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ABSTRACT 
 
In this paper, we review the application of dynamic Bayesian networks to prognostic 
modelling. An example is provided for illustration. With this example, we show how 
the equipment’s reliability decays over time in the situation where repair is not 
possible and then how a simple change to the model allows us to represent different 
maintenance policies for repairable equipment.  
 
1. INTRODUCTION 
 
Prognostics is concerned with predicting the residual life of an item or the time until 
the next failure is expected. If this could be predicted with any degree of accuracy, it 
would allow necessary maintenance activities to be timed in an optimal manner as 
well as eliminating some unnecessary maintenance altogether. This in turn would 
provide many benefits, including reduced maintenance costs, reduced downtime and 
improved equipment availability. 
 
Prognostics is becoming an increasingly important aspect of predictive maintenance, 
and is closely related to condition-based monitoring (CBM)[14]. While CBM 
provides information about the past and present condition of a system, however, 
prognostics is also concerned with its future condition. To be able to predict this also 
requires a reliable forecast of future equipment use. Although often mentioned in the 
same breath, prognostics and diagnostics are quite different. Fault diagnosis is a post-
event activity, aiming to assist recovery from a failure while prognostics is a pre-event 
activity, aiming to avoid failure. 
 
There are many approaches to prognostic modelling, including Physics of Failure 
models and traditional statistically based models. Of most relevance to this 
conference, however, are those approaches which make use of AI. These include 
artificial neural networks and dynamic Bayesian networks (DBNs). It is this latter 
approach which we concentrate on in this paper. 
   
2. BAYESIAN NETWORKS 
 
Bayesian networks (BNs) belong to the family of probabilistic graphical models and 
have been very successfully employed in fault diagnosis. In this section, we will 
provide a short description and explanation of BNs. We will also briefly review their 
applications in the fields of reliability and maintenance, concentrating in particular on 
fault diagnosis. 
 



  

Since their introduction in the mid-1980s [17], Bayesian networks have become 
increasingly popular as a framework for reasoning under uncertainty. While much of 
the initial growth stemmed from their popularity within the AI community, the last 
decade or so has brought the attentions of the wider world of science and engineering, 
including the field of reliability or, more generally, dependability modelling. A recent 
review of BNs in reliability modelling is provided by Langseth and Portinale [15]. 
 
Much of their appeal can be attributed to the flexibility which the modelling 
framework provides. For example, the same Bayesian network might be used to 
predict the probability of failure of some equipment and then to diagnose its cause 
once a failure has occurred. Furthermore, hard statistical data can be combined with 
softer expert opinion, perhaps regarding environmental factors or design 
considerations. Extensions of the basic BN further enhance the capability of the 
approach to not just match but exceed the power of traditional reliability modelling 
techniques such as fault trees, reliability block diagrams and state-space methods. 
Demonstrating the power of probabilistic representations, BNs have also been shown 
to offer numerous advantages in fault diagnosis and detection over alternative AI 
approaches such as rule-based systems, neural networks and case-based reasoning. 
 
The qualitative structure of a BN is represented by a directed acyclic graph (DAG), 
portraying probabilistic dependencies and independencies within the domain. This 
contains a great deal of information, even before we consider any probability 
distributions. A fully specified BN, however, requires the construction of conditional 
probability tables (CPTs) for each node. For nodes with no arcs entering them, i.e. 
with no parent nodes, only a single prior distribution has to be specified. For nodes 
with a single parent, a conditional probability distribution will have to be specified for 
each possible state of the parent variable. Finally, for chance nodes with more than 
one parent, a conditional probability distribution is usually required for every possible 
combination of parent states. While at first sight, this may appear rather burdensome, 
there are often special cases where this requirement can be relaxed, e.g. Noisy-OR 
gates. This amounts to making various independence assumptions. 
 
Consider the BN shown in Figure 1. Prior marginal distributions are required for 

( ), ( )P A P B and ( )P E , while conditional distributions are required for 
( | ), ( | ), ( | , )P C A P D B P F C D  and ( | , )P G D E .  The joint probability distribution 

over the full set of variables 1 2( , ,...)U V V=  is then given by ( ) ( | ( ))i i
i

P U P V pa V= ∏ , 

where ( )ipa V denotes the set of parents of variable iV . A major advantage of the BN 

approach, however, is that the full joint distribution does not usually have to be 
computed in order to obtain posterior probabilities when new evidence arrives.  
 
The ability of BNs to provide a flexible and powerful probabilistic modelling 
framework makes them suitable for applications in the field of reliability and 
maintenance. The earliest and still the most popular application is to fault diagnosis. 
Sanseverino and Cascio [22] describe one such application to automotive electronic 
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Figure 1. Example DAG for a BN. 

sub-systems which has been implemented in hundreds of Fiat repair centres across 
Italy. Romessis and Mathioudakis [21] developed a BN for fault diagnosis of gas 
turbine performance in the jet engine domain. Chan and McNaught [6] describe how 
BNs play a key role in a decision support system designed to provide advice on fault 
diagnosis and correction during the final system testing of mobile telephone base 
stations at Motorola. Another application in the mobile telephone industry involves 
the use of a BN to help resolve problems in Nokia networks [2].  
 
An example of how BNs can be used for more traditional system reliability modelling 
is given by Langseth and Portinale [15]. As well as discussing the logical basis of the 
approach and practical aspects of model building, they provide an example of fault-
tree-like analysis and show how features such as multi-state variables, parameter 
uncertainty and components sharing a common environment can be conveniently 
handled.  
 
A more detailed description of how a fault tree can be translated into a BN, together 
with a discussion of the attendant advantages, is given by Portinale and Bobbio [18] 
and by Bobbio et al.[3]. Similarly, Torres-Toledano and Sucar [23] describe how 
reliability block diagrams can be represented as BNs. One advantage of the BN 
representation is the ease with which the traditional fault tree’s deterministic AND 
and OR gates are generalized to probabilistic relationships. Furthermore, while this 
permits the representation of relatively complex relationships, there are also 
intermediate, more parsimonious options available to the BN modeller, such as the 
use of so-called Noisy-OR and Noisy-AND gates. In a Noisy-OR gate, for example, 
the presence of at least one of the lower-level causes does not automatically lead to 
the presence of the associated higher-level effect. It is instead assumed that each cause 
can be inhibited with some probability and that the inhibition mechanism of each 
cause is independent.   
 
Bouissou and Pourret [5] show how a BN can be used to assess the capacity of a 
production system represented as a series-parallel system in which each component 
has a capacity to process and pass on a given fraction of the total system capacity and 
where some components might initially be in a cold standby state. They demonstrate 
the use of the system for troubleshooting as well as for system evaluation. 



  

 
3. DYNAMIC BAYESIAN NETWORKS 
 
Whereas an ordinary BN is a static model, representing a joint probability distribution 
at a fixed point or interval of time, a DBN can represent the evolution of a system 
over time. In particular, it permits variables to be represented at multiple points in 
time within the same network structure. 
 
There are a number of ways of representing the passage of time within BNs but the 
most popular to date is the method proposed by Dean and Kanazawa [9]. In this 
approach, time is modelled discretely as in a discrete Markov chain. Each variable, 

tX , has a time index subscript to indicate which time slice it belongs to. As well as 

containing the static or within-slice dependencies which ordinary BNs represent, 
additional temporal dependencies are represented in DBNs by arcs between the time 
slices. In many cases, it is only necessary to consider first order time dependencies in 
which case a two-slice network is sufficient to display all of the relationships. 
However, the actual number of slices over which inference is performed depends, of 
course, on the problem situation. In essence, the compact representation can be 
regarded as being ‘unrolled’ over the number of time slices needed to solve the 
problem at hand.  An example is provided in Section 5. 
 
DBNs provide a general probabilistic graphical modelling framework which 
encompasses many well-known special cases such as Hidden Markov Models and 
Kalman filters. The advantage of DBNs is the modelling flexibility they provide and 
the efficient computational mechanisms which they offer. However, alternative 
methods of temporal modelling with BNs have also been proposed, including an 
event-based approach by Arroyo-Figueroa and Sucar [1]. This approach has been 
applied to reliability modelling by Boudali and Dugan [4].  
 
4. APPLICATIONS OF DBNs TO PROGNOSTIC MODELLING 
 
Roemer et al [20] identify five main approaches to prognostic modelling dependent on 
the nature of the information available to conduct the prognosis. These are 
experience-based, evolutionary, feature progression and AI-based, state estimator and 
physics-based. The first of these is closest to traditional reliability estimation, perhaps 
making predictions based on a Weibull distribution and only making amendments 
when new failure data become available. Data-driven approaches such as neural 
networks have proven to be effective in processing certain data types such as 
vibrational data, usually after the raw data has been pre-processed to extract a number 
of relevant features. Radial basis function networks and probabilistic neural networks 
appear to be particularly popular for this task. Unlike neural networks, DBNs can 
compensate for limited data availability by making more use of expert knowledge.  
 
Model-based reasoning along with knowledge of past failure rates and other relevant 
characteristics is increasingly being used alongside condition monitoring information, 
either sampled periodically or measured continuously as part of a sensor suite or 
health monitoring system.  
 
For machinery containing moving parts, vibration analysis is a popular prognostic 
indicator. So too is particle analysis from lubricants, although there can be a 



  

significant time delay in obtaining results from laboratory analysis. Acoustic signals 
can be used to check structural integrity in ships and aircraft. The combination of such 
disparate information is not always straightforward and is one reason why prognostic 
modelling has attracted the interest of data fusion practitioners.  
 
Just as Bayesian network approaches have been becoming increasingly popular in 
data and information fusion applications, so we believe that they may also be well 
suited to prognostic modelling. This is precisely because their framework naturally 
permits the combination of disparate information streams, including historical data, 
expert knowledge and opinion, and measured, noisy observations. Interestingly, most 
applications of BNs, including DBNs, to prognosis to date appear to be in the medical 
domain [11]. However, this is perhaps not surprising as the medical domain was also 
one of the first to prove the value of BNs in diagnostic reasoning. After this, industrial 
applications grew quickly in number and scope, and we speculate that the same 
pattern will be repeated with prognostics.  
 
Muller et al. [16] describe a prognostic maintenance model employing a DBN with a 
manufacturing example involving metal bobbins. Dynamic variables are used to track 
a number of degradation mechanisms and the impact of different maintenance policies 
can then be evaluated.  
 
Weber and Jouffe [25] advocate an object oriented approach to DBN modelling in the 
case of complex systems. They make use of SADT to obtain a functional 
decomposition of the system, FMEA to identify failure modes of the various functions 
and construct the DBN based on this decomposition. They provide an example 
concerning an immersion water heater, showing how the various functional and 
system reliabilities vary with time. The effect of a maintenance intervention on one of 
the components at a fixed time is incorporated within this example. They do not 
consider condition-based maintenance, however 
 
Much of the current research in maintenance modelling is concerned with condition-
based monitoring and much of this was influenced by Christer’s work on delay time 
models [7,8]. Wang [24] proposes the use of Hidden Markov Models (HMMs) as part 
of a two-stage prognostic modelling process in which the length of the second stage 
corresponds to the delay time. HMMs represent the evolution of a system in which the 
underlying condition of the system follows a Markov chain but the true state variables 
are hidden and only imperfect, noisy measurements of them are observable. In fact, 
HMMs are a special case of DBNs and so the latter offer a potentially richer 
representation. 
 
Work by Boudali and Dugan [4] has sought to apply timed BNs to system level 
reliability estimation. The term ‘timed BN’ is used to make a distinction from DBN 
since their approach is different but still involves a temporal representation. They 
demonstrate how their approach can be used to convert dynamic fault trees (DFTs) 
into timed BNs and discuss the advantages this brings. Each basic component and 
gate of the DFT is associated with a node in the timed BN. The state space of each 
such node represents a set of mutually exclusive and exhaustive discrete time intervals 
during which the component or gate will fail. Of most interest is the probability of the 
system level gate failing in the final time interval which is usually taken to be the 
interval from the mission time of interest until infinity. 



  

 
A discussion of possible metrics related to prognosis is given by Roemer et al. [19]. 
This is aimed at providing standard metrics to compare alternative prognostic 
algorithms. It relates to validation and verification efforts applied to PHM tools being 
developed for the Joint Strike Fighter. Kacprzynski et al. [12] also discuss metrics for 
prognostics, primarily focusing on the role which probabilistic sensitivity analysis can 
play in this.  
 
Extending the FMECA to consider aspects related to prognostics is an idea proposed 
by Kacprzynski et al. [13]. They suggest that the enhanced FMECA could, for 
example, identify what environmental parameters might influence the item under 
study, what sensors are capable of capturing this information and where they should 
be placed. 
 
5. EXAMPLE 
 
The DBN shown in Figure 2 is concerned with an equipment for which two condition 
monitoring indicators are available, CM1 and CM2. These provide imperfect 
indicators of the equipment’s True Condition. True Condition is represented here as 
having six discrete states – Good, Wear 1, Wear 2, Wear 3, Failure Mode 1 and 
Failure Mode 2. In the first four states, the equipment is functioning but with 
increasing levels of wear and in the final two states, it is failed but in different ways. 
The True Condition in the next time slice is dependent on the True Condition in the 
current time slice and on the Load exerted on the equipment during the current time 
slice. Here, this is simply represented by two states – Normal and Abnormal. The 
presence of an abnormal load increases the transition probabilities associated with 
greater wear and failure. Over time and in the absence of any maintenance, the 
equipment gradually progresses through all of the wear states unless it enters one of 
the absorbing states associated with failure. In this example, Failure Mode 1 can be 
entered from the states Wear 1, Wear 2 and Wear 3 (with increasing likelihood) while 
Failure Mode 2 can only be entered from the state Wear 3. 
 
CM1 is highly correlated with True Condition and provides a good indication of the 
level of wear suffered by the equipment. CM2 is intended to represent the severity of 
vibration exhibited by the equipment and has three states – Low, Medium and High. 
Here, this is more weakly correlated with wear than the CM1 indicator is. However, 
the vibrational state for Failure Mode 1 is most likely to be Medium while the 
vibrational state for Failure Mode 2 is most likely to be High. 
 
The arcs in Figure 2 identify direct probabilistic dependencies between the variables 
in the system. When there is no number on an arc, the relationship is within the same 
time slice. However, a number appearing on an arc indicates a dependence across 
time slices and the number itself denotes the order of the dependence. Hence, the 
Loads exerted on the equipment at time slices t and t+1 are probabilistically 
dependent, as we might expect. In addition, a maintenance action carried out in time 
slice t influences the True Condition of the equipment at t+1. There are first and 
second order dependencies shown for the variable True Condition on itself, i.e. True 
Condition at t is influenced by True Condition at t-1 and t-2. The reason for this is the 
nature of the maintenance actions which we permit and model later. The allowable 
actions are None, Reset and Replace. Taking action None has no effect on True 



  

Condition. Taking action Reset will get the equipment out of Failure Mode 1 and 
return it to the wear state that it entered that failed state from – hence the need for the 
second order dependence. With only a first order dependence we would have to 
assume that the equipment was always returned to a fixed condition, possibly Good or 
Wear 1. Action Replace, however, does always return the equipment to the state 
Good. An extract from the CPT for True Condition is shown in Table 1. 
 
 

 

 
Figure 2. The DBN for an equipment with two condition monitoring indicators. 

 
We have implemented the above model in the BN modelling software Genie*[10]. 
The results from 1,000 time slices are displayed in Figure 4. This shows how the 
distribution of True Condition changes over time when no maintenance is performed. 
At t=111, the reliability drops below 0.9 and by t = 277, it has dropped below 0.5. 
 

Table 1. Extract from the CPT for the True Condition variable. 

Load (t)                                                               Normal 
Self (t-1)                                                             Wear 2 
Self (t-2)                                                             Wear 2 
Maint(t-1) None Reset Replace 
Good 0 0 1 
Wear 1 0 0 0 
Wear 2 0.988 1 0 
Wear 3 0.01 0 0 
FM 1 0.002 0 0 
FM 2 0 0 0 
 
Next, we permit condition-based maintenance activities to either reset the equipment 
(returning it to its previous wear state before it entered Failure Mode 1) or replace the 
equipment which is the only way to recover from Failure Mode 2 (therefore returning 
True Condition to the state Good). Here, maintenance is modelled as a deterministic 
variable, effectively a fixed policy based only on the states of its parent nodes, CM1 
and CM2 which provide condition-based information on the equipment.  

*The models described in this paper were created using the GeNIe modeling environment developed by the 
Decision Systems Laboratory of the University of Pittsburgh (http://dsl.sis.pitt.edu). 



  

 
Figure 3. DBN unrolled over two full time slices and also showing the 2nd order dependence of True 
Condition on itself. 
 

 
Figure 4. Probability distribution of True Condition over time given no maintenance. 

 
 
The policy adopted for this example is as follows. If CM1 is Good or Wear 1 and 
CM2 reports High Vibration, then the equipment is Reset. If CM1 is Wear 2 and CM2 
reports Medium or High Vibration, then the equipment is Reset. Finally, if CM1 is 
Wear 3, the equipment is Reset if CM2 reports Medium Vibration but is Replaced if 
CM2 reports High Vibration. This is captured in the CPT for the maintenance node. 
 
Figure 5 shows the results associated with the variable True Condition for this case. 
We can see that the system approaches a steady state and that the probabilities of 
being in either failed state are very low, particularly for the second failure mode. 
 

 
 

Figure 5. Probability distribution of True Condition over time with maintenance. 
 
Note that it would also be possible to model maintenance as a chance variable, to 
represent, for example, situations where given the same information, different 
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maintenance engineers might act differently. Yet another possibility is to extend our 
DBN representation to that of a dynamic decision network and then to model 
maintenance as a decision. This will be explored in future work. 
 
6. DISCUSSION AND CONCLUSIONS 
 
It is interesting to observe that the objectives associated with reliability estimation and 
prognostic modelling seem virtually identical – to estimate the probability distribution 
of time until failure. (In this context, failure might also equate to reaching a threshold 
level of degradation at which some form of maintenance is required.) Given this, there 
seems to be less overlap between these topics in the literature than might be expected. 
Perhaps this is attributable to the fact that recent interest in prognostics has mainly 
come from those with a background in condition-based monitoring, maintenance, 
sensors and data fusion rather than in traditional reliability engineering. Another 
difference may be that prognostics is currently more associated with component level 
predictions while reliability engineering is traditionally more associated with system 
level predictions. Nonetheless, prognostics would seem to be an area which promises 
to bring these various communities together. 
 
Increasing pressure to reduce maintenance costs and to improve equipment 
availability is likely to keep prognostic modelling an active research area over the 
coming years. DBNs have a useful role to play in this, particularly as they offer a 
unifying framework which generalizes a number of seemingly distinct approaches, 
including HMMs and Kalman filters. Specific research areas related to applying 
DBNs to prognostic modelling which require further work include learning models 
from databases, handling missing data and the use of approximations such as particle 
filtering. 
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