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Abstract 

Vibration monitoring of rolling element bearings is probably the most established diagnostic 

technique for rotating machinery. The application of Acoustic Emission (AE) for bearing 

diagnosis is gaining ground as a complementary diagnostic tool, however, limitations in the 

successful application of the AE technique have been partly due to the difficulty in 

processing, interpreting and classifying the acquired data. Furthermore, the extent of bearing 

damage has eluded the diagnostician. The experimental investigation reported in this paper 

was centered on the application of the Acoustic Emission technique for identifying the 

presence and size of a defect on a radially loaded bearing. An experimental test-rig was 

designed such that defects of varying sizes could be seeded onto the outer race of a test 

bearing. Comparisons between AE and vibration analysis over a range of speed and load 

conditions are presented.  In addition, the primary source of AE activity from seeded defects 

is investigated.  It is concluded that AE offers earlier fault detection and improved 

identification capabilities than vibration analysis. Furthermore, the AE technique also 

provided an indication of the defect size, allowing the user to monitor the rate of degradation 

on the bearing; unachievable with vibration analysis.  

Keywords: Acoustic Emission, bearing defect, condition monitoring, defect size, vibration 

analysis. 
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1. Introduction  

Acoustic emissions (AE) are defined as transient elastic waves generated from a rapid release 

of strain energy caused by a deformation or damage within or on the surface of a material [1]. 

In this particular investigation, AE’s are defined as the transient elastic waves generated by 

the interaction of two surfaces in relative motion. The interaction of surface asperities and 

impingement of the bearing rollers over the seeded defect on the outer race will generate 

AE’s.  Due to the high frequency content of the AE signatures typical mechanical noise (less 

than 20kHz) is eliminated. 

 

2. Bearing defect diagnosis and Acoustic Emissions 

There have been numerous investigations reported on applying AE to bearing defect 

diagnosis.  Roger [2] utilised the AE technique for monitoring slow rotating anti-friction slew 

bearings on cranes employed for gas production.  In addition, successful applications of AE 

to bearing diagnosis for extremely slow rotational speeds have been reported [3, 4]. Yoshioka 

and Fujiwara [5, 6] have shown that selected AE parameters identified bearing defects before 

they appeared in the vibration acceleration range.  Hawman et al [7] reinforced Yoshioka’s 

observation and noted that diagnosis of defect bearings was accomplished due to modulation 

of high frequency AE bursts at the outer race defect frequency. The modulation of AE 

signatures at bearing defect frequencies has also been observed by other researchers [8, 9, 

10]. Morhain et al [11] showed successful application of AE to monitoring split bearings with 

seeded defects on the inner and outer races. 

 

This paper investigates the relationship between AE r.m.s, amplitude and kurtosis for a range 

of defect conditions, offering a more comparative study than is presently available in the 

public domain. Moreover, comparisons with vibration analysis are presented. The source of 
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AE from seeded defects on bearings, which has not been investigated to date, is presented 

showing conclusively that the dominant AE source mechanism for defect conditions is 

asperity contact. Finally a relationship between the defect size and AE burst duration is 

presented, the first known detailed attempt. 

 

3. Experimental Test Rig and Test Bearing 

The bearing test rig employed for this study had an operational speed range of 10 to 4000rpm 

with a maximum load capability of 16kN via a hydraulic ram.  The test bearing employed 

was a Cooper split type roller bearing (01B40MEX).  The split type bearing was selected as it 

allowed defects to be seeded onto the races, furthermore, assembly and disassembly of the 

bearing was accomplished with minimum disruption to the test sequence, see figure 1. 

Characteristics of the test bearing (Split Cooper, type 01C/40GR) were: 

o Internal (bore) diameter, 40mm 

o External diameter, 84mm 

o Diameter of roller, 12mm 

o Diameter of roller centers, 166mm 

o Number of rollers, 10 

Based on these geometric properties the outer race defect frequency was determined at ‘4.1X’ 

(4.1 times the rotation shaft speed). The layout of the test rig is illustrated in figure 2, with the 

load zone at top-dead-centre. 
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Figure 1 Bearing Test Rig 

 

Figure 2 Test rig layout 

Hydraulic ram 

Test bearing
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4. Data Acquisition System and signal processing 

The transducers employed for vibration and AE data acquisition were placed directly on the 

housing of the bearing, see figure 1. A piezoelectric type AE sensor (Physical Acoustic 

Corporation type WD) with an operating frequency range of 100 kHz – 1000 kHz was 

employed whilst a resonant type accelerometer, with a flat frequency response between 10 Hz 

and 8000 Hz (Model 236 Isobase accelerometer, ‘Endevco Dynamic Instrument Division’) 

was used for vibration measurement. Pre-amplification of the acoustic emission signal was 

set at 40dB. The signal output from the pre-amplifier was connected (i.e. via BNC/coaxial 

cable) directly to a commercial data acquisition card. The broadband piezoelectric transducer 

was differentially connected to the pre-amplifier so as to reduce electromagnetic noise 

through common mode rejection. This acquisition card provided a sampling rate of up to 

10MHz with 16-bit precision giving a dynamic range of more than 85 dB. In addition, anti-

aliasing filters (100 KHz to 1.2MHz) were built into the data acquisition card. A total of 

256,000 data points were recorded per acquisition (data file) at a sampling rates of 2MHz, 

8MHz and 10MHz, dependent on simulation. Twenty (20) data files were recorded for each 

simulated case, see experimental procedure. The acquisition of vibration data was sampled at 

2.5 KHz for a total of 12,500 data points. 

 

Whilst numerous signal processing techniques are applicable for the analysis of acquired 

data, the authors have opted for simplicity in diagnosis, particularly if this technique is to be 

readily adopted by industry. The AE parameters measured for diagnosis in this particular 

investigation were amplitude, r.m.s, and kurtosis. These were compared with identical 

parameters from vibration data. It is worth stating that the selected parameters for AE 

diagnosis are also typical for vibration analysis.  
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The most commonly measured AE parameters for diagnosis are amplitude, r.m.s, energy, 

counts and events [12]. Counts involve determining the number of times the amplitude 

exceeds a preset voltage (threshold level) in a given time and gives a simple number 

characteristic of the signal. An AE event consists of a group of counts and signifies a 

transient wave. Tan [13] sited a couple of drawbacks with the conventional AE count 

technique. This included dependence of the count value on the signal frequency. Secondly, it 

was commented that the count rate was indirectly dependent upon the amplitude of the AE 

pulses. 

 

By far the most prominent method for vibration diagnosis is the Fast Fourier Transform. This 

has the advantage that a direct association with the characteristics of rotating machine can be 

obtained. Other vibration parameters include ‘peak-to-peak’, ‘zero-to-peak’, r.m.s, crest 

factor and kurtosis. The drawback with amplitude parameters is that they can be influenced 

by phase changes and spurious electrical spikes. The kurtosis value increases with bearing 

defect severity however, as severity worsens the kurtosis value can reduce. The r.m.s 

parameter is a measure of the energy content of the signal and is seen as a more robust 

parameter. However, whilst r.m.s may show marked increases in vibration with degradation, 

failures can occur with only a slight increase or decrease in levels. For this reason r.m.s 

measurement alone is sometimes insufficient. 

 

5. Experimental procedure 

Two test programmes were undertaken.  

o An investigation to ascertain the primary source of AE activity from seeded defects 

on bearings was undertaken, in addition to determining the relationship between 

defect size, AE and vibration activity. In an attempt to identify the primary source of 
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AE activity, a surface topography (Form Talysurf 120L; stylus used had a 2um radius 

diamond tip) of the various defects was taken. Furthermore, two types of defect 

conditions were simulated; firstly, a seeded defect with a surface discontinuity that 

did not result in material protruding above the average surface roughness of the outer 

race. The second defect type resulted in material protrusions that were clearly above 

the average surface roughness.  

o The second test programme aimed to establish a correlation between AE activity with 

increasing defect size. This was accomplished by controlled incremental defect sizes 

at a fixed speed.  

 

Prior to defect simulations for all test programmes, baseline, or defect free, recordings were 

undertaken for twelve running conditions; four speed (600, 1000, 2000 and 3000 rpm) and 

three load conditions (0.1, 4.43KN and 8.86KN). Defects were simulated with the use of an 

engraving machining employing a carbide tip. 

 

6. Test programme-1; AE source identification and defects of varying severities 

Five test conditions of varying severities were simulated on the outer race of the test bearing 

which was positioned in the load zone; top-dead-centre for this particular test-rig 

configuration, see table 1.  In addition, the nomenclature used to label all test conditions is 

detailed in table 1.  The test conditions were: 

o Baseline or defect free condition in which the bearing was operated with no defect on the 

outer-race. Figure 3 shows a visual condition of the race and a surface roughness map 

(maximum 0.5 µm). 

o A point defect engraved onto the outer race which was approximately 0.85 x 0.85mm, see 

figure 4.  This defect condition had material of the outer race protruding approximately 4 
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µm above the bearing maximum surface roughness. 

o A line defect, approximately 5.6 x 1.2 mm, see figure 5. 

o A rough defect, approximately 17.5 x 9.0 mm, see figure 6. 

o A smooth defect in which a surface discontinuity, not influencing the average surface 

roughness, was simulated. In this particular instance a grease hole on the outer race 

matched the requirements, see figure 7. From figure 7 it is evident that the point of 

discontinuity of the surface does not have a protrusion above the surface roughness as 

evident for the ‘point’ or ‘line’ defect conditions. The main purpose of this simulation is 

to observe if any changes in the load distribution will lead to generation or changes in AE 

activity in comparison to a defect free condition. 

All defects were run under four speeds (600, 1000, 2000 and 3000 rpm) and three different 

loads (0.1, 4.43 and 8.86 KN). It must be noted that the defect length is along the race in the 

direction of the rolling action and the defect width is across the race. 
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Table 1  Notation for test programme-1 with seeded defect dimensions 

Defect Type (W x L) mm Speed (rpm) Load (kN) 

N Noise (No Defect) S1 600 L0 0.1 

SD Smooth Defect S2 1000 L1 4.43 

PD Point Defect (0.85x0.85) mm S3 2000 L2 8.86 

LD Line Defect (5.6x1.2) mm S4 3000  
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Figure 3 Surface profile of defect free condition 
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Figure 4 Surface profile of point defect condition 
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Figure 5  Surface profile of a line defect condition 
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Figure 6  Rough defect condition 
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Figure 7 Surface profile of a smooth defect condition 
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7. Test programme-2; Defects of varying size 

For this particular test programme, two experiments (E1 and E2) were carried out to 

authenticate observations relating AE to varying defect sizes.  Each experiment included 

seven defects of different lengths and widths, see table 2.  A sample defect is shown in figure 

8.  In experiment-1 (E1), a point defect (D1) was increased in length in three steps (D2 to D4) 

and then increased in width in three more steps (D5 to D7).  However, in experiment-2 (E2), 

a point defect was increased in width and then in length interchangeably from D1 to D7.  

Both experiments were run at 2000 rpm and at a load of 4.4kN.  The AE sampling rates for 

the first and second experiments are 8MHz and 10 MHz respectively.  In experiment-2, 

vibration was acquired in addition to AE for comparative purposes. 

 
Table 2 Notation for test programme-2 with seeded defect dimensions 
 

Experiment 1 Experiment 2 

Defect Size, (width x length) mm Defect Size, (width x length) mm 

E1-D0 No defect E2-D0 No defect 

E1-D1 0.85 x 0.85 mm E2-D1 0.85 x 1.35 mm 

E1-D2 1 x 2.95 mm E2-D2 2. x 1.35 mm 

E1-D3 1 x 7.12 mm E2-D3 2 x 4 mm 

E1-D4 1 x 15.83 mm E2-D4 4 x 4 mm 

E1-D5 3.98 x 15.83 mm E2-D5 8 x 4 mm 

E1-D6 8.66 x 15.83 mm E2-D6 13 x 4 mm 
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E1-D7 13.6 x 15.83 mm E2-D7 13x 10 mm 
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Figure 8 The largest seeded defect, E1-D7, 13.6 x 15.83 mm 

 

8. Analysis Procedure 

If the defects simulated were to produce AE transients, as each rolling element passed the 

defect, it was envisaged that the AE bursts would be detected at a rate equivalent to the outer 

race defect frequency (‘4.1X’). In addition, it was also anticipated that the defect frequency 

would be observed in the vibration frequency range. 

 
For test programme 1 (defects of different severities) AE in time domain and vibrations in 

frequency domain were analysed.  Furthermore, the AE and vibration r.m.s, maximum 

amplitude and kurtosis values were calculated.  Approximately twenty AE data files were 

captured per fault simulated. Each data file was equivalent to one, two, four and six 

revolutions at speeds of 600, 1000, 2000 and 3000rpm respectively. Every AE data file (for 

all simulations) was broken into sections equivalent to one revolution. For instance, at 

2000rpm the AE data was split into four equal sections, each representing one shaft 

revolution. 
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The diagnostic parameters of r.m.s, etc, were calculated for each shaft revolution and 

averaged for all data files. This implied that at 2000rpm, and for twenty data files, a total of 

eighty AE r.m.s values were calculated and the value presented is the average of the eight 

values. For vibration analysis, two data files were acquired for each simulation. This was 

equivalent to 50, 83, 166 and 250 revolutions per data file at speeds of 600, 1000, 2000 and 

3000rpm respectively. The exact procedure for calculating the AE parameters was employed 

on the vibration data. 

 

For test programme-2 observations of AE burst duration, r.m.s and amplitude for the various 

defect sizes were undertaken. The burst duration was obtained by calculating the duration 

from the point at which the AE response was higher than the underlying background noise 

level to the point at which it returned to the underlying noise level. This procedure was 

undertaken for every data file and the average value for each simulated case is presented. 

 

9. Data Analysis; Test Programme-1 

9.1 Observations of AE time waveform  

As already stated the outer race defect frequency was calculated for the various test speeds; 

41, 69, 137 and 205Hz at 600, 1000, 2000 and 3000rpm respectively. Typical AE and 

vibration time waveforms for two different conditions are displayed in figures 9 and 10.  It 

was noted that for all defects conditions, other than the smooth defect, AE burst activity was 

noted at the outer race defect frequency.  Observations of AE time waveforms from noise and 

smooth defect conditions showed random AE bursts that occurred at a rate which could not 

be related to any machine phenomenon.  Correspondingly, such transient bursts associated 

with the presence of the defect were not observed on vibration waveforms, but more 
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interestingly, the outer race defect frequency was not observed on the frequency spectra of 

most vibration data, except at one defect condition; rough defect, 3000rpm, load 0.1KN, see 

figure 11. 

  

Figure    9 AE time waveforms for all defects at a speed of 1000 rpm and a load  
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Figure 10 Vibration time waveforms for all defects at a speed of 1000 rpm and a 
load 4.43kN 
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Figure 11  Sample vibration data in the frequency domain 

BPO = 205 Hz S4-L0-RD 

S3-L1-RD 
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9.2 Observations of r.m.s values 

The r.m.s values of AE and vibration signatures for all defect and defect free conditions were 

compared for increasing speeds, see figures 12 and 13.  For all test conditions, the AE r.m.s 

value increased with increasing the speed at a fixed load.  It was also noted that the AE r.m.s 

values of noise and smooth defect were similar while AE r.m.s values increased with 

increased defect severity; point, line and rough defects respectively. For a fixed speed and 

variable load it was observed that in general AE r.m.s increased with load, which increased 

also with increasing defect severity, see figure 1 of appendix B. The vibration r.m.s values 

showed a relatively small increase with increasing defect size, however, a clear increase in 

vibration r.m.s was observed for the rough defect, see figure 13.  Table 1 in appendix A 

highlights the percentage change of r.m.s values for different defect sizes, emphasising the 

sensitivity of AE to defect size progression, see figures 14 and 15.  The percentage values 

presented in Appendix A and figures 14 and 15 were obtained by relating all speed and load 

defect simulations to the corresponding speed and load condition for the defect free (noise) 

simulation. Figures 1 and 2 of appendix B show the vibration and AE r.m.s values for 

increasing loads at fixed speeds. 
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Figure 12 AE r.m.s of different defects; increasing speeds at a fixed Load 
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Figure 13 Vibration r.m.s of different defects; increasing speeds at a fixed Load 
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Figure 14 Percentage change in AE r.m.s 
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Figure 15 Percentage change in vibration r.m.s 



 21

 

9.3 Observations of maximum amplitude 

It was noted that AE max amplitude increased with increasing speed for a fixed load, see 

figure 16. Also it was evident that as the defect size was increased, the maximum AE 

amplitude increased. The maximum AE amplitude increased from noise condition to the 

point defect and increased further for the line defect.  The maximum amplitude for the rough 

defect was comparable to the ‘line’ defect. Again it was noted that values for ‘noise’ and 

‘smooth’ conditions were similar. Vibration amplitude values were similar for all defect 

conditions except for the rough defect, see figure 17.  Table 2 in appendix A highlights the 

percentage changes of maximum amplitude values for different defect sizes.  These were 

determined as detailed in the previous section. Figures 3 and 4 of Appendix B show the 

vibration and AE maximum amplitude values for increasing loads at fixed speeds. 
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Figure 16 AE max amplitude of different defects at increasing speeds and fixed load 
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Figure 17 Vibration max amplitude of different defects at increasing speeds and 

fixed load 
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9.4 Observations of Kurtosis 

Kurtosis is a measure of the peakness of a distribution and is widely established as a good 

indicator of bearing health for vibration analysis. For a normal distribution, kurtosis is equal 

to 3.  The AE kurtosis values for the noise signal (N) and the smooth defect (SD) were 

approximately ‘3’, see figure 18, as expected for a random distribution.  It was noted that as 

defect size increased from ‘noise’ to ‘point’ to ‘line’, the kurtosis values increased 

accordingly.  For the worst defect condition it was observed that the kurtosis values were 

lower than for the preceding defect condition (line defect). This was not unexpected because 

as the defect condition worsens it is known that kurtosis values will decrease; figure 18 

depicts this observation.  Kurtosis results for vibration showed similar values for all defect 

simulations apart from the rough defect where a relative increase was noted, see figure 19 

Table 3 in appendix A highlights the change of kurtosis values for different defect sizes, 

emphasising the sensitivity of AE to defect size progression. Figures 5 and 6 of Appendix B 

show the vibration and AE kurtosis values for increasing loads at fixed speeds. 
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Figure 18 AE kurtosis of different defects at increasing speeds and fixed load 
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Figure 19 Vibration kurtosis of different defects at increasing speeds and fixed load 
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10. Data analysis: Test programme-2 

The analysis of this test program was centered on AE time domain observations. 

 

10.1. Observations of experiment-1 (E1) 
 

This experiment included seven defect conditions; D1 to D4 had a fixed width with 

increasing length while defects D4 to D7 had a fixed length with increasing width; see table 

2. From observations of the AE time waveforms, AE bursts were clearly evident from defects 

D4 to D7, see figure 20.  The x-axis in these figures corresponds to one shaft revolution at 

2000rpm.  For defects D4 to D7 the width of associated defect AE burst was measured in an 

attempt to relate the AE burst duration to the defect size.  Interestingly, the bursts with equal 

defect length D4 to D7 had near identical burst durations, see figure 21.  For the other defects 

(D1 to D3), the burst duration could not be separated from underlying background noise, 

most probably due to the size of the seeded defect.  Also it was observed that the ratio of 

amplitude of the AE burst to underlying operational background noise increased 

incrementally from D4 through to D7, as the defect increased in width, see table 3. 

Table 3 Burst to noise ratio’s for defects of fixed defect length (15.8mm) 
 

Defect Burst duration 
(second) 

Burst amplitude 
(volt) 

Noise amplitude
(volt) 

Burst to noise 
ratio 

D4 0.0061 0.13 0.09 1.4:1 
D5 0.0056 0.18 0.09 2.0:1 
D6 0.0056 0.33 0.11 3.0:1 
D7 0.0056 0.46 0.10 4.6:1 

 

Two conclusions can be drawn, firstly, increasing the defect width increased the ratio of burst 

amplitude to operational noise (i.e., the burst signal was increasingly more evident above the 

operational noise levels, see figure 20). Secondly, it was deduced that increasing the defect 

length increased the burst duration.  To confirm this, a second experiment was performed 

utilizing the same running conditions but with different defect size combinations. 
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Furthermore, the second test was undertaken to ensure repeatability, and a new bearing of 

identical type to that used in experiment-1 was employed. 

 
Figure 20 Sample AE time wave forms for defects D0 to D7 (Experiment-1) 
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Figure 21 Burst duration for defect D6 & D7 (Experiment-1) 

 
 

10.2. Observations of experiment 2 (E2): 
 

The difference between this experiment and that reported in the previous section is two fold.  

Firstly, the defect size and arrangement of the seeded defect progression was different from 

experiment-1 and secondly, the AE data captured was sampled at 10 MHz. 

 

Observations of the bursts durations for defects D1 to D7, see figure 22, identified that for 

defects D3 to D7, the burst duration was discernable; these defects had widths of at least 2 

mm.  It was also observed that the AE bursts for defects D3 to D6 (figure 23) were similar; 

these defects had the same length of 4 mm.  Clearly when the defect was increased in length 

from 4mm to 10mm (D6 to D7) the burst duration increased dramatically, see figures 23 and 

24. 
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Table 4 Burst to noise ratio’s for defects with a fixed length (4mm) and a defect 
(D7) with an increased length (10mm) 

 

Defect Burst duration 
(second) 

Burst amplitude 
(volt) 

Noise amplitude
(volt) 

Signal to noise 
ratio 

D3 0.0018 0.17 0.10 1.7:1 
D4 0.0018 0.24 0.09 2.7:1 
D5 0.0019 0.32 0.10 3.2:1 
D6 0.0019 0.43 0.11 3.9:1 
D7 0.0036 0.42 0.11 3.8:1 
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Figure 22 Sample AE time wave-forms for defects D0 to D7 (Experiment-2) 
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Figure 23 AE waveform bursts for defects D5-D6 (Experiment-2) 

 
Figure 24 AE waveform burst for defect D7 (Experiment-2) 
 

 
A summary of AE burst duration for experiments-1 and -2 are detailed in table 5. From table 

5 a linear relation between the burst duration and the defect length is observed, see figure 25. 

The variation of this data about the mean was approximately ± 10%. 
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Table 5 Defect length and width vs. burst duration from experiments 1 and 2 

Exp. Defect Length in mm Width in mm Burst Duration in seconds 

2 D3 to D6 4 4, 8 and 13 0.00185 

2 D7 10 13 0.00360 

1 D5 to D7 15.83 4, 9 and 14 0.00564 
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Figure 25 AE burst duration vs. defect length 
 

Observations of vibration measurements in experiment-2 of test programme 2 failed to locate 

the defect source under all simulations but one condition, D3-L1. This was in contrast to AE. 

The r.m.s and maximum amplitude values for AE and vibrations obtained in test programme-

2, experiment-2, are detailed in figures 26 and 27.  These were calculated per data file. Again 

as reported in test programme-1, AE r.m.s increased from defect size ‘D1’ onwards whilst 

AE maximum amplitude values increased from defect size ‘D3’, see figure 26 and 27.  In 

contrast vibration r.m.s and maximum amplitude values have increased for defects D4 

onwards, see figures 26 and 27. 

Variation ± 10% 
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Figure 26 AE maximum amplitude values for experiment-2, defects D1 to D7 
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Figure 27 Vibration r.m.s values for experiment-2, defects D1 to D7 
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11. Discussions 

 

The source of AE for seeded defects is attributed to material protrusions above the surface 

roughness of the outer race. This was established as the smooth defect could not be 

distinguished from the no-defect condition. However, for all other defects where the material 

protruded above the surface roughness, AE transients associated with the defect frequency 

were observed. As the defect size increased, AE r.m.s, maximum amplitude and kurtosis 

values increased, however, observations of corresponding parameters from vibration 

measurements were disappointing. Although the vibration r.m.s and maximum amplitude 

values did show changes with defect condition, the rate of such changes highlighted the 

greater sensitivity of the AE technique to early defect detection, see appendix A. Again, 

unlike vibration measurements, the AE transient bursts could be related to the defect source 

whilst the frequency spectrum of vibration readings failed in the majority of cases to identify 

the defect frequency or source. Also evident from this investigation is that AE levels increase 

with increasing speed and load. It should be noted that further signal processing could be 

applied to the vibration data in an attempt to enhance defect detection. Techniques such as 

demodulation, band pass filtering, etc, could be applied though these were not employed for 

this particular investigation. The main reason for not applying further signal processing to the 

vibration data was to allow a direct comparison between the acquired AE and vibration 

signature. From the results presented two important features were noted; firstly, AE was more 

sensitive than vibration to variation in defect size, and secondly, that no further analysis of 

the AE response was required in relating the defect source to the AE response, which was not 

the case for vibration signatures. 

 

The relationship between defect size and AE burst duration is a significant finding. In the 
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longer term, and with further research, this offers opportunities for prognosis. AE burst 

duration was directly correlated to the seeded defect length (along the race in the direction of 

the rolling action) whilst the ratio of burst amplitude to the underlying operational noise 

levels was directly proportional to the seeded defect width.  

 

The variation of all data presented for test programme’s 1 and 2 are detailed in tables 1 to 3 in 

Appendix C and tables 1 to 4 in appendix D. The standard deviation and coefficient of 

variation (CV) for all parameters presented in the paper are detailed.  The CV is a measure of 

the relative dispersion in a set of measurements. From appendix C it was noted that the 

average CV for r.m.s, maximum amplitude and kurtosis for AE was 17%, 43% and 73% 

respectively. Correspondingly the average CV for equivalent vibration parameters was 11%, 

26% and 43%. This showed that the kurtosis measurements/calculations had a greater 

variability about the average value than r.m.s and maximum amplitude. For test programme-2 

the CV was less than 20% for AE parameters and just over 30% for vibration parameters. 

 

12 Conclusion 

 

It has been shown that the fundamental source of AE in seeded defect tests was due to 

material protrusions above the mean surface roughness.  Also, AE r.m.s, maximum amplitude 

and kurtosis have all been shown to be more sensitive to the onset and growth of defects than 

vibration measurements. A relationship between the AE burst duration and the defect length 

has been presented. 
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APPENDIX A 

Table 1 Percentage changes in vibration and AE r.m.s values 

AE % Change L0 L1 L2 VIB % Change L0 L1 L2 

S1 0% 0% 0% S1 0% 0% 0% 

S2 0% 0% 0% S2 0% 0% 0% 

S3 0% 0% 0% S3 0% 0% 0% 
N 

S4 0% 0% 0% 

N 

S4 0% 0% 0% 

          

S1 -6% -22% -13% S1 5% 1% 1% 

S2 20% -15% -22% S2 -6% 14% 0% 

S3 141% 63% 12% S3 -4% 12% -5% 
SD 

S4 150% 12% 10% 

SD 

S4 16% 12% 0% 

          

S1 371% -24% -27% S1 4% 4% 0% 

S2 54% -7% -30% S2 27% -3% -10% 

S3 148% 89% 36% S3 13% 34% 36% 
PD 

S4 194% 124% 54% 

PD 

S4 72% 35% 44% 

          

S1 170% 135% 35% S1 -2% 23% 8% 

S2 383% 210% 49% S2 17% 26% 3% 

S3 871% 590% 212% S3 44% 52% 21% 
LD 

S4 1313% 479% 344% 

LD 

S4 172% 34% 34% 

          

S1 284% 223% 237% S1 134% 251% 162% 

S2 371% 189% 147% S2 161% 343% 286% 

S3 843% 446% 353% S3 192% 376% 339% 
RD 

S4 1048% 504% 458% 

RD 

S4 238% 172% 143% 
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Table 2 Percentage changes in AE and vibration maximum amplitude values 

AE % Change L0 L1 L2 VIB % Change L0 L1 L2 

S1 0% 0% 0% S1 0% 0% 0% 

S2 0% 0% 0% S2 0% 0% 0% 

S3 0% 0% 0% S3 0% 0% 0% 
N 

S4 0% 0% 0% 

N 

S4 0% 0% 0% 

          

S1 13% -23% -20% S1 -3% -16% -5% 

S2 11% -17% -9% S2 -6% 3% -6% 

S3 90% 61% 12% S3 -10% 17% -8% 
SD 

S4 75% 19% 10% 

SD 

S4 9% 22% 5% 

          

S1 992% 23% 41% S1 -4% -8% -3% 

S2 242% 72% 41% S2 16% 4% -11% 

S3 347% 319% 199% S3 9% 30% 27% 
PD 

S4 262% 205% 172% 

PD 

S4 71% 37% 40% 

          

S1 918% 539% 262% S1 -21% 27% 7% 

S2 1726% 664% 275% S2 39% 37% 10% 

S3 3250% 1839% 692% S3 89% 67% 30% 
LD 

S4 3546% 1264% 1026% 

LD 

S4 159% 44% 34% 

          

S1 1652% 732% 1250% S1 110% 302% 186% 

S2 1951% 376% 378% S2 147% 330% 301% 

S3 3681% 883% 482% S3 209% 288% 260% 
RD 

S4 2992% 754% 579% 

RD 

S4 264% 155% 115% 
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Table 3 Percentage changes in vibration and AE kurtosis values 

AE % Change L0 L1 L2 VIB % Change L0 L1 L2 

S1 0% 0% 0% S1 0% 0% 0% 

S2 0% 0% 0% S2 0% 0% 0% 

S3 0% 0% 0% S3 0% 0% 0% 
N 

S4 0% 0% 0% 

N 

S4 0% 0% 0% 

          

S1 6% -10% 7% S1 -16% -29% -18% 

S2 -8% -14% 23% S2 -3% -17% -7% 

S3 -16% -1% 19% S3 9% -7% -22% 
SD 

S4 -29% 27% 10% 

SD 

S4 4% -11% -18% 

          

S1 750% 158% 174% S1 18% -6% -8% 

S2 328% 270% 479% S2 3% 42% 12% 

S3 190% 575% 664% S3 6% -10% -15% 
PD 

S4 37% 98% 336% 

PD 

S4 -2% -11% -20% 

          

S1 1999% 1291% 965% S1 -8% 11% 20% 

S2 2303% 932% 916% S2 142% 44% 57% 

S3 1839% 1418% 1201% S3 175% 13% 10% 
LD 

S4 974% 861% 1073% 

LD 

S4 95% 25% 6% 

          

S1 3112% 864% 2995% S1 24% 84% 78% 

S2 2637% 213% 328% S2 39% 71% 43% 

S3 2136% 352% 129% S3 31% -25% -30% 
RD 

S4 837% 178% 109% 

RD 

S4 25% 262% 363% 
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APPENDIX B 
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Figure 1 AE r.m.s of different defects; increasing loads at a fixed Speed 
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Figure 2 Vibration r.m.s of different defects; increasing loads at a fixed Speed 
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Figure 3 AE max amplitude of different defects at increasing loads and fixed speed 
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Figure 4 Vibration max amplitude of different defects at increasing loads and fixed 

speed 
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Figure 5 AE kurtosis of different defects at increasing loads and fixed speed 
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Figure 6 Vibration kurtosis of different defects at increasing loads and fixed speed 
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Appendix C 
 

Table 1 Mean, standard deviation and coefficient of variation for all test conditions; r.m.s 
 
Key:-  

Mean S. Deviation 
Coefficient of Variation % 
 

AE 
RMS L0 L1 L2 

Vibration 
RMS L0 L1 L2 

0.00208 0.00007 0.00421 0.00015 0.00573 0.00016 0.110534 0.004981 0.108938 0.005164 0.112476 0.00545 S1 
3.57% 3.45% 2.76% 

S1
4.51% 4.74% 4.85% 

0.00442 0.00021 0.00995 0.00079 0.014597 0.000901 0.140487 0.013768 0.17917 0.014676 0.173005 0.015096S2 
4.77% 7.91% 6.17% 

S2
9.80% 8.19% 8.73% 

0.01031 0.003509 0.019874 0.000973 0.032391 0.000954 0.25882 0.049597 0.381994 0.045741 0.375416 0.042903S3 
34.03% 4.90% 2.94% 

S3
19.16% 11.97% 11.43% 

0.014935 0.002854 0.035125 0.001132 0.05129 0.001684 0.262333 0.032162 0.647926 0.098311 0.660337 0.094787

N 

S4 
19.11% 3.22% 3.28% 

N 

S4
12.26% 15.17% 14.35% 

0.001943 6.26E-05 0.00329 0.000161 0.005019 0.000193 0.116016 0.005796 0.109562 0.004174 0.113129 0.005431S1 
3.22% 4.91% 3.84% 

S1
5.00% 3.81% 4.80% 

0.005325 0.000298 0.008506 0.000512 0.011352 0.000407 0.13138 0.008413 0.204407 0.017575 0.17294 0.01648 S2 
5.59% 6.01% 3.59% 

S2
6.40% 8.60% 9.53% 

0.024921 0.001294 0.032501 0.001263 0.036285 0.001614 0.247824 0.031248 0.42684 0.062943 0.358137 0.041745S3 
5.19% 3.89% 4.45% 

S3
12.61% 14.75% 11.66% 

0.037282 0.006864 0.039363 0.008259 0.056466 0.007488 0.303562 0.048452 0.724074 0.101285 0.65741 0.087132

SD 

S4 
18.41% 20.98% 13.26% 

SD 

S4
15.96% 13.99% 13.25% 

0.009798 0.009436 0.003197 0.000221 0.00421 0.000218 0.114764 0.011017 0.112968 0.006525 0.112439 0.005111S1 
96.30% 6.92% 5.19% 

S1
9.60% 5.78% 4.55% 

0.006792 0.008873 0.009208 0.000913 0.010153 0.001203 0.177751 0.019647 0.174459 0.01839 0.155688 0.012463S2 
130.64% 9.92% 11.84% 

S2
11.05% 10.54% 8.01% 

0.025603 0.009668 0.037551 0.004384 0.043965 0.005116 0.292589 0.02911 0.512618 0.059401 0.511783 0.067242S3 
37.76% 11.67% 11.64% 

S3
9.95% 11.59% 13.14% 

0.043898 0.004357 0.078959 0.006322 0.078806 0.012878 0.451193 0.053642 0.877046 0.141166 0.953266 0.113108

PD 

S4 
9.93% 8.01% 16.34% 

PD 

S4
11.89% 16.10% 11.87% 

0.005612 0.000734 0.009923 0.001416 0.007747 0.001341 0.108393 0.004147 0.134201 0.010703 0.121415 0.007239S1 
13.08% 14.27% 17.31% 

S1
3.83% 7.98% 5.96% 

0.021296 0.004553 0.030848 0.00833 0.02165 0.005113 0.164899 0.020048 0.226054 0.024405 0.178172 0.01988 S2 
21.38% 27.00% 23.62% 

S2
12.16% 10.80% 11.16% 

0.100221 0.03314 0.137379 0.036158 0.101017 0.027554 0.372372 0.073207 0.581865 0.067104 0.455222 0.067104S3 
33.07% 26.32% 27.28% 

S3
19.66% 11.53% 14.74% 

0.210338 0.068644 0.203599 0.052927 0.227806 0.072744 0.714118 0.192518 0.866022 0.15571 0.883662 0.168333

LD 

S4 
32.63% 26.00% 31.93% 

LD 

S4
26.96% 17.98% 19.05% 

0.00795 0.001792 0.013571 0.001802 0.019334 0.001616 0.258267 0.023291 0.381882 0.046362 0.29481 0.043323S1 
22.54% 13.28% 8.36% 

S1
9.02% 12.14% 14.70% 

0.020854 0.006258 0.028761 0.003559 0.036157 0.001746 0.366687 0.033127 0.793027 0.067234 0.667478 0.066637S2 
30.01% 12.37% 4.83% 

S2
9.03% 8.48% 9.98% 

0.096947 0.024285 0.10851 0.01382 0.146629 0.007698 0.754606 0.090048 1.816725 0.178897 1.643293 0.190666S3 
25.05% 12.74% 5.25% 

S3
11.93% 9.85% 11.60% 

0.171096 0.0314 0.212082 0.017932 0.285769 0.012569 0.887129 0.12968 1.763234 0.121782 1.607115 0.118789

RD 

S4 
18.35% 8.46% 4.40% 

RD 

S4
14.62% 6.91% 7.39% 
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Table 2 Mean, standard deviation and coefficient of variation for all test conditions; maximum amplitude 
 
Key:-  

Mean S. Deviation 
Coefficient of Variation % 
 
 

AE max. 
amplitud

e L0 L1 L2 

Vibration 
max. 

amplitud
e L0 L1 L2 

0.0149 0.006524 0.036803 0.020128 0.04131 0.011605 0.426122 0.104572 0.37851 0.094475 0.376092 0.067449S1 
43.78% 54.69% 28.09% 

S1
24.54% 24.96% 17.93% 

0.029569 0.013988 0.102148 0.065422 0.108597 0.027766 0.455451 0.114607 0.589201 0.141621 0.573061 0.156391S2 
47.31% 64.05% 25.57% 

S2
25.16% 24.04% 27.29% 

0.060725 0.028089 0.13416 0.032667 0.221715 0.049594 0.684509 0.169395 1.065683 0.315576 1.121585 0.391334S3 
46.26% 24.35% 22.37% 

S3
24.75% 29.61% 34.89% 

0.095059 0.031538 0.236697 0.0657 0.33793 0.076411 0.637855 0.123435 1.50238 0.400672 1.547755 0.49042

N 

S4 
33.18% 27.76% 22.61% 

N 

S4
19.35% 26.67% 31.69% 

0.016767 0.00644 0.028275 0.00826 0.033363 0.006056 0.411469 0.075882 0.318643 0.066042 0.356 0.067684S1 
38.41% 29.21% 18.15% 

S1
18.44% 20.73% 19.01% 

0.033616 0.013939 0.084782 0.051091 0.097653 0.032219 0.426683 0.086709 0.609701 0.124684 0.541524 0.108176S2 
41.47% 60.26% 32.99% 

S2
20.32% 20.45% 19.98% 

0.115335 0.017671 0.215026 0.05394 0.250093 0.077732 0.614241 0.118372 1.25011 0.425267 1.027509 0.304789S3 
15.32% 25.09% 31.08% 

S3
19.27% 34.02% 29.66% 

0.166421 0.032748 0.281803 0.06331 0.37256 0.068917 0.694292 0.149475 1.83638 0.487189 1.62518 0.456532

SD 

S4 
19.68% 22.47% 18.50% 

SD 

S4
21.53% 26.53% 28.09% 

0.164954 0.158003 0.045307 0.018477 0.059005 0.023613 0.408531 0.120479 0.346724 0.071826 0.363265 0.071478S1 
95.79% 40.78% 40.02% 

S1
29.49% 20.72% 19.68% 

0.105695 0.175902 0.177965 0.068597 0.15174 0.074084 0.528683 0.131054 0.615183 0.212818 0.511878 0.14524S2 
166.42% 38.55% 48.82% 

S2
24.79% 34.59% 28.37% 

0.272127 0.180325 0.563662 0.21607 0.676773 0.238314 0.748415 0.126557 1.384229 0.411869 1.422985 0.472924S3 
66.27% 38.33% 35.21% 

S3
16.91% 29.75% 33.23% 

0.343804 0.107785 0.727329 0.259129 0.922697 0.432785 1.089618 0.206767 2.060298 0.524359 2.166361 0.571468

PD 

S4 
31.35% 35.63% 46.90% 

PD 

S4
18.98% 25.45% 26.38% 

0.15155 0.049152 0.23904 0.118443 0.150789 0.106757 0.335939 0.081127 0.482153 0.119156 0.40098 0.08549S1 
32.43% 49.55% 70.80% 

S1
24.15% 24.71% 21.32% 

0.549966 0.203333 0.793367 0.444417 0.399768 0.2828 0.634 0.229519 0.806274 0.216681 0.631085 0.199209S2 
36.97% 56.02% 70.74% 

S2
36.20% 26.87% 31.57% 

2.032534 1.121462 2.601124 1.308942 1.769984 0.93768 1.295439 0.578847 1.783113 0.575885 1.454256 0.551794S3 
55.18% 50.32% 52.98% 

S3
44.68% 32.30% 37.94% 

3.45586 1.841971 3.23032 1.671089 3.833406 2.09603 1.650906 0.80296 2.166102 0.768099 2.077714 0.849431

LD 

S4 
53.30% 51.73% 54.68% 

LD 

S4
48.64% 35.46% 40.88% 

0.262969 0.182349 0.306043 0.127173 0.564963 0.107298 0.893571 0.15583 1.522286 0.306173 1.075571 0.268539S1 
69.34% 41.55% 18.99% 

S1
17.44% 20.11% 24.97% 

0.617684 0.409719 0.491357 0.291556 0.518636 0.109704 1.125646 0.211943 2.536524 0.415032 2.298293 0.471199S2 
66.33% 59.34% 21.15% 

S2
18.83% 16.36% 20.50% 

2.302343 0.971546 1.321508 0.7621 1.296574 0.328188 2.114104 0.435389 4.138695 0.425519 4.035311 0.448041S3 
42.20% 57.67% 25.31% 

S3
20.59% 10.28% 11.10% 

2.934978 0.938397 2.018096 0.734277 2.307621 0.481824 2.319563 0.585691 3.83158 0.688802 3.330045 1.508469

RD 

S4 
31.97% 36.38% 20.88% 

RD

S4
25.25% 17.98% 45.30% 

 
 
 



 45

 
Table 3 Mean, standard deviation and coefficient of variation for all test conditions; kurtosis 

 
Key:-  

Mean S. Deviation 
Coefficient of Variation % 
 
 

AE 
kurtosis L0 L1 L2 

Vibration 
kurtosis L0 L1 L2 

4.436782 4.224488 5.000562 6.020565 3.46719 0.269321 4.436782 4.224488 5.000562 6.020565 3.46719 0.269321S1 
95.22% 120.40% 7.77% 

S1
95.22% 120.40% 7.77% 

4.339619 3.836373 9.940779 18.61536 3.78912 0.596502 4.339619 3.836373 9.940779 18.61536 3.78912 0.596502S2 
88.40% 187.26% 15.74% 

S2
88.40% 187.26% 15.74% 

3.781132 0.929848 4.113147 1.425231 3.806502 0.607442 3.781132 0.929848 4.113147 1.425231 3.806502 0.607442S3 
24.59% 34.65% 15.96% 

S3
24.59% 34.65% 15.96% 

4.436208 1.815983 4.368583 1.391168 4.08898 0.903627 4.436208 1.815983 4.368583 1.391168 4.08898 0.903627

N 

S4 
40.94% 31.84% 22.10% 

N 

S4
40.94% 31.84% 22.10% 

4.665903 1.404395 4.505865 1.099453 3.713216 0.33158 3.418918 0.640817 2.965461 0.57377 3.451164 1.120604S1 
30.10% 24.40% 8.93% 

S1
18.74% 19.35% 32.47% 

4.005855 3.374727 8.603322 16.64647 4.663631 2.164177 3.589427 0.922964 3.027202 0.696543 3.70372 1.41759S2 
84.24% 193.49% 46.41% 

S2
25.71% 23.01% 38.27% 

3.154107 0.154672 4.046815 1.061499 4.51331 3.257478 3.32605 0.770929 4.241129 1.63703 3.952045 1.95179S3 
4.90% 26.23% 72.17% 

S3
23.18% 38.60% 49.39% 

3.147244 0.140312 5.552993 1.473932 4.506046 1.008311 3.182082 0.840328 3.106119 0.81242 3.408502 1.090185

SD 

S4 
4.46% 26.54% 22.38% 

SD 

S4
26.41% 26.16% 31.98% 

38.83491 33.28712 12.87823 16.92244 9.555857 7.467683 4.782516 3.497531 3.930797 1.367264 3.870064 1.147546S1 
85.71% 131.40% 78.15% 

S1
73.13% 34.78% 29.65% 

20.68345 28.22398 37.97499 37.64512 21.90824 34.64126 3.806749 1.905564 5.158101 2.685232 4.469181 2.296074S2 
136.46% 99.13% 158.12% 

S2
50.06% 52.06% 51.38% 

11.00543 10.12472 27.76037 22.0749 29.87804 21.88277 3.233571 0.819565 4.086293 1.724493 4.295411 1.919293S3 
92.00% 79.52% 73.24% 

S3
25.35% 42.20% 44.68% 

6.048639 2.731593 8.897458 5.541717 17.78524 16.71409 2.993143 0.663417 3.129064 0.864127 3.343492 1.1013

PD 

S4 
45.16% 62.28% 93.98% 

PD 

S4
22.16% 27.62% 32.94% 

92.16791 42.22209 69.02949 83.00089 37.11809 85.84416 3.740115 1.892375 4.63935 1.410001 5.031709 4.55721S1 
45.81% 120.24% 231.27% 

S1
50.60% 30.39% 90.57% 

105.2562 60.19319 105.3279 97.19804 38.20567 61.47599 8.980184 5.905258 5.234576 1.707687 6.302449 4.265727S2 
57.19% 92.28% 160.91% 

S2
65.76% 32.62% 67.68% 

73.25391 51.09542 62.62468 44.02204 49.66386 42.60622 8.351077 4.174584 5.146759 2.018436 5.565973 2.98152S3 
69.75% 70.30% 85.79% 

S3
49.99% 39.22% 53.57% 

47.4169 30.11592 42.26894 28.93362 48.3792 35.09275 5.945212 3.375089 4.386871 1.583773 4.39866 2.813827

LD 

S4 
63.51% 68.45% 72.54% 

LD 

S4
56.77% 36.10% 63.97% 

143.6338 154.7864 48.09199 48.03505 107.5937 37.13876 5.04944 2.16377 7.726035 2.621085 7.484124 5.198056S1 
107.76% 99.88% 34.52% 

S1
42.85% 33.93% 69.45% 

118.8805 94.60856 31.54254 44.56995 16.24523 5.002033 5.157657 1.747392 6.227091 1.895961 5.732117 1.393952S2 
79.58% 141.30% 30.79% 

S2
33.88% 30.45% 24.32% 

84.78826 51.01301 18.52561 24.59273 8.73463 2.486449 3.982678 0.953539 3.416066 0.629792 3.553674 0.529996S3 
60.17% 132.75% 28.47% 

S3
23.94% 18.44% 14.91% 

41.42224 18.42483 12.13047 8.991414 8.538072 2.609838 3.815731 1.184192 12.65901 7.111769 19.23017 10.40532

RD 

S4 
44.48% 74.12% 30.57% 

RD 

S4
31.03% 56.18% 54.11% 
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Appendix D 
 
 
 

Table 1 Mean, standard deviation and coefficient of variation for test 
programme-2; AE r.m.s  

 
Average 0.03025 0.0339 0.03865 0.0479688 0.06255 0.0728235 0.0981857 
Standard deviation 0.0005351 0.0008124 0.0012646 0.0028927 0.0030232 0.0038606 0.0036336 
Coefficient of 
variation 1.77% 2.40% 3.27% 6.03% 4.83% 5.30% 3.70% 
 Load 4.4kN 
 D1 D2 D3 D4 D5 D6 D7 

 
Table 2 Mean, standard deviation and coefficient of variation for test 

programme-2; AE maximum amplitude 
 

Average 0.2066417 0.1776417 0.2297167 0.3562063 0.4710313 0.549 0.6297857 
Standard deviation 0.0398724 0.0306937 0.0412125 0.0253876 0.0503913 0.0670317 0.0736799 
Coefficient of 
variation 19.30% 17.28% 17.94% 7.13% 10.70% 12.21% 11.70% 
 Load 4.4kN 
 D1 D2 D3 D4 D5 D6 D7 

 
Table 3 Mean, standard deviation and coefficient of variation for test 

programme-2; Vibration r.m.s  
 
Average 0.429082 0.3148242 0.3610585 0.4984004 1.0070777 0.8177705 0.6699566 
Standard deviation 0.0614877 0.0567484 0.0552029 0.0670442 0.137269 0.1381788 0.0760416 
Coefficient of 
variation 14.33% 18.03% 15.29% 13.45% 13.63% 16.90% 11.35% 

 Load 4.4kN 
 D1 D2 D3 D4 D5 D6 D7 

 
Table 4 Mean, standard deviation and coefficient of variation for test 

programme-2; Vibration maximum amplitude 
 
Average 1.0728039 0.7673333 0.9027242 1.2201647 2.8411781 2.4977007 1.6514511 
Standard deviation 0.3867745 0.2769304 0.3311302 0.3188992 0.7856587 0.8620226 0.4262681 
Coefficient of 
variation 36.05% 36.09% 36.68% 26.14% 27.65% 34.51% 25.81% 

 Load 4.4kN 
 D1 D2 D3 D4 D5 D6 D7 

 


