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1. Abstract

Acoustic Emission (AE) technology applied to condition monitoring is gaining

acceptance as a useful complimentary tool. This paper demonstrates the use of AE

measurements to detect, monitor the growth and locate natural defect initiation and

propagation in a conventional rolling element bearing. To undertake this task a special

purpose test-rig was built to allow for accelerated natural degradation of a bearing

race. It is concluded that crack initiation and its subsequent propagation is detectable

with AE technology. The paper also investigates the source characterisation of AE

signals associated with a defective bearing whilst in operation.

Keywords: Acoustic Emission, condition monitoring, natural degradation and thrust

bearing.

2. Introduction

Acoustic Emission (AE) are transient elastic waves generated by the rapid release of

energy from localized sources within a material [1]; typical frequency content of AE

is between 100 kHz to 1 MHz. A tremendous amount of work has been undertaken

over the last 20-years in developing the application of the Acoustic Emission

technology for bearing health monitoring [2]. The high sensitivity of AE in detecting

the loss of mechanical integrity at early stages has become one of the significant

advantages over the well-established vibration monitoring technique. Jamaludin et al.

[3] presented the challenges faced with using the vibration technology to monitor the

mechanical integrity of slow speed bearings (less than 60rpm) and suggested that the

AE technology could overcome such difficulties. Sources of AE in rotating machinery

include impacting, cyclic fatigue, friction, turbulence, etc. For instance, the interaction

of surface asperities and impingement of the bearing rollers over a defect on an outer

race will result in the generation of acoustic emission. These emissions propagate on

the surface of the material as Rayleigh waves and are measured with an AE sensor.
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Other wave types associated with the propagation of AE include Lamb, Longitudinal

and Shear waves.

To date most published work on the application of the AE to monitoring bearing

mechanical integrity have been conducted on artificially or ‘seeded’ damage which

are generally induced with an electrical discharge system, engraving machine or by

introducing debris into the lubricant [2, 3, 4, 5, 6, 7]. However, Price et al. [8] showed

the applicability of AE to monitor naturally generated scuffing and pitting defects in a

four-ball lubricant test machine. To date the only published work of Yoshioka [9]

could be considered the first that directly addressed identification of the onset of

natural degradation in bearings with AE. It is worth noting that Yoshioka employed a

bearing with only three rolling elements which is not representative of a typical

operational bearing. Moreover, Yoshioka terminated AE tests once AE activity

increased as such the propagation of identified sub-surface defects to surface defects

was not monitored. This work builds further on the work of Yoshioka by monitoring

not only the initiation of cracks, but also its propagation to spalls or surface defects on

a conventional bearing with the complete set of rolling elements. The location of the

AE source was also monitored throughout the test sequence in order to validate that

the AE’s generated throughout the test period can be eventually attributed to the

surface defect noted at the end of the test

3. Test-rig design and layout

A specially designed test rig that encouraged the natural damage condition of a test

bearing was employed. To accelerate natural crack initiation a combination of a thrust

ball bearing and a thrust roller bearing was employed. One race of thrust ball bearing

(SKF 51210) was replaced with a flat race taken from thrust roller bearing (SKF

81210 TN) of the same size, as shown in figure 1. As a consequence, this arrangement

caused higher contact pressure on a flat track relative to the grooved track due to the

reduced contact area between the ball elements and the flat race.



3

Figure 1 Test bearing arrangement

For this study, bearing run to failure tests were performed under natural damage

conditions. A specifically designed test-rig, as shown in figure 2, was employed for

this investigation. It consisted of a hydraulic loading device, a geared electrical motor

(MOTOVARIO-Type HA52 B3-B6-B7 j20, 46-Lubricated: AGIP), a coupling and a

supporting structure. The test bearing was placed between the fixed thrust loading

shaft and the rotating disk which housed the grooved race. The flat race was fitted

onto the loading shaft in a specifically designed housing. This housing was

constructed to allow for placement of AE sensors and thermocouples directly onto the

race. The thrust shaft was driven by a hydraulic cylinder (Hi-Force HYDRAULICS-

MODEL No: HP110-HAND PUMP-SINGLE SPEED-WORKING PRESSURE: 700

BAR) which moved forward to load the bearing and backwards for periodic

inspections of the test bearing face. The rotating disk was driven by a shaft attached to

a geared motor with an output speed of 72rpm. A thrust bearing (SKF 81214 TN) was

placed between the coupling and the test bearing and a flexible coupling was

employed between the shaft and the geared motor.
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Figure 2 Test-rig layout

4. Instrumentations

A schematic of the data acquisition process is detailed in figure 3. The AE acquisition

system employed commercially available piezoelectric sensors (Physical Acoustic

Corporation type “PICO”) with an operating range of 200-750 kHz at temperatures

ranging from -65 to 177
o
C. Four AE sensors, together with two thermocouples

(RoHS-Type: J x 1M 455-4371) were attached to the back of the flat raceway, see

figure 1. The acoustic sensors were connected to a data acquisition system through a

preamplifier (40 dB gain), see figures 3.

Figure 3 Schematic of the data acquisition systems
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The acquisition system was continuously set to acquire AE absolute energy (Joules)

over a time constant of 10 ms at a sampling rate of 100 Hz. The absolute energy is a

measure of the true energy and is derived from the integral of the squared voltage

signal divided by the reference resistance (10 k-ohms) over the duration of the AE

signal. In addition to continuous recording of AE absolute energy (Atto-Joules or

10
-18

Joules, AE waveforms were periodically acquired at a sampling rate of 2MHz.

In all cases, AE measurements were taken simultaneously from all four AE sensors.

Under normal conditions of load, rotational speed and good alignment, surface

damage begins with small cracks, located between the surface of the flat track and the

rolling elements, which gradually propagate to the surface generating detectable AE

signals. The procedure employed to determine the test duration to the onset of surface

fatigue has been previously described by Elforjani et al. [10] and involved the

Hertizan theory for determining surface stresses and deformations [11], Thomas and

Hoersh theory for sub-surface stress [11], and, the Lundberg and Palmgren theory for

fatigue evaluation [12].

5. Experimental Results Observations and Discussions

5.1 AE source location

The capability of AE to determine source locations of signals emanating in real time

from materials under load is one of the significant advantages AE offers over other

non-destructive test (NDT) technologies. In application the AE signals travelling

through the medium are attenuated and arrive at different sensors with a time delay.

This delay can be attributed to the distance between the source (defect) and AE

sensors, and, with knowledge of the signal velocity the location of the AE source can

be identified. For this particular investigation efforts were made to identify the defect

location (AE source location) in real-time. This was accomplished by identifying the

wave velocity on the ring experimentally. At a threshold of 52dB and with known

distances between the AE sensors, the velocity of the AE waveform under such

conditions was experimentally determined at 4,000 m/sec. Interestingly, the dominant

frequency content of AE’s recorded was approximately 300kHz and the wave velocity

of 4,000 m/sec corresponds to the symmetric zeroth lamb wave mode (So) for steel at
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1.8mmMHz (0.3MHz x 6mm thk) The propagation velocity (4,000 m/sec) was used

for all source location investigations and prior to the onset of testing several Hsu-

Nielsen sources were made at various positions on the surface to establish the

accuracy at this velocity and specific threshold level. Results were within 4% of the

exact geometric location of the Hsu-Nielsen sources. Figure 4 shows the source

location layout used which essentially ‘unwrapped’ the bearing race for linear

location.

The location plots show cumulative energy over the test simulation. It is worth

mentioning that only AE events above a threshold of 52dB contribute to the source

location. Whenever the threshold is exceeded, the location of the source is computed

and identified. The AE energy is assigned to the geometric position (source); this is a

cumulative process and as such a fixed source will have the largest contributory

energy in a cumulative plot.

Figure 4 Source location layout for linear detection

5.2 Bearing Tests

For this particular paper three experimental cases are presented that reflect the general

observations associated with over a dozen experimental tests at loads ranging from

20, 35 and 50kN. Case I represents observations noted at a load condition of 50kN
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whilst Case II and Case III present results for a test load of 35kN and 20kN

respectively.

5.2.1 Case I

Observations of AE energy monitored continuously over 16-hrs (hours) of bearing

operation are presented in figure 5. An axial force of 50kN was applied on the test

bearing. During the first hour of the test, an increase in AE activity levels and

temperature was noted. This was attributed to the ‘run-in’ phase, as after this period

(1-hr) all measured AE parameters and temperature remained constant for another 9-

hrs, see figure 4. It was observed that at approximately 10-hrs into the test AE started

to increase steadily until the test was terminated (16-hrs). It is worth mentioning that

the bearing was lubricated during the testing with Castrol, Moly Grease (650-EL).

Following run-in (0- to 1-hr) the bearing temperature stabilized at 35
o
C and after 16-

hrs operation a maximum temperature of 40
o
C was recorded, see figure 5. AE

waveforms, recorded during the test, clearly showed AE transient events after 10-

hours, and by the termination of the test, AE waveforms showed a periodicity of AE

transient bursts at a frequency equivalent to 9Hz, see figure 6. At the end of the test

(16-hrs) visible surface damage was observed with a circumferential length of 20mm

see figure 7; a damage had occurred in the region close to ch-1 AE sensor. The

relevance of this will be evident later.

Figure 5 Test conditions run until visually observable surface damage
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Figure 6 Typical AE waveforms during test case-I

Figure 7 Crack zone on flat ring

Thus far the observations have shown AE can monitor the degradation of an

accelerated test; the next phase of analysis involved source identification of AE

activity throughout the test duration. Figures 8 to 10 highlight the trends in source

location throughout the test period; the region where the surface damage eventually

occurred has been highlighted. Source location estimations employed in the bearing
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test provided another simple and rapid means to correlate AE events measured with a

specific fault event on the test bearing.

These figures show that at the start of the test (run-in), figure 8, AE activity was

evident within the damaged region with a maximum AE energy value of 249 x 10
5

atto-Joules (10
-18

). At about 10-hrs into operation, the concentration of the AE sources

was clearly located at the highlighted region, see figure 9. Lastly at 16-hrs operation

the location of the AE sources was limited to one region where the actual surface

damage occurred; estimation of the source location covered a circumferential defect

width of approximately 20mm, see figure 10. A maximum energy value of 350 x 10
5

atto-Joules (10
-18

) was noted at 16-hrs operation (see figure 10).

Figure 8 Source location estimates of AE events at 1-hr operation
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Figure 9 Source location estimates of AE events at 10-hrs operation

Figure 10 Source location estimates of AE events at 16-hrs operation

5.2.2 Case II

The applied load on this test bearing was 35kN. Observations of continuous

monitoring of the AE levels for 20-hours of bearing operation are presented in figure

11. It was noted that relatively high levels of AE activity was observed during the first

hour of operation; this was attributed to run-in as after this period (1-hr) all measured

AE parameters and temperature stabilised. After 14-hrs of operation significant high

levels of AE activity was noted, particularly the activity associated with AE energy.
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At the end of the test, the bearing temperature recorded a maximum value of 37
o
C,

see figure 11. Also noted on the AE waveform at 14-hrs operation was the high

transient nature of the waveform. It is also particularly interesting to note that the

waveform observed after 20-hrs of operations showed a periodicity of AE transient

bursts at 9Hz; this periodicity is associated with the defect frequency (9Hz) of the

bearing and is a clear indication of a damaged bearing, see figure 12. On termination

of the test (20-hrs) a visual inspection revealed surface damage at two locations on the

race, see figure 13.

Figure 11 Test conditions run until visually observable surface damage
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Figure 12 Typical AE waveforms associated with case-II

Figure 13 Crack zones on flat ring

As in the previous case the source location over the duration of the test is presented in

figures 14 to 16. At the start of the test, geometric concentrations of AE activity were

distributed across the circumferential length of the bearing and this is attributed to the

run-in condition, see figure 14. At 14-hrs relatively early signs of concentrated AE

source activity of the highlighted zones began to appear, see figure 15; geometric
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concentrations of AE activity in the eventual defect zones became evident with values

of 100 x 10
3

atto-Joules (zone1) and 20 x 10
3

atto-Joules (zone 2). Figure 16 shows

the growing concentration of AE energy from the defect locations; after 20 hrs

operation the concentration of the AE source was clearly located at the two

highlighted regions and the maximum energy values of 40 x 10
5

atto-Joules (zone1)

and 42 x 10
5

atto-Joules (zone 2) were noted. These locations corresponded to the

actual defects visually observed at the end of the test, see figure 13.

Figure 14 Source location estimates of AE events at 1-hr operation

Figure 15 Source location estimates of AE events at 14-hrs operation



14

Figure 16 Source location estimates of AE events at 20-hrs operation

5.2.3 Case III

This case presents different trends to that noted in the earlier cases. During the start of

the test, the relatively high levels of AE and temperature noted in the previous cases

was not observed; observations of continuous monitoring of the AE levels, in addition

to bearing temperature, for 50-hrs of bearing operation did not show any considerable

rise at (0- to 1-hr) of testing. This was attributed to a lower axial load of 20kN applied

on this test bearing, see figure 17. A significant increase in AE levels was noted from

45-hrs of operation until the test was terminated, as shown in figure 17. On the

termination of the test, bearing temperature recorded its maximum value of 39
o
C. AE

waveforms recorded after 20-, 45- and 50-hours of testing are presented in figure 18.

It clearly shows AE transient events, observed after 45-hours which eventually

developed into periodic transient events as the test progressed; the eventual

periodicity was 9Hz which corresponded to the defect frequency of the bearing.

Visual inspection after 50-hrs operation indicated surface damage had occurred in the

region, which was located approximately 20mm from ch-2 AE sensor, see figure 19.
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Figure 17 Test conditions run until visually observable surface damage

Figure 18 AE waveform
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Figure 19 Crack zone on flat ring

In contrast to the previous cases, a geometric concentration of the AE source was not

noted until approximately 40hrs; this is attributed to the low load (20kN) applied on

this test; see figure 20. Furthermore, these cumulative plots compute and identify only

AE events above the defined threshold (52dB). It is particularly interesting to note

that the onset of crack development could have been identified as early as 45-hrs into

the operation of the test bearing, as shown in figure 21. From 45hrs of operation a

specific geometric AE source was noted which approximated to a surface damage of

20mm in circumferential length in the vicinity of ch-2, see figures 21 and 22.

Figure 20 Source location estimates of AE events at 1-hr operation
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Figure 21 Source location estimates of AE events at 45-hrs operation

Figure 22 Source location estimates of AE events at 50-hrs operation

6. Conclusion

Under natural damage conditions, bearing run-to-failure tests were successfully

performed. The study has shown that the AE energy is a reliable, robust and sensitive

parameter for detection of incipient cracks and surface spalls in a slow speed bearing

whilst in operation. It also successfully demonstrated the ability to determine the
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source of AE during operation. At the rotational speed on which these tests were

employed, this is the first known attempt at correlating AE and natural defect

generation and location.
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