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Abstract

Piezoelectric fans consisting of a piezoelectric layer and an elastic metal layer were prepared by

epoxy bonding and a coupled flexible wing was formed by a pair of carbon fibre reinforced plastic

wing spars and polymer skin attached to two piezoelectric fans. Two sinusoidal voltages with phase

differences were then used to drive the coupled piezoelectric fans. High speed digital cameras were

used to characterise the two degree of freedom (DOF) motion of the wing and these results were

compared to finite element model of the wing and the coupled piezoelectric fans. It has been

observed that the phase delay between the driving voltages applied to the coupled piezoelectric fans

play an important role in the control of the flapping and twisting motions of the wing and this set-up

has the potential for application to the control of flapping wings for micro aerial vehicles.
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1 Introduction

The interest in flapping wing micro aerial vehicles (MAV) has resulted in substantial work in recent

years [1-3]. A MAV is defined as a semiautonomous airborne vehicle, measuring less than 15 cm in

any dimension, weighing no more than 140 grams, which can fly up to 2 hours for a range of 10 km

[1]. As demonstrated by flying birds and insects, flapping flight is advantageous for its superior

manoeuvrability and lifting capability at low flight speeds [3,4]. Flapping wing systems as inspired

by insect flight generally involve the wing completing pitching, yawing and sweeping components of

motion over a flapping cycle [5]. Different mechanisms such as pneumatic and motor-driven

actuators have been applied to mimic this complex flapping motion, but these mechanisms often

suffer from heavy weight and mechanical system complexity [5].

Piezoelectric materials especially lead zircornate titanate (PZT) are widely used in smart structures

as sensors and actuators due to their high bandwidth, high output force, compact size, and high

power density [6]. However, the piezoelectric effect is intrinsically very small and only a small

deflection can be expected directly from the bending piezoelectric unimorph/bimorph. Therefore

some kind of motion amplification mechanisms are required to achieve large deflection. Fearing et

al. developed piezoelectrically actuated four-bar mechanisms for micromechanical flying insect

thorax. [7-9] Cox et al. reported three piezoelectrically activated four bar and five bar linkage

systems for the electromechanical emulation of mesoscale flapping flight. [10] Park et al. developed

a four bar linkage system driven by lightweight piezo-composite actuator to mimicking the flapping

wing system of insects. [11]
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A simpler motion amplification mechanism is a piezoelectric fan (piezofan) which couples a

piezoelectric unimorph to an attached flexible blade and is capable of producing large deflections

especially at resonance. Piezofans were first investigated in the late seventies [12]. In the last a few

years the demand for portable electronic devices has brought interest in the use of piezofans as a

compact, low power, noiseless air cooling technology for applications such as laptop computers and

DVD players etc. [13,14] We have investigated the optimization and characterization of individual

piezofan structure at quasi-static and dynamic operations in a separate report [15]. In this paper we

report the investigation on using two coupled piezofans in parallel driven by sinusoidal voltages with

different phase delays between them to realise the flapping and twisting movements of the wing

structure. The main purpose of using piezofan as actuators is to facilitate this simple actuation

mechanism to obtain two degree of freedom motion (2DOF), namely the flapping and twisting, of

the wing and to develop methods for the control of its 2DOF motion. The experimental and finite

element analysis and the effect of phase delay to the flapping and twisting of the wings attached to

the coupled piezofans will be presented.

2 Experimental

Piezofans were prepared by bonding together a stainless steel metal shim with a piezoelectric PZT

patch using epoxy glue EPOTEK 301-2 (Epoxy Technology, US). The PZT wafers (PSI-5H4E) and

stainless steel foils (Fe/Cr15/Ni7/Mo2.25) were purchased from commercial sources [15]. The

schematic set up for the 2 DOF motion is shown in Fig. 1. The two piezoelectric fans were of the

unimorph type, with the PZT patch of the dimensions 30mm x 10mm x 127 μm, and the elastic

stainless steel layer of the dimensions 43mm x 10mm x 125 μm, so the total length of the

piezoelectric fan was 43 mm. A 3 mm gap existed between the clamping and the start of the PZT

patch in order to prevent the ceramic layer from broken during vibration. A pair of spars made of
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carbon fibre reinforced plastic (CFRP) connected with a flexible polymer skin formed the wing and

the wing was attached to the two piezoelectric fans clamped in parallel to form the coupled fans. The

gap between the two fans, therefore also the gap between the two spars, was varied from 10 mm to 2

mm.

The same wave (usually sinusoidal) signal from a function generator was split and supplied to two

high voltage amplifiers. One of the split signals was then amplified and applied to one piezofan

directly whilst the second signal was connected to an in-house made phase delay circuit (which can

achieve 0 to 180 degree phase delay) before being connected to the other amplifier and then the other

piezofan. The piezofans were clamped perpendicularly in parallel and both the flapping and twisting

motions are in the horizontal direction. This enabled a high speed camera (Photron APX) fixed

above the piezofans to record both the flapping the twisting motions of the wing. A frame rate of

2000 frames/s was used with an area of interest of 61.25mm x 61.25mm, which corresponded to a

mean resolution of 67 µm per pixel. The camera was controlled by a computer system to record one

second of data corresponding to 2000 images. The 2000 images covered several full cycles of the

vibration (the frequency was usually between 10 to 100 Hz). The displacement data was then

obtained by comparing images over a full cycle and directly analysing the image showing the largest

displacement. ANSYS finite element modelling (FEM) was used to model the behaviours of the

coupled piezofans and the wing attached to it.

3 Results and Discussion

3.1 Characterization of the dynamic motions for the coupled piezofans
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Fig. 2 shows the results of the FEM modal analysis. The first mode was pure bending or flapping, at

23.7 Hz (a). The second mode was pure twisting (b), at 58 Hz and the third mode contained both

bending and twisting at 62.9 Hz. The material parameters used in the FEM are listed in Table I.

Figure 3 shows typical pictures produced by superimposing two high speed camera images of the

two extreme positions of the wing within a vibration cycle, without any phase delay between the two

input voltages 170 Vpp at frequencies (a) 22.3 and (b) 47.4 Hz. Both the flapping and twisting

motion of the wing were obtained. It was found that the flapping displacement was peaked at 20 mm

at the frequency 22.3.Hz. The twisting motion was found peaked at 16º at the frequency 47.4 Hz.

Figure 4 shows the flapping and twisting amplitudes as functions of frequency for the wing. The

quantitative discrepancy on the mode frequencies between the FEM modelled and actually measured

values could be contributed to a number of factors. These include the uncertainty of the Young’s

modulus for the CFRB spars and the polymer skin used in the FEA modelling, the non-perfect

clamping at the foot of the piezofans, and probably most importantly the unmatched piezofans to

drive the wing. A number of these factors will now be discussed in more detail.

(1) Unmatched piezofans: for the system shown in figure 1, if piezofan I and II were identical,

with no phase difference between the two input signals (i.e. phase delay = 0), the two piezofans

would be expected to vibrate in parallel at around the first resonant frequency. However, for many

reasons it is not possible to have two identical piezofans in terms of their resonant frequencies and

vibration amplitudes. As every piezofan is produced individually, any difference in the width and

length of the PZT patch and the stainless steel shim, the relative position of the PZT patch on the

metal shim, and the exact clamping conditions etc, all can lead to the variation of the resonant

frequency and amplitude. Furthermore, the vibration amplitude also depends on the exact

piezoelectric coefficient of the PZT patch and the condition of the bonding layer, as well as the
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geometrical factors. This means that, at any frequency, even at phase delay=0, the two piezofans may

not vibrate in parallel, or one may vibrate with a larger amplitude than the other. This will show an

apparent twisting motion for the wing. Since, around the first resonant frequency, the flapping

displacement is at a maximum this mismatch in piezofan displacement appears to be at its greatest.

For this reason, the spread of the measurement data of the twisting motion around the first resonant

frequencies is expected to be the largest, as confirmed by measurements (Figure 4). The effect of

different resonant frequency on the flapping motion of the wing was found to be much smaller, as

shown in Figure 4, where the flapping motion around the second resonance was smaller relative to

the flapping motion at the first resonant frequency.

(2) Stiffness of the wing skin materials: the flapping and the twisting motions of the wing also

depend very much on the stiffness of the wing skin material, as well as the piezofan actuators. We

consider two extreme cases here: (i) If the skin material is infinitely soft (the stiffness coefficient

cij=0), the whole system as shown in Figure 1 will act like two independent piezofans. At any

frequency, the two piezofans will vibrate in parallel when the phase-delay = 0 and in anti-phase

when the phase-delay = 180 º. The flapping amplitude will be at its maximum when the phase-delay

= 0 and reduce to zero when the phase-delay = 180 º, and the twisting motion will be at its maximum

when the phase-delay = 180º and reduce to zero when the phase-delay = 0. Changing the phase-

delay will change the flapping and twisting amplitudes of the wing. However, if there is a difference

of the 1st resonant frequencies f1 and f2 of the two piezofans, the flapping and apparent twisting will

depend on the operating frequency f and the value of f2- f1. (ii) If the skin material is infinitely stiff

(the compliance coefficients sij=0), then the whole system must be treated as a single body and it has

its unique resonant frequencies, the first mode being bending and the second mode being twisting. In

this case, the resonant frequency of the individual actuator piezofan I and II or the difference

between the two will have a limited effect on the performance of the wing. In fact, the actual wing
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will be between the above two extremes, with a finite stiffness coefficients cij>0. The system has its

unique bending and twisting mode resonance frequencies but the performance could be affected by

the difference in resonant frequencies of the individual piezofan actuators. Every effort was made to

fabricate the piezofans as identical as possible. The effect of different skin materials is a subject for

further study. It is expected that a thin and light but stiff material--like an insect wing, is the best.

3.2 Two DOF motion control by phase differentiated drive

Figure 5 illustrates measurement results of (a) the flapping and (b) twisting vibration amplitudes of

the wing as functions of operating frequency under two input voltages 170 Vpp with different phase

delays between them. The gap between the two piezofans was 10 cm. It can be observed that the

flapping motion had a resonance at around 22 Hz, and the vibration amplitude was the largest at

phase-delay = 0 and reduced with the increasing phase-delay. The amplitude reached a minimum

when the phase-delay equalled 180º, about a quarter of the value at the phase-delay = 0. The twisting

motion peaked around 49 Hz, and, contrary to the flapping, its amplitude increased with the

increasing phase-delay. The twisting amplitude for the phase-delay = 0 was about half of the value

for the phase-delay = 180º. However, as discussed in the last section, the amplitude mismatch

generated twisting movement was significant for the frequencies near the flapping resonance, when

there was inevitably a difference of the resonant frequency between the two piezofans. The slight

increase of the flapping motion around the frequency 50 Hz may also due to the increase of the

amplitude mismatch around the twisting resonance there.

Figures 5 shows that it is possible to change both the flapping and twisting motions of the flapping

wing simply by varying the phase-delay between the two input signals. At frequencies around the 1st

resonance, i.e. the flapping mode resonance, increasing the phase-delay from 0 to 180º lead to the

reduced flapping motion. At frequencies around the 2nd resonance, i.e. the twisting mode resonance,
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increasing the phase-delay from 0 to 180º lead to increased twisting motion. However, due to the

difficulty in obtaining matched piezofan actuators, it is not clear from this study what are the effects

of changing phase-delay on the twisting motion around the flapping resonant frequency, and the

effects on the flapping motion around the twisting resonant frequency. Nevertheless, the flapping at

frequencies far away from the flapping resonance was found to be insignificant.
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3.3 The effect of the gap distance between the two piezofans

The effect of the distance between the two piezofan actuators on the flapping and twisting motions

of the wing was also investigated. Both the flapping and twisting were recorded at their respective

resonant frequencies. For example, the flapping were measured at 26.2, 26.3, 26.0 and 26.2 Hz for

gap distances 10, 8, 5 and 2 mm, respectively; and the twist angles were measured at 53.6, 49.1,

51.4 and 47.4 Hz for gap distances 10, 8, 5 and 2 mm, respectively. Changing the gap distance

involves de-clamping at least one of the piezofan, varying the distance between the two piezofans,

and then re-clamping the piezofans. These results show that the flapping resonant frequency of the

system changed a small amount (e.g. from 26.0 to 26.3 Hz) after these manoeuvres, but noticeable

difference in twisting resonant frequencies (from 47.4 to 53.6 Hz) resulted. However, these changes

were not monotonic with the change of the gap distance and were therefore most likely to be due to

the change of the effective clamping distances in the re-clamping, which leads to the change of the

resonant frequency of the piezofan, as discussed before.

Figure 6 shows the measured phase delay dependence of (a) the bending displacement and (b) the

twisting angle for the same system. The measured values were represented by symbols , □, ▲, 

and x and their corresponding polynomial fittings by solid, dashed, dotted, dash and dotted curves

for the gap equals to 10, 8, 5 and 2 mm respectively. The effect of the gap distance between the two

fans was also investigated and results were also shown in the figure. When the gap distance was 10

mm and the voltages Vpp=170 V applied to the two piezoelectric fans were in phase (phase delay =

0º), the amplitude of the bending movement of the wing reached 23.4 mm and resonated at 26.2 Hz.

If the phase delay of the two driving voltages was increased and all the other conditions remained

the same, the mode of the wing movement remained the pure bending and also resonated at the

same frequency, but with a reduced amplitude. In addition, if the two driving voltages were anti-



10

parallel (phase delay = 180º), the amplitude of the resonant bending displacement was reduced to

minimum of 1.8 mm. When the gap between the two wing spars was reduced from 10 mm to 8 mm

(and further to 5 and 2 mm) and all the other conditions were kept the same, the bending

displacement increased but the dependence on the phase delay was similar (Fig. 6a).

If the frequency of the two driving voltages was increased from 26.2 Hz to 53.6 Hz, the same as its

second mode frequency, the wing motion became a pure twisting. In this case, the two wing spars as

represented by point 1 and point 2 in Fig. 1 were always moving in the opposite directions with the

middle line not moving. When the gap distance was 10 mm and the voltages Vpp=170 V applied to

the two piezofans were in phase (phase delay = 0º), the twisting angle of the wing was minute, close

to 0 degree at 53.6 Hz. If the phase delay of the two driving voltage was increased and all the other

conditions remained the same, the wing movement was found to remain at the pure twisting mode

and also resonate at the same frequency, but with an increased twisting amplitude. For the case with

the two driving voltages set to anti-parallel (phase delay = 180º), the resonant twisting angle

reached 41º (Fig. 6b). It was also found, if the gap between the two wing spars was reduced from 10

mm to 8 mm (and further to 5 and 2 mm) and all the other conditions were kept the same, the wing

twisting increased but its dependence on the phase delay was similar (Fig. 6b).

The motional amplitude dependence on the gap distance between the two spars could be interpreted

by consideration of the air damping effect. In this case, the damping of the wing movement would

increase in proportion to its cross sectional area where the effective cross section of the wing is

proportional to the gap distance [16]. So the reduced gap distance would lead to a reduced

aerodynamic damping and hence an increased vibration amplitude. To this end, a nearly linear

relationship (with negative slump rates) was found to exist between both the bending and twisting

amplitudes and the gap distance (Fig. 7), further reinforcing this proposed damping dependency.
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4 Conclusions

Coupled piezoelectric fans were formed by clamping two fans in parallel and attaching a flexible

wing made of two stiff carbon fibre reinforced plastic wing spars and a soft polymer skin. The

dynamic behaviours of the wing were modelled by FEM modal analysis and investigated by using

high speed digital cameras. It was found both the mode and the amplitude of the wing motion

depend strongly on frequency. The degrees of motion of the wing increased by nearly 10 times at

resonant frequencies as compared to the motion at frequencies far away from the resonance. It was

found that the phase delay between the driving voltages supplied to the two coupled piezoelectric

fans play a critical role in the control of the flapping and twisting motions of the wing. The bending

amplitude of the wing reduced with the increasing phase delay and the twisting movement increased

with an increasing phase delay.
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Figure Captions

Fig. 1 The schematic set up for the coupled piezoelectric fans with the attached wing and their

vibration measurement by high speed camera photography.

Fig. 2 The finite element modelling modal analysis for the coupled piezoelectric fans systems as

shown in figure 1: (a) 1st mode bending -23.7 Hz; (b) 2nd mode twisting -58 Hz.

Fig. 3 Typical images produced by superimposing two high speed camera images of the two

extreme positions of the wing within a vibration cycle at frequencies (a) 22.3 and (b) 47.4

Hz. The driving voltage was 170 Vpp.

Fig. 4 The measured flapping and twisting motion amplitudes of the wing as functions of the

operating frequency driving by the two coupled piezofans under 170 Vpp.

Fig. 5 The measured vibration amplitudes as functions of frequency at different phase-delays at

around (a) the flapping and (b) the twisting resonances.

Fig. 6 The phase delay dependence of the vibration amplitude of the bending and twisting modes of

the wing driving by the coupled piezoelectric fans under 170 Vpp at different gap distances

between the two spars: (a) bending mode; (b) twisting mode.

Fig. 7 The vibration amplitudes of the bending and twisting motions of the wing as functions of the

gap distance between the two spars. The nearly linear relationships suggests that the air

damping effect was responsible for the decreasing vibration amplitude with the increasing

gap distance.



15

Fig. 1

Spar
Wing

Point 2

Stainless
Steel

Point 1

Function Generator

Phase delay circuit

HV Amplifier I HV Amplifier II

Piezo-fan I Piezo-fan II

PZTPZT

High speed camera

Spar



16

1

X

Y

Z

Piezoelectric unimorph

ANSYS 8.1
APR 27 2007

12:01:50

DISPLACEMENT

STEP=1
SUB =1
FREQ=23.714
DMX =136.208

1

X

Y

Z

Piezoelectric unimorph

ANSYS 8.1
APR 27 2007

12:02:36

DISPLACEMENT

STEP=1
SUB =2
FREQ=57.978
DMX =108.528

Fig. 2

(b)

(a)



17

Fig. 3
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Table I: Material property parameters used for the finite element modelling.

Material PZT 5H Stainless
Steel Polymer CFRB

Thickness (µm) 127 125 50 100
Width (mm) 10 10 - 2
Young’s
Modulus (GPa) 62 200 8 200

Density (Kg/ m3) 7800 7900 1534 1750
Poisson’s ratio ― 0.28 0.27 0.27
d31(10-12 m/V) -320 ― ― ―
ε11 3130 ― ― ―
ε22 3130 ― ― ―
ε33 3400 ― ― ―
e31 -12 ― ― ―
e33 22.22 ― ― ―
e15 19.39 ― ― ―
c11(109 N/m2) 126 255.68 ― ―
c12(109 N/m2) 79.5 99.43 ― ―
c13(109 N/m2) 84.1 ― ― ―
c33(109 N/m2) 117 ― ― ―
c44(109 N/m2) 23.0 78.13 ― ―


