the accumulation of t10-18:1 in the tissues. Overall, these 

results are striking showing that, conversely to what was expected (Bessa et al., 2015), a 

high dietary starch level is not indispensable for the establishment of t10-shift. 
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For a better evaluation of meat FA composition, it is important to consider how it can be 

influenced by gene expression of SCD, ACACA and FASN in the muscle. The decreased 

SCD gene expression and SCD activity index in the muscle with soybean hulls compared to 

cereal was possibly due to a lower content of insulinemia promoting nutrients, mainly starch 

(Bessa et al., 2015), in the alternative source. So, the increased c9,t11-18:2 with soybean 

hulls was mostly a consequence of the highest availability of substrate for its production (t11-

18:1) (Daniel et al., 2004). Moreover, the lowest FASN expression with citrus pulp diet might 

be associated with the highest probability of lambs fed with the dietary treatment to develop 

more severe rumen parakeratosis lesions, as previously reported by Loggins et al. (1968), 

leading to a decreased absorption of nutrients and, consequently, a reduced ME provided by 

the diet. 

All together, the results of experiments 3 and 4 resulted in relevant conclusions about the 

induction and development of t10-shift, but still further studies are needed. Once more 

knowledge about the biology behind the t10-shift is acquired; pratical considerations for 

ruminants´ nutrition can be done. In this way, it is important to consider the impact of the 

main dietary energy sources used in experiment 4 on animal productive performance, such 

as the presence of a lower ADG and feed efficiency with citrus pulp treatment comparing with 

cereal. Therefore, the citrus pulp diet was a not so good alternative to cereal attending to 

animal productive performance, although also soybean hulls led to a lower feed efficiency 

related to cereal. Even so, the ADG with citrus pulp treatment was only slightly lower 

(288±17.7 g/d) than that reported by Santos-Silva et al. (2002b) with lighter BW lambs 

(322.6±8.34 g/d). 

Overall, the fact that condensed tannins either stimulated in vitro BH of 18:2n-6 and 18:3 or 

caused a higher variability of in vivo BH of c9-18:1, 18:2n-6 and 18:3n-3 and BH 

completeness demonstrates the high diversity of effects of different tannin sources on 

ruminal BH and evidences how little is known about the influence of tannins on BH. 

Moreover, the presence of t10-shift when lambs are fed with low-starch diets indicates that, 

conversely to what was expected, a high dietary starch level is not indispensable for the 

occurrence of t10-shift. So, it is necessary to acquire a deeper knowledge about the biology 

behind this modification of BH pathways.  
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CHAPTER 7 – Conclusions, implications and future perspectives 
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Conclusions, implications and future perspectives 

 

Modulation of ruminal biohydrogenation in the presence of tannins or t10-shift 

Considering the results of the four experiments presented in the thesis, it can be concluded 

that the experimental models used to study ruminal BH were important for a better 

comprehension of the dynamics of ruminal BH pathways and how they can be influenced by 

dietary tannins and energy sources. In fact, it seems that tannins may induce a bacterial 

stress response with an increase of trans-FA production in the rumen, similarly to the 

response of bacteria in the presence of PUFA from lipid supplementation of diets. Moreover, 

highly fermentable energy sources, and not only starchy feedstuff, induced t10-shifted BH 

pathways probably as an adaptation of rumen ecosystem to acidotic environments.  

However, the incorporation of tannins in a diet or dietary substrate was shown to modulate 

BH in different ways, either stimulating or inhibiting the BH of PUFA. So, it is difficult to 

evaluate the influence of tannins on ruminal BH pathways due to the inconsistency of results 

obtained. The combination of the dose, time of utilization and molecular nature of tannins, as 

well as the basal diet, seemed to be the most important determinants of tannin effects on BH. 

Concerning the molecular nature of tannins, more studies should be done in order to 

evaluate their average MW and MW distribution to allow for a better comprehension of the 

ligation between tannins from different sources and proteins. The application of technologies 

for the structural analysis of polyphenols, such as matrix-assisted laser desorption ionization 

time-of-flight (MALDI-TOF) mass spectrometry, and for the analysis of the stoichiometry of 

ligation, including mainly MALDI-TOF and isothermal titration microcalorimetry (ITC), can 

provide new insights about how the chemical structure of tannins relate to their biological 

effects including the modulation of BH. The use of ITC could also allow for the determination 

of how the conformational structure of tannins and proteins influences the nature of tannins-

proteins binding. Particularly, it would be interesting to test the ligation of tannins to 

lipoproteins of bacterial cell membrane or enzymes that are important for the general 

metabolism of rumen bacteria and might be determinant for ruminal BH. Moreover, the 

analysis of alterations of rumen microbiota with the addition of tannins to a dietary substrate 

or basal diet by “omics” technologies would be stimulating, but that could be even more 

interesting when applied to t10-shift´s induction studies.  

In fact, although some bacteria were reported to have a role in t10-shifted BH pathways, little 

is known about the biology behind the induction of t10-shift and how rumen microbiota is 

involved in this phenomenon. The variability among animals in the establishment of the t10-

shift shown in the present thesis highlights the importance of rumen microbiota in shift´s 

ocurrence. The high-throughput pirosequencing of 16S rRNA genes using Illumina platform 

would be a good option for a better understanding of the phylogenetic identities and 
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abundance of rumen bacteria in the absence and presence of t10-shift. However, the 

sequencing of 16S rRNA genes (microbiomics) only allows for the evaluation of a small 

region of bacterial genome without providing information about functional genes contents of 

bacteria. For a phylogenetic and functional study, the microbiomic technologies should be 

associated with metagenomic sequencing of total bacterial genomic DNA. In fact, 

comparative metagenomic studies could even provide insights into inter-individual 

differences in respect of rumen microbiota. Moreover, a deeper knowledge about which 

genes actively express enzymes that are fundamental for the different steps of ruminal BH 

pathways, such as isomerases and reductases, is needed. For this purpose, not only 

microbiomic and metagenomic technologies should be applied but also metatranscriptomics, 

for the obtention of gene expression profile, and metaproteomics, for the analysis of protein 

products including enzymes, even though these technologies are more recent and 

technically demanding. Aditionally, the analysis of metabolic products (metabolomics) could 

be done as a final proof that metabolic processes have occurred in the rumen.  

 

Exploration of possible nutritional strategies for ruminants 

Further in vivo studies are needed, for the acquisition of a deeper knowledge about how 

ruminal BH would proceed and the repercussions on animal productive performance when 

dietary tannin extracts at distinct doses in forage- or concentrate-based diets are fed to 

ruminants. Only after a higher understanding of the mechanism of action of tannins on BH, 

effective and reproducible nutritional strategies to increase health beneficial FA in ruminants´ 

meat could be designed. Ideally, the dose of tannins for modulation of BH should be as low 

as possible. The usual doses of condensed tannins that do not compromise the productive 

performance of ruminants range from, approximately, 21 to 60 g/kg DM. The effect of tannins 

on meat FA composition should also be evaluated, in order to verify if it reflects the impact of 

these compounds on ruminal BH. 

Additionally, more studies are needed for the evaluation of induction and development of t10-

shift in a higher number of animals than the ones used in the t10-shift´s induction 

experiment, when alternative energy sources to cereals providing distinct levels of ME intake 

and with different NDF fementation rates in the rumen are incorporated in oil-supplemented 

diets. For those studies, the diets could present a higher “forage/concentrate” ratio or a 

distinct composition of forage comparing with the basal diet from the experimental model 

described in Chapter 5. Additionally, a better evaluation of the relation between rumen pH 

and t10-shift with a continuous measurement of pH values could be done. 

The importance of the use of agro-industrial by-products instead of cereals consists in a 

reduction of waste disposal and, generally, animal feeding costs and a diminishment of the 

dependence of ruminant diets on cereal grains that can be consumed by humans.  
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