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ABSTRACT

In this paper, we review the application of dynamBayesian networks to prognostic
modelling. An example is provided for illustratiowith this example, we show how
the equipment’s reliability decays over time in thiéuation where repair is not
possible and then how a simple change to the mallitel's us to represent different
maintenance policies for repairable equipment.

1. INTRODUCTION

Prognostics is concerned with predicting the redidite of an item or the time until
the next failure is expected. If this could be peeatl with any degree of accuracy, it
would allow necessary maintenance activities tditned in an optimal manner as
well as eliminating some unnecessary maintenanogether. This in turn would
provide many benefits, including reduced mainteracwsts, reduced downtime and
improved equipment availability.

Prognostics is becoming an increasingly importapeat of predictive maintenance,
and is closely related to condition-based moniprifCBM)[14]. While CBM
provides information about the past and presentditon of a system, however,
prognostics is also concerned with its future cthadi To be able to predict this also
requires a reliable forecast of future equipmemt ddthough often mentioned in the
same breath, prognostics and diagnostics are diffiéeent. Fault diagnosis is a post-
event activity, aiming to assist recovery from éuf@ while prognostics is a pre-event
activity, aiming to avoid failure.

There are many approaches to prognostic modelimgding Physics of Failure
models and traditional statistically based modeld. most relevance to this
conference, however, are those approaches whicle ma& of Al. These include
artificial neural networks and dynamic Bayesianwoeks (DBNSs). It is this latter
approach which we concentrate on in this paper.

2. BAYESIAN NETWORKS

Bayesian networks (BNs) belong to the family ofbabilistic graphical models and
have been very successfully employed in fault diagn In this section, we will
provide a short description and explanation of BWg. will also briefly review their
applications in the fields of reliability and manince, concentrating in particular on
fault diagnosis.



Since their introduction in the mid-1980s [17], Bajn networks have become
increasingly popular as a framework for reasoninden uncertainty. While much of

the initial growth stemmed from their popularitytwn the Al community, the last

decade or so has brought the attentions of therwtddd of science and engineering,
including the field of reliability or, more genelsgldependability modelling. A recent
review of BNs in reliability modelling is providdaly Langseth and Portinale [15].

Much of their appeal can be attributed to the fidiy which the modelling
framework provides. For example, the same Bayesetwork might be used to
predict the probability of failure of some equiprmemd then to diagnose its cause
once a failure has occurred. Furthermore, harasstatl data can be combined with
softer expert opinion, perhaps regarding envirortalenfactors or design
considerations. Extensions of the basic BN furttehance the capability of the
approach to not just match but exceed the poweraditional reliability modelling
techniques such as fault trees, reliability blogkgdams and state-space methods.
Demonstrating the power of probabilistic represemma, BNs have also been shown
to offer numerous advantages in fault diagnosis detction over alternative Al
approaches such as rule-based systems, neuralrketaral case-based reasoning.

The qualitative structure of a BN is representedaldirected acyclic graph (DAG),
portraying probabilistic dependencies and indepeciés within the domain. This
contains a great deal of information, even before eonsider any probability
distributions. A fully specified BN, however, reges the construction of conditional
probability tables (CPTs) for each node. For nodél no arcs entering them, i.e.
with no parent nodes, only a single prior distibathas to be specified. For nodes
with a single parent, a conditional probabilitytdisution will have to be specified for
each possible state of the parent variable. Finéby chance nodes with more than
one parent, a conditional probability distributisrusually required for every possible
combination of parent states. While at first sights may appear rather burdensome,
there are often special cases where this requirecanbe relaxed, e.g. Noisy-OR
gates. This amounts to making various independassemptions.

Consider the BN shown in Figure 1. Prior marginetributions are required for
P(A),P(B)andP(E), while conditional distributions are required for
P(C|A),P(D|B),PF |IC D) andP(G|D,E). The joint probability distribution

over the full set of variabled =(V,,V,,...) is then given byP(U) = |_| PV, | pa(V,)),

wherepa(V,) denotes the set of parents of varialdle A major advantage of the BN

approach, however, is that the full joint distribnt does not usually have to be
computed in order to obtain posterior probabilitdeen new evidence arrives.

The ability of BNs to provide a flexible and powdrfprobabilistic modelling
framework makes them suitable for applications e field of reliability and
maintenance. The earliest and still the most popapalication is to fault diagnosis.
Sanseverino and Cascio [22] describe one suchcapipih to automotive electronic



Figure 1. Example DAG for a BN.

sub-systems which has been implemented in hundveésat repair centres across
Italy. Romessis and Mathioudakis [21] developed M f8r fault diagnosis of gas
turbine performance in the jet engine domain. Cérach McNaught [6] describe how
BNs play a key role in a decision support systesigiheed to provide advice on fault
diagnosis and correction during the final systesting of mobile telephone base
stations at Motorola. Another application in thehi® telephone industry involves
the use of a BN to help resolve problems in Noldawvorks [2].

An example of how BNs can be used for more tra@icystem reliability modelling

is given by Langseth and Portinale [15]. As welldascussing the logical basis of the
approach and practical aspects of model buildingy provide an example of fault-
tree-like analysis and show how features such aki-state variables, parameter
uncertainty and components sharing a common enwieoh can be conveniently
handled.

A more detailed description of how a fault tree t&ntranslated into a BN, together
with a discussion of the attendant advantagesivengoy Portinale and Bobbio [18]
and by Bobbio et al.[3]. Similarly, Torres-Toledaaaod Sucar [23] describe how
reliability block diagrams can be represented ass.B@ne advantage of the BN
representation is the ease with which the tradifidault tree’s deterministic AND
and OR gates are generalized to probabilistic ioglships. Furthermore, while this
permits the representation of relatively complexatrenships, there are also
intermediate, more parsimonious options availabléhe BN modeller, such as the
use of so-called Noisy-OR and Noisy-AND gates. IN@asy-OR gate, for example,
the presence of at least one of the lower-leveteauwoes not automatically lead to
the presence of the associated higher-level efieistinstead assumed that each cause
can be inhibited with some probability and that thkibition mechanism of each
cause is independent.

Bouissou and Pourret [5] show how a BN can be usedssess the capacity of a
production system represented as a series-pasgeem in which each component
has a capacity to process and pass on a givenofiagtthe total system capacity and
where some components might initially be in a csilthdby state. They demonstrate
the use of the system for troubleshooting as wefbasystem evaluation.



3. DYNAMIC BAYESIAN NETWORKS

Whereas an ordinary BN is a static model, reprasgiat joint probability distribution
at a fixed point or interval of time, a DBN can megent the evolution of a system
over time. In particular, it permits variables te tepresented at multiple points in
time within the same network structure.

There are a number of ways of representing theagassf time within BNs but the
most popular to date is the method proposed by DewhKanazawa [9]. In this
approach, time is modelled discretely as in a discMarkov chain. Each variable,
X,, has a time index subscript to indicate which tshiee it belongs to. As well as

containing the static or within-slice dependencmdsich ordinary BNs represent,
additional temporal dependencies are represent@BMs by arcs between the time
slices. In many cases, it is only necessary toidengirst order time dependencies in
which case a two-slice network is sufficient to piy all of the relationships.
However, the actual number of slices over whicleriafce is performed depends, of
course, on the problem situation. In essence, tmpact representation can be
regarded as being ‘unrolled’ over the number ofetislices needed to solve the
problem at hand. An example is provided in Seciion

DBNs provide a general probabilistic graphical nibkg framework which
encompasses many well-known special cases suchidaerHMarkov Models and
Kalman filters. The advantage of DBNs is the madgliflexibility they provide and
the efficient computational mechanisms which thdfero However, alternative
methods of temporal modelling with BNs have alserb@roposed, including an
event-based approach by Arroyo-Figueroa and SudarThis approach has been
applied to reliability modelling by Boudali and Dag[4].

4. APPLICATIONS OF DBNsTO PROGNOSTIC MODELLING

Roemer et al [20] identify five main approachegtognostic modelling dependent on
the nature of the information available to condubée prognosis. These are
experience-based, evolutionary, feature progresanohAl-based, state estimator and
physics-based. The first of these is closest witicanal reliability estimation, perhaps
making predictions based on a Weibull distributemmd only making amendments
when new failure data become available. Data-drigpproaches such as neural
networks have proven to be effective in processiegain data types such as
vibrational data, usually after the raw data hasnbgre-processed to extract a number
of relevant features. Radial basis function netwaikd probabilistic neural networks
appear to be particularly popular for this task.likén neural networks, DBNs can
compensate for limited data availability by makmgre use of expert knowledge.

Model-based reasoning along with knowledge of faikire rates and other relevant
characteristics is increasingly being used alorggshdition monitoring information,
either sampled periodically or measured contingoas part of a sensor suite or
health monitoring system.

For machinery containing moving parts, vibratioralgeis is a popular prognostic
indicator. So too is particle analysis from lubntg although there can be a



significant time delay in obtaining results fronbdsatory analysis. Acoustic signals
can be used to check structural integrity in shipg aircraft. The combination of such
disparate information is not always straightforward! is one reason why prognostic
modelling has attracted the interest of data fupi@ctitioners.

Just as Bayesian network approaches have been imgcamereasingly popular in
data and information fusion applications, so waelvel that they may also be well
suited to prognostic modelling. This is precisebcéuse their framework naturally
permits the combination of disparate informatioreains, including historical data,
expert knowledge and opinion, and measured, ndisgmations. Interestingly, most
applications of BNs, including DBNs, to prognosisiate appear to be in the medical
domain [11]. However, this is perhaps not surpgsas the medical domain was also
one of the first to prove the value of BNs in diagtic reasoning. After this, industrial
applications grew quickly in number and scope, arel speculate that the same
pattern will be repeated with prognostics.

Muller et al. [16] describe a prognostic maintereanwdel employing a DBN with a
manufacturing example involving metal bobbins. Dyimavariables are used to track
a number of degradation mechanisms and the impakfferent maintenance policies
can then be evaluated.

Weber and Jouffe [25] advocate an object orienpguicach to DBN modelling in the
case of complex systems. They make use of SADT htaim a functional
decomposition of the system, FMEA to identify fadunodes of the various functions
and construct the DBN based on this decompositidrey provide an example
concerning an immersion water heater, showing hbev \arious functional and
system reliabilities vary with time. The effectafnaintenance intervention on one of
the components at a fixed time is incorporated iwittnis example. They do not
consider condition-based maintenance, however

Much of the current research in maintenance modgis concerned with condition-
based monitoring and much of this was influencedChyister’'s work on delay time
models [7,8]. Wang [24] proposes the use of Hiddlkankov Models (HMMs) as part
of a two-stage prognostic modelling process in White length of the second stage
corresponds to the delay time. HMMs represent Yoduéon of a system in which the
underlying condition of the system follows a Markadhain but the true state variables
are hidden and only imperfect, noisy measuremeinteemn are observable. In fact,
HMMs are a special case of DBNs and so the latféer a potentially richer
representation.

Work by Boudali and Dugan [4] has sought to apphgett BNs to system level
reliability estimation. The term ‘timed BN’ is useéd make a distinction from DBN
since their approach is different but still invadva temporal representation. They
demonstrate how their approach can be used to dodyeamic fault trees (DFTS)
into timed BNs and discuss the advantages thiggbrikach basic component and
gate of the DFT is associated with a node in theedi BN. The state space of each
such node represents a set of mutually exclusidee&haustive discrete time intervals
during which the component or gate will fail. Of shanterest is the probability of the
system level gate failing in the final time intelrwehich is usually taken to be the
interval from the mission time of interest untifimty.



A discussion of possible metrics related to proghassgiven by Roemer et al. [19].
This is aimed at providing standard metrics to carapalternative prognostic
algorithms. It relates to validation and verificatiefforts applied to PHM tools being
developed for the Joint Strike Fighter. Kacprzyreskal. [12] also discuss metrics for
prognostics, primarily focusing on the role whidlmabilistic sensitivity analysis can
play in this.

Extending the FMECA to consider aspects relateprégnostics is an idea proposed
by Kacprzynski et al. [13]. They suggest that thmhanced FMECA could, for
example, identify what environmental parametershmigfluence the item under
study, what sensors are capable of capturing tiismation and where they should
be placed.

5. EXAMPLE

The DBN shown in Figure 2 is concerned with an popgnt for which two condition
monitoring indicators are available, CM1 and CMZhe3e provide imperfect
indicators of the equipment’s True Condition. Tendition is represented here as
having six discrete states — Good, Wear 1, WeaWe@ar 3, Failure Mode 1 and
Failure Mode 2. In the first four states, the equamt is functioning but with
increasing levels of wear and in the final twoesait is failed but in different ways.
The True Condition in the next time slice is depEnidon the True Condition in the
current time slice and on the Load exerted on theépenent during the current time
slice. Here, this is simply represented by twoestat Normal and Abnormal. The
presence of an abnormal load increases the tramgitiobabilities associated with
greater wear and failure. Over time and in the mabseof any maintenance, the
equipment gradually progresses through all of tlearvstates unless it enters one of
the absorbing states associated with failure. is ¢lkample, Failure Mode 1 can be
entered from the states Wear 1, Wear 2 and WeaitB ihcreasing likelihood) while
Failure Mode 2 can only be entered from the stataVg.

CML1 is highly correlated with True Condition andpides a good indication of the
level of wear suffered by the equipment. CM2 ieimtted to represent the severity of
vibration exhibited by the equipment and has tlate¢es — Low, Medium and High.
Here, this is more weakly correlated with wear titla® CM1 indicator is. However,
the vibrational state for Failure Mode 1 is mosely to be Medium while the
vibrational state for Failure Mode 2 is most likétybe High.

The arcs in Figure 2 identify direct probabilistiependencies between the variables
in the system. When there is no number on an laecrelationship is within the same
time slice. However, a number appearing on an rRdecates a dependence across
time slices and the number itself denotes the oodlehe dependence. Hence, the
Loads exerted on the equipment at time slices t &rid are probabilistically
dependent, as we might expect. In addition, a renarice action carried out in time
slice t influences the True Condition of the equipmat t+1. There are first and
second order dependencies shown for the variahle Tondition on itself, i.e. True
Condition at t is influenced by True Condition €t &and t-2. The reason for this is the
nature of the maintenance actions which we permdt model later. The allowable
actions are None, Reset and Replace. Taking adlmme has no effect on True



Condition. Taking action Reset will get the equiptneut of Failure Mode 1 and
return it to the wear state that it entered thid¢dastate from — hence the need for the
second order dependence. With only a first ordgreddence we would have to
assume that the equipment was always returnedixedicondition, possibly Good or
Wear 1. Action Replace, however, does always rethenequipment to the state
Good. An extract from the CPT for True Conditiorsiewn in Table 1.

True
@ m Condition
> %

Figure 2. The DBN for an equipment with two cormlitimonitoring indicators.

We have implemented the above model in the BN nhodetoftware Genie*[10].
The results from 1,000 time slices are displayedrigure 4. This shows how the
distribution of True Condition changes over timeewmo maintenance is performed.
At t=111, the reliability drops below 0.9 and by 277, it has dropped below 0.5.

Table 1. Extract from the CPT for the True Conditi@riable.

Load (t) Normal

Self (t-1) Wear 2

Self (t-2) Wear 2

Maint(t-1) None Reset Replace
Good 0 0 1
Wear 1 0 0 0
Wear 2 0.988 1 0
Wear 3 0.01 0 0

FM 1 0.002 0 0

FM 2 0 0 0

Next, we permit condition-based maintenance a@wito either reset the equipment
(returning it to its previous wear state beforertered Failure Mode 1) or replace the
equipment which is the only way to recover fromlii@ Mode 2 (therefore returning

True Condition to the state Good). Here, mainteadaaanodelled as a deterministic
variable, effectively a fixed policy based only the states of its parent nodes, CM1
and CM2 which provide condition-based informatiantbe equipment.

*The models described in this paper were creatadjube GeNle modeling environment developed by the
Decision Systems Laboratory of the University dfdbiurgh (http://dsl.sis.pitt.edu).
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Figure 3. DBN unrolled over two full time sliceschalso showing the"2order dependence of True
Condition on itself.
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Figure 4. Probability distribution of True Conditiover time given no maintenance.

The policy adopted for this example is as folloWsCM1 is Good or Wear 1 and
CM2 reports High Vibration, then the equipment esBt. If CM1 is Wear 2 and CM2
reports Medium or High Vibration, then the equipmenReset. Finally, if CM1 is
Wear 3, the equipment is Reset if CM2 reports MedWibration but is Replaced if
CM2 reports High Vibration. This is captured in tBBT for the maintenance node.

Figure 5 shows the results associated with thelbaiTrue Condition for this case.
We can see that the system approaches a steaglyasththat the probabilities of
being in either failed state are very low, partely for the second failure mode.

Good
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Figure 5. Probability distribution of True Conditiover time with maintenance.

Note that it would also be possible to model maiatee as a chance variable, to
represent, for example, situations where given shene information, different



maintenance engineers might act differently. Yedther possibility is to extend our
DBN representation to that of a dynamic decisiotwoek and then to model
maintenance as a decision. This will be exploreftare work.

6. DISCUSSION AND CONCLUSIONS

It is interesting to observe that the objectivesoamted with reliability estimation and
prognostic modelling seem virtually identical —estimate the probability distribution
of time until failure. (In this context, failure ght also equate to reaching a threshold
level of degradation at which some form of maintergais required.) Given this, there
seems to be less overlap between these topice iitehature than might be expected.
Perhaps this is attributable to the fact that receterest in prognostics has mainly
come from those with a background in condition-das®nitoring, maintenance,
sensors and data fusion rather than in traditioebhbility engineering. Another
difference may be that prognostics is currently enagsociated with component level
predictions while reliability engineering is tradially more associated with system
level predictions. Nonetheless, prognostics woelehs to be an area which promises
to bring these various communities together.

Increasing pressure to reduce maintenance costs tandmprove equipment
availability is likely to keep prognostic modelliran active research area over the
coming years. DBNs have a useful role to play iis,tparticularly as they offer a
unifying framework which generalizes a number ofrsggly distinct approaches,
including HMMs and Kalman filters. Specific resdarareas related to applying
DBNs to prognostic modelling which require furthegork include learning models
from databases, handling missing data and the fugpppoximations such as particle
filtering.
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