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ABSTRACT 
 
To achieve the best structural model improvement using vibration test data, main effort 
has been made to locate poor modelling regions as a guideline for subsequent model 
updating. The method presented and used in this paper is the energy error estimation 
method. In the method the difference between analytical and test data based energies at 
element scale is estimated to indicate any poor structural mass and stiffness modelling. As 
the result, poor modelling regions can be distinguished from those correctly modelled and 
the improvement of original structural model can be carried out effectively and accurately. 
To demonstrate the application of this method, a full-scale tail-plane structure has been 
studied by using simulated ‘test’ modes as a simulated case and using measured modes as 
a practical case. In both cases poor modelling regions of the original structural model have 
been accurately located. Subsequently, a significant improvement of the structural model 
with the reduction of average frequency error from original 2.2% down to 0.1% for the 
simulated case and from 4.6% to 1.8% for the practical case has been achieved.  
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1. INTRODUCTION 
 

In the analysis of structural dynamics, accurate modal prediction is essential. For a 
practical structure of large size and complex configuration, however, modal errors due to 
simplification of structural modelling and poor estimation of structural parameters are 
almost inevitable. Poor analytical modelling may also occur if undetected damage (fault) 
exists in a structure causing overestimation of analytical stiffness in the local region. In 
order to improve the structural model efficiently, various methods based on available 
modal information from vibration test have been developed in the last two decades. 

In the development of those methods, it has been noted that the major difficulty 
towards achieving the correct and unique solution is caused by the insufficiency 
(incompletion) of test modes. One type of the methods early developed to tackle this 
problem was proposed by Baruch [1], Berman and Nagy [2, 3], and was based on an 
optimal method, e.g. the Lagrange multiplier method. These methods have the advantage 
of simple and non-iterative model updating procedure and accurate matching of the 
predicted modes with measured modes. However these methods make the original system 
matrices reconstructed without preserving their physical meaning of element connection. 
Consequently the reconstructed model would not guarantee the modal correction beyond 
the range of measured modes. 

The second type of developed methods includes the two-response method [4], the 
orthogonality and eigendata constraint methods [5], and the extended corrected modal 
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constraint method [6]. Unlike the aforementioned first type of methods, only chosen 
matrix elements will be adjusted in these methods so that the original configuration of 
system matrices will be maintained. In practice however, the success of those methods 
heavily depend upon the accuracy and number of available measured modes. That is a 
crucial limit of the methods when applied to practical problems. One of the reasons for the 
above method limitation may be that both the location and magnitudes of the modelling 
errors in an analytical model need to be identified simultaneously during model updating. 
To avoid such difficulty, effort has been made to tackle the problem in two steps, i.e. the 
modelling error localisation followed by model correction. The error magnitudes of poorly 
modelled elements are not required at the first step of identifying their locations. Hence 
the conditions required for accurate result can be relaxed. By employing the sensitivity 
method for example, which may be classified as the third type of method, the sensitivity of 
eigendata errors [7] or orthogonality errors [8] to a small change of individual matrix 
element can be calculated. A non-zero sensitivity value indicates that the elements located 
in corresponding region may need improvement for accurate modal prediction. In practice 
however, not all modelling errors would be necessarily indicated by non-zero sensitivity 
values. This is mainly because the limited number of available measured modes may be 
insensitive to some of the modelling errors. On the other hand, not all non-zero sensitivity 
values necessarily represent the actual modelling errors. This is mainly because some 
regions to which the response is sensitive to modelling errors are actually correctly 
modelled. Normally an iterative performance is required for the model updating to 
converge. 

Because of the similarity of poor modelling localisation to structural damage 
localisation using modal test data, some methods may be suitable for both applications. In 
the early 1990s Hearn and Testa [9] used modal strain energy for damage detection in 
structures. Contribution in developing the method has also been presented by Lim and 
Kashangaki [10]. Later further effort has been made to locate the structural damage based 
on the ratio of change in the modal strain energy caused by the damage [11]. Although this 
type of method is effective and may be applied to locating poor modelling, its accuracy of 
result, especially in the elements adjacent to the damage region, needs further 
improvement. In order to overcome this drawback, an energy error estimation method has 
been proposed and applied to both model improvement [12] and damage localisation [13] 
by Guo and Hemingway. This method is based on estimating the analytical and modal test 
data based kinetic and strain energies at finite element scale. The differences in magnitude 
represent the existing energy errors and indicate poor mass and stiffness modelling or 
internal structural damage. In terms of modal strain energy calculation, this method is 
similar to the aforementioned methods. However, this current method also provides 
additional measure to distinguish poor modelling or damage regions from those correctly 
modelled. This makes difference and has the advantage over the previously developed 
similar methods. Further more from the estimated energy error, a correction factor for 
each element can be created and used to improve each individual element and hence the 
whole model. 

In this present paper, effort has been made to apply the energy error estimation 
method to improve the model of a full-scale tail-plane structure. One simulated example 
using ‘test’ data and one practical case using measured modes have been demonstrated. In 
both cases poorly modelled regions of the original structural model have been located 
accurately. Subsequently, significant improvement of the structural model with reduction 
of average frequency error from 2.2% down to 0.1% for the simulated ‘test’ case and from 
4.6% to 1.8% for the practical case has been achieved.   
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2. THE ENERGY ERROR ESTIMATION METHOD 

 
2.1 MODELLING ERRORS INDICATED BY ENERGY ERRORS  

Using the finite element method, the stiffness and mass models for a structural 
system are normally represented in matrices [K]a and [M]a assembled from element 
models [Ki]a and [Mi]a , i.e. 
 

  [ ] [ ]K Ka i a
i

n
= ∑

=1
 and  [ ] [ ]M Ma i a

i

n
= ∑

=1
  (1) 

 
where n represents the total number of elements in the system. 

In a design process, unacceptable difference may be found between the predicted 
and measured modes of a structural system. In such case, it is usual to suspect that errors 
arise from the structural models under the assumption of reliable measured modes. The 
correct yet unknown stiffness and mass models, [K]c and [M]c, may be then represented in 
terms of the original stiffness and mass matrices and their error matrices, [∆Ki] and [∆Mi], 
as follows 
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The modelling errors would cause difference between the analytical and test-data 

based energies, which are defined here as the strain and kinetic energy errors, ∆Sj and ∆Tj, 
of the system as represented below. 
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where λja and λjt are the jth analytical and measured eigenvalues, { }Φ ja and { }Φ jt  the jth 

analytical and test-data based mass-normalised mode shape divided by jaλ2  

and jtλ2  respectively. In the above equations, since each of the terms is scaled to unit 

value, both ∆Sj and ∆Tj would be zero if [∆Ki] and [∆Mi] were included. In the initial 
analysis stage however, [∆Ki] and [∆Mi] are unknown, hence [K]C and [M]C are normally 
replaced by [K]a and [M]a. In such case, the system energy errors ∆Sj and ∆Tj in a 
particular mode can be approximated below and become non-zero. 
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where  ∆λj= λja - λjt and jtjaj }{}{}{ Φ−Φ=Φ∆  represent the frequency and modal errors 
of the jth mode respectively.  

It is assumed here that a spatially complete set of measurement is available. In 
practice, analytical values will be employed to make the spatially incomplete measured 
modes expanded and completed. Equation (4) shows that the system energy errors ∆Sj and 
∆Tj are the sum of element energy errors ∆Sij and ∆Tij in a particular mode, which are 
represented below. 
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For those correctly modelled elements, [∆Ki] and [∆Mi] don’t exist and hence equation (5) 
gives accurate representation of their energy errors. Those energy errors may not be zero 
but small values due to modal error caused by poorly modelled elements elsewhere. 
Oppositely, large energy error values normally arise from those poorly modelled elements 
associated with [∆Ki] and [∆Mi]. As more test modes are available and used, these element 
energy error values will be further increased and their difference from the correctly 
modelled elements will be further enlarged. The element energy errors in m number of test 
modes are represented as follows: 
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Energy errors are thus used to indicate the possibility, or degree of, element modelling 
errors. 
 
2.2  LOCALIZATION OF POORLY MODELLED ELEMENTS 
 
2.2.1 Initial Localization   

According to equations (5) and (6), the total strain and kinetic energy errors of a 
system modelled by using ‘n’ number of elements can be estimated by using ‘m’ number 
of modes as follows: 
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A ratio of element against system energy errors is then recommended to evaluate stiffness 
and mass modelling errors for each of the elements in percentage 
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       RK S Si i= ⋅( /| |) (%)∆ ∆ 100  and RM T Ti i= ⋅( /| |) (%)∆ ∆ 100   (8) 

 
The RKi and RMi, which are used as an indicator of locating poor modelling, would have 
significantly higher magnitude for a poorly modelled element than correct one. Their sign 
also indicates an underestimation (+) or overestimation (-) of the stiffness or/and mass in 
the analytical model. 

Although the above RKi and RMi, provide a useful indicator to localise poorly 
modelled elements, the result is approximate and an uncertainty remains as weather a 
small value of RKi and RMi, indicates a small modelling error or just accuracy error? Such 
uncertainty is especially concerned in the region adjacent to the poorly modelled elements. 
This problem occurring in the initial stage of modelling error localization causes difficulty 
to achieve high accuracy and reliability of locating and improving poor modelling. In 
order to solve the problem, further investigation has been carried out and a method to 
further distinguish the poorly modelled from correctly modelled elements has been 
proposed and described below.  
 
2.2.2 Final Localisation   

 
The method for further locating poorly modelled elements is based on the sign rather 

than the magnitude difference between the energy errors of poorly and correctly modelled 
elements. From equations (5-6), it is noted that the modal error {∆Φ}j plays major role in 
energy error estimation. This is because it contains more explicit and useful information 
about the location and magnitude of modelling errors than ∆λj. Since {∆Φ}j in a poorly 
modelled region is caused directly by a local modelling error, it should remain the same 
sign for any mode. While in a correctly modelled region, where {∆Φ}j is caused indirectly 
by modelling errors beyond the region, the sign of {∆Φ}j and hence ∆Sij and ∆Tij may vary 
in different mode. Such sign variation can be worked out from equation (5) and used as an 
indicator to distinguish the correctly modelled elements from those poorly modelled ones. 
For example, if the sign of ∆Sij and/or ∆Tij for the ith element changes when using a 
different mode, this element stiffness and/or mass may be identified as correctly modelled. 
The element thus can be excluded from the poor modelling region regardless of its initial 
RKi and RMi values. If the sign remains the same as mode varies, the element would be 
identified as poorly modelled and thus should be included in the poor modelling region for 
subsequent model improvement. Although it has been noted that some modes may play 
more significant role than others in modelling error detection, generally speaking the more 
measured modes are available and used, the more reliable result would be expected. In 
practice however, because of the inevitable measurement errors and incomplete 
measurements in both spatial and modal coordinates, this method may not guarantee to 
filter off all correctly modelled elements from the initially located poorly modelled 
regions. Nevertheless this method provides a useful tool to enhance the accuracy and 
reliability of the localization result. It is simple, efficient and accurate provided that the 
effect on {∆Φ}j by measurement errors is less than that by modelling errors.  
 
2.3  IMPROVEMENT OF POOR ELEMENT MODELLING 

 
After localizing the poorly modelled elements, model improvement may be carried 

out with confidence by evaluating the stiffness and/or mass error matrix [∆Ki] and [∆Mi], 
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and then modifying the original [Ki]a and/or [Mi]a. Assuming [∆Ki] and [∆Mi] are a 
fraction of [Ki]a and [Mi]a of each element respectively, an approximation of them may be 
obtained by using the estimated RKi and RMi as follows: 

 
 [∆Ki] = FKi [Ki]a   and  [∆Mi] = FMi [Mi]a     (9) 
 
where FKi = Fk x RKi and FMi = Fm x RMi with Fk and Fm representing weighting factors 
for stiffness and mass modelling improvement respectively. 

An initial model improvement can be achieved by substituting the above estimated 
[∆Ki] and [∆Mi] back into equation (2). Based on the improved model, further 
improvement can be carried out by repeating the above procedure. As the model is further 
improved, the remaining [∆Ki] and [∆Mi] hence RKi and RMi would become smaller. Such 
iterative implement can be carried out until the estimated RKi and RMi converge to a 
specified small value. Consequently the accuracy of predicted modes based on the 
improved model would be increased to achieve a minimum difference from the measured 
modes. Such mode difference is assessed here by an average frequency error ∆f and mode 
shape error ∆Φ represented as follows. 
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3. APPLICATION TO A TAIL-PLANE STRUCTURE 
 

A full-scale tail-plane structure of 5.95 m in span and 1.83 m in mainframe length as 
shown in Figure 1 was used for demonstration. The tail-plane is suspended by an elastic 
bungee at the front end of its main frame and seated on two vertical beams at its back ends. 
In the current demonstration of model improvement, the tail-plane structural modelling was 
largely simplified by using 3-D beam elements as illustrated in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 1. A view of the tail-plane set-up for vibration test  
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  Figure 2.  The analytical beam model of the tail-plane structure 
 

 
The structure was represented by a stiffness matrix of 192x192 order assembled 

from each of the beam elements having 12x12 order stiffness matrix. Similarly, a mass 
matrix of the same order assembled from nodal mass matrix of 6x6 order was created to 
represent the mass properties of the structure. Considering the symmetric configuration of 
the structure, only half of the structure was modelled. The modal analysis for symmetric 
and anti-symmetric modes was carried out separately. The first 9 modes with frequency 
values listed in Table 1 were obtained as the analytical results.  
 
 Table 1.  Predicted frequencies (Hz) of the tail-plane analytical model 

Mode No. 1 2 3 4 5 6 7 8 9 
Symmetric 1.77* 9.83* 11.83 24.03 41.43 42.13 60.10 68.31 93.00

Anti-symmetric 4.77* 5.39 11.66 26.67 43.33 58.48 61.49 72.08 89.59
  *  rigid-body mode 
 
 
3.1 MODEL IMPROVEMENT USING SIMULATED ‘TEST’ MODES (CASE 1) 
 

This first example is aimed to demonstrate the analysis procedure of the method. 
To obtain a set of simulated modes as our ‘test’ data, a ‘test’ structural model was created. 
Taking the same configuration and beam modelling as the analytical model shown in 
Figure 2, the ‘test’ structural model has 10% more mass in element 11, and 10% less 
bending and torsion rigidity in elements 9 & 10. To keep the configuration symmetrical, 
the same difference as above was made on the opposite (right) side of the ‘test’ model. In 
this example, although eight symmetrical modes of the ‘test’ structure have been predicted 
as shown in Table 1, only the six flexible modes, i.e. modes 3 – 8 were used as available 
‘test’ modes in the model improvement procedure as described below. In this idealized 
example, the ‘test’ modes are assumed to be spatially complete and noise-free. Hence 
excellent modelling error locating result is expected. 
 
3.1.1 Modelling error localization   
 

Using the analytical model and the six ‘test’ modes in equations (6-8), an initial 
energy error distribution of the analytical model was obtained as shown in Figure 3. The 
significantly large values of RKi and RMi indicate that poor stiffness modelling is most 
likely to occur in elements 9 and 10, and poor mass modelling in element 11. Due to 
symmetric configuration, similar modelling errors are also expected on the opposite side 
of the analytical model. It is noted that non-zero RKi and RMi values also appear beyond 
those elements. However they could be caused by approximation of the method or very 
small modelling errors since their values are significantly small.  
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In order to further distinguish the poorly modelled elements from the correctly 
modelled ones, effort has been made to clear the above diagram of initial modelling error 
distribution. Using Eq(5) in this second stage, the sign of energy error ∆Sij and ∆Tij for 
each element and mode was obtained. Figure 4 shows that for all elements apart from 9 & 
10, the sign of ∆Sij changes at least once when a different mode is used. This reinsures us 
that only the stiffness of elements 9 & 10 is poorly modelled. Similarly, Figure 5 shows 
that only elements 6 & 11 contain mass modelling errors, while the other possible errors 
identified initially can be cleared away from Figure 3. As the result, a much clearer view of 
modelling error distribution can be obtained as shown in Figure 6. Comparing with the 
analytical model, the negative RK9 and RK10 indicate that the ‘test’ structure actually has 
smaller stiffness within its elements 9 and 10 region. While the positive RMi indicates that 
more mass actually exists in the region of element 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 3.  Energy Errors Indicating the Modelling Error Distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 4a.  The sign variation of ∆Sij along the tail-plane  
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  Figure 4b.  The sign variation of ∆Sij along the supporting beams 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 5a.  The sign variation of ∆Tij along the tail-plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 5b.  The sign variation of ∆Tij along the supporting beams 
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  Figure 6.  A clear view of modelling error localization 
 
 
3.1.2 Model Improvement   
 

Having localized the modelling errors as shown in Figure 6, the subsequent model 
improvement may be carried out by using equations (2), (8) & (9) in an iterative manner or 
minimising ∆f in a trial and error approach. In this example, the above estimated RKi, RMi 
and equation (9) with weighting factors Fk=0.4 and Fm=0.09 were used to evaluate [∆Ki] 
and [∆Mi], which were then substituted into equation (2) to improve the original [K]a and 
[M]a.  

Since the model could not be completely corrected in one performance as above, the 
same procedure were repeated based on the previously improved model until the remaining 
errors became smaller than a specified value. In this example, the iteration was carried out 
until the evaluated Fk x RKi and Fm x RMi became less than 3% of their first iteration 
values as shown in Table 2. In the model improvement, Fm x RM6 for element 6 was too 
small and hence ignored. The sum of Fk x RKi and Fm x RMi from above iterations gives a 
ratio of the final evaluated [∆Ki] against the original [K]a and [∆Mi] against [M]a 
respectively. According to equations (2) & (9), the result shows that the original stiffness 
for elements 9 & 10 should be reduced by 11% and the original mass in element 11 should 
be increased by 9.2% as final improvement. As a result, the modelling errors in the 
analytical model have been reduced from initial 10% down to less than 1%. 
 
 
   Table 2.  Evaluated factors for model improvement during iteration 

         Iteration No. 1 2 3 4  
Fk x RK9 for element 9 -0.13 0.02 -0.0036  ∑ = -0.11 
Fk x RK10 for element 10 -0.09 -0.02 0.0002  ∑ = -0.11 
Fm x RM11 for element 11 0.056 0.027 0.007 0.002 ∑ = 0.092 

 
 

Comparing with the ‘measured’ modes shown in Table 3, mode errors of the 
improved analytical model have been largely reduced. For example, the average mode error 
for modes 3 – 8 has been reduced from 2.23% to 0.09%. 
 
 
 Table 3.  Comparison between analytical and ‘test’ frequencies (Hz) 

Mode No. 1* 2* 3 4 5 6 7 8 
original fa 1.77 9.83 11.83 24.03 41.43 42.13 60.10 68.31 

error ∆f (%) 0.91 0.60 2.87 0.54 3.45 3.74 0.10 2.66 
improved fa 1.76 9.77 11.52 23.90 40.09 40.68 60.04 66.48 
error ∆f (%) 0.0 0.02 0.17 0.00 0.10 0.17 0.00 0.09 

‘test’ ft 1.76 9.77 11.50 23.90 40.05 40.61 60.04 66.54 
  *  rigid-body mode 
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3.2 MODEL IMPROVEMENT USING MEASURED MODES (CASE 2) 
 

In this second example, improvement of the original analytical model shown in 
Figure 2 was carried out by using only four measured modes from a vibration test of the 
tail-plane shown in Figure 1. In the vibration test, most of the 29 accelerometers were 
mounted along the front and rear spars of the tail-plane as shown in Figure 7 and limited 
to measuring the vertical movement. By applying the quadratic interpolation method, the 
out of plane measurements were used to obtain the intermediate unmeasured 
displacements, i.e. the out of plane vertical and torsional displacements and span-wise 
bending slopes. Due to the lack of in plane measurements however, analytical values were 
used as the displacements at the intermediate unmeasured DOFs, i.e. in plane translations 
and yaw. However, it should be noted that these analytical values do not contribute to any 
energy errors. Hence some compromise in the performance of the error localisation and 
accuracy of the model improvement can be expected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 7.  Top view of the measurement points on the tail-plane 
 
 
     Table 4.  Measured frequencies (Hz) from the tail-plane vibration test 

   Mode No. 1 2 3 4 5 6 7 8 9 
   Symmetric 1.76* 9.64* 13.02 23.71 -- -- 59.35 65.86 -- 
Anti-symmetric 5.19 * 5.39 -- 25.73 44.48 -- -- -- 81.33

  *  rigid-body mode -- not measured 
 
 
3.2.1  Modelling error localization 
 

In this example, considering the symmetric vibration case and half of the analytical 
model, only the four measured symmetric modes 3, 4, 7 & 8 were used in the analysis. 
The rest of modes are listed only for comparison. By applying the EEE method, the total 
strain and kinetic energy errors on both sides of the analytical model were estimated from 
equations (6) & (7) and listed in Table 5. It shows that the strain energy error RKi on the 
left side of the model is obviously larger than that on the right side. Hence large stiffness 
modelling errors is likely to exist on the left side of the analytical model. It also shows that 
the kinetic energy error RMi is much lower than the RKi on both sides of the model. This 
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indicates that the overall mass modelling errors in the analytical model is very small 
comparing with the stiffness errors.  
 
     Table 5.  Total energy errors on both sides of the analytical model 

Total energy errors Left side Right side 
Strain ∆S 13.30 3.60 

Kinetic ∆T 1.61 1.37 
 

To have a detailed view of the modelling error distribution, RKi and RMi in each 
element of the model were estimated by using equation (8) and the results were shown in 
Figure 8. It can be seen from Figure 8a that the stiffness errors are most likely to be 
located in the elements 9 and 10 on the left side, and also at the root elements of the 
analytical model. The negative sign of the errors indicate smaller stiffness in the actual 
structure than that being modelled. Figure 8b shows an even distribution of RMi indicating 
mass modelling errors of the model. Since the maximum RMi value reaches only about 
1.5% of the sum of RMi values, which is very small comparing with the RKi shown in 
Figure 8a, the mass modelling errors are ignored in the subsequent model improvement. 
Although the modelling error distributions obtained so far are reasonable clear, it would 
be desirable to have a clearer view for more accurate localization of the modelling errors, 
especially in the regions with relatively low RKi values. At this stage, equation (5) was 
used to get the sign variation of element energy error for each of the modes as shown in 
Figure 9 (elements beyond 13 are excluded due to their small errors as shown in Figure 8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 8a. Stiffness modelling error distribution indicted by RKi 
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           Figure 8b. Mass modelling error distribution indicated by RMi   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 9a.  Elemental strain energy error for each mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Figure 9b.  Elemental kinetic energy error for each mode 
 

Fig 9a shows that only the signs of strain energy errors for elements 1, 9 ~ 12 remain 
the same for all the modes. This indicates that only those elements were poorly modelled 
in terms of stiffness, and the rest of elements were correctly modelled. Figure 9b shows 
that none of the kinetic energy errors remains the same sign for different modes. This 
reinsures that the original mass modelling is good enough and thus no improvement is 
required in this case. Focusing on the stiffness modelling errors and clearing out those 
fault errors initially identified as shown in Figure 8a, a clearer view of locations of 
stiffness modelling errors for the left side of the tail-plane was obtained as shown in 
Figure 10.  

The negative values of RKi shown in Figure 10 indicate that some local regions of the 
tail-plane actually have smaller stiffness than that of the original analytical model. Having a 
close look at the local structure where elements 9 & 10 were positioned as shown in Figure 
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11, the large stiffness modelling errors located in this region can be proved to be due to a 
local structural damage. The small modelling errors remaining in the elements 11 & 12 may 
be due to the effect of the neighbouring structural damage and approximation of the 
method. The large modelling error of element 1 was likely caused by the model 
simplification of the junction between tail-plane and its main supporting beam as shown in 
Figures.1 & 2. Those modelling errors caused significant differences between the predicted 
modes from the original model and measured modes of the structure as shown in Table 6.  
 
 
3.2.2 Analytical Model Improvement 
 

3.2.2.1. First improvement In order to improve the original analytical model, attention 
was then focused on the poor modelling regions to evaluate the stiffness error matrix [∆Ki] 
for elements 1, 9 and 10 using equation (9). By substituting the obtained [∆Ki] into 
equation (2), an improved [K]a of 20% stiffness (EI, GJ) reduction for element 1 & 9, and 
22% reduction for element 10 was obtained. Consequently, the average mode errors of the 
improved analytical model were reduced, from the original ∆f=4.6% to 3.8% and from 
∆Φ=14.3% to 13.3% as shown in Table 6. After the above first improvement however, 
stiffness modelling errors still remained in the analytical model as shown in Figure 10.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
  Figure 10.  Improved localization of stiffness modelling errors 
 
 
 
  Table 6.  Comparison between analytical and measured modes  

Mode 
No. 

       Symmetric
    3          4 

Modes 
    7           8 

  Antisymmetric
    4           5 

Modes 
     9 

Average 
mode error 

original  f (Hz) 11.83   24.03 60.10  68.31 26.68 43.33  89.59 ∆f  = 4.56 % 
∆Φ = 14.24 % 

1st improved f 
by EEE method 

11.74   23.96 60.02   65.86 26.45 43.29  88.82 ∆f = 3.81 % 
∆Φ = 13.25 % 

2nd improved f 
by EEE method 

11.72   23.94 59.98   64.80 26.37 43.28  88.22 ∆f = 3.90 % 
∆Φ = 10.15 % 

Further improved 13.30   23.80 60.20   66.00 25.80    43.20  85.60 ∆f = 1.80 % 
measured ft 13.02   23.71 59.35   65.86 25.73 44.48  81.33  
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  Figure 11.  Structural damage on the left side of the tail-plane  
 

3.2.2.2. Second improvement If the above procedure was repeated based on the 
improved model, a further 20% stiffness reduction for elements 1 & 9 and 40% reduction 
for element 10 were estimated. Subsequently a further reduction of the remaining stiffness 
modelling errors was made after the second improvement as shown in Figure 10. However, 
comparing with the measured modes again as shown in Table 6, it was noted that the 
average ∆f was slightly increased from 3.81% up to 3.90% although the average ∆Φ was 
reduced further from 13.25% to 10.15%. It was also noted that such large reduction of 
stiffness would not give a good representation of the actual structure. It was then suspected 
that some modelling errors remained unidentified in the regions beyond those located so 
far. The failure to locate those errors may be mainly because of the lack of measurement 
along the supporting frames of the tail-plane. Hence, an alternative approach for further 
model improvement has to be considered. 

3.2.2.3. Further improvement In this example, it was assumed that the measured 
frequencies were more accurate and reliable than mode shapes. Thus, an approach based on 
the analysis of frequency sensitivity to the variation of element stiffness parameters was 
used. In the analysis, only measured frequencies were used as the reference base to 
minimize the effect of inadequate measurement of mode shapes on further model 
improvement.   

Firstly we focused on the region of junction between the tail-plane and its main 
supporting frame. The analytical model was updated by adding two more elements 
between nodes 1 – 15 and 1 – 18 as shown in Figure 12. This updated model should give a 
more realistic representation of the actual structure and provide more parameters for 
sensitivity analysis and model improvement in the region. 

In the analysis, although all measured frequencies were considered, attention was paid 
mainly to the first symmetric mode and all the anti-symmetric modes, which had relatively 
large errors. It was found that the first symmetric mode was sensitive to the bending stiffness 
of the new elements 1- 15, 1 – 18 and element 20 - 21 at the back. The first anti-symmetric 
mode was also sensitive to the new elements 1- 15, 1 – 18, but the third mode was more 
sensitive to elements 19 –20 & 20 – 21. From the sensitivity analysis, bending & torsion 
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stiffness of the new elements 1-15, 1-18 was determined to be 16.53 N.m2 and the bending 
stiffness of element 19-20 was reduced from 6.612 N.m2 to 4.959 N.m2. Following the above 
stiffness updating, the mode errors were further reduced. A comparison between the 
frequencies of the original model, improved model using EEE method and further improved 
model using sensitivity method is shown in Table 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 12.  An updated analytical model for further improvement 
 
 

 
4.  CONCLUDING REMARKS 

 
The energy error estimation method provides a feasible and efficient tool for model 
improvement based on a set of incomplete measured modes. The method is applicable to 
locating the regions of analytical modelling errors or structural damage. From the 
investigation of this current paper, the following conclusions can be extracted. 
• By using this method, both the stiffness and mass modelling errors of an analytical 

model can be identified and localised. 
• In the initial localisation of modelling errors, the result was approximate due to the 

effect of the limit of the method and available measured modes. However an additional 
measure proposed in this method can increase the localisation accuracy. This is the 
major advantage of the method in terms of accuracy. 

• Although the method depends upon the quality of measured modes, the regions with 
significant modelling errors such as the damage region can be distinguished from good 
modelling regions. 

• In the regions such as the supporting frames of the tail-plane where few measurements 
were made, the estimated energy errors won’t be accurate enough to indicate 
modelling errors. In such case, sensitivity analysis based on measured frequencies 
provides an effective alternative. 

• The model improvement is restricted to only those regions where modelling errors 
have been identified. This ensures the reliability and accuracy of the improved model. 

• The improved analytical model retains its original matrix size and configuration and 
thus retains the physical description of the system. 

Finally it has been noted in this method that some modes may play more significant role 
than others to locate modelling errors. This may raise a concern of mode sensitivity of the 
method. Generally speaking, the effect of mode on the accuracy of result would depend 
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upon the structural configuration and modelling error locations. Although in practice we 
normally don’t have much choice of the very limited available measured modes, an 
investigation into this modal sensitivity problem is recommended, but beyond the scope of 
this current paper. 
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