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Abstract — The importance of railway transportation has
been increasing in the world. Considering the curmet and
future estimates of high cargo and passenger transpation
volume in railways, prevention or reduction of delgs due to
any failure is becoming ever more crucial. Railwayurnout
systems are one of the most critical pieces of egumient in
railway infrastructure. When incipient failures occur, they
mostly progress slowly from the fault free to thedilure state.
Although studies focusing on the identification ofpossible
failures in railway turnout systems exist in the lerature,
neither the detection nor forecasting of failure pogression
has been reported. This paper presents a simple stabased
prognostic method that aims to detect and forecadailure
progression in electro-mechanical systems. The mett is
compared with Hidden Markov Model based methods on
real data collected from a railway turnout systemObtaining
statistically sufficient failure progression sampls is difficult
considering that the natural progression of failure in
electro-mechanical systems may take years. In addih,
validating the classification model is difficult wren the
degradation is not observable. Data collection andnodel
validation strategies for failure progression are &o
presented.

Index Terms—Fault Diagnosis, Diagnostic expert system,

Failure  Analysis, Rail transportation maintenance,
Forecasting, Prognostics, Remaining useful life astation,
Railway Turnouts, Time Series

NOTATION
¢ : Constant in exponential degradation model
£ : Random variable following s-normal distribution
U :Mean of
0 : Variance of 3

A : HMM Model
71 Initial probabilities of HMM

: Transition probability from state to | in level |

B : Observation probability distributions
CH : calinski-Harabasz cluster validity index

: Number of samples clustered in cluster

Z. : Center of clustec
Z : Center of all clusters
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X; :Time series data sample

K : Number of clusters
I, INTRODUCTION

It is now an obligation to improve reliability,
availability, and safety of railway systems to
accommodate increasing passenger and cargo
transportation with higher train speeds, greatés bads,
and increased service frequency. According to artegf
the European Commission, the passenger and cargo
transportation volume in European railways are etque
to double and triple respectively in 2020 [1]-[9.is
obvious that this demand increase cannot be satisfith
only building new railways; the efficiency of exigg and
new railways should be increased. This could béeaeld
with minimum cost by increasing the availability of
railways, which is directly related with repair and
maintenance frequency.

Britain’s railway infrastructure operator, Netwdrail,
was responsible for approximately 14 million mirsute
train delay in 2002-2003, costing approximately 560
million GBP [5]. Railway turnout systems are theima
component of railway infrastructure that affectse th
availability of the system [6]. For example in Ezmgdl, 3.4
million GBP is spent every year for the maintenan€e
turnout systems for 1000 km of railways [6]. Coiudit
Based Maintenance (CBM), in which the health of the
machine is observed in real time and maintenance
decisions are based on the current and forecastedine
health, increases system availability, reliabitityd safety
while reducing operating and support costs [7]-[djus,
the application of CBM on railway turnout systemesh
critical importance for increasing the efficiencyf o
railways.

Diagnostics and prognostics are the two main
components of CBM [7]. Diagnostics, the process of
identifying the failure, is basically a classifimat
problem; prognostics, the prediction of the failtime of
the component with an incipient failure, is a fasting
problem. Various diagnostic methods have been ptede
in the literature for many diverse industrial sys$e[9] -
[14]. Diagnostic methods on various componentshef t
railway and train have also been reported [15]-[20]

There are three main approaches in the literatore f
diagnostics on turnout systems: feature-, modeld an
empirically-based methods. In the first approagiecsal
features that help to identify the failures areirted. For
example in [21], three features (i.e., irregularication
of maximum point, and symmetry) are defined intihee
series data. These features are obtained by anglyze
absolute difference between the reference and lactua
signals. The reference signal is collected frorawtffree
system. The absolute difference is in the form aize
series-like reference. Irregularity is defined as a
unexpected bump in the absolute difference. Thatioo
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of the maximum point is compared with the maximum
point location in the reference data. The symmefrihe
absolute difference of the left and right sides tioé
maximum point location is used as the third feature

In model-based approaches, a model is defined to
characterize the system. Deviation from the model i
defined as failure and identified as the differebetveen
the model outcome and actual data. Various methads
be applied. In [22], the unobserved component mddel
which an observable variable is written as a fumctof
several unobservable components, is used. In [23],
parameters like velocity and air volume are exmésss
polynomial functions of pressure in a pneumatic ot
system. Thus, the difference between the actuacitgl
and/or air volume and their expected values foivarg
pressure identifies the failure.

In empirically-based approaches, a fault-free sanigpl
considered as a reference signal, and failures are
identified based on the resemblance of a givenasigm
the reference signal. The Kalman filter is use@u for
noise removal and failure identification based on a
reference signal. Ref. [25] presents an expertesydor
failure identification using resemblance to theerehce
signal. The resemblance is quantified using simple
Euclidian distance and dynamic time warping appneac
A good review for failure detection methods forlweaiy
turnouts is given in [26].

Failure diagnosis is an important task; howeveonty
aims to stop (and schedule a maintenance/repadr) th
system when a failure is identified or let the epst
continue to work otherwise. Incipient failures pregs
slowly [27]. This progression starts from the fafriée
state and ends at the failure state [28]. The Bsyste
functions properly and does whatever is expectéikita
maybe with decreasing efficiency) until reachinge th
failure state. It is obvious that the detection failure
progression is more valuable than its detectioeratfte
failure reaches to a point. In addition, it is @nequisite
for prognostics [28], [29].

Studies of prognostics for different systems have
appeared in the literature in recent years. Prdgnos
methods can be separated into three categories:
evolutionary, degradation prediction, and stateetas
prognostics [8]. Evolutionary prognostics involves
trending features until a predefined threshold, nehs the
degradation calculated with features is predicteith w
statistical and computational methods in the degrad
prediction based prognostics [8]. In the last catggthe
states representing the failure progression aectist and
forecasted.

Hidden Markov Models (HMMs) have been used as
state-based prognostics in [28], [30]-[34] withfeitnt
application areas such as drilling processes, pump
systems, and AC motors. The life of a drill-bit is
represented by health states, each of which is lmddes
a single HMM in [31]-[32]. Health state of a drbit is
identified with the HMM with highest likelihood wvaé
given the observed time series signal. In stanétviv,
transition from one state to another is independétime
spent in the current state. This assumption istrmat in
failure degradation applications and it is relaxed30]

with semi-Markov concept.

In [28], health states are represented as thetadp of
Hierarchical HMM, rather than a distinct HMM as[28],
[31], [32]. Monte-Carlo simulation with health sat
transition probabilities is used in [28] to caldelathe
remaining useful life (RUL). In [33], frequency and
severity of noncatastrophic faults are used toate®éJL
of an electric drive. Four methods have been usethtilt
detection and HMM based framework is presented for
prognostics. Second order HMM, in which states depe
on the two previous states, is used for predictibhealth
states in [34]. In [35], concentration of lubricati
samples is used to identify the abnormality in €lies
engines. Then, a belief network created with expert
knowledge is used for prognostics.

This paper presents a simple state-based prognostic
(SSBP) method that aims to detect and forecadiréail
progression in electro-mechanical systems. The odeith
compared with HMM-based methods using real data
collected from a railway turnout system. Failures i
electro-mechanical systems mostly occur slowly, &nd
may take months/years for a failure to occur. Thus,
obtaining statistically sufficient samples from tfault-
free state to the failure state may require a l@myg time.

In addition, the validation of classification metiso
requires knowing the real failure progression state
However, observing the real failure progressionestas
very difficult, if not impossible, in most systenf28].
This paper also presents a solution to these prabl@he
main contributions of this paper can be summariasd
follows:
1. Presenting a simple state-based prognostic methdd a
its comparison with HMM-based prognostics;
2. Application of presented (SSBP) and HHM-based
prognostics methods in a railway turnout system;
3.Presenting a data collection strategy for slowly
developing failures to model the real failure pesgion;
4.Proposing a strategy to validate the state estimati
method without knowing the real failure progression
states.

The organization of the paper is as follows: sectio
gives the details of a turnout system, sectiorptdsents
the modeling structure, section IV gives experiraeamd
results with real data collected from a turnouteys and
section V concludes the paper.

Fig. 1. Railway tracks to be moved by a turnoutesys



1. RAILWAY TURNOUT SYSTEM

Railway turnout systemallow trains to change the
tracks by moving the rails before the train pa, as seen
in Fig 1. The @irnout system, which is a form of sing
throw mechanical equipment, is run by a motor asver
in Fig 2. There exist differertypes of railway turnout
based on motor working principlesuch as elect-
mechanic, hydraulic, and pneumatithe notor moves
the blades/switches in two directioreglled normal an
reverse. This movement takes sevaetonds. Once tt
movement is completed, the switches are locked in tt
position. It is claimed that the turnout systeare the one
of the most important component of the railw
infrastructure, and there exist examples of accide
caused by turnout failure [6]This paper focuses ¢
electro-mechanic turnout systemehich consist ofa
motor, reduction gear, several bearings, detection
rods, switches etc.

Fig. 2. A railway turnout system

M. MODELING STRUCTURE

This section includes two sigectiors: failure
progression modeling and a simple stadsed prognosti
method.

A. Failure Progression Modeling

Electromechanical failures mostly occur sloy,
following a degradation path [36]. It is easyunderstani
the difficulty of obtaining statisticallysufficient failure
progression samplesgonsidering that a failure me
progress for several months to yeamsreal systerm.
There are two ways to overcome this problem: lhg
prototypes for data collection &) creating the failur
progression unnaturally.

The prototypes are crieal with vulnerable materi,
and operating conditions are set so that the fa
progresses faster than normal [28], [33}}] Choosing
thin drill-bits or preventingthe proper functioning ¢
cooling systems are some examplesd in the literatur
[28]. Althoughthis approach may be applicable for sim
components like a drilbit, it is difficult to obtain ar
acceptable prototype to represent sometkimgplex like

a turnout system. In such a complex system, tHerée
progression should be createthaturally.

The exponentiadiegradation modéor systems with no
prior information about degradaticpresented in [36] is
used in this paperand formulatedas in (1) The
degradation paths for samples shown in Fig3 are
obtained using this formula. Thethe failure time is
defined as the point where the degradation reaet
threshold, providingarious lifetimes for multiple turnot
systems.The degradation level is divided into seve
groups as illustrated witbdashed horizontal lin in the
figure. Each group is defined as a state in the fa
progression. The time spent instatecorresponds to the
length of thex-axis (time) of the degradaticpath (signal)
when they-axis falls in that state.
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Fig. 3. Failure degradation and discrete health s
After obtaining the life and théme spent in each state

for all samples, the data can be collected by creatia
failure progression states unnaturally. This cdoédthe
size of a crackhow loose a screw has becg, the level
of wear and teamr dryness level in the slide chiof the
turnout system. When thiailure progressic is created
unnaturally, the data thaan be used as representative
that staten different turnout syster, are collected.

B. Smple Sate-Based Prognostics Method

The presented method (SSBRgludes three ste, as
illustrated in Fig. 4: clusteringcluster evaluation, and
expected RUL calculation. Farustering, data fronthe
different health states of multiple systems aresteled
using any clustering methokkmeansclustering is used in
this paper due to st simplicity and effectivenes
However, SSBP is independenttbé clustering method.

Training

Clusterin Cluster
Sample [ ™ =

evaluation
Transition
Probability
Calculation

- TN

7 Trained \

\  Model /s
~ —— -

# A \
Expected RUL > ! Expected
Calculation ISUL !
~27

Best number of
health states

Fig. 4.Prognosticsteps
In clustering, thebest number of clusters for the giv

dataset should be identified. kimeans clustering, the
number of clusterskf should be give. Although in
classification problemparameters can be optimized us



classification accuracy, clustering problems reguir
different evaluation parameters because the realbeu

of clusters and samples that belong to real clsistez not
known. Several cluster validity indexes have been
proposed in the literature [37],[38]. Silhouetteavies-
Bouldin, Calinski-Harabasz, Dunn, C-index, Krzankiws
Lai, and several other indexes are implemented, and
Calinski-Harabasz (CH) is chosen as the most robost

for the dataset used in this paper. The formulatib@H

indexes is given in (2).
o | Ttz | | XL x -2
k-1 n-k

2

The cluster validity index gives the optimal numibér
clusters and health states in our problem. In &urki
progression problem, it is very difficult, if nahpossible,
to observe the health states the system goes thiandjto
know their total number. Thus, clustering and valid
indexes are used to identify the number of hedétes.

After the current health state of a given system is
identified using clustering, the remaining usefifié lis
forecasted as illustrated in Fig. 5. The expectetl ks
calculated using the transition probabilities betwe
health states as shown (3). The transition proipalsl the
probability of the current health state to changée
results of thek-means clustering are used to identify these
probabilities. k humber of clusters and the number of
transitions from one cluster to another are fouritth all
training samples. For example, assume three turnout
systems with health states numbered sequentiain ft
to 4 (from the brand new to the failure state) ke in
Table 1. Each row shows the progression in hedittes
for a turnout system. The three turnout systemisaféaer
13, 10, and 9 time units. A total of twelve traiwis from
state 1 (transition to state 2 after 4, 6, andnitsteps,
state 1 otherwise) have happened in three turnouts.
Because three state transitions out of twelve fsteite 1
have happened to state 2, the transition probabiim
state 1 to state 2 is initialized as 3/12. Simylathe state
transition probability from state 1 to state 1 t{&st8) is
initialized as 9/12 (0/12). Other transition iniization
values are calculated similarly.

The current health state of the system is repredemy

h.in (3) and is obtained using the clustering method.

Note that theoo in the formula is represented as the RUL
upper limit in the SSBP. As the upper limit incresisthe
approximation of the RUL improves. The probabildfy
the RUL of each value between 1 and the RUL upper
limit is calculated one by one. For a given RULerth
exist many different combinations of possible Healt
states. For example, if the RUL is given as 5 Bittealth
states, the combinations are as follows: 3 1 1, @.¢ime
unit in state 1, and 1 time unit in state 2 antks8, 2 2 1,
212,131,122,and 11 3. The number of coatinns
increases exponentially with the number of heatéites.
To handle the computations, transitions are orliywadd
from a health state to itself or to a consecutitetes
Thus, a state cannot jump to second, third, andrso
consecutive health states directly. The probabitify

staying in a health stat@ifor st, times means that the

health state transitions to itselfst, —1times and

transitions to the consecutive health state one.tifhe
calculation is given in (6).

[RUL|st=h]=SixP(rul =i|st=h) @
=1
fail

P(RUL=i|st=h) =] Plstay, = t,) @)
n=h

fail

D s, =i (5)
n=h

P(stay, = &,) = a1~ q,,) ©
The Monte Carlo simulation with HMM used in [28]

does not make the assumption of transition of & staly

to itself or the consecutive state. However, SSBRaves
some of the complications of HMM. The results oBFS
are compared with those of HMM-based prognostics in
section IV. The following subsection discussesdbtils

of Hierarchical Hidden Markov Models (HHMM).

Transition probabilities betweey
states

| Select a RUL upper limit |

v

rul=1, expRul=0

v

Find all combinations of time
spent in all states when remaining
useful life is equal to rul

" N

i=1, prob(rul)=0
v
—>| Select i th combination

v

Calculate probability of i th
combination (pi)

v

prob(rul)= prob(rul)+pi

—

expRul=expRul+rul* prob(rul)

v

rul=rul+1

rul< RUL
pper limi

Fig. 5. Flow chart of RUL calculation



C. Hierarchical Hidden Markov Model

The Hierarchical HMM (HHMM) is a version of the
Hidden Markov Model (HMM) designed to model
hierarchical structures for sequential data. Thep&st
HHMM includes two hidden layers; the state in tbe t
hidden layer is considered to be a self-contained
probabilistic model. In other words, in the simples
HHMM, each state in the top layer is itself an HMNMhe
observed state is affected by both nodes in thamoplow
hidden layer in any given time frame. The statethétop
hidden layer represent the health states of theotur
system, whereas states in the low hidden layeresemnt
the state of the movement of the rails. In otherdspthe
low level states show the location of the rail dgrithe
back and forth movement of the rail. Readers &fierne
to [8] and [28] for the details of HHMM.

Initialization of HHMM
An HHMM model is represented ak (A = (A B, 7))

and includes parameters of initial probabilitiesr)(
transition probabilities A), and observation probability
distributions (B ). The following paragraphs discuss the
initialization of parameters in an HHMM.

Initial probabilities (¢7) exist for two hidden variables:
top and sub-hidden states. Top hidden states egrése
health state of the turnout system. The initialbatality
of a top state is the probability of a turnout systto be in
a given health state for the first usage or after
maintenance/repair. This is always 1 for a brand siate
(and also after maintenance assuming perfect
maintenance) and O for other states. The datactetle
during the movement of the rails with force genedaby
the turnout system is in the form of a time seres
consists of several states (i.e., sub-states). ihit&l
probability of a sub-state is the probability obsstates in
the beginning of the movement. In our experimetits,
initial probabilities are assumed to be 1 for thstftop
and sub-states and O for the other states. Thathés,
perfect maintenance assumption is made, and abtr
movements are assumed to start from the same até-st

Life of turnouts

112 34 5 6|7 8910111213
Turnoutt 1)1 1)1 2 2 2 3 3 3| 3 4 4
Turnoutz 1)1 1)1 1 1 2 3 3 4
Turmoots 101 2 2 02 2 3 3 4

Table 1. Turnout health states progression examples

The top state transition probabilities are inidatl
using the transition probabilities obtained uskameans
clustering as discussed above. The other transition
probability parameter is the probability of the remt sub-
state to change. To initialize this parameter, tinee
series data collected during the rail movementarieled
into equal number of successive groupghat also is the

number of sub-states. Theﬁfj is initialized as follows:
2 _ 2 _ 2 _ oo
A, =Us, A =1-1s, and A, =0 D0i,j
I Z ] andj#i+1.
The last parameter to be initialized is the obsérma
probability distribution parameteB; ; , which represents
the distribution parameters of the observed parmamet

under health staté and sub-statej . To initializeBiyj ,

the data points that are collected from a turngstesn
with each health state and sub-state are catedorizes
data from all of thehx s categories are obtained, where
h and s are the number of health and sub-states,
respectively. Then, the distribution parametess,(inean
and standard deviation) of the data in each cayegu
calculated and used as initialization valuesgpy .

V. EXPERIMENT & RESULTS

The presented method (SSBP) is applied to data
collected from a turnout system of the Turkish &tat
Railways located in Babaeski, Tekirdag. The follogyi
subsections discuss the data collection, failure
progression, and results of the SSBP.

A. Data Collection

The system used for data collection is an electro-
mechanical type turnout with two drive rods, onedach
rail. Nine sensors were installed in the turnoustem:
two force sensors for each drive rod, one curremg
voltage (separate sensors for forward and backward
movement), two proximity sensors for each rail &wd
linear rulers for each drive rod. The most commardgd
sensors in the literature are current and forceasr24].
Force sensors are electrical sensing devices thatised
to measure tension and compression forces. Tegsits
are used for measuring a straight-line force "pgliapart"
along a single axis; the force is typically denotasl
positive. Compression tension cells are used for
measurement of a straight-line force "pushing toget
along a single axis; the force is typically annetht
as negative. Current sensors measure DC curreatslev
They receive current inputs and provide outputaredog
voltage signals, analog current levels, switchegualible
signals. Voltage sensors are used to measure goltag
electric circuits. Proximity sensors measure thetagice
between the stock rail and switch rail of railwaynout
systems. A linear position measuring sensor igilest on
stretchers of the turnout system and measuresiribarl
position of the switch rails. Time series data arquired
from both normal to reverse and reverse to normal
movements of a turnout system. Figs. 6 shows thecss
installed in turnout system.

B. Failure Progression Mechanism

There are multiple failure modes in a turnout syste
The dry slide chair failure mode is the most freglye
occurring failure in turnout systems [22]. Slideath are
the metal platforms installed on twelve wooden ¢raes,
on which the rail is located, as illustrated in.Fig Slide
chairs are oiled periodically and in a fault-fregstem
these slide chairs are oily.

Switch rails move back and forth on the slide chain
the twelve traverses. They move around 17.5 crnthen
slide chair located on the traverse closest tottineout
system. As the traverse gets far away from theotutrn
system, the movement on that traverse gets smélleen
dry/contaminated slide chair failure modes occime t
friction in the slide chair increases, leading noreased
force in the force sensors and changes in voltagk a
current signals in the motor. In addition, the tirge
complete the movement may increase.



The failure progression from the fault-free heathte
to the failure health state is modeled using theoagntial
degradation mentioned. The natural progressionhef t
failure mode occurs over a long period of time doe
weather and environmental effects. Thus, it isprattical
to wait and observe the natural progression offélilare
mode. In addition, if the failure progresses ndtyrahe
observation of health states becomes very diffigtithot
impossible. In this work, the progression of thg dlide
chair failure mode is modeled.

Installed Sensors on Turnout System

Fig. 7. Modeling the Dry/Contaminated Slide Chaiilére Mode

The failure state is defined as the state whemalve
slide chairs are dry or contaminated. The slidérshaave
not been lubricated for a long time to obtain théufe
state. The data from the failure state are colteciden,
the slide chairs in the three farthest traversesnfthe
turnout system are oiled, and data are collectednTthe
next farthest traverse is oiled, and data are ceite The
oiling and collection of data is repeated one bg flom
the farthest to the closest slide chairs of thedut system
until all slide chairs are oiled. All of the sliddairs are
oily in the final state, which represents the fdtée state.
This is achieved in ten steps, each step represpmti
health state in the failure progression. As a tesoany
samples from ten health states are obtained. Atpbint,
the life of a turnout system and the time speneach
health state in the failure progression are obthinging
exponential degradation modeling with the following

parametersp=1, u, =08 o, =01.

An example of current and force signals among ten
turnout systems that progress from fault-free tiufe

states with various lives is shown in Fig 8. Asrsé®m
this figure, 13 samples are collected from thisnout
system from fault-free to failure state. In otheurds, its
life is 13 units. One can observe the change ircthreent
and force signals as the failure progresses.

This paper uses only the dry slide chair failuredenéor
the case study and all other conditions, such asatipg
conditions and wear in the components of the turnou
system, are assumed to remain constant. This is a
reasonable assumption because all the data aeeteallin
one day, and the dry slide chair failure mode itioled
unnaturally as mentioned above.

Failure Progresses Close to

- ——— Failure
State |
N ]
c
o
5 i
O
A
| sample ) ) )
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Life of the turnout
3
(b) _
2.5F Failure Progresses R
_—

A W

-1 sample B
Close to
15 . . . . . Failure state
o 50 100 150 200 250 300 35C
Life of the turnout

Fig. 8. a) Current b) Force signals with failure
progression from ‘fault free’ state to ‘close tddee’state

C. Results

The samples are divided into training and testing
groups, with 80% of the samples in the training &mel
rest in the testing group. The training data arestered
using the number of clusters from two to ten, drelCH
cluster validity index is calculated and displayedrig. 9.
The maximum of the evaluation function (which iraties
the best number of clusters found) occurs at alylsters.
Thus, failure progression should be modeled withtei
health states. Note that when the failure progoessias
modeled, ten unnatural health states were used.nWhe
analyzing the health state clustering resultss bserved
that health states 8, 9, and 10 are combined in® o
health state. This is logical considering the varé@a
increase in the states close to failure. However, best
health state number found will be checked with



forecasting effectiveness to validate the resulkaioled
with the cluster validity index.

Two models (i.e., the SSBP and the HHMM model) are
analyzed: samples from the training and testing dee
selected, the health states are identified andthhetdte
forecasting is performed for both methods. Traositi
probabilities from both models are extracted, ahd t
expected remaining useful life is calculated asudised
in section 1.

Calinski-Harabasz

4000
2000 /
1000
0 T T T T T T T T T 1

Fig. 9. Evaluation of the number of clusters

The effectiveness of the estimated RUL (RULs
calculated by comparing the RUlwith the real RUL
(RULy). The real and estimated RULs calculated using
HHMM-based prognostics and the SSBP are displaged f
ten turnout systems in Fig. 10. Each graph reptesame
of the turnout systems. Theaxis represents the age of
the system, whereas tlyeaxis represents the remaining
useful life of the system. The dashed line repressére
real RUL of the system given the current age. Nbs
the sum of the-axis andy-axis for the real RUL gives the
life of the system. The solid line represents théneated
RUL.
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Fig. 10. RUL and RUL for ten turnout systems with HHMM and SSBP
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The root mean square error (RMSE) and r-square

values between real RUL (RyLand RUIL, are used as

measures to evaluate the effectiveness of the psbign
method in [26] and [30]. Figs. 11 displays the RMEk)
11.a) and r-square (Fig 11.b) between the Rahd RUL,
obtained with HHMM and SSBP. Theaxis represents
the turnout systems, whereas thaxis gives the RMSE
and r-square values. It was expected that HHMMslavou
outperform the presented simple prognostics methat,
the opposite was true. The RMSE values are smatldr
the r-square values are greater for the presentgtiaah.
One can conclude that the optimization within HHMM
during training makes the parameters worse from a

prognostics perspective, considering its design and
technical requirements.
2,50
2,00 4
““ 00% )
1,50 % it i
Y 4 SSBP
1,00 -
=== HHMM
0,50 -
0,00 T T T T T T T T T 1
12345678910
(@)
1,00
0’95 /\/—-—\
0,90 =S o 1==
7 7 °
A\ SSBP
0,85 +2 VU
=== HHMM
0,80
0,75 T T T T T T T T T 1
1234567 8910
(b)
Fig. 11. Comparison of SSBP and HHMM using a) RMSR-

square

The presented method is very simple and outperforms

HHMM-based prognostics. As a disadvantage, the
presented method has restrictions on state transithat
allow transition of a state only to itself and axsecutive

State.
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Fig 12. r-square values for different numbers cflthestates



Fig. 12 displays the r-square values of Rdhd RUL
for different health states. The r-square values ar
negative for the second and third health statesssarts
increasing thereafter. The highest value obtaisedith
the eighth and ninth health states, and the r-squalue
starts decreasing beyond the tenth health statee that
eight health states were recommended by the CHeclus
validity index. Thus, the prognostics results suppbe
result of the CH cluster validity index.

V. CONCLUSION

Failures often go through several states beforeingak
the system unusable. It is critical to identify dondecast
these health states as the failure progressesffautiee
usage of the system. Railway turnouts are oneeofribst
important components of railway infrastructure.hiligh
several studies on failure identification in turbhgystems
are present in the literature, health state esiimatnd
forecasting have not been reported. One of the most
important difficulties in failure progression ansily is the
inability to observe the natural progression ofufies due
to time constraint. Failures occur slowly and oftag
statistically enough failure progression data majtet
years. This paper presents a strategy to colleéatwldh a
given failure degradation model. Then, a simple
prognostic method (SSBP) is presented. SSBP and
HHMM based prognostic methods are applied to data
obtained from a turnout system in the Turkish State
Railway and their results are compared. The present
method outperforms the HHMM-based prognostics & th
paper. In addition, a validation strategy for Headtate
estimation is presented in the paper.
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