
 
Abstract – The importance of railway transportation has 

been increasing in the world. Considering the current and 
future estimates of high cargo and passenger transportation 
volume in railways, prevention or reduction of delays due to 
any failure is becoming ever more crucial. Railway turnout 
systems are one of the most critical pieces of equipment in 
railway infrastructure. When incipient failures occur, they 
mostly progress slowly from the fault free to the failure state. 
Although studies focusing on the identification of possible 
failures in railway turnout systems exist in the literature, 
neither the detection nor forecasting of failure progression 
has been reported. This paper presents a simple state-based 
prognostic method that aims to detect and forecast failure 
progression in electro-mechanical systems. The method is 
compared with Hidden Markov Model based methods on 
real data collected from a railway turnout system. Obtaining 
statistically sufficient failure progression samples is difficult 
considering that the natural progression of failures in 
electro-mechanical systems may take years. In addition, 
validating the classification model is difficult when the 
degradation is not observable. Data collection and model 
validation strategies for failure progression are also 
presented.   
 

Index Terms—Fault Diagnosis, Diagnostic expert system, 
Failure Analysis, Rail transportation maintenance, 
Forecasting, Prognostics, Remaining useful life estimation, 
Railway Turnouts, Time Series 

NOTATION 

φ   : Constant in exponential degradation model 

β  : Random variable following s-normal distribution 

βµ  : Mean of β  

2
βσ  : Variance of β  

λ  : HMM Model 
π  : Initial probabilities of HMM 

l
jiA ,  : Transition probability from state i  to j in level l  

B  : Observation probability distributions 

CH : Calinski-Harabasz cluster validity index 

cn  : Number of samples clustered in cluster c 

cz  : Center of cluster c 

z   : Center of all clusters 

ix  : Time series data sample i 

k   : Number of clusters  
I. INTRODUCTION 

It is now an obligation to improve reliability, 
availability, and safety of railway systems to 
accommodate increasing passenger and cargo 
transportation with higher train speeds, greater axle loads, 
and increased service frequency. According to a report of 
the European Commission, the passenger and cargo 
transportation volume in European railways are expected 
to double and triple respectively in 2020 [1]-[5]. It is 
obvious that this demand increase cannot be satisfied with 
only building new railways; the efficiency of existing and 
new railways should be increased. This could be achieved 
with minimum cost by increasing the availability of 
railways, which is directly related with repair and 
maintenance frequency.  

Britain’s railway infrastructure operator, Network Rail, 
was responsible for approximately 14 million minutes of 
train delay in 2002-2003, costing approximately 560 
million GBP [5]. Railway turnout systems are the main 
component of railway infrastructure that affects the 
availability of the system [6]. For example in England, 3.4 
million GBP is spent every year for the maintenance of 
turnout systems for 1000 km of railways [6]. Condition-
Based Maintenance (CBM), in which the health of the 
machine is observed in real time and maintenance 
decisions are based on the current and forecasted machine 
health, increases system availability, reliability and safety 
while reducing operating and support costs [7]-[8]. Thus, 
the application of CBM on railway turnout systems has 
critical importance for increasing the efficiency of 
railways.  

Diagnostics and prognostics are the two main 
components of CBM [7]. Diagnostics, the process of 
identifying the failure, is basically a classification 
problem; prognostics, the prediction of the failure time of 
the component with an incipient failure, is a forecasting 
problem. Various diagnostic methods have been presented 
in the literature for many diverse industrial systems [9] -
[14]. Diagnostic methods on various components of the 
railway and train have also been reported [15]-[20].  

There are three main approaches in the literature for 
diagnostics on turnout systems: feature-, model- and 
empirically-based methods. In the first approach, special 
features that help to identify the failures are defined. For 
example in [21], three features (i.e., irregularity, location 
of maximum point, and symmetry) are defined in the time 
series data. These features are obtained by analyzing the 
absolute difference between the reference and actual 
signals. The reference signal is collected from a fault-free 
system. The absolute difference is in the form of a time 
series-like reference. Irregularity is defined as an 
unexpected bump in the absolute difference. The location 
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of the maximum point is compared with the maximum 
point location in the reference data. The symmetry of the 
absolute difference of the left and right sides of the 
maximum point location is used as the third feature.  

In model-based approaches, a model is defined to 
characterize the system. Deviation from the model is 
defined as failure and identified as the difference between 
the model outcome and actual data. Various methods may 
be applied. In [22], the unobserved component model, in 
which an observable variable is written as a function of 
several unobservable components, is used. In [23], 
parameters like velocity and air volume are expressed as 
polynomial functions of pressure in a pneumatic turnout 
system. Thus, the difference between the actual velocity 
and/or air volume and their expected values for a given 
pressure identifies the failure.  

In empirically-based approaches, a fault-free sample is 
considered as a reference signal, and failures are 
identified based on the resemblance of a given signal to 
the reference signal. The Kalman filter is used in [24] for 
noise removal and failure identification based on a 
reference signal. Ref. [25] presents an expert system for 
failure identification using resemblance to the reference 
signal. The resemblance is quantified using simple 
Euclidian distance and dynamic time warping approaches. 
A good review for failure detection methods for railway 
turnouts is given in [26]. 

Failure diagnosis is an important task; however, it only 
aims to stop (and schedule a maintenance/repair) the 
system when a failure is identified or let the system 
continue to work otherwise. Incipient failures progress 
slowly [27]. This progression starts from the fault free 
state and ends at the failure state [28]. The system 
functions properly and does whatever is expected (albeit 
maybe with decreasing efficiency) until reaching the 
failure state. It is obvious that the detection of failure 
progression is more valuable than its detection after the 
failure reaches to a point. In addition, it is a prerequisite 
for prognostics [28], [29].  

Studies of prognostics for different systems have 
appeared in the literature in recent years. Prognostic 
methods can be separated into three categories: 
evolutionary, degradation prediction, and state-based 
prognostics [8]. Evolutionary prognostics involves 
trending features until a predefined threshold, whereas the 
degradation calculated with features is predicted with 
statistical and computational methods in the degradation 
prediction based prognostics [8]. In the last category, the 
states representing the failure progression are detected and 
forecasted. 

Hidden Markov Models (HMMs) have been used as 
state-based prognostics in [28], [30]-[34] with different 
application areas such as drilling processes, pump 
systems, and AC motors. The life of a drill-bit is 
represented by health states, each of which is modeled as 
a single HMM in [31]-[32]. Health state of a drill-bit is 
identified with the HMM with highest likelihood value 
given the observed time series signal. In standard HMM, 
transition from one state to another is independent of time 
spent in the current state. This assumption is not true in 
failure degradation applications and it is relaxed in [30] 

with semi-Markov concept.  
In [28], health states are represented as the top state of 

Hierarchical HMM, rather than a distinct HMM as in [28], 
[31], [32]. Monte-Carlo simulation with health state 
transition probabilities is used in [28] to calculate the 
remaining useful life (RUL). In [33], frequency and 
severity of noncatastrophic faults are used to detect RUL 
of an electric drive. Four methods have been used for fault 
detection and HMM based framework is presented for 
prognostics. Second order HMM, in which states depend 
on the two previous states, is used for prediction of health 
states in [34]. In [35], concentration of lubrication 
samples is used to identify the abnormality in diesel 
engines. Then, a belief network created with expert 
knowledge is used for prognostics. 

This paper presents a simple state-based prognostic 
(SSBP) method that aims to detect and forecast failure 
progression in electro-mechanical systems. The method is 
compared with HMM-based methods using real data 
collected from a railway turnout system. Failures in 
electro-mechanical systems mostly occur slowly, and it 
may take months/years for a failure to occur. Thus, 
obtaining statistically sufficient samples from the fault-
free state to the failure state may require a very long time. 
In addition, the validation of classification methods 
requires knowing the real failure progression states. 
However, observing the real failure progression states is 
very difficult, if not impossible, in most systems [28]. 
This paper also presents a solution to these problems. The 
main contributions of this paper can be summarized as 
follows: 
1. Presenting a simple state-based prognostic method and 

its comparison with HMM-based prognostics;  
2. Application of presented (SSBP) and HHM-based 

prognostics methods in a railway turnout system; 
3. Presenting a data collection strategy for slowly 

developing failures to model the real failure progression; 
4. Proposing a strategy to validate the state estimation 

method without knowing the real failure progression 
states.  
The organization of the paper is as follows: section II 

gives the details of a turnout system, section III presents 
the modeling structure, section IV gives experiments and 
results with real data collected from a turnout system, and 
section V concludes the paper.  

 
 

Fig. 1. Railway tracks to be moved by a turnout system 



 

II.  RAILWAY TURNOUT SYSTEM

Railway turnout systems allow trains to change their 
tracks by moving the rails before the train passes
in Fig 1. The turnout system, which is a form of single 
throw mechanical equipment, is run by a motor as shown 
in Fig 2.  There exist different types of railway turnouts 
based on motor working principle, such as electro
mechanic, hydraulic, and pneumatic. The m
the blades/switches in two directions, called normal and 
reverse. This movement takes several seconds. Once the 
movement is completed, the switches are locked in their 
position. It is claimed that the turnout systems are the 
of the most important component of the railway 
infrastructure, and there exist examples of accidents 
caused by turnout failure [6]. This paper focuses on 
electro-mechanic turnout systems, which consist of 
motor, reduction gear, several bearings, drive
rods, switches etc.  
 

Fig. 2.  A railway turnout system 

III.  MODELING STRUCTURE 

This section includes two sub-section
progression modeling and a simple state-based prognostic 
method.  

A. Failure Progression Modeling  

Electro-mechanical failures mostly occur slowly
following a degradation path [36]. It is easy to understand 
the difficulty of obtaining statistically sufficient
progression samples, considering that a failure may 
progress for several months to years in real systems
There are two ways to overcome this problem: 1) using 
prototypes for data collection or 2) creating the failure 
progression unnaturally.  

The prototypes are created with vulnerable materials
and operating conditions are set so that the failure 
progresses faster than normal [28], [31]-[32
thin drill-bits or preventing the proper functioning of 
cooling systems are some examples used in the literature 
[28]. Although this approach may be applicable for simple 
components like a drill-bit, it is difficult to obtain an 
acceptable prototype to represent something complex like 
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a turnout system. In such a complex system, the failure 
progression should be created unnaturally. 

The exponential degradation model 
prior information about degradation 
used in this paper and formulated 
degradation paths for samples as shown in Fig. 
obtained using this formula. Then, 
defined as the point where the degradation reaches a 
threshold, providing various lifetimes for multiple turnout 
systems. The degradation level is divided into several 
groups as illustrated with dashed horizontal lines
figure. Each group is defined as a state in the failure 
progression. The time spent in a state 
length of the x-axis (time) of the degradation 
when the y-axis falls in that state.  
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Fig. 3.  Failure degradation and discrete health states
After obtaining the life and the time 

for all samples, the data can be collected by creating the 
failure progression states unnaturally. This could be the 
size of a crack, how loose a screw has become
of wear and tear, or dryness level in the slide chair 
turnout system. When the failure progression
unnaturally, the data that can be used as representative of 
that state in different turnout systems

B. Simple State-Based Prognostics Method

The presented method (SSBP) includes three steps
illustrated in Fig. 4: clustering, cluster 
expected RUL calculation. For clustering, data from 
different health states of multiple systems are clustered 
using any clustering method. k-means 
this paper due to its simplicity and effectiveness. 
However, SSBP is independent of the 

Fig. 4. Prognostics s
In clustering, the best number of clusters for the given 

dataset should be identified. In k-
number of clusters (k) should be given
classification problems parameters can be optimized using 

Training 
Samples 

Clustering 

Transition 
Probability 
Calculation 

Trained 
Model 

Expected RUL 
Calculation 
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classification accuracy, clustering problems require 
different evaluation parameters because the real number 
of clusters and samples that belong to real clusters are not 
known. Several cluster validity indexes have been 
proposed in the literature [37],[38]. Silhouette, Davies-
Bouldin, Calinski-Harabasz, Dunn, C-index, Krzanowski-
Lai, and several other indexes are implemented, and 
Calinski-Harabasz (CH) is chosen as the most robust one 
for the dataset used in this paper. The formulation of CH 
indexes is given in (2).  

2 2
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(2) 
The cluster validity index gives the optimal number of 

clusters and health states in our problem. In a failure 
progression problem, it is very difficult, if not impossible, 
to observe the health states the system goes through and to 
know their total number. Thus, clustering and validity 
indexes are used to identify the number of health states.  

After the current health state of a given system is 
identified using clustering, the remaining useful life is 
forecasted as illustrated in Fig. 5. The expected RUL is 
calculated using the transition probabilities between 
health states as shown (3). The transition probability is the 
probability of the current health state to change. The 
results of the k-means clustering are used to identify these 
probabilities. k number of clusters and the number of 
transitions from one cluster to another are found with all 
training samples. For example, assume three turnout 
systems with health states numbered sequentially from 1 
to 4 (from the brand new to the failure state) as shown in 
Table 1. Each row shows the progression in health states 
for a turnout system. The three turnout systems fail after 
13, 10, and 9 time units. A total of twelve transitions from 
state 1 (transition to state 2 after 4, 6, and 2 time steps, 
state 1 otherwise) have happened in three turnouts. 
Because three state transitions out of twelve from state 1 
have happened to state 2, the transition probability from 
state 1 to state 2 is initialized as 3/12. Similarly, the state 
transition probability from state 1 to state 1 (state 3) is 
initialized as 9/12 (0/12). Other transition initialization 
values are calculated similarly.  

The current health state of the system is represented by
 

ch in (3) and is obtained using the clustering method. 

Note that the ∞ in the formula is represented as the RUL 
upper limit in the SSBP. As the upper limit increases, the 
approximation of the RUL improves. The probability of 
the RUL of each value between 1 and the RUL upper 
limit is calculated one by one. For a given RUL, there 
exist many different combinations of possible health 
states. For example, if the RUL is given as 5 with 3 health 
states, the combinations are as follows: 3 1 1 (i.e., 3 time 
unit in state 1, and 1 time unit in state 2 and state 3), 2 2 1, 
2 1 2, 1 3 1, 1 2 2, and 1 1 3. The number of combinations 
increases exponentially with the number of health states. 
To handle the computations, transitions are only allowed 
from a health state to itself or to a consecutive state.  
Thus, a state cannot jump to second, third, and so on, 
consecutive health states directly. The probability of 
staying in a health state n for nst  times means that the 

health state transitions to itself 1−nst times and 

transitions to the consecutive health state one time. The 
calculation is given in (6). 
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 The Monte Carlo simulation with HMM used in [28] 
does not make the assumption of transition of a state only 
to itself or the consecutive state. However, SSBP removes 
some of the complications of HMM. The results of SSBP 
are compared with those of HMM-based prognostics in 
section IV. The following subsection discusses the details 
of Hierarchical Hidden Markov Models (HHMM).  

 
Fig. 5. Flow chart of RUL calculation 
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C. Hierarchical Hidden Markov Model 
The Hierarchical HMM (HHMM) is a version of the 

Hidden Markov Model (HMM) designed to model 
hierarchical structures for sequential data. The simplest 
HHMM includes two hidden layers; the state in the top 
hidden layer is considered to be a self-contained 
probabilistic model. In other words, in the simplest 
HHMM, each state in the top layer  is itself an HMM. The 
observed state is affected by both nodes in the top and low 
hidden layer in any given time frame. The states in the top 
hidden layer represent the health states of the turnout 
system, whereas states in the low hidden layer represent 
the state of the movement of the rails. In other words, the 
low level states show the location of the rail during the 
back and forth movement of the rail. Readers are referred 
to [8] and [28] for the details of HHMM.  

Initialization of HHMM  
An HHMM model is represented as λ  ( ( ), ,A Bλ π= ) 

and includes parameters of initial probabilities (π ), 
transition probabilities (A ), and observation probability 
distributions (B ). The following paragraphs discuss the 
initialization of parameters in an HHMM. 

 Initial probabilities (π ) exist for two hidden variables: 
top and sub-hidden states. Top hidden states represent the 
health state of the turnout system. The initial probability 
of a top state is the probability of a turnout system to be in 
a given health state for the first usage or after 
maintenance/repair. This is always 1 for a brand new state 
(and also after maintenance assuming perfect 
maintenance) and 0 for other states. The data collected 
during the movement of the rails with force generated by 
the turnout system is in the form of a time series and 
consists of several states (i.e., sub-states). The initial 
probability of a sub-state is the probability of sub-states in 
the beginning of the movement. In our experiments, the 
initial probabilities are assumed to be 1 for the first top 
and sub-states and 0 for the other states. That is, the 
perfect maintenance assumption is made, and all turnout 
movements are assumed to start from the same sub-state.  

 
Table 1. Turnout health states progression examples 

The top state transition probabilities are initialized 
using the transition probabilities obtained using k-means 
clustering as discussed above. The other transition 
probability parameter is the probability of the current sub-
state to change. To initialize this parameter, the time 
series data collected during the rail movement are divided 
into equal number of successive groups: s that also is the 

number of sub-states. Then 
2
, jiA  is initialized as follows: 

sA ii /12
1, =+ , sA ii /112

, −= , and 02
, =jiA  ji,∀   

ji ≠  and 1+≠ ij .  

The last parameter to be initialized is the observation 
probability distribution parameter,  ,i jB , which represents 

the distribution parameters of the observed parameter 
under health state i  and sub-state j . To initialize  ,i jB , 

the data points that are collected from a turnout system 
with each health state and sub-state are categorized. The 
data from all of the h s×  categories are obtained, where 
h  and s  are the number of health and sub-states, 
respectively. Then, the distribution parameters (i.e., mean 
and standard deviation) of the data in each category are 
calculated and used as initialization values for ,i jB .   

IV.  EXPERIMENT &  RESULTS 

The presented method (SSBP) is applied to data 
collected from a turnout system of the Turkish State 
Railways located in Babaeski, Tekirdag. The following 
subsections discuss the data collection, failure 
progression, and results of the SSBP.  

A. Data Collection 

The system used for data collection is an electro-
mechanical type turnout with two drive rods, one for each 
rail. Nine sensors were installed in the turnout system: 
two force sensors for each drive rod, one current, two 
voltage (separate sensors for forward and backward 
movement), two proximity sensors for each rail and two 
linear rulers for each drive rod. The most commonly used 
sensors in the literature are current and force sensors [24]. 
Force sensors are electrical sensing devices that are used 
to measure tension and compression forces. Tension cells 
are used for measuring a straight-line force "pulling apart" 
along a single axis; the force is typically denoted as 
positive.  Compression tension cells are used for 
measurement of a straight-line force "pushing together" 
along a single axis; the force is typically annotated 
as negative. Current sensors measure DC current levels. 
They receive current inputs and provide outputs as analog 
voltage signals, analog current levels, switches, or audible 
signals. Voltage sensors are used to measure voltage in 
electric circuits. Proximity sensors measure the distance 
between the stock rail and switch rail of railway turnout 
systems. A linear position measuring sensor is installed on 
stretchers of the turnout system and measures the linear 
position of the switch rails. Time series data are acquired 
from both normal to reverse and reverse to normal 
movements of a turnout system. Figs. 6 shows the sensors 
installed in turnout system.  

B. Failure Progression Mechanism  

There are multiple failure modes in a turnout system. 
The dry slide chair failure mode is the most frequently 
occurring failure in turnout systems [22]. Slide chairs are 
the metal platforms installed on twelve wooden traverses, 
on which the rail is located, as illustrated in Fig. 7. Slide 
chairs are oiled periodically and in a fault-free system 
these slide chairs are oily.  

Switch rails move back and forth on the slide chairs on 
the twelve traverses.  They move around 17.5 cm on the 
slide chair located on the traverse closest to the turnout 
system. As the traverse gets far away from the turnout 
system, the movement on that traverse gets smaller. When 
dry/contaminated slide chair failure modes occur, the 
friction in the slide chair increases, leading to increased 
force in the force sensors and changes in voltage and 
current signals in the motor. In addition, the time to 
complete the movement may increase.  



  

The failure progression from the fault-free health state 
to the failure health state is modeled using the exponential 
degradation mentioned. The natural progression of the 
failure mode occurs over a long period of time due to 
weather and environmental effects. Thus, it is not practical 
to wait and observe the natural progression of the failure 
mode. In addition, if the failure progresses naturally, the 
observation of health states becomes very difficult, if not 
impossible. In this work, the progression of the dry slide 
chair failure mode is modeled. 

 
Fig. 6. Sensors used for data collection installed in turnout systems 

 
Fig. 7. Modeling the Dry/Contaminated Slide Chair Failure Mode 
The failure state is defined as the state when all twelve 

slide chairs are dry or contaminated. The slide chairs have 
not been lubricated for a long time to obtain the failure 
state. The data from the failure state are collected. Then, 
the slide chairs in the three farthest traverses from the 
turnout system are oiled, and data are collected. Then, the 
next farthest traverse is oiled, and data are collected. The 
oiling and collection of data is repeated one by one from 
the farthest to the closest slide chairs of the turnout system 
until all slide chairs are oiled.  All of the slide chairs are 
oily in the final state, which represents the fault-free state. 
This is achieved in ten steps, each step representing a 
health state in the failure progression. As a result, many 
samples from ten health states are obtained. At this point, 
the life of a turnout system and the time spent in each 
health state in the failure progression are obtained using 
exponential degradation modeling with the following 
parameters: 1=φ , 8.0=βµ

, 
1.0=βσ .  

An example of current and force signals among ten 
turnout systems that progress from fault-free to failure 

states with various lives is shown in Fig 8. As seen from 
this figure, 13 samples are collected from this turnout 
system from fault-free to failure state. In other words, its 
life is 13 units. One can observe the change in the current 
and force signals as the failure progresses.   

This paper uses only the dry slide chair failure mode for 
the case study and all other conditions, such as operating 
conditions and wear in the components of the turnout 
system, are assumed to remain constant. This is a 
reasonable assumption because all the data are collected in 
one day, and the dry slide chair failure mode is obtained 
unnaturally as mentioned above.   

 

 
Fig. 8. a) Current b) Force signals with failure 

progression from ‘fault free’ state to ‘close to failure’state 

C. Results  

The samples are divided into training and testing 
groups, with 80% of the samples in the training and the 
rest in the testing group. The training data are clustered 
using the number of clusters from two to ten, and the CH 
cluster validity index is calculated and displayed in Fig. 9. 
The maximum of the evaluation function (which indicates 
the best number of clusters found) occurs at eight clusters. 
Thus, failure progression should be modeled with eight 
health states. Note that when the failure progression was 
modeled, ten unnatural health states were used. When 
analyzing the health state clustering results, it is observed 
that health states 8, 9, and 10 are combined into one 
health state. This is logical considering the variance 
increase in the states close to failure. However, the best 
health state number found will be checked with 
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forecasting effectiveness to validate the result obtained 
with the cluster validity index.  

Two models (i.e., the SSBP and the HHMM model) are 
analyzed: samples from the training and testing data are 
selected, the health states are identified and health state 
forecasting is performed for both methods. Transition 
probabilities from both models are extracted, and the 
expected remaining useful life is calculated as discussed 
in section III.  

 
 

Fig. 9. Evaluation of the number of clusters 

The effectiveness of the estimated RUL (RULe) is 
calculated by comparing the RULe with the real RUL 
(RULr). The real and estimated RULs calculated using 
HHMM-based prognostics and the SSBP are displayed for 
ten turnout systems in Fig. 10. Each graph represents one 
of the turnout systems. The x-axis represents the age of 
the system, whereas the y-axis represents the remaining 
useful life of the system. The dashed line represents the 
real RUL of the system given the current age. Note that 
the sum of the x-axis and y-axis for the real RUL gives the 
life of the system. The solid line represents the estimated 
RUL.  

 
Fig. 10. RULr and RULe for ten turnout systems with HHMM and SSBP 

The root mean square error (RMSE) and r-square 
values between real RUL (RULr) and RULe are used as 
measures to evaluate the effectiveness of the prognostic 
method in [26] and [30]. Figs. 11 displays the RMSE (Fig 
11.a) and r-square (Fig 11.b) between the RULr and RULe 
obtained with HHMM and SSBP. The x-axis represents 
the turnout systems, whereas the y-axis gives the RMSE 
and r-square values. It was expected that HHMMs would 
outperform the presented simple prognostics method, but 
the opposite was true. The RMSE values are smaller and 
the r-square values are greater for the presented method. 
One can conclude that the optimization within HHMM 
during training makes the parameters worse from a 
prognostics perspective, considering its design and 
technical requirements.  

 

 
(a) 

 
(b) 

 
Fig. 11.  Comparison of SSBP and HHMM using a) RMSE b) R-

square 
The presented method is very simple and outperforms 

HHMM-based prognostics. As a disadvantage, the 
presented method has restrictions on state transitions that 
allow transition of a state only to itself and a consecutive 
state.  

 
Fig 12. r-square values for different numbers of health states 
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Fig. 12 displays the r-square values of RULr and RULe 

for different health states. The r-square values are 
negative for the second and third health states and starts 
increasing thereafter. The highest value obtained is with 
the eighth and ninth health states, and the r-square value 
starts decreasing beyond the tenth health state. Note that 
eight health states were recommended by the CH cluster 
validity index. Thus, the prognostics results support the 
result of the CH cluster validity index.  

V. CONCLUSION 

Failures often go through several states before making 
the system unusable. It is critical to identify and forecast 
these health states as the failure progresses for effective 
usage of the system. Railway turnouts are one of the most 
important components of railway infrastructure. Although 
several studies on failure identification in turnout systems 
are present in the literature, health state estimation and 
forecasting have not been reported. One of the most 
important difficulties in failure progression analysis is the 
inability to observe the natural progression of failures due 
to time constraint. Failures occur slowly and obtaining 
statistically enough failure progression data may take 
years. This paper presents a strategy to collect data with a 
given failure degradation model. Then, a simple 
prognostic method (SSBP) is presented. SSBP and 
HHMM based prognostic methods are applied to data 
obtained from a turnout system in the Turkish State 
Railway and their results are compared. The presented 
method outperforms the HHMM-based prognostics in the 
paper. In addition, a validation strategy for health state 
estimation is presented in the paper.  
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