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Abstract

This paper investigates the use of the Method of Inequalities (MoI) to design output-feedback compen-
sators for the problem of the control of instabilities in a laminar plane Poiseuille flow. In common with
many flows, the dynamics of streamwise vortices in plane Poiseuille flow are very non-normal. Conse-
quently, small perturbations grow rapidly with a large transient that may trigger nonlinearities and lead
to turbulence even though such perturbations would, in a linear flow model, eventually decay. Such a
system can be described as a conditionally linear system. The sensitivity is measured using the maximum
transient energy growth, which is widely used in the fluid dynamics community. The paper considers
two approaches. In the first, the MoI is used to design low-order proportional and PI controllers. In the
second approach, the MoI is combined with McFarlane and Glover’s H∞ loop-shaping design procedure
in a mixed-optimization approach.
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1 Introduction

The problem of stabilizing fluid flows by feedback control has recently become a topic of much interest,
e.g. [1]. Fluid flow dynamics are often highly non-normal — that is their eigenvectors are closely aligned
— and this characteristic is one factor that makes fluid systems hard to control. Traditionally, fluid
dynamicists have assessed the stability of systems using Lyapunov’s first method, paying little attention
to the eigenvectors and the system sensitivity. For non-normal flows this leads to difficulties in resolving
the differences between measured and predicted flow instability [2]. Plane Poiseuille, or channel, flow is the
unidirectional flow between two infinite parallel planes. This flow is laminar and stable for low Reynolds
numbers, but at high Reynolds numbers the flow becomes unstable resulting in turbulence. Experiments
show that the flow undergoes transition to turbulence for Reynolds number as low as 1000[3]. However,
eigenvalue predictions show the flow to be stable at Reynolds numbers below approximately 5772 [4]. The
non-normal nature of the dynamics makes the flow very sensitive. Hence an initial perturbation will grow
to very large values before decaying. This can drive the system into regions where the non-linearities are
significant and trigger turbulence.

The system dynamics can thus be considered as conditionally linear [5]. That is, the system can be
considered linear provided the state remains within some region of the state space that is sufficiently
close to the steady state. In this paper, we explicitly consider the energy of perturbations (or transient
energy) which is a measure of the size of the perturbations of the state. It has a clear physical meaning and
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is a fundamental notion in the study of turbulence and transition. Consequently, the maximum transient
energy growth following some energy-bounded initial state perturbation is often used as a performance
measure for fluid flow systems, e.g. [6, 7].

The problem of controlling plane Poiseuille flow has received considerable attention. For example, optimal
linear quadratic methods have been considered by [7] and [8]. In these papers, the maximum transient
energy growth is considered in the analysis of the design, but not explicitly in the design formulation.
State feedback control that can minimize an upper bound on the maximum transient energy growth
for plane Poiseuille flow is considered in [9]. However, state feedback is not available for fluid flow
systems. The actual maximum transient energy growth can, in principle, be minimized for the output
feedback problem[10], but the method is too computationally expensive for the Poiseuille flow problem.
Furthermore it results in extremely high order controllers. Thus this paper considers two approaches that
use the Method of Inequalities[11] (MoI). In the first, the MoI is used to design low-order controllers,
namely proportional and PI controllers. In the second approach, the MoI is combined with McFarlane
and Glover’s H∞ loop-shaping design procedure[12] in a mixed-optimization approach[13]. Preliminary
results of the study can be found in [14].

A summary of the derivation of the state-space model is presented in the next section. This material can
also be found in [9], but is reproduced here for convenience. A more detailed exposition can be found
in [15], and full details in [16]. Section 3 defines the maximum transient energy growth and proposes
that the control signal magnitude is measured in a similar way. The MoI and mixed optimization are
introduced in Sections 4 and 5 respectively. The design results are given in Section 6. Finally, comments
and conclusions are provided.

2 Plane Poiseuille flow

Incompressible fluid flow is described by the Navier-Stokes and continuity equations. The Navier-Stokes
equations

~̇U +
(

~U · ∇
)

~U = −
1

ρ
∇P +

µ

ρ
∇2~U (1)

form a set of three coupled, non-linear, partial differential equations representing Newton’s second law
where ~U is velocity, P is pressure, ρ is density (uniform) and µ is viscosity (uniform), and the continuity
equation

ρ∇ · ~U = 0 (2)

is an additional constraint representing the conservation of mass.
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Figure 1: Plane Poiseuille flow.
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The control scheme is illustrated in Fig. 1. This shows Laminar Poiseuille flow with no slip occurring at
the bounding parallel planes, and which has a parabolic streamwise velocity profile. The flow undergoes
transition to turbulence when small perturbations ~u = (u, v, w), p about the steady base profile, ~Ub =
((1 − (y/h)2)Ucl, 0, 0), Pb, grow spatially and temporally to form a self-sustaining turbulent flow.

The Navier-Stokes equations written in terms of perturbations about the base flow, ~Ub, become

~̇u+ (~u · ∇) ~u+
(

~Ub · ∇
)

~u+ (~u · ∇) ~Ub = −
1

ρ
∇p+

µ

ρ
∇2~u (3)

If it is assumed that the perturbations are small compared to the base flow, the second-order nonlinear
term, (~u · ∇) ~u, can be discarded. Non-dimensionalizing (3) by dividing length scales by the channel
half-height h, dividing velocities by the base centreline velocity Ucl and dividing pressure by ρU2

cl, gives

~̇u+
(

~Ub · ∇
)

~u+ (~u · ∇) ~Ub = −∇p+
1

R
∇2~u (4)

where R := ρUclh/µ is the dimensionless Reynolds number. The continuity equation, (2), is linear and
so becomes

∇ · ~u = 0 (5)

The state of the flow can be determined from wall shear-stress or pressure measurements, and the flow can
be influenced by the manipulation of the conditions on its boundaries. In this work we assume that the
shear-stress is measured and that the fluid is actuated by wall transpiration, which is the injection and
suction of fluid at the walls. Hence active feedback control of the evolution of transition is feasible. The
proposed feedback controller scheme is shown in Fig. 1. However, (4) and (5) are infinite dimensional, so
in order to be able to use standard finite dimension control methods, and to ensure that the controller is
practically implementable, they must be approximated by a finite dimension linear time-invariant system
of the form

ẋ = Ax+Bu

y = Cx
(6)

However, a straightforward discretization results in a descriptor system with the form Eẋ = Ax + Bu

where E is singular. This is a consequence of the algebraic constraint imposed by the continuity equation,
(5), that does not contain pressure.

To proceed, the pressure perturbation term is eliminated from (4) by substituting (5) giving an expression
for the wall-normal velocity

∂(∇2v)

∂t
+ Ub

∂(∇2v)

∂x
−

∂2Ub

∂y2
∂v

∂x
−

1

R
∇2(∇2v) = 0 (7)

To completely describe a three dimensional flow perturbation, a second equation is required to describe
the wall-normal vorticity, η, where

η =
∂u

∂z
−

∂w

∂x
(8)

and (4) and (5) give
∂η

∂t
+

∂Ub

∂y

∂v

∂z
+ Ub

∂η

∂x
−

1

R
∇2η = 0 (9)

To implement control by wall transpiration, the no-slip wall boundary conditions at y = ±1 are replaced
by prescribed wall transpiration velocities, (u(±1) = 0, v(±1) 6= 0, w(±1) = 0). Sensing of ∂u/∂y and
∂w/∂y is performed at the upper and lower walls, as these are related to the streamwise and spanwise wall
shear-stresses respectively. Disturbances on ~u vary in the streamwise (x), wall-normal (y), and spanwise
(z) directions. Variations in the wall-normal direction are assumed to be non-periodic and are represented
by a modified Chebyshev series that fulfils the wall boundary conditions [17]. Variations in the streamwise
and spanwise directions are assumed to have a periodic representation, ℜ(ei(αx+βz)), so flow disturbances
grow in time, but not in space. The terms α and β are the streamwise and spanwise wave numbers
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respectively. Substituting the assumed solutions into (7) and (9), and assuming an exponential time
variation results in the classical Orr-Sommerfeld and Squire equations respectively[6].

After some manipulation of the equations, boundary control of the linearised Navier-Stokes equations in
a channel at a particular wave number pair, (α, β) (with associated variables denoted by ũ, ṽ, etc), can
be represented as a linear state-space system in the standard form of (6). The linearised Navier-Stokes
equations are evaluated atN locations in the wall-normal direction (with the locations more closely spaced
near the walls), and the state variables x are the Chebyshev coefficients of the wall-normal velocity, ṽ,
and vorticity, η̃, perturbations concatenated with the upper and lower wall ṽ transpiration velocities. For
details, see [16].

The inputs, u, are the rates of change of upper and lower wall transpiration velocities. Since these are rates
of change, the system contains two integrators, with eigenvectors representing upper and lower steady-
state transpiration from the walls. The measurements, y, are the wall shear-stress Fourier coefficients
on the upper and lower walls. The Chebyshev coefficients are complex, but the state-space system is
made real-valued by decomposing it into its real- and imaginary-valued parts, discarding the various null
entries and thus leaving the state-space dimension the same size. The test case considered here is α = 0,
β = 2.044, R = 5000. This test case is linearly stable but has the largest transient energy growth over
all unit initial conditions, time and wave-number pairs, and represents the very earliest stages of the
transition to turbulence. The model is discretised in the wall-normal direction with N = 20. The order
of the resulting model is 2N − 2. A 38th order model is high for control purposes, but errors become
significant at lower values of N [16].

3 Transient energy growth

Consider the asymptotically stable linear time-invariant system described by the initial value problem

ẋ = Ax, x(0) = x0, (10)

with A ∈ R
n×n, x0 ∈ R

n which has the continuous solution x : R+ → R
n, t 7→ eAtx0.

The transient energy, E(t), is defined as

E(t) = max
{

‖Wx(t)‖
2
: ‖Wx(0)‖ = 1

}

, (11)

where W > 0 is a constant weight matrix. The maximum transient energy growth, Ê , is defined as

Ê := max {E(t) : t ≥ 0} . (12)

Now consider the linear time-invariant plant

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(13)

with A ∈ R
n×n, x(t) ∈ R

n, B ∈ R
n×ℓ, u(t) ∈ R

ℓ, C ∈ R
m×n, y(t) ∈ R

m with feedback controller

ẋk(t) = Akxk(t) +Bky(t), xk(0) = xk0,

u(t) = Ckxk(t) +Dky(t),
(14)

with Ak ∈ R
nk×nk , Bk ∈ R

nk×m, Ck ∈ R
ℓ×nk , Dk ∈ R

ℓ×m. The closed loop system is given by

ẋc(t) = Acxc(t), xc(0) = xc0 (15)

where

Ac :=

[

A+BDkC BCk

BkC Ak

]

, xc(t) :=

[

x(t)
xk(t)

]

. (16)
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The maximum transient energy growth of the plant is

Ê = max
{

‖Wx(t)‖
2
: ‖Wx0‖ = 1, xk0 = 0, t ≥ 0

}

. (17)

The transient energy in the controller states is irrelevant to the problem under consideration because the
controller can always be normalized by appropriate choice of controller state basis. This is the problem
of controller state scaling, see [18] for example. Further details about transient energy growth in finite
dimension linear systems can be found in [10].

In order to limit the amount of effort generated by the controller in a closed loop system, the maximum
control “transient energy growth” is defined as

Û := max
{

‖u(t)‖2 : ‖Wx0‖ = 1, xk0 = 0, t ≥ 0
}

, (18)

where u = [DkC Ck]xc.

4 The Method of Inequalities (MoI)

In the MoI [11], the control design problem is expressed as a set of algebraic inequalities that need to be
satisfied for a successful design. The design problem is expressed as

φi(p) ≤ ǫi for i = 1 . . . n, (19)

where ǫi are real numbers, p ∈ P is a real vector (p1, p2, . . . , pq) chosen from a given set P and φi are real
functions of p. The design goals ǫi are chosen by the designer and represent the largest tolerable values
of the objective functions φi. The aim of the design is to find a p that simultaneously satisfies the set of
inequalities.

A solution to the set of inequalities, (19), is obtained by means of numerical search algorithms. Generally,
the design process is interactive, with the computer providing information to the designer about conflicting
design requirements, and the designer adjusting the inequalities to explore the various possible solutions
to the problem. The progress of the search algorithm should be monitored, and, if a solution is not
found, the designer may either change the starting point, relax some of the design goals ǫ or change the
design configuration. Alternatively, if a solution is found easily, to improve the quality of the design,
the design goals could be tightened or additional design objectives could be included in (19). The
design process is thus a two way process. The MoI provides information to the designer about conflicting
design requirements, and the designer makes decisions about the ‘trade-offs’ between design requirements.
Further details on numerical algorithms can be found in [11, 19, 20, 21].

The functions φi(p) are typically functionals of the system step response, for example the rise-time,
overshoot or the integral absolute error, or functionals of the frequency response, such as the bandwidth.
For the Poiseuille flow control problem they are taken as the maximum transient energy growth and
the maximum control transient energy growth. To ensure these are finite, the system must be closed-
loop stable and so a measure of the system stability needs to be included. One suitable measure is the
maximum real part of the closed-loop eigenvalues

α0 = max
i

{ℜ(λi(Ac))} (20)

where {λi} represents the set of eigenvalues of the closed-loop system matrix, Ac. Generally, the design
parameter, p, parameterizes a controller with a particular structure (e.g. [22]) rather than the state space
structure of (14). For example, p = (p1, p2) could parameterize a P+I controller p1+p2/s. Because state
space realizations are over-parameterized, this ensures a smaller dimension of the search space, P .

The Poiseuille flow control problem can be formulated as follows:

Problem 1. Find a p ∈ P and hence a K(p) such that

α0(p) ≤ ǫα, (21)

Ê(p) ≤ ǫ
Ê
, (22)

Û(p) ≤ ǫ
Û
, (23)
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where ǫα, ǫÊ , and ǫ
Û
are prescribed tolerable values of α0, Ê, and Û respectively.

5 Mixed optimization

W1(s)

Ks(s)

G(s)

W2(s)

-

�

-

�

Figure 2: Controller configuration for LSDP

The MoI can be combined with analytical optimization techniques in a mixed optimization approach
by using the parameters of the weighting functions generally required by such techniques as the design
parameters [13, 23, 24]. Here, we use McFarlane and Glover’s loop-shaping design procedure (LSDP)
[12].

The LSDP maximizes robust stability to perturbations on the normalized coprime factors of a plant, G(s),
weighted by pre- and post-compensators W1(s) and W2(s) as shown in Fig. 2. An explicit controller K(s)
for optimal γ

γ0 = inf
K

∥

∥

∥

∥

[

W−1
1 K
W2

]

(I −GK)−1
[

W−1
2 GW1

]

∥

∥

∥

∥

∞

(24)

can be synthesized, the weights having been simply incorporated into the optimal controller Ks(s) so
that K = W1KsW2.

The problem can be formulated as the MoI as follows:

Problem 2. For the system of Fig. 2, find a p ∈ P and hence a (W1,W2)(p) and K such that

γ0(p) ≤ ǫγ , (25)

Ê(p) ≤ ǫ
Ê
, (26)

Û(p) ≤ ǫ
Û
, (27)

where (W1,W2)(p) is a pair of fixed order weighting functions with real parameters p = (p1, p2, . . . , pq)
and ǫγ , ǫÊ , and ǫ

Û
are prescribed tolerable values of γ0, Ê, and Û respectively.

6 Results

6.1 Open loop

The transient energy E(t) of the linearized system with no wall transpiration control is shown in Fig. 3.
The maximum transient energy growth is Ê = 4941.

6.2 Low order controllers

The design goals are set at

ǫα = −1× 10−5, (28)

ǫ
Ê
= 1000, (29)

ǫ
Û
= 1. (30)
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Figure 3: Transient energy for open-loop system.

As the control vector, u, consists of the rates of change of upper and lower wall transpiration velocity,
and the measurement vector, y, consists of the upper and lower wall shear-stress, this symmetry can be
exploited in the definition of the controller structure to halve the number of search parameters. Matching
the symmetrical and the antisymmetrical input-output pairs gives a controller structure

K(s) :=

[

K1(s) K2(s) K3(s) K4(s)
K2(s) K1(s) K4(s) K3(s)

]

. (31)

Several low-order structures were tried using the Moving Boundaries Process[11] (MBP), but no controller
was found that satisfied Problem 1. After some iterations, the proportional controller

K =

[

0.9424 0.8562 0.2179 0.1022
0.8562 0.9424 0.1022 0.2179

]

(32)

was obtained with a performance

α0 = −1.7885× 10−3, (33)

Ê = 2740.0, (34)

Û = 0.9983. (35)

The transient energy E(t) is shown in Fig. 4, and the control transient energy is shown in Fig. 5. Detail
of the control transient energy is shown in Fig. 6.

In order to improve the performance, integral action was added by defining a PI structure for each Ki(s),
i = 1, 2, 3, 4 of (31) as

Ki(s) = ki (1 + 1/sTi) . (36)

A controller with

k =
[

0.7522 1.0184 0.4109 0.0292
]

(37)

T =
[

51.7557 65.3167 145.1924 18.5902
]

(38)
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Figure 4: Transient energy for proportional controller.
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Figure 5: Control transient energy for proportional controller.

was found by the MBP with a performance

α0 = −1.7691× 10−3, (39)

Ê = 2690.5, (40)

Û = 0.9960, (41)
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Figure 6: Control transient energy for proportional controller (detail).

which is an improvement on the proportional controller. The transient energy E(t) is shown in Fig. 7,
and the control transient energy is shown in Fig. 8. Detail of the control transient energy is shown in
Fig. 9.
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Figure 7: Transient energy for PI controller.
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Figure 8: Control transient energy for PI controller.
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Figure 9: Control transient energy for PI controller (detail).

PD and a PID structures were also tried, but the addition of derivative action gave only a very small
performance improvement with a very large increase in control effort. Some results for a PD controller
are presented in [14].
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6.3 Mixed optimization

The design goals are set for Problem 2 at

ǫγ = 5, (42)

ǫ
Ê
= 1000, (43)

ǫ
Û
= 10. (44)
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Figure 10: Open-loop singular values.

The open-loop singular values plot is shown in Fig. 10. The two singular value curves are very close.
Hence diagonal weighting functions matrices were chosen with both diagonal terms equal, that is W1(s) =
diag(w(s), w(s)). The post-plant weighting was set to be the identity W2 = I. Several structures for w(s)
were tried. The best performance was obtained with the structure

w(s) =
p1s+ p2
p3s+ p4

(45)

and with

p =
[

0.7278 1.7784 0.7095 0.4631
]

. (46)

The design goal, ǫ
Ê
was not satisfied. The resulting performance was

γ0 = 2.0194, (47)

Ê = 2874.0, (48)

Û = 0.9999. (49)

The transient energy E(t) is shown in Fig. 11. Interestingly, the best value of Ê was marginally greater
than that for the proportional controller, but the H∞-optimal controller prevented the possibility of an
earlier energy growth, as seen by the absence of peaks in the transient energy curve for time less than
250. The control transient energy is shown in Fig. 12 and detail is shown in Fig. 13.
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Figure 11: Transient energy for LSDP controller.
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Figure 12: Control transient energy for LSDP controller.
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Figure 13: Control transient energy for LSDP controller (detail).

7 Discussion and conclusions

In this paper, the design of both low order controllers and H∞-optimal controllers using the MoI has been
performed. The state feedback controllers obtained in [9] gave a value of Ê = 883. This is considerably
lower than the best value obtained in this study of Ê = 2690.5 for the PI controller. This indicates
the difficulties in state estimation for this system. The optimal H∞ was unable to improve on the PI
controller and was actually greater. However, the performance of the transient energy was significantly
better for earlier times. With an increase in computational power, the convex optimization methods of
[10] could be applied to this problem and determine what is the minimal Ê and whether a solution exists.
The problem of model order reduction for the maximum transient energy growth problem would aid the
design of optimal controllers, but that is a topic for further study.

Proportional control performed by [7] achieves a lower transient energy growth. However the model
actuates by wall-normal velocity, rather than rate-of-change of wall-normal velocity. More recent work
indicates that control by rate-of-change of velocity results in greater accuracy when modelling flow control
for plane Poiseuille flow due to improved treatment of the Neumann boundary conditions and energy
weighting matrix W [15, 8]. Note also that the design of low-order controllers for the problem of plane
Poiseuille flow has been considered before [25] but but not the explicit consideration of the maximum
transient energy growth. Similarly, McFarlane and Glover’s LSDP has been used for a spatially growing
channel flow [26], but transient energy growth was also not explicitly considered.
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