
*Corresponding author. Tel. +44 (0)1234 754628; Fax. +44 (0)1234 758203. Email: s.guo@cranfield.ac.uk

Adaptive Control of a Nonlinear Aeroelastic System

Daochun Li, Jinwu Xiang

School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, P R China

Shijun Guo*

Department of Aerospace Engineering, Cranfield University, Cranfield, Bedfordshire, MK430AL, UK

Abstract

Aeroelastic two-dimensional wing section with both trailing-edge (TE) and leading-edge (LE) was

investigated in this paper through numerical simulation in time domain. Structural stiffness and damping in

pitch degree of freedom were represented by nonlinear polynomials. Open-loop limit cycle oscillation (LCO)

characters of two examples were studied, and flutter boundaries with initial conditions were obtained.

Parametric uncertainties in both pitch stiffness and damping were considered in the design of adaptive control

laws to depress LCOs. Firstly an adaptive controller based on partial feedback linearization was derived for the

wing section with a single TE control surface. Secondly a structured model reference adaptive control law was

designed for the aeroelastic system with both TE and LE control surfaces. The results show that the designed

control laws are effective for flutter suppression, and that considering damping uncertainty has positive effect on

flutter control. It may reduce convergent time or increase flutter speed.

Keywords: Aeroelastic airfoil; Nonlinearity; Parametric uncertainty; Adaptive control.

Nomenclature

a = non-dimensional distance from airfoil mid-chord to elastic axis

b = airfoil semi-chord

lc = lift coefficient

lc  = lc  ( lc  , lc  , mc  , mc  , and mc  have the similar definitions)

hc = plunge damping

ic = coefficients of nonlinear damping

c = pitch damping

h = plunge displacement

I = mass moment of inertia about elastic axis

hk = plunge stiffness

ik = coefficients of nonlinear stiffness

k = pitch stiffness

L = aerodynamic lift

M = aerodynamic moment of wing-aileron
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M  = aerodynamic moment of aileron

m = mass of wing and aileron (per unit span)

mW = mass of the wing section only (per unit span)

mT = total mass of wing-aileron together with support blocks respectively (per unit span)

s = wing section span

U = free stream velocity

x = non-dimensional distance from airfoil elastic axis to center of mass

 = pitch angle about the elastic axis

 = trailing edge control surface deflection

 = leading edge control surface deflection

 = air density

1. Introduction

Aeroelasticity is the field of study that deals with the interaction of structural, inertia, and aerodynamic force.

Classical theories assume linear aerodynamics and structures, and the aeroelastic problem reduces to the

solution of a set of linear equations that can be easily solved. However, when the airspeed increases to high

subsonic or transonic Mach numbers, linear aerodynamics usually give insufficiently accurate results, an

example of which is the transonic dip that linear aerodynamics fail to detect. Also, flow separation and shock

oscillations can introduce phenomena, which classical aeroelasticity is unable to handle. Nonlinear aerodynamic

effects are more difficult to analyze since the fluid motion is governed by equations where analytical solutions

are practically non-existent [1, 2]. A full non-linear aerodynamic code solving the Euler equations has been

successfully coupled to a structural model for a two-dimensional flow case by Djayapertapa and Allen et al [3-6].

A control law was implemented within this aeroelastic solver to investigate active means of flutter suppression

via control surface motion. Comparisons of open- and closed-loop calculations show that the control law could

successfully suppress the flutter and results in a significant increase in the allowable speed index in transonic

regime. But full CFD-CSD coupled codes are currently too time consuming to be used in the design loop, and

particularly so if control law design is to be considered. Further, the lack of visibility of the full-non-linear

equations in state space form makes various procedures, such as various forms of control law design, and

stability analysis, extremely difficult, if not impossible. This has resulted in the creation of a reduced order

model (ROM) of the Euler code [7]. The ROM has the accuracy similar to CFD method, but a time scale of

operation much more comparable with that of traditional linear methods. And a comparison of full non-linear

and reduced order aerodynamic models in control law design was made in Ref. [7].

On the other hand, structural nonlinearities arise from worn hinges of control surfaces, loose control

linkages, material behavior and various other sources. Aging aircraft and combat aircraft that carry heavy

external stores are more likely to be influenced by effects associated with nonlinear structures. With structural

nonlinearities, aeroelastic system may exhibit a variety of phenomena such as limit cycle oscillation and chaotic

vibration [8]. An extensive review of the analysis of structural nonlinearities for airfoil section may be found in

Ref. [1].

In the past few years at Duke University, Dowell and colleagues have constructed a typical airfoil section

aeroelastic experimental model with control surface freeplay. They have also designed and installed an

experimental rotating slotted cylinder (RSC) gust generator in the Duke University low-speed wind tunnel,

which was used to create a periodic or a linear frequency sweep gust excitation field [9]. Using these

experimental facilities, a series of theoretical and experimental studies, such as flutter and LCOs [10], gust
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responses and alleviation [11], and flutter/LCO control [12, 13] have been completed. An experimental

high-aspect ratio wing aeroelastic model with a device to provide a controllable slender body tip mass

distribution for flutter suppression has been constructed by Tang and Dowell [14]. This study also shows the

effects of the geometric structural nonlinearity as modeled by nonlinear beam theory and nonlinear aerodynamic

stall theory on both the flutter instability boundary and the nonlinear limit cycle oscillation response.

For the two-dimensional wing section with structural stiffness nonlinearity, research effort has being made to

develop control strategies to suppress flutter. In Ref. [15] for example, a classical linear full-state feedback

control law was derived for a wing section with nonlinear stiffness to stabilize the nonlinear system in some

circumstances. In Ref. [16], a partial feedback linearization methodology was applied to the design of nonlinear

controllers for a nonlinear aeroelastic system. In order to derive a globally stabilizing controller, a full feedback

linearization controller based on two control surfaces was designed. The stability of the closed-loop aeroelastic

system was further investigated in Ref. [17]. The state-dependent Riccati equation method was developed for

nonlinear control problems, and used to design suboptimal control laws of nonlinear aeroelastic systems

considering both quasi-steady [18, 19] and unsteady aerodynamics [20, 21]. A global robust control law for an

aeroelastic model of uncertainty was derived considering output feedback in Ref. [22].

The impact of uncertainty on aeroelastic response prediction has received substantial attention in the

research literature. General sources of uncertainty that complicate airframe design and testing were briefly

described by Pettit [23]. Pettit and Beran [24] investigated the effects of uncertainty on airfoil LCO by using of

Monte Carlo simulation (MCS). Parametric uncertainty was modeled in the third- and fifth-order stiffness

coefficients of the pitch spring. Different computational methodologies, such as Wiener–Haar, Cyclic and

B-spline projection methods have been developed to quantify the uncertain response of an airfoil aeroelastic

system in limit-cycle oscillation, subject to parametric variability [25]. Uncertainties are specified in the cubic

coefficient of the torsional spring and in the initial pitch angle of the airfoil. When the uncertainty was

considered in the flutter suppression, adaptive controllers based on partial or full feedback linearization were

derived [26]. In Ref. [27], experimental results were presented to exam the adaptive controller derived by Ref.

[26]. A series of adaptive controllers were derived for flutter suppression by Singh et al [28, 29], and

unstructured uncertainties were also taken into account [30]. In order to improve the performance of the

adaptive controller, both leading-edge (LE) and trailing-edge (TE) control surfaces were used in the design of

multiple-input multiple-output control strategies in Ref. [31-33]. Recently, an output feedback control law has

been implemented for suppressing flutter and reducing the vibrational level in sub-critical flight speed range

[34]. An adaptive decoupled fuzzy sliding-mode controller has been presented in Ref. [35]. Based on the

tensor-product model transformation and the parallel distributed compensation, a control law for prototypical

aeroelastic wing section was designed and presented in Ref. [36].

In the previous references, only parametric uncertainty in pitch stiffness has been considered. In fact, the

damping uncertainty in airframe structure and control system is inevitable and may have significant effect on the

aeroelastic behavior [37]. However, it is very difficult to establish an accurate damping model, and the much of

experimental data is normally needed. Therefore this current investigation has been focused on deriving an

adaptive controller for flutter suppression of a nonlinear aeroelastic system damping uncertainty. Two examples

of adaptive controller have been taken, and the numerical simulation results have been compared with that

without damping uncertainty.

2. Nonlinear Aeroelastic Model

A generic two-dimensional wing section with leading-edge (LE) and trailing-edge (TE) control surfaces as

illustrated in Fig. 1 has been considered in classical aeroelastic analysis. The elastic axis (e.a) of the model is



4

located at a distance ab from the mid-chord, while the mass center (m.c) is located at a distance xb from the e.a.

The parameters a and x are positive in Fig. 1 where e.a is after the mid-chord and m.c is after e.a. measured

from LE. The plunge deflection h is positive downward, and the pitch angle  about the e.a is positive nose-up.

The TE and LE control surface rotation angles  and  are positive downward.

The governing equation of motion of the aeroelastic model are given by [27]

   
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where  k  and  c  represent the nonlinear pitch stiffness and damping of the system, and are

expressed in polynomial form as follows
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In the latter adaptive controller design, parametric uncertainties are considered in both pitch damping and

stiffness. ci and ki are assumed to be unknown. In Eq. (1), L and M represent the unsteady aerodynamic

lift and moment expressed by
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where lc  , lc  , and lc  are the derivatives of aerodynamic lift coefficient caused by angle of attack, TE and

LE control surface deflections respectively; mc  , mc  and mc  are the effective dynamic and control

moment derivatives defined as
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where mc  , mc  and mc  are corresponding derivatives of moment coefficient.

By defining the state variables as

 1 2 3 4

TT
x x x x h h    

  X (5)

and when =0, Eq. (1) and Eq. (3) can be transformed into a state-space form

  x A X X Bu (6)

where
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and the coefficients in the above equation are defined as
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3. Adaptive Control of Feedback Linearization

Both partial and full feedback linearization methods have been used for the nonlinear aeroelastic control in a

series of references [38]. In this section, an adaptive control law is derived based on partial feedback. First an

output function is defined as follows:

   0 1 0 0y g   X X (8)

By defining the following state transformation
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the subsystem of  1 2z z may be expressed as
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where  R Z is a linear function of the state variable Z,  1
iN  and  2

iN  are the terms related to
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nonlinear damping and stiffness.

When uncertain parameters in both pitch stiffness and damping are expressed in the form of parameter

estimations, the control law for TE control surface may be written as

     1 2
1 14
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where v is design input yet to be determined. It is noted that the internal dynamics subsystem of  3 4z z is

not affected by the input v, and its stability is discussed in Ref. [26, 27].

Substituting Eq. (11) into the Eq. (10), we have
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In order to derive a parameter update law, the following Lyapunov function is considered
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where C and K are the estimation errors defined as  
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After differentiating Eq. (13) along Eq. (12), we obtain
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where D is a negative-definitive matrix, and N is the state variable related to nonlinear terms defined as
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If the following equation is true
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then 0V  . The stability of Eq. (12) is guaranteed by the invariant manifold theorem of La Salle and

Lefschetz [39]. As the parameters for a given structure are unchanged, we have

0
T

T T   
 C K (16)

Therefore the parameter estimate update law is obtained as follows

2
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T T
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Finally, it should be emphasized that the control law may be used only if the zero dynamics of  3 4z z
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is stable.

4. Structured Model Reference Adaptive Control

Structured model reference (SMR) adaptive control method has been developed for a special type of

structure by Akella and Junkins [40], and used for flutter suppression of an aeroelastic system [41]. In this

section, we derive a SMR adaptive control law for the wing section when both LE and TE control surfaces are

activated as shown in Fig. 1. By introducing the state variables  1 2

T
X X X , where,  1

T
h X ，

2

T

h   
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The parameters in matrixes A and B are defined in Eq. (7).

Here we still consider both stiffness and damping parametric uncertainties in pitch. Then the second equation
of Eq. (18) may be rewritten as

2 l 1 2X A X + U C + U K + Bu (20)

where matrix lA contains the known parameters of matrix  xA ; 1U and 2U are matrixes related to

nonlinear stiffness and damping defined as
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C and K are state variables of uncertain parameters

 
1i m

c


C ,  
1i n

k


K

In order to derive the MRA control law, a reference trajectory 1X is introduced. The error is defined as

1 1 e X X and the error dynamic equation is written as follows:

0e e   e C e K e (21)

where eC and eK are constant matrices to be chosen. From Eq. (20) and Eq. (21), we get

   1 2 1 1 1 1 1l e e        A X U C U K Bu X C X X K X X (22)

If the parameter estimations Ĉ and K̂ are given, the following control law can be obtained
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   1
1 1 1 1 1 1 2

ˆ ˆ
e e lu            

 B X C X X K X X A X U C U K (23)

By substituting the control law into Eq. (20), the error dynamic system becomes

1 2e e      e C e K e U C U K (24)

where C and K are the error state variables as defined earlier. By defining the state variable as

 
T

 E e e , Eq. (24) may be rewritten in state-space form as follows

2 2 2 2 2 1

2 2 2 2 1 2

e e

e e
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 
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0 I 0
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In order to derive the parameter update law, a Lyapunov function is defined as follows

1
T

T T T T TV tr            
  E PE C K Γ C K (26)

where Γ is a positive-definite matrix; P is a symmetric positive-definite matrix determined by the following

Lyapunov equation:

T
e e  A P PA Q (27)

where matrix Ae is stable, and Q is a selected symmetric positive-definite matrix.

Differentiating the Lyapunov function along Eq. (25) gives

1

1

2

2 2

T
T T T T T T

T
T T T T T T

e

V tr

tr





           

            

      

   

E PE E PE C K C K

E QE E PB C K C K

(28)

As we know, the following equation is true

1 2

TT T T T T T T
e e htr tr              

 E PB E PB C K U U P E (29)

where Ph is a sub-matrix of P. If we assume

1
1 2

T TT T T T T
h

        
  Γ C K U U P E (30)

then 0V  since Q is a positive-definite matrix. The stability of Eq. (25) is guaranteed by the invariant

manifold theorem of La Salle and Lefschetz [39]. Sine the structure properties do not change, we have

0
T

T T   
 C K . From Eq. (30), the parameter estimate update law can be obtained as

1 2
ˆ ˆ

T T TT T T T T T T
h

             

    C K C K Γ U U P E (31)

5. Example Results and Discussion

In this section, numerical examples would be given to verify the control laws derived in section 3 and 4. For

each example, open-loop flutter characters were first present to help the aeroelastic system being considered to

be understood.

5.1 Example 1

For the wing section with single TE control surface, the model and parameters used in Ref. [27] were chosen
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in this case study and listed in table 1. The coefficients of nonlinear pitch stiffness used in the simulation are {ki}

= [6.833 9.967 667.685 26.569 -5087.931]. This nonlinear stiffness relationship was approximated based on

experimental measured data in Ref. [27], and was shown in Fig. 2. The pitch damping coefficient c = 0.036.

The response of the open-loop aeroelastic system is dependent on the flow velocity and initial conditions.

Given a set of initial conditions, the response is convergent when the flow velocity is smaller than a critical

value (flutter speed). And LCO will occur when the flow velocity is higher than flutter speed. With the initial

conditions h (0) = 0.01 m, (0) = 0.1 rad, and    0 0 0h    , Fig. 3 shows the plunge and pitch responses

for the flow velocity U = 7.91 m/s and U = 7.92 m/s separately. The responses are totally different, which means

that the flutter speed is 7.92 m/s for the special initial conditions. In order to investigate the effect of initial

conditions on flutter speed, flutter boundaries on initial pitch angle were obtained. With initial plunge and pitch

velocities    0 0 0h    , Fig. 4 gives three flutter boundaries for three different initial plunge

displacements. We find that flutter boundary is symmetric about (0) = 0 axis when h (0) = 0. And the

increasing of h (0) reduces the effect of (0) on flutter speed. The flutter speed decrease from 11.6 m/s to 7.9

m/s with (0) increasing from 0 to ± 0.2 rad. When h (0) = 0.01, the maximum flutter speed becomes 10.5 m/s.

And it continues decrease to 8.9 m/s when h (0) = 0.05.

Now the feedback linearization adaptive control law Eq. (11) and parameter estimate update law Eq. (17)

were considered to suppress the LCOs described above. The initial conditions were chosen as h(0) = 0.01m,

(0) =0.1 rad,    0 0 0h    . It is noted in this case that the pitch damping is still linear, which is the

same with Ref. [27]. In the nonlinear adaptive controller design however, it was modeled as a third-order

polynomial, and so {ci} = [0.036 0 0]. The eight initial estimations of both stiffness and damping uncertainty

parameters were set to zero. In order to show the effect of damping uncertainty on the closed-loop responses, the

simulations of adaptive control with and without damping uncertainty were carried out in the same time.

Figure 5 shows the time histories of the closed-loop system in plunge, pitch, and control surface deflection

for free stream velocity U=16 m/s. We find that the aerodynamic system is stable in both the two cases, which

indicates that the adaptive control law is effective to control the LCOs. Furthermore, it is obvious that when the

damping uncertainty was taken into account, the system responses were suppressed to converge in less period of

time. As the adaptive control law is designed based the output of pitch angle, considering the damping

uncertainty dramatically reduces the convergence time of pitching response from about 3s to less than 0.5s. For

the plunge response, the peak values with damping uncertainty are smaller than the ones without uncertainty. In

this case however, it is noted that the required maximum TE control deflection is about 0.65 rad (37 deg) as

shown in Fig. 5c, which is impractical to implement. So another case was performed with the control surface

deflection was limited to ±15 deg, while the other conditions remain unchanged. Simulation results are

presented in Fig. 6. All the states converge to zero after a transitory vibration. The flap deflection limit causes a

slightly longer convergent time to the closed-loop system with damping uncertainty. But it still converges faster

than the system without damping uncertainty, especially the pitch variable.

5.2 Example 2

In this example, the wing section illustrated in Fig. 1 was considered again to simulate the flutter suppression

by using both TE and LE control surfaces. Reference [31] presented an experimental wing section with both TE

and LE control surfaces. The system parameters are listed in table 2. A third order polynomial model of the

stiffness is built from static measurements on the nonlinear pitch cam. And the coefficients of nonlinear pitch

stiffness used in simulation are {ki} = [12.77 53.47 1003.0]. The pitch damping coefficient is {ci} = [0.036 0 0].

The open-loop system was investigated first. Similar with example 1, the flutter speed is dependent on the

initial conditions. Numbers of simulations were performed with different initial conditions. We find that with
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initial pitch angle (0) and plunge displacement h (0) vary in the field of [0.001, 0.5], the flutter speed may

changes from 10.6 m/s to 11.4 m/s. Compared with example 1, the flutter speed of example 2 is less sensitive on

the initial conditions. That may because the pitch spring of example 2 is stiffer, as shown in Fig. 2. For the initial

conditions h (0) = 0.01 m, (0) = 0.1 rad, and    0 0 0h    , the critical flutter velocity is 10.7 m/s. When

free stream velocity is lower than the flutter speed, all the 4 states converge to zero quickly. Figure 7 shows the

time histories and phase diagrams of convergent responses for U = 10.0 m/s. And Fig. 8 presents a case of LCOs

for U = 15.0 m/s.

The SMR adaptive control law expressed in Eq. (23) and parameter estimate update law Eq. (31) were

applied to control the LCOs of the aeroelastic system with both TE and LE control surfaces. The initial

conditions keep unchanged, and the 6 initial estimations of the uncertainty parameters were set to be zero. The

simulation was run at a free stream velocity U=15 m/s beyond the system flutter velocity (10.7 m/s). Both the

LE and TE control surface deflections were limited up to ±15 deg and actuated at time t=3s. Figure 9 shows the

response time histories of the closed-loop system in plunging, pitching, TE, and LE deflection. It is clear that the

responses in pitch and plunge are damping out in less than 2s. Further extensive simulations were performed for

higher free stream velocity. It was noted that when the velocity approached U=28.3 m/s, the controller became

less effective in suppressing the limit circle oscillation.

The effect of damping uncertainty has been investigated. In lower free stream velocity range, the two

closed-loop aeroelastic systems with and without damping uncertainty have almost the same behavior and

response. When the free stream velocity approaches the flutter speed of the closed-loop system however, their

closed-loop system responses are significantly different. Fig. 10 shows an case at the velocity U=28 m/s. The

flutter speed of the closed-loop system without damping uncertainty is U=27.7 m/s, which is below U=28.3 m/s.

Obviously, flutter speed is dependent on the control surface deflection limits. Figure 11 shows the difference of

flutter speeds between the systems with and without damping uncertainty. We find that with the control surface

maximum deflection increasing from 10 deg to 20 deg, the closed-loop aeroelastic system including damping

uncertainty has higher flutter speeds.

6. Conclusions

In this paper, the effect of damping uncertainty on the controller design and effectiveness for flutter

suppression of a wing section model has been investigated. Open-loop flutter characters of the two wing section

haven been studied firstly. Then, two adaptive control laws for a 2-D nonlinear aeroelastic airfoil with stiffness

and damping uncertainties in pitch have been derived. For the wing section of a single trailing-edge control only,

an adaptive control law was designed based on partial feedback linearization. Simulation results show that the

damping uncertainty has positive effect on the control effectiveness. The closed-loop system considering

damping uncertainty has quicker response to control and more effectiveness in flutter suppression. For the wing

section having both LE and TE control surfaces, a SMR adaptive control law was derived. Simulation results

show that the SMR adaptive controller considering the damping uncertainty is also effective in low free stream

velocity range. In higher velocity however, the effectiveness of the controller reduces although the flutter

velocity of the closed-loop system is greater due to the damping uncertainty.
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Fig. 1. Aeroelastic model with LE and TE control surfaces.



Fig. 2. Nonlinear pitch stiffness (Ref. [27, 31]).



a) b)

c) d)

Fig. 3. Time histories of open-loop system for a), b): U=7.91 m/s; and c), d): U=7.92 m/s.



Fig. 4. Flutter boundary on initial pitch angle for    0 0 0h    .



a)

b)

c)

Fig. 5. Closed-loop responses with unlimited TE control deflection at U=16 m/s, a) plunge; b) pitch;

and c) flap deflection.



a)

b)

c)

Fig. 6. Closed-loop responses with limited TE control deflection at U=16 m/s, a) plunge; b) pitch; and c)

flap deflection.



a) b)

c) d)

Fig. 7. Convergent time histories for U = 10.0 m/s in a) plunge; b) pitch; and phase diagrams in c) plunge;

d) pitch of open-loop system.



a) b)

c) d)

Fig. 8. LCOs time histories for U = 15.0 m/s in a) plunge; b) pitch, and phase diagrams in c) plunge; d)

pitch of open-loop system.
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b)

c)

d)

Fig. 9. Closed-loop responses with SMR adaptive control law at U=15 m/s, a) plunge; b) pitch; c) TE

deflection; and d) LE deflection.



a)

b)

Fig. 10. Closed-loop responses with SMR adaptive control law at U=28 m/s, a) plunge and b) pitch.



Fig. 11. Flutter speed of the closed-loop system versus control surface maximum deflection.


