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ABSTRACT 

The role of sustainable and natural waste management processes such as composting 

are increasingly becoming more important in tackling the current environmental 

challenge of the amount of waste that is being produced. However a potential risk of 

composting facilities is the release and dispersal of bioaerosols that might result in 

adverse health effects in sensitive receptors. Therefore, environmental regulators 

request regulatory risk assessments from composting facilities that are within 250m of 

sensitive receptors to assess the risk posed by bioaerosols. 

 

The prior art in compost related bioaerosol release and dispersal assessment is not 

extensive and gaps in the understanding of bioaerosols at source, on release from 

composting facilities and at receptor remain. Therefore, this research was undertaken to 

address some of these gaps in the current knowledge and to improve the understanding 

of the characterisation and dispersal of bioaerosols emitted from compost.  

 

Therefore firstly two studies were completed in regards to the characterisation of 

bioaerosols emitted from compost, in particular in improving the understanding of their 

aggregation and size distribution. In this context, a novel methodology (the compost 

tumbler) was developed to release and measure bioaerosols in experimental conditions. 

Data was generated using a combination of culturing and scanning electron microscopy 

methods to characterise the aggregation and size distribution of bioaerosols emitted 

from compost. Secondly, site work was conducted to validate the results of these 

controlled experiments and characterise the aggregation and size distribution of 

bioaerosols emitted from composting facilities. These controlled experiments and site 

work showed evidence of aggregation in bioaerosols released from compost. However, 

the majority of these bioaerosols were in single cell units hence they are more likely to 

be dispersed for longer distances. 

 
Following this, other studies were conducted in regards to the dispersal of bioaerosols 

emitted from compost, in particular in improving the understanding of bioaerosol 

concentration prediction by air dispersion modelling. Firstly preliminary air dispersion 

modelling was completed to assess the ability of a commercial air dispersion model, 
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ADMS 3.3, to predict bioaerosol emissions from composting facilities compared to 

bioaerosol concentrations measured by on-site downwind bioaerosol sampling. 

Folowing this, the sensitivities of ADMS 3.3 were analysed and the effect of different 

modelling parameters on predicted bioaerosol concentrations were assessed. Finally, a 

final assessment of the potential of ADMS 3.3 to predict bioaerosol emissions from 

composting facilities was conducted. The overall results from the modelling studies 

indicated that ADMS 3.3 was not able to consistently predict absolute downwind 

bioaerosol concentrations at composting facilities. However it was also concluded that 

ADMS 3.3 can be a useful tool for the initial screening and assessing relative changes 

of bioaerosols at a compost facility, provided that the detailed assessment of absolute 

bioaerosol emissions are made in conjunction with measurement of downwind 

bioaerosol concentrations.  

 
The research presented in this thesis makes a significant contribution to knowledge in 

terms of improving the understanding of the characterisation and dispersal of 

bioaerosols emitted from composting facilities.  
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CHAPTER 1.  INTRODUCTION  
 

1.1. INTRODUCTION 
One of the most important environmental challenges of our time is the large volume of 

waste going to landfill. The management of waste through landfill practices results in the 

release of greenhouse gases and polluting liquids through leachate (Tammemagi, 1999; 

Bell et al., 2000). In addition, landfill sites are becoming increasingly scarce in parts of 

England and Wales and the volume of waste being diverted into disposal by landfill can 

be a wasted economic and environmental opportunity (DETR, 2000). In the UK, 

government legislation and waste strategies have set targets to address this (DETR, 

2000), in line with the legal obligations to meet the EU Landfill Directive (1999/31/EC). 

Therefore the roles of potentially sustainable methods of waste management, such as 

recycling, refuse-derived fuel or composting, are becoming increasingly important. 

 

Composting is the process of treatment of biodegradable, organic waste (e.g. proteins, 

fats, carbohydrates, celluloses and mineral matter) (Gilbert and Ward, 1998) by 

biological degradation. The process takes place under aerobic and controlled conditions 

to result in carbon dioxide, water and heat (Epstein, 1997). Composting also results in a 

humus-like product named compost (Epstein, 1997) which is a valuable resource with 

various applications in soil management (i.e. soil conditioning) (Lester and Birkett, 

1999a). Development of thermophilic temperatures takes place due to the production of 

heat via biological processes (Swan et al., 2002). The role of the micro-organisms 

present in compost is to accelerate the degradation process, reduce the emission of 

unwanted gases and destroy the pathogens present in the organic waste prior to 

composting (Beffa et al., 1996; Hellmann et al., 1997; Hassen et al., 2001; Ngnikam et 

al., 2001; Vinneras and Jonsson, 2003). The composting process is illustrated in Figure 

1.1.  



 2

 

Figure 1.1 - Composting process (adapted from Epstein, 1997; Composting 
Association, 2001) 
 

The operation of composting facilities should be a low hazard activity however poorly-

operated compost facilities can pose risks to workers, public health and the environment 

(Environment Agency, 2004). As a result of such health concerns and the need for 

operators to demonstrate the safe operation of their facilities, the environmental   

regulator in England and Wales requests environmental risk assessments in support of   

planning consent and environmental permits, in particular, where facilities are within
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250m of sensitive receptors (Environment Agency, 2001; 2007). These sensitive 

receptors can be residences, schools, hospitals and other public facilities. In return 

regulators use risk assessments to inform environmental permitting and the drafting of 

conditions within the operator’s licences or permits to operate.  

 

The activities (i.e. turning, agitation, screening, shredding) that take place within a 

composting facility result in the release of the micro-organisms present in the compost. 

Therefore a focus of these environmental risk assessments has been to quantify the 

exposure to these airborne micro-organisms or bioaerosols (Deportes et al., 1995; 

Gilbert and Ward, 1998; Maritato et al., 1992).  

 

To assess to exposure of bioaerosols emitted from composting facilities, these 

environmental risk assessments need to take into account the source of the bioaerosol 

hazard (e.g. compost windrows), the pathway through which the hazard may reach the 

receptor (e.g. release, dispersal and deposition) and the characteristics of the receptor 

(e.g. differential sensitivity, sensitive receptors, health impacts) (Environment Agency, 

2004; Pollard et al., 2006). As such, the understanding of factors that effect their 

behaviour at source, pathway and receptor is essential in analysing the risk of 

composting related bioaerosol exposure. However there are gaps in the scientific prior 

art of the processes which may effect the analysis of bioaerosols emitted from 

composting facilities. Therefore, this research was completed to address some of these 

gaps in the current knowledge and to improve the understanding of the characterisation 

and dispersal of bioaerosols emitted from compost. 

 

The next chapter (Chapter 2) will discuss the research study rationale in detail and will 

present the overall research aims and objectives. Therefore the following literature 

review aims to ‘set the scene’ for this discussion. The literature review also aims to 

present and discuss the factors which may affect the quality of environmental regulatory 

risk assessments with respect to bioaerosols and composting. Finally, the gaps in 

knowledge of the processes which affect the analysis of bioaerosol exposure from 

composting facilities will be discussed.   
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1.2. BIOAEROSOLS 
Bioaerosols are aerosols of biological origin (Cox and Wathes, 1995) ranging from 0.02 

to 100 µm in size (Dowd and Maier, 2000; Ariya and Amyot, 2004). They are living 

micro-organisms such as bacteria, fungi, yeasts and protozoans or carry fragments of 

living micro-organisms (ADAS/SWICEB, 2005) and have the potential to pose serious 

health risks to humans.  

 

Exposures to bioaerosols are common at composting plants, due to releases of fungi, 

bacteria, actinomycetes, endotoxins (found in cell walls bacteria), LPS 

(lipopolysaccharide), mycotoxins (secondary metabolites of fungi), and glucans 

(particularly (1 3)-β-D-glucan, found in cell walls of fungi and some bacteria) (Swan et 

al., 2003). The adverse health effects related to industrial-scale composting have 

tended to concentrate on thermophilic actinomycetes and the fungi Aspergillus 

fumigatus, which occur naturally in the compost environment and are released into the 

air during agitation of the compost such as screening and turning operations 

(Composting Association, 2004).  

 

Aspergillus fumigatus is a filamentous fungus that is commonly found in decaying 

organic matter such as composting vegetation, wood chip piles, municipal solid waste 

(MSW) compost, waste sludge compost and mouldy hay. It is an important micro-

organism in the compost process with its capacity to degrade cellulose structures (Swan 

et al., 2002). It thrives best between temperatures of 30°C and 52°C, with optimum 

growth at 37°C (Swan et al., 2002), which enables it to grow at human body 

temperature.  

 

Actinomycetes are a group of filamentous bacteria that resemble fungi, and are the 

dominant bacteria in the composting process (Lacey and Crook, 1988; Strom, 1985; 

Swan et al., 2003). They are able to grow in high numbers in compost that is at the start 

of the self heating process and hence may used as micro-organisms to indicate 

bioaerosol presence in compost (Dutkiewicz, 1997; Swan et al., 2003). Thermophilic 

actinomycetes have growth profiles of 30°C - 60°C (Swan et al., 2002), which also 

enables them to grow at body temperature. The species grow as branching micro-
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organisms with short chains of spherical hyphae (1 - 3 µm in diameter), which can 

become airborne if material that contains large colonies of the bacteria is disturbed 

(Swan et al., 2002). 

 
It is important to note that exposure to bioaerosols is not limited to composting facilities 

and there is a wide body of previous work that has examined bioaerosol exposure from 

various industries and applications (Dutkiewicz, 1997; Jacobs, 1997; Jager and Eckrich, 

1997; Lacey, 1997; McNeel and Kreutzer, 1999; Nielsen et al., 1997; Reponen et al., 

1998; Sánchez-Monedero and Stentiford, 2003; Seedorf et al., 1998; Shelton et al., 

2002; SLR, 2006; Swan et al., 2003). Examples of other industries and applications 

where bioaerosols and their components have been measured are presented in Table 

1.1.  

 
Table 1.1- Industrial and application sources of bioaerosols 

Exposure  
Environment 

Reference 

Agriculture Adhikari et al. (2004a); Dutkiewicz et al. (1989); Hameed and 
Khodr (2001); Lee et al. (2006a); Pande et al. (2000) 

Farming Melbostad and Eduard (2001); Sigurdarson et al. (2004) 
Hop growing Góra et al. (2004); Śpiewak et al. (2001) 
Hardwood processing Veilette et al. (2006) 
Cotton mills Christiani et al. (1999); Gokani et al. (1987); Ogden et al. (1993) 
Textile plants Su et al. (2002) 
Sawmills  Dutkiewicz et al. (2001a) 
Furniture, fiberboard and 
chipboard factories 

Dutkiewicz et al. (2001b); Krysińska-Traczyk et al. (2002) 

Hemp processing plant Fishwick et al.(2001); Zuskin et al. (1990; 1992) 
Grape stemming and 
crushing 

Zollinger et al. (2005) 

Livestock and swine 
industry 

Adhikari et al. (2004b); Chang et al. (2001); Gibbs et al. (2004); 
Predicala et al. (2001); Seedorf et al. (1998) 

Herb processing plants Dutkiewicz et al. (2001c); Mackiewicz et al. (1999); Skórska et 
al. (2005) 

Land application of biosolids 
and animal waste 

Pillai and Ricke (2002) 

Landfills Huang et al. (2002) 
Wastewater treatment Brandi et al. (2000); Brooks et al. (2004); Fernando and 

Fedorak (2005); Lee et al. (2006b); Orsini et al. (2002); Pascual 
et al. (2003); Tolvanen (2004) 

Recycling Gladding and Coggins (1997); Würtz and Breum  (1997) 
Waste Collection Breum et al. (1996b); Heldal et al. (1997); Kiviranta et al., 

(1999); Lavoie and Dunkerley (2002); Neumann et al. (2002; 
2005); Nielsen et al. (1997); Thorn (2001); van Yperen and 
Rutten (1997); Williams (2002). 
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Bioaerosols are not only caused by micro-organism release from industries and 

applications. They  also occur naturally in the environment (Borodulin, 2005; Bovallius 

et al., 1978; Köck et al., 1998; Fang et al., 2005; Mancinelli and Shulls, 1978; Spicer 

and Gangloff, 2005), are constantly released from sources such as soil dust and decay 

of vegetation (e.g. leaves) (Swan et al., 2002) and hence are ubiquitous.  

 

Indoor effects of bioaerosols are also evident in literature (Carrer et al., 2001; Górny et 

al., 2001; Stetzenbach, 1998; Grigorevski-Lima et al., 2006). Studies suggest that ‘Sick 

Building Syndrome’ may be caused by the presence of undesirable bioaerosols (Bholah 

and Subratty, 2002; Helsing et al., 1989; Mølhave, 1989; Rylander and Haglind, 1984; 

Wan and Li, 1998).  Finally, bioaerosols have also been measured in: 

 

• Domestic and office buildings (Baxter et al., 2005; Boillard et al., 2005; Garrett et al., 

1998; Hyvärinen et al., 2002; Kalogerakis et al., 2005; Koskinen et al., 1999; Law et 

al., 2001; Lee and Jo, 2005; Lee et al., 2006c; Lis and Pastuszka, 1997; Nevailanen 

et al., 1991; Rautiala et al., 1998; Reynolds et al., 2001); 

• Hospitals (Li and Hou, 2003; Streifel et al., 1989); 

• Shopping centres (Nunes et al., 2005); 

• Schools (Kalliokoski et al., 2002; Rylander et al., 1998; Ramanchandran et al., 

2005); and  

• Day-care centres (Koskinen et al., 1995).  

 
1.3. SAMPLING AND ANALYSIS OF BIOAEROSOLS  
The previous section has highlighted the occurrence of bioaerosols at composting 

facilities as well as from other industries and applications. To study these bioaerosols, 

there is an extensive variety of devices and methods used for their sampling and 

analysis.  

 

At composting facilities, the choice of sampling device is based on the individual 

application (Dowd and Maier, 2000) and several factors need to be considered. These 

factors include the type of bioaerosol that is being investigated, flow rate and volume of 
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air being sampled, ease of transport of the device, and the environmental conditions of 

the sampling location. 

 

The viability and culturability of the bioaerosol being analysed is also of importance 

when choosing a sampling device. A viable micro-organism is living and able to 

reproduce as it is metabolically active (Haas et al., 1999a). Viable micro-organims are 

further divided into culturable and non-culturable micro-organisms. Culturable micro-

organisms indicate those that are able to reproduce under controlled conditions 

however non-culturable micro-organisms are not able to reproduce under similar 

conditions (Jensen et al., 1998) because the sampled micro-organisms might be 

stressed or injured due to effects such as environmental conditions (McFeters et al., 

1982). Common methods of collecting viable bioaerosols include impaction onto agar 

(e.g. slit agar impactors and multiple-hole impactors), centrifugation (e.g. wetted or dry 

cyclone samplers) and gravitational collection (e.g. direct deposition onto a culture 

medium) (Henningson and Ahlberg, 1994; Willeke and Macher, 1999; Dowd and Maier, 

2000; Martinez et al., 2004; Stetzenbach et al., 2004).  

 

Non-culturable micro-organisms are divided into dormant, viable but nonculturable 

(VBNC) and nonviable micro-organisms (Jjemba, 2004). A non viable micro-organism is 

one that is not capable of reproduction (i.e. metabolically inactive) and no longer living 

(Haas et al., 1999a). The filtration method that is commonly used to collect viable micro-

organisms can also be used for collecting non-viable micro-organisms. Filtration is 

based on drawing a certain volume of air through filters of specific sizes for collecting of 

biaoerosols and other particles such as dust. The collected micro-organisms can 

subsequently be analysed by being washed off the filter surface and cultured, using 

microscopy (Palmgren et al., 1986) or other methods such as gene probes (Jensen et 

al., 1998). Since the filter would not differentiate between culturable, non-culturable or 

non-viable micro-organisms, they are valuable for analysing total bioaerosol and particle 

counts in a sample. The efficiency of the filter is based on the face velocity of the filter 

and filters have been shown to have collection efficiencies of greater than 99% for 

particles of over 1 µm (Jensen et al., 1998). However, loss of viability due to moisture 
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loss on the filter surface and poor recovery of micro-organisms collected by the filter can 

be the disadvantages of this filter method (Nielsen et al., 1997).  

 

Use of devices based on liquid impingement (e.g. all glass or three-stage impingers) 

and pollen, spore and particle impaction through devices such as the Burkard or Hirst 

spore trap (Levetin and Horner, 2002) onto glass slides or tape strips are also becoming 

more common (Sterling et al., 1999). Both of these methods are designed for collection 

of both viable and non-viable micro-organisms.  

 

Following the collection of the micro-organism, more traditional methods of bioaerosol 

identification and analysis are based on the morphological structure evaluation of the 

micro-organism colony after culturing of the sample. This method is reliant on the 

viability and the culturability of the micro-organisms. However following the collection of 

micro-organisms with methods such as filtration or pollen, spore and particle impaction, 

another common analysis method is microscopy. This method, in contrast to culturing 

methods, allows the determination of total number of micro-organisms in a sample (i.e. 

both culturable and non-culturable).  

 

An example of such microscopy methods is the Scanning Electron Microscopy, used 

since the 1970s to study micro-organisms (Kormendy and Wayman, 1972). More 

recently, Scanning Electron Microscopes have been utilised to study moulds and 

actinomycetes in agricultural dusts (Karlsson and Malmberg, 1989), bioaerosols 

(Witmaack et al., 2005), primary biological aerosol particle (Matthias-Maser and 

Jaenicke, 1995), environmental particles (i.e. biofilms) (Mavrocordatos et al., 2004), 

aerosol particle size (Gwaze et al., 2007); microbial aggregation (Borrego et al., 2000) 

and fungal spores (Heikkilä et al., 1988a; 1998b).  

 

Other bioaerosol analysis methods used for analysing both non-viable and viable micro-

organisms include techniques such as immunoassays (e.g. radioimmunoassay and 

fluorescence immunoassay), biochemical assays (e.g. endotoxin assay), chemical 

detection of bioaerosols (Spurny, 1994) and the utilisation of gene technology, such as 

the Polymerase Chain Reaction (PCR) (Mukoda et al., 1994; West et al., 2008).  
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New technologies of bioaerosol collection and analysis are in constant progress. One of 

these newer technologies is the capture of viable airborne micro-organisms through the 

use of a bubbling device using filters immersed into a liquid medium (Agranovski et al., 

1998; Agranovski et al., 1999) and work described by Mainelis et al. (2002a) regarding a 

device that uses the electrical charge of airborne micro-organisms to capture them in an 

electrical field and then onto a growth media. This method is based on early technology 

developed in the sixties (Liu et al., 1967). Following on from this, an electrostatic 

precipitator device that assesses the electrical charge of bioaerosols has been 

introduced (Lee et al., 2004). The study claims that the method can differentiate 

between negatively and positively charged micro-organisms based on the fact that most 

micro-organisms carry electrical charges in their structure (Benninghof and Benninghof, 

1982; Mainelis et al., 2001), which would add a signature to the sampled micro-

organisms to aid their identification. Sigaev et al. (2006) reports the development of a 

cyclone-based aerosol sampler that uses a re-circulating liquid film that is different in 

design from traditional cyclone samplers invented by Olenin et al. (1977). However, the 

wide use of such new technologies are not evident in literature.  

 
1.4. HEALTH IMPLICATIONS OF BIOAEROSOL EXPOSURE  
 
The previous sections have highlighted the occurrence of bioaerosols and some of the 

methods used for their sampling and analysis. At composting facilities, it is important to 

analyse the exposure to bioaerosols because they may pose serious health risks to 

composting facility operatives or sensitive receptors downwind of a composting facility.   

 
1.4.1. Health Effects Associated with Fungi, Mycotoxins and Aspergillus 

fumigatus 
 
Fungi are common allergen sources, are toxigenic, and cause infections and 

inflammatory reactions (Fischer and Dott, 2003). The fungal spores in the air, as well as 

their cell wall components, such as mycotoxins and (1 3)-β-D-glucans, have been 

proven to cause occupational asthma (Rylander and Lin, 2000). Eduard et al. (2001) 

have studied short term exposure of farmers to bioaerosols and have observed a high 

occurrence of eye symptoms (e.g. allergies) and coughing. These problems were linked 

to the occurrence of fungal spores. Some of the other environments in which fungus 

related asthma has been reported are mushroom cultivation, cheese manufacturing, 
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flour mills and food processing (Burge, 1995). Farmer’s Lung Disease (FLD), which is a 

common form of allergic alveolitis, is linked to repeated exposure to moldy hay or straw 

(Reboux et al., 2001).  

 

Specifically for A. fumigatus, their conidia at 2-3 µm in size are capable of entering the 

lung and reaching the secondary bronchi (Raper and Fennell, 1965; Samson and Van 

Reenen-Hoekstra, 1988; Denning, 1998). Despite this capability, their inhalation rarely 

has any effect on healthy individuals because the conidia are eliminated by immune 

mechanisms (Latgé, 1999; Ziegler, 1993). Therefore the risk of potential infections 

arising from A. fumigatus exposure to healthy individuals is very low (Millner et al., 

1994). However A. fumigatus has been reported to cause severe effects on immuno-

compromised patients (Andriole, 1993; Hibbard and Ferro, 1996; Bodey and Vartivarian, 

1989; Denning, 1998; Dixon et al., 1996), such as AIDS patients, those who have 

received organ transplants and also individuals who are atopic or asthmatic (Millner et 

al., 1994).  

 

In these patients, A. fumigatus can lead to a variety of Aspergillosis disease including 

Invasive Aspergillosis (i.e. an infection generally occurring in the lungs) (Denning, 1998; 

Latgé, 1999). Similarly, Pulmonary Aspergillosis has been detected in renal transplant 

patients who have been subjected to dust caused by hospital renovation (Arnow et al., 

1978). Gliotoxin, another metabolite of the A. fumigatus is also potentially linked to 

Aspergillosis and other A. fumigatus related diseases (Müllbacher and Eichner, 1984). 

Aspergillus infections have also been detected in cancer patients linked with fireproofing 

materials in a new hospital (Aisner et al., 1976).  

 

Despite the low occurrence of A. fumigatus related disease in healthy individuals, 

Millner (1994) found an increased likelihood of nonatopic individuals becoming 

sensitised to bioaerosols after constant exposure. In instances where bioaerosol 

exposure is very high for workers, such as those working with compost, the risk of 

adverse effects is increased (Millner et al., 1994). In addition, when airborne fungal 

spores are inhaled into the bronchia and alveoli, and are then lysed by the immune 

system, the human body may be exposed to the primary and secondary metabolites, 
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such as the cell-wall component mycotoxins, which are known to be pathogens (Fischer 

and Dott, 2003). 

 
1.4.2. Health Effects Associated with Actinomycetes, Endotoxins and LPS 
 
As with Aspergillus fumigatus, actinomycetes are potentially capable of penetrating into 

the human lung because of their small size (Swan et al., 2002). Prolonged inhalation 

exposure to actinomycetes has been linked to adverse health effects (Douwes et al., 

2003), including allergic alveolitis and other respiratory responses (Lacey and Crook, 

1988; Lacey and Dutkiewicz, 1994; Lacey, 1997; Swan et al., 2003). 

 

Another group of bioaerosols that have been widely studied (Rylander, 2002) are 

endotoxins and LPS (lipopolysaccharide). Endotoxins are found in the cell walls of 

gram-negative bacteria and are linked to fever and the activation of the immune system 

in small doses, and to shock and even death in larger doses (Schlessinger and 

Schaechter, 1993). They have been linked to acute bronchoconstriction in healthy 

humans exposed to cotton dust (Castellan et al., 1984). Douwes et al. (2000b) have 

shown that endotoxin exposure in sawmill workers was at sufficient levels to cause 

respiratory symptoms. LPS are the derivatives of endotoxins (Helander et al., 1980; 

Michel et al., 1997; Rylander and Haglind, 1984; Rylander, 1987) and their inhalation is 

known to cause inflammatory response in the lungs (Nightingale et al., 1998; Thorn and 

Rylander, 1998). Rylander et al. (1999) has found increased likelihood of airways 

inflammation in the workers of the paper industry caused by exposure to endotoxins and 

(1 3)-β-D-glucans. The latter is found in the cell walls of fungi and some bacteria 

(Swan et al., 2003).  

 

1.4.3. Health Impacts Associated with Biaoerosols in the Waste Industry 
There has been a number of studies which have examined the risk of biaoerosol 

induced disease in the waste industry. Several studies (Gladding and Coggins, 1997; 

Gladding, 2002 and Gladding et al., 2003) have found dry cough, nausea, nasal 

irritation as well as respiratory and gastrointestinal symptoms in the workers of materials 

recovery facilities. Malmros (1997) have noted diarrhoea, vomiting, nausea, fatigue and 

headache in garbage recycling workers.  
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There is a larger number of studies that have looked at the health impacts of 

bioaerosols on waste management workers and refuse handlers. Allmers et al. (2000) 

have studied the effect of fungi and especially Aspergillus fumigatus on garbage 

workers exposed to mouldy waste and found evidence of Allergic Bronchopulmonary 

Aspergillosis and hypersensitivity pneumonitis (extrinsic allergic alveolitis). Similar 

airway inflammatory response was found in waste handlers exposed to total bacteria, 

fungal spores, endotoxin and (1 3)-β-D-glucan by Heldal et al. (2003a, 2003b) and by 

Yang et al. (2001).  

 

In addition to respiratory problems, other studies (Ivens et al., 1997a; 1999; Kuijer and 

Frings-Dresen, 2004) have also noted gastrointestinal problems in waste collectors 

exposed to bacteria, fungal spores, endotoxin and (1 3)-β-D-glucans. Studies by Herr 

et al. (2004a; 2004b) have found skin-related complaints and diseases in residents of 

properties where there is indoor storage of organic domestic waste. The micro-

organisms found in these properties were thermophilic actinomycetes, total bacteria and 

moulds. Examples of the health impacts related to bioaerosol exposure specifically for 

composting are presented in Table 1.2. 

 
Table 1.2- Health impacts associated with bioaerosols emitted from compost 

Type of 
Bioaerosol 

Health impact Affected Group Reference 

Fungi and 
bacteria 

Significantly higher 
symptoms and 
diseases of the airways 
and skin 

Biowaste collectors 
and Compost Workers 

Bünger et al. 
(2000) 

Actinomycetes 
and A. fumigatus 

Respiratory difficulty, 
fatigue, cough, fever, 
chills and joint pain 

Individual working with 
compost in his garden 

Brown et al. 
(1995) 

A.fumigatus and 
Penicillium 

Fever, myalgia and 
dyspnea 

Individual shovelling 
composted wood chips 
and leaves 

Weber et al. 
(1993) 

Endotoxin, 
glucans, fungi 
and total bacteria 

Upper airway 
inflammation 

Compost workers Douwes et al. 
(1997, 2000a) 

Dust, 
actinomycetes, 
bacteria and fungi

Gastrointestinal 
symptoms, itchy arms 
and eyes, dry throat 
and coughs 

Compost workers Wheeler et al. 
(2001) 
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A limited number of studies have examined the impact of biaoerosols emitted from 

compost on the residents living nearby a composting site. Herr et al. (2003) have found 

cases of health complaints including ‘waking up due to coughing’, ‘bronchitis’ and 

‘excessive tiredness’ in the residents who were 150-200 m away from a composting 

site. These problems were attributed to the presence of thermophilic actinomycetes, 

total bacteria and moulds. However other studies were less conclusive. Browne et al. 

(2001) have studied bioaerosol health impacts in 63 residents living near a composting 

site and 82 controls in a control neighbourhood. No evidence of an association between 

A. fumigatus and increases in respiratory symptoms was noted however higher levels of 

A. fumigatus were observed in the neighbourhood close to the composting facility 

compared to those at the control neighbourhood.  Cobb et al. (1995) have evaluated the 

health impacts of particulates (not bioaerosols) on the residents living 3000 feet away 

from a mushroom composting site. There was no evidence of a significant health hazard 

or any differences between exposed and control groups.  

 
1.4.4. Dose-Response Relationship of Bioaerosol Induced Disease 
As discussed in the previous sections, bioerosols are known to be associated with 

health effects. However the mechanisms of bioaerosol induced disease are not clear 

due to a lack of actual dose-response information in the literature regarding these health 

risks (Douwes et al., 2003; Fischer and Dott, 2003; Folmsbee and Strevett, 1999; 

Gladding, 2002; Millner et al., 1994; Swan et al., 2003; Wheeler et al., 2001). Although it 

is argued that there is a cause and effect relationship in aeroallergen exposure and 

allergic disease, occupational exposure limits (OEL) and threshold limit values (TLV) for 

bioaerosols have not been introduced as legal regulations anywhere in the world 

(Burge, 1995; Gladding, 2002; Poulsen et al., 1995a; 1995b; van Yperen and Rutten, 

1997). 

 

There have been numerous attempts to establish threshold levels and exposure limits 

for bioaerosols beyond which acute and chronic health effects have been observed, 

however these are only suggestions and are not widely accepted. Previous studies 

(Swan et al., 2003; Poulsen et al. (1995a; 1995b)) have reviewed and correlated 

observed health effects of endotoxins, organic dust, gram negative bacteria, fungi and 
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total viable bacteria with exposure levels found in various epidemiological studies. 

Similarly, Clark et al. (1983b) attempted to correlate a dose-response relationship 

between exposure to total bacteria, gram-negative bacteria, total fungi, Aspergillus 

fumigatus and endotoxins, and concurrent health effects.  

 

More commonly threshold levels and exposure levels have been suggested for 

endotoxin and lipopolysaccharides (LPS) exposure. Such a study by Castellan et al. 

(1987) aimed to define a dose-response relationship between inhalation of cotton dust 

and lung disorders. The study was in line with research by Rylander (1987) examining 

dose-response relationships of endotoxin (in cotton dust) with fever, chest tightness, 

and reduction in air flow (bronchoconstriction) in cotton workers. Later studies on 

respiratory disorders and atopy in cotton, wool, and other textile mill workers in 

Denmark (Sigsgaard et al., 1992) also investigated a dose-response correlation 

between endotoxin exposure and adverse health effects.  

 

Work by Ivens et al. (1999) suggested an exposure-response relationship between 

nausea and endotoxin exposure, as well as between diahorrea and endotoxin, and 

viable fungi exposure. This study examined gastrointestinal problems of waste 

collectors. Mandryk et al. (2000) who studied sawmill workers, has also suggested a 

dose-response relationship in worker exposures to endotoxin, gram negative bacteria, 

fungi, (1 3)-β-D-glucan and respiratory symptoms including lung function. Work carried 

out on farms by Eduard et al. (2001) has attempted to correlate a dose dependent 

relationship to symptoms of the nose and eyes, as well as coughing. Another study 

(Lange et al., 2003) analysed endotoxin exposure in farmers and suggested a dose-

response relationship between endotoxin exposure and lung cancer risk. Some 

examples of endotoxin, LPS and glucan exposure benchmark values are presented in 

Table 1.3. 
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Table 1.3 - Suggested exposure benchmark levels for endotoxins, LPS and glucans. 
EU/m3 denotes endotoxin units per cubic metre and ng/m3 denotes nanograms per cubic 
metre. 

Industry Endotoxin, Glucan 
and LPS Exposure 
Benchmark Values 

Health Effects Reference 

Cotton textile 
industry 

Endotoxin  
100 EU/m3 

Cough, wheezing, and 
obstructive ventilation 
patterns 

Latza et al. (2004) 

Paper mill LPS  
200 EU/m3 

Loss of lung function Sigsgaard et al. 
(2004) 

Wastewater  Endotoxin  
50 EU/m3 

Lower respiratory, skin 
and flu-like and 
systemic symptoms 

Smit et al. (2005)  

Waste Glucan 5-10 µg/m3 
Endotoxin  
300-1000 EU/m3 

Various Wouters et al. 
(2006) 

Poultry work Endotoxin  
614 EU/m3 

Pulmonary lung 
function decrease 

Donham et al. 
(2000)  

General exposure Endotoxin  
2000 EU/m3 

Endotoxin  
1000 EU/m3 

Endotoxin  
100 EU/m3 

Toxic pneumonitis 
 
Systemic effects 
 
Airway inflammation 

The International 
Committee on 
Occupational 
Health, Rylander 
(2002) 

General exposure 50 EU/m3 over an 8 
hour exposure 
period with an in air 
endotoxin 
concentration of 4.5 
ng/m3 

Various Dutch Expert 
Committee on 
Occupational 
Standards 
(DECOS), 
Heedrick and 
Douwes (1997) 

General exposure Endotoxin  
9 to 170 ng/m3 

No effect level Heedrick and 
Douwes (1997) 

Pig farming Endotoxin  
75 ng/m3 

Airway 
hyperresponsiveness 
and low lung function 

Portengen et al. 
(2005) 

 

A threshold dose for the exposure to a substance below which no effect or response will 

be measurable are termed as threshold limit values (TLV) developed by the American 

Conference of Governmental Industrial Hygienists (ACGIH, 1991-1992) or maximum 

exposure limits (MEL) (Timbrell, 2002). Macher et al. (1999) suggest that a threshold 

limit value should have five primary components. These are: 

 

• A scientific base for the standard; 

• An established sampling method; 
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• An analytical method;  

• A sampling strategy; and  

• A limit value.  

 

Despite attempts to establish threshold levels and exposure limits, sufficient information 

is not yet available on all these components (Macher et al., 1999) for bioaerosols. In 

addition, the scientific base for bioaerosol health effects is limited. Apart from the 

guidelines published by the Composting Association (1999) and Association for 

Organics Recycling (formerly the Composting Association) (2009), there are no 

established standard sampling and analytical methods nor a standard sampling strategy 

from the Environment  Agency  or other government bodies in the UK. Such standard 

methods are currently emerging through the recently published British Standards (BS 

ISO 16000-16:2008 and BS ISO 16000-17:2008) (BSI, 2008a; 2008b) however these 

standards are for the detection and enumeration of moulds for indoor air and not for 

composting facilities. In Europe, similar standard methods for measurement of airborne 

micro-organisms and viruses in ambient air are available (VDI, 2004a; 2004b; 2007). 

 

One reason for the lack of standard sampling and analytical methods has been 

discussed to be the fact that bioaerosols and their properties exhibit wide diversity and 

there are large differences in methods of microbiological air sampling and enumeration 

(Dutkiewicz, 1997). Furthermore tolerance to bioaerosols varies greatly between 

individuals, and for some such as immuno-compromised patients, even levels occurring 

in nature (i.e. background levels) might prove harmful. The human body has natural 

defences against bioaerosols built up by exposure to these naturally occurring 

ubiquitous bioaerosols, such as from decomposing leaves and viable airborne micro-

organisms present in urban air (Mancinelli and Shulls, 1978). In addition to this, 

bioaerosols have also been commonly detected in indoor environments.  Endotoxins 

and (1 3)-β-D-glucans have been detected in house dust (Douwes et al., 1998),  gram-

positive and gram-negative mesophilic bacteria, fungi (Górny et al., 1999) and 

actinomycetes (Grigorevski-Lima et al., 2006) have been detected in the indoor air of 

human homes. Bacteria have been detected from air humidifiers (Strindehag and 

Josefsson, 1999) and in the indoor air of village houses (Hu and Liu, 1989).  
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Small amounts of bioaerosols are unlikely to have an ill effect on the body of a healthy 

individual. Problems arise when high concentrations of bioaerosols occur that 

overwhelm the body’s natural defence mechanism (Wheeler et al., 2001). The nature of 

human response can also change depending on past exposure to the agent and any 

sensitisation that may have occurred even in healthy individuals. If past exposure to 

bioaerosols has been to a high concentration, it is possible that the individual will be 

affected by much lower concentrations at the next exposure (Herr et al., 2003). This is 

due to the fact that the individual has become sensitised to the bioaerosol. Individual 

susceptibility factors such as atopy, allergic sensitisation or immunodeficiency can be 

important factors in risk assessments carried out to assess health effects of bioaerosols 

(Herr et al., 2003). Some studies suggest that the species of the bacteria being inhaled 

is as important as the dose of inhalation, when studying the severity of the adverse 

health effects (Helander et al., 1980; Rylander and Lundholm, 1978). These factors 

introduce a great deal of uncertainty when studying dose-response relationships to 

bioaerosols. Therefore the lack of a dose-response relationship for composting related 

bioaerosol induced disease remains.  

 

1.5. BIOAEROSOL AEROMICROBIOLOGICAL PATHWAY  
The previous sections have discussed some of the methods used for the sampling and 

analysis of bioaerosols to account the source of a bioaerosol hazard and the potential 

adverse health effects caused by bioaerosols on any sensitive receptors. To analyse 

the pathway of a bioaerosol released from composting facilities, the understanding of 

the aerodynamics of bioaerosol dispersal is essential.   

 

Currently the regulator in England and Wales requires a risk assessment for any facility 

that has a sensitive receptor (e.g. a home or office building) within 250 m of the site 

boundary. There are no studies to suggest a change to this limit at present, however a 

safe distance between compost facilities and sensitive receptors should be governed by 

the microbiological and aerodynamic properties of bioaerosols once released.  

 

The aeromicrobiological pathway of a bioaerosol describes its initial release, dispersal 

and deposition (Dowd and Maier, 2000) and the aerodynamic behaviour of bioaerosol 
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particles are subject to the physical laws that also affect other aerosols. These include 

the effects of Brownian motion, gravitational fields, electrical forces, thermal gradients, 

electromagnetic radiation, turbulent diffusion and relative humidity. However in contrast 

to non-biological pollutants, bioaerosols also behave according to their unique biological 

properties (Cox, 1995). For example, the fungal spore release mechanisms are 

influenced by the species and their growth conditions (Sivasubramani et al., 2004).  

 

Bioaerosols are released instantenously or continuously from point sources (e.g. stack) 

as well as from linear and area sources (e.g. biosolid application in a field) (Dowd and 

Maier, 2000).  Releases may be passive (e.g. by natural air movement) or by active 

mechanisms (e.g. by mechanical action of humans and animals) (Levetin, 1995). In 

indoor environments, their release is also dependent on air currents and is often 

enhanced by the activities of people or animals living on the premises (Madelin, 1994; 

McCartney, 1994; Reponen et al., 1992). The growth and aerosolization rate for indoor 

bioaerosols may also depend on the material they originate from (Sivasubramani et al., 

2004).  Górny (2004) reviewed the factors affecting the release of fungal fragments and 

spores from indoor contaminated surfaces. The factors examined included air velocity, 

moisture conditions and vibration. Moisture was shown to reduce fungal fragment 

release whilst vibration and high air velocity were shown to increase fragment release.  

 

In outside environments, in addition to biological processes (i.e. fungal life cycle), 

weather factors such as wind, humidity, temperature and rain can also affect the release 

mechanisms of bioaerosols (Lloyd, 1969; McCartney, 1994; Muilenberg, 1995; Herrero 

and Zaldivar, 1997; Sivasubramani et al., 2004). Regarding the effect of wind on spore 

release, the aerodynamic forces of the wind must overcome the forces that ensure the 

attachment of the spore to the surface (Aylor and Parlange, 1975).  Studies that have 

examined this have concluded that wind speeds exceeding 0.5 m/s were needed to 

release Erysiphe graminis conidia (Hammett and Manners, 1974) and 5 m/s are needed 

to release Helminthosporium maydis conidia (Aylor, 1975). 

 

Upon release, bioaerosols are dispersed in air horizontally or vertically (Dowd and 

Maier, 2000; Levetin, 1995). Dowd and Maier (2000) have shown that generally most 



Chapter 2 – Research Study Rationale 
 

 19

bioaerosols have limited ability to survive when suspended in the atmosphere and 

hence will most commonly undergo short periods and distances of travel (under 1 hour 

and under 1 km). However, they have also noted exception cases of spores travelling 

distances up to and over 100 km for days and longer. In contrast to this view, other 

studies (Levetin and Horner, 2002) have shown that airborne fungal spores are adapted 

to staying airborne and added that the period of time that a bioaerosol will remain 

airborne is dependent on several factors such as particle density, particle diameter and 

electrical charges. In line with this particle surface (i.e. hydrophobic or hydrophilic) has 

also been discussed to determine the type of air dispersal that will take place (i.e. by air 

or rain) (Levetin, 1995), as well as the time it will remain airborne once released 

(Muilenberg, 1995).  

 

Levetin and Horner (2002) have also concluded that the period of time that a bioaerosol 

will remain airborne is dependent on ambient air conditions. These air conditions might 

include the effects of winds and updrafts that influence the dispersal distance of 

bioaerosols and have a varying effect according to particle size and settling velocities 

(Muilenberg, 1995). Frictional turbulence and thermal gradients are also known to affect 

the dispersal of spores (Fitt et al., 1987). 

 

Other studies (McCartney, 1994) have shown that individual spores upon release from a 

source will travel in different distances and paths due to the effects of wind eddies 

responsible for wind speed effects. However common to all spores and particles that 

are released, a plume of particles upon release from a source will be subject to a 

reduction in their concentration as the plume moves further away from the source 

(Gregory, 1973; McCartney, 1994).  

 

Bioaerosols are subject to the same physical laws for other aerosols particles and these 

laws govern the processes through which bioaerosols are removed from the 

atmosphere (Cox, 1995; Muilenberg, 1995). Therefore following release and dispersal, 

the main mechanisms of particle deposition onto surfaces is sedimentation, Brownian 

diffusion and impaction/interception (Colls, 2002). Each of these processes are more 

effective depending on the size of the particle. For example, particles with small 
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diameters such as 0.1 µm would be expected to behave like gases and are transported 

through the effects of Brownian diffusion (Seinfeld and Pandis, 2006; Petroff et al., 

2008). As such as the particle diameter decreases, the Brownian diffusion coefficient 

approaches that of a gas (Sehmel, 1980). However for particles greater than 1 µm 

diameter, diffusion due to Brownian motion is less than gravitational settling (Cox, 

1995). Therefore particles with diameters of 0.1 µm are transported less effectively than 

particles with diameters of <0.1 µm or larger than 1 µm (Cox, 1995; Ruijgrok et al., 

1995). 

 

In addition bioaerosols are deposited through gravitational settling, downward molecular 

diffusion, inertial impaction, surface impaction or dry, wet and electrostatic deposition 

(McCartney 1997a; Dowd and Maier, 2000; Pillai and Ricke, 2002). It is important to 

note that the deposition of particles is also affected by their shape (Colls, 2002). In this 

context, spores with non-spherical shapes would deposit more slowly compared to 

spores with spherical shapes even when both spores are of the same volume and 

density (McCartney, 1994).  

 
1.6. EFFECT OF EPISODIC BEHAVIOUR ON BIOAEROSOL DISPERSAL  
The understanding of the aerodynamic behaviour of bioaerosol in a composting site 

may be further complicated by their episodic behaviour. Such seasonal and daily peaks 

of bioaerosol spore levels are reported in many studies (Asan et al., 2004; Corden and 

Millington, 2001; Fang et al., 2005; Hyvärinen et al., 2001; Ivens et al., 1997b; Mitakakis 

and Guest, 2001; Nielsen et al., 1997; Nielsen et al., 2000; Rahkonen et al., 1990; 

Ramanchanran et al., 2005; Rylander et al., 1998; Thorn et al., 1998; Thorn, 2001). It is 

important to note that naturally occurring bioaerosols also show episodic patterns. On a 

daily basis, highest levels of bioaerosols are observed around noon and on an annual 

basis, during winter and early spring (Lighthart and Shaffer, 1994). Levetin and Horner 

(2002) note that peaks of asexual fungi spores, such as those of Aspergillus species, 

are observed in the afternoon, but are low in early morning. Andreeva et al. (2001) 

examined the levels of live micro-organisms sampled in atmospheric aerosols in 

western Siberia. They found seasonal as well as altitudal differences in the 

concentrations of bioaerosols.  
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Outdoor bioaerosol occurrence patterns are influenced by the local climate and 

weather, resulting in seasonal cycles of emissions (Muilenberg, 1995). Therefore 

reported seasonal peak bioaerosol concentrations differ due to differences in 

topography, climate and weather of the study regions. Some distinct regional 

differences were observed even within studies (Köck et al., 1998; Shelton et al., 2002) 

due to local climate and weather. Examples of the episodic patterns of bioaerosols in 

various industries are presented in Table 1.4.  
 
Table 1.4- Episodic patterns of bioaerosol levels in various industries 

Industry 
 

Type of Bioaerosol Seasonal 
Variation 

Daily Variation Reference 

Outdoor 
metropolitan 
area 

Total inhalable fungi Higher levels in 
fall and summer 

None observed Adhikari et al. 
(2006) 

Swine and 
dairy farms 

Airborne micro-
organisms including 
Aspergillus and 
actinomycetes species 

Higher levels in 
summer 

None observed Lee et al. 
(2006a) 

Wastewater 
treatment 
plants 

Endotoxin None observed None observed Lee et al.  
(2006b) 

Building sites Fungi None observed Variation between 
morning and 
afternoon 

Spicer and 
Gangloff 
(2005) 

Rural indoor 
dairy cattle 
shed 

Total and culturable 
fungi 

None observed Higher levels in 
winter, late summer 
and the rainy season 

Adhikari et al. 
(2004b) 

Landfill Culturable bacteria and 
fungi 

Highest levels 
in winter 

None observed Huang et al. 
(2002) 

Waste 
collectors 

Total bacteria, 
endotoxins and molds 

Highest levels 
in summer 

None observed Lavoie and 
Dunkerley 

(2002) 
Refuse 
collectors 

Endotoxin, total fungi 
and total bacteria 

Highest in the 
summer months 
and midsummer

None observed Neumann et 
al. (2002) 

Indoor and 
outdoor 
levels 

Fungi Highest levels 
in the fall and 
summer months

None observed Shelton et al. 
(2002) 

 

In the composting industry, episodic release of bioaerosols are observed due to on-site 

activities, as well as seasonal or daily differences (Recer et al., 2001; Sánchez-

Monedero et al., 2005; Taha et al., 2006; Taha et al., 2007a). Bioaerosol particles are 

released from the compost by gusty winds, rain drops and mechanical disturbance, 



Chapter 2 – Research Study Rationale 
 

 22

such as shredding or turning operations. The factors that influence bioaerosol dispersal 

are the composting material, composting period, composting facility size, operational 

characteristics and on-site activities (i.e. agitation frequency), moisture levels of the 

compost, local geography and meteorological conditions (Haas et al., 1999b; Recer et 

al., 2001). 

 

Early studies of sewage sludge compost windrows revealed that Aspergillus fumigatus 

aerosols downwind of mechanically agitated windrows were significantly higher than 

those downwind of stationary windrows (Millner et al., 1977; Millner et al., 1980). The 

agitation was caused by the front-end loader moving and depositing the compost. Clark 

et al. (1983a) have shown that levels of A. fumigatus were higher in compost screening 

areas and where material was being handled, as opposed to control rooms and offices. 

Rautiala et al. (2003) have shown that farmers were exposed to higher levels of 

bioaerosols in composting in swine confinement buildings when the compost bed was 

being turned. Similar results are found in other studies (Jager et al., 1994; Sánchez-

Monedero et al., 2005; Taha et al., 2006) where agitation activities such as shredding, 

turning and screening resulted in higher bioaerosol levels. In line with this, endotoxin 

levels were higher in the air when the compost material was subjected to mechanical 

agitation compared to levels measured in the vicinity of a composting plant (Dannaberg 

et al., 1997). 

 

Epstein et al. (2001) examined A. fumigatus levels at a biosolids composting facility. 

The summer results indicate that the levels of this bioaerosol were greatest during the 

mechanical agitation activity of feedstock mixing. Hryhorczuk et al. (2001) studied 

bioaerosol emissions from a suburban yard waste composting plant, located in a woody 

area with a nearby river. They observed that both off-site and on-site concentrations of 

bioaerosols increased when activities such as shredding and turning were taking place. 

Other site activities, such as meadow grass mowing, also resulted in higher levels of 

bioaerosols. However, it is argued that the location of the composting facility may have 

also contributed to the bioaerosols in the ambient air.  
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Recer et al. (2001) investigated ambient levels of A. fumigatus and thermophilic 

actinomycetes in a residential neighbourhood near a yard-waste composting plant. They 

found a significant decrease in bioaerosol levels during the winter months of January to 

March. This variation was especially noticeable in levels of A. fumigatus. According to 

Recer et al. (2001) seasonal variations for A. fumigatus and other Aspergillus species 

have been observed in previous studies and peak emissions vary according to 

geographical location and the climate of the sampling area.  

 

1.7. POTENTIAL OF AIR DISPERSION MODELS IN PREDICTING BIOAEROSOL 
DISPERSAL  

 
The previous sections have discussed the aerobiological pathway of bioaerosols and 

the effect of episodic behaviour in analysing the pathway of bioaerosols released from 

composting facilities.  Extensive knowledge of these pathway factors as well as any 

factors at the bioaerosol source and receptor are needed in high quality environmental 

regulatory risk assessments which aim to assess the impact of biaoerosol emissions. 

The prediction of bioaerosol concentrations downwind of a composting facility and close 

to sensitive receptors would also make an improvement to these risk assessments. 

Such prediction is currently made via bioaerosol sample collection at and downwind of 

composting facilities and their subsequent analysis. However the use of commercial air 

dispersion models might be a very useful and cost effective way of exploring different 

bioaerosol control situations and assessing bioaerosol emissions in a composting site. 

Therefore their potential in predicting bioaerosol dispersal merits discussion.  

 

Air pollution dispersion models are mathematical models which have been developed to 

predict the dispersion of pollutants (e.g. particulates, odours, chemicals) usually in 

support of air quality regulatory requirements (Environment Agency, 2004). To this end 

some guidance has been published by the Royal Meteorological Society on the choice 

and use of air dispersion models (Britter et al., 1995) and the Environment Agency 

(2000a) on the reporting of air dispersion modelling results. However the use of air 

dispersion models for predicting dispersal of bioaerosols from composting facilities is 

still in development and has not been adopted as official practice.  
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There are a large number of different types of air dispersion models, including box, 

Gaussian, Lagrangian, Eulerian and Dense gas models. Some of these dispersion 

models and their application for the dispersion of particles have been reviewed by 

Holmes and Morawska (2006). They have concluded that the current available models 

differ significantly in their capabilities and limitations. However a ranking comparison of 

different models was not possible as there has not been a single validation data set to 

enable such a comparison. Further difficulties were presented by the fact that most air 

dispersion models are not commercially available.  

 

A study has reported modelling of airborne pollen concentrations patterns downwind 

from a maize crop using a Lagrangian Stochastic model. They have concluded that 

SMOP-2D was able to model the airborne pollen concentration pattern downwind 

however the model underestimated deposition rates up to 10 m downwind from the crop 

(Jarosz et al., 2004). Other dispersion models such as ISCST3, AUSPLUME, IN-PUFF 

2 and WindTrax dispersion models were found to successfully estimate downwind 

odour concentrations for distance of 500m and 1000m, but not for 100m (Zhou et al., 

2005).  

 

Several studies attempted to predict downwind concentrations of bioaerosols emittted 

from compost. The earliest of such studies is work completed by Millner et al. (1980) 

that have attempted to model the dispersion of Aspergillus fumigatus released from 

composting sewage sludge. They have estimated bioaerosol emission rates ranging 

from 2.3 x 104 – 6.7 x 1010 particles/second by fitting individual downwind 

concentrations (10-620 m downwind from source) into a Gaussian dispersion model 

(Pasquill, 1962). The pollutant was assumed to be gas and hence deposition effects 

were not taken into account. This study concluded that under unstable atmospheric 

conditions, the bioaerosols were able to travel 0.5 – 0.6 km downwind from source 

before reaching background concentrations.  

 

Another such study was completed by Dannaberg et al. (1997) who measured 

concentrations of A. fumigatus downwind of a composting plant and used these to 

calculate emission rates. The emission rates were used to determine downwind 
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concentrations using two different models, the German Technical Instructions on Air 

Quality Control, TA-Luft and one developed to examine NOx emission from tall 

chimneys. The A. fumigatus emission rates were found to be similar to those calculated 

by Millner et al. (1980) and also in line with Millner et al. (1980) it was concluded that 

bioaerosols were able to travel 500 m before reaching background concentrations (500 

CFU/m3). A similar study modelled the dispersion from biosolid placement (Dowd et al., 

2000). They concluded that the results showed possibility of virus and bacteria induced 

risk to biosolid land placement workers but this risk was insignificant for population 

centers 1 x 104 m away from the biosolid land placement site. 

 

There are currently no air dispersion models that have been specifically designed for 

modelling of bioaerosols. In addition the Environment Agency policy (Environment 

Agency, 2000b) on the use of air dispersion models states that:  

 

“The Environment Agency does not favour or prescribe the use of any particular model. 

It is left to the operators/applicants to justify their choice of models (including the 

version)”.  

 

However, the use of air dispersion models such as the Gaussian model ADMS which 

are currently used for modelling pollutants such as particulates and odours that might 

have similar properties to bioaerosols (e.g. particle size), are being assessed for their 

potential in regulatory use in the UK (Hall et al., 2002). In this context, there have been 

limited applications of ADMS to predict bioaerosol concentrations emitted from 

composting facilities (Drew et al., 2005; ADAS/SWICEB, 2005; Taha et al., 2006; Drew 

et al., 2006; Taha et al., 2007a).   

 

Holmes and Morawska (2006) have noted that several factors should be assessed 

when choosing a suitable air dispersion model, such as the complexity of the sampling 

environment and nature of the particle source. In this context, it is important to consider 

several reasons why the use of air dispersion models in predicting the emission of 

bioaerosols from composting facilities might prove to be problematic  (Swan et al., 

2003). Firstly, it has been discussed that air dispersion models are developed to predict 



Chapter 2 – Research Study Rationale 
 

 26

pollutant release for distances of larger than 1 km and hence may be unsuccessful in 

predicting pollutant release at distances shorter than that (Swan et al., 2002). This might 

have implications for regulatory risk assessments as the current distance limit of 

importance for environmental regulators in England and Wales is 250m.  

 

Secondly, there is a lack of description of bioaerosol source and subsequently of 

calculating bioaerosol emission rates (Swan et al., 2003). Most studies to date have 

estimated bioaerosol emission rates by fitting the air dispersion model to individual 

downwind measurements (Millner et al., 1980; Dannaberg et al., 1997; Swan et al., 

2002) due to the lack of methods that enable the calculation of emission rates at source. 

Therefore such estimations are currently used to calculate biaoerosol emission rates 

from sources such as agitation activities, which are not physically well defined to allow 

the calculation of a flow rate or an emission rate.   

 

Bioaerosol sources that can be defined as a stack with a known flow rate can be 

modelled as point sources and adapt the emission rate equations currently used for 

modelling of odours (Jiang and Kaye, 2001). Similarly Taha et al. (2005; 2006; 2007a) 

has used a wind tunnel traditionally used for measuring odours (Jiang and Kaye, 2001) 

to derive source term emissions from static compost windrows. However, there remains 

a lack of biaoerosol specific methods that can be used to determine biaoerosol emission 

rates from a source.  

 

When compost is being agitated, the differences in the temperature between the inner 

compost windrow and the ambient temperature might lead to temperature gradients 

which might effect the dispersal of the bioaerosol. However, such effects on the 

dispersal of a bioaerosol when released from the compost source are not well defined 

(Swan et al., 2002; Swan et al., 2003). Hence factors such as these might complicate 

the use of air dispersion models in predicting the emission of bioaerosols from 

composting facilities.  

 

Some of these factors which might complicate the modelling of bioaerosols were 

emphasised by a significant study completed by Wheeler et al. (2001) who monitored 



Chapter 2 – Research Study Rationale 
 

 27

bioaerosols, inhalable dust, VOCs, odour and noise from composting sites. Following 

this, attempts were made to predict downwind emissions of pollutant by the use of 

SCREEN3 (USEPA, 1995), a simple Gaussian screening model. Wheeler et al. (2001) 

has reported several problems with the use of SCREEN3 in estimating bioaerosol 

dispersion including the calculation of emission rates for bioaerosols emitted from 

compost. In addition to these it was concluded that the difficulties in fitting model curves 

to the data was also a result of the influence of bioaerosol aggregation and loss of 

microbial viability with time. They indicated that the incorporation of such data into the 

air dispersion model might improve model predictions. The potential effect of microbial 

aggregation and microbial viability on model predictions was further emphasised by 

other studies who have used air dispersion models to predict bioaerosol emissions from 

composting facilities (ADAS/SWICEB, 2005; Taha et al., 2006; Drew et al., 2006; Taha 

et al., 2007a). These properties will be discussed in further detail in the next two 

sections (Section 1.8 and 1.9).  

 

1.8. BIOAEROSOL VIABILITY  
 
The impact of bioaerosol viability on the dispersion and modelling of biaerosol 

emissions has been discussed by Wheeler et al. (2001). However the viability of 

airborne micro-organisms released from composting operations and their inactivation 

after take-off has not been widely studied (Swan et al., 2003). It has been argued that 

the consequences of bioaerosol viability are not important (Swan et al., 2003) because 

both viable and non-viable bioaerosol components (e.g. endotoxins, mycotoxins and 

glucans) can cause adverse health effects (mostly allergenic). Immune systems of the 

individual respond to the effects of these allergens whether they are ‘alive’ or ‘dead’ 

(Cox, 1995) and most allergenic spores are likely to retain their ability to cause adverse 

health effects and their toxicity even if they are no longer viable (Levetin, 1995; Swan et 

al., 2003). 

 

However, it is important to assess the viability of an airborne micro-organism to 

determine its specific potential to act as a human pathogen (Haas et al., 1999a). Cox 

(1995) has emphasized that the ability of a bioaerosol to spread disease is dependent 

on their viability and infectivity following take-off from original source, as well as through 
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air transport and landing. Due to this, the loss of bioaerosol viability with time has been 

proven difficult to incorporate when modelling their dispersion (Wheeler et al., 2001). 

These uncertainties may lead to conservative assumptions when assessing the release 

and dispersion of bioaerosols from composting facilities (Swan et al., 2003; Wheeler et 

al., 2001). Finally, further understanding of viability is important for establishing 

standardised procedures for the handling, sampling and assessment of bioaerosols 

(Griffiths and Stewart, 1998). This is because a great number of current bioaerosol 

sampling methods are known to cause desiccation stress and affect the viability of the 

samples obtained (Lange et al., 1997; Lin et al., 2000; Terzieva et al., 1996). 

 

The parameters that are of particular importance in assessing bioaerosol survival are 

temperature, relative humidity, oxygen, carbon monoxide, open air factors (mixture of 

factors produced when ozone and hydrocarbons react; closely linked to oxygen toxicity) 

and solar radiation (Anderson and Cox, 1967; Cox, 1995; Levetin, 1995; Lighthart, 

1973; Lighthart and Mohr, 1987; Muilenberg, 1995; Dowd and Maier, 2000).  

 
It has been stated that “The ability of a micro-organism to remain viable in a bioaerosol 

is related to the organism’s surface biochemistry” (Dowd and Maier, 2000). In this 

context, gram negative bacteria survive best at low relative humidities and gram positive 

bacteria, such as the actinomycetes, survive best at high relative humidities. This is 

because the lipid-containing cell membranes of gram negative bacteria have a low 

thermodynamic stability which tends to be easily affected by changes in water content 

(Cox, 1995). In contrast, Holwill et al. (1998) showed a decrease in the culturability of 

the fungi Penicillum expansum and Saccharomyces cerevisiae spores at higher relative 

humidity. Other studies have concluded that relative humidity levels of lower than 20% 

and greater than 80% are stressful for airborne bacteria aerolized from distilled water 

(Webb, 1959).  

 

High temperatures promote inactivation of bioaerosols due to desiccation and protein 

denaturation, although some micro-organisms lose viability when environmental 

conditions are close to freezing point (Dowd and Maier, 2000). Such biological 
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inactivation and viability loss is observed in gram negative bacteria at cooler 

temperatures (between -5ºC to +10ºC) (Cox, 1995).  

 

A number of studies have considered the effect of engineered ultraviolet irradiation on 

microbial inactivation (Griffiths and Stewart, 1998; Ho et al., 2005; Swan et al., 2002; 

Wheeler et al., 2001). They concluded that ionizing radiation had a negative effect on 

microorganism viability due to DNA damage caused by DNA helix distortion (Dowd and 

Maier, 2000). In addition, solar radiation was found to play a role in the inactivation of 

airborne micro-organisms (Herd et al., 1993; Tong and Lighthart, 1997). Ulevičius et al. 

(1999) showed that solar radiation has a lethal effect on outdoor airborne fungal spores 

collected by the AGI-30. Solar sensitivity differed for the fungal spores depending on the 

time of day they were collected. 

 

A study by Paez-Rubio and Peccia (2005) examined the effects of solar and non solar 

inactivation rates of airborne bacteria (Mycobacterium parafortuitum and Escherichia 

coli) released during the application of biosolids to land. An important finding was the 

influence of relative humidity on both solar and non solar inactivation rates of the 

airborne bacteria and, in contrast to Dowd and Maier (2000) and Webb (1959), it was 

found that the greatest inactivation rates were at moderate relative humidity levels (i.e. 

50%). 

 

Peccia and Hernandez (2004) have studied the effect of engineered ultraviolet 

irradiation as a means of inactivating Mycobacterium bovis bacteria in indoor 

environments (such as hospitals) to control microbial disease. This study is in line with 

previous studies on proposed methods to decrease the risk of microbial disease 

(Macher et al., 1992; Miller and Macher, 2000; Nardell, 1993; Riley et al., 1971; Stead et 

al., 1996). However Peccia and Hernandez (2004) argue that the use of ultraviolet 

irradiation for the control of microbial disease has achieved little success due to the lack 

of design parameters such as the effect of relative humidity on ultraviolet irradiation 

(Peccia et al., 2000; Peccia et al., 2001).  
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The combination of oxygen (can lead to oxygen toxicity), open air factors and ions can 

inactivate many species (Dowd and Maier, 2000). These factors can promote 

desiccation of airborne micro-organisms by targeting membranes, proteins and nucleic 

acids (Cox, 1995).  

 

A study by Yao et al. (2005) has shown that certain combinations of electrostatic field 

strength and exposure time can have a species specific effect on the inactivation of 

some micro-organisms such as Pseudonomonas fluorescens bacteria cells. However 

these cells were studied when deposited on a Mixed Cellulous Ester (MCE) filter 

surface and electrostatic fields were not effective for the inactivation of bacteria in an 

airborne state.  

 

A similar study by Mainelis et al. (2002b) examines the effect of electrical charges and 

fields on the viability of airborne bacteria. They concluded that the recovery of 

Pseudonomonas fluorescens bacteria cells is affected by electrical charges and fields, 

unlike the other bacterium studied, Bacillus subtilis var. niger. This study also showed 

that bacterial cells depend on their membrane potential for metabolic activities. 

Therefore it was concluded that factors such as electrical charges and fields are likely to 

affect this membrane potential, and hence affect their viability.  

 
1.9. AGGREGATION AND SIZE DISTRIBUTION OF BIOAEROSOLS  
Microbial aggregation is the congregation of microbial cells in various media (e.g., liquid 

or air) to form a multicellular structure (Calleja et al., 1984a; Calleja, 1984b). The 

number of microbial cells within an aggregate can range from a few cells to a billion and 

the aggregation mechanism may be natural, artificial, active or passive.  

 

To date, microbial aggregation in water (Calleja et al., 1984a; Calleja, 1984b; Wickman, 

1994) or soil (Forster and Nicolson, 1981) has been more extensively studied than 

aggregation in air. It has been discussed that micro-organisms generated in water are 

found in aggregates in higher percentages than bioaerosols generated in other 

environments such as air. This is due to the adhesion of individual spores that are 

formed with a thin layer of moisture surrounding them (Wickman, 1994).  
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Aggregates have been observed as flocculation in brewer’s yeast or in pellets of 

Aspergillus niger (Calleja et al., 1984a; Calleja, 1984b). In industries such as brewing, 

fermentation and waste-water treatment aggregation of micro-organisms may determine 

process performance (Atkinson and Daoud, 1976; Bossier and Verstraete, 1996; Busch 

and Stumm, 1968; Furumai et al., 1994; Mozes et al., 1994; Yang and Yang, 2005). 

 

The importance of aggregation and particle size of bioaerosols emitted from compost 

has been discussed by Wheeler et al. (2001) who concluded that aggregation of 

biaoerosols would lead to their settling as particles instead of suspension in air (i.e. non-

gaseous behaviour), which might complicate the modelling of their dispersion. In 

addition to this, the aerodynamic behaviour of a bioaerosol spore would also be 

determined by its shape, surface characteristics, size and the tendency of the spores to 

form ‘aggregates’ or ‘clumps’ (Levetin, 1995). 

 

It is shown that in still air, the rate at which spores fall to the ground due to gravity is 

proportional to the square of the radius of the spore for a spherical particle (based on 

Stoke’s law) (Gregory, 1973). However effects such as shape, surface characteristics 

and aggregation of the spore would affect this rate as nonspherical shape would 

increase surface drag, resulting in a delay in deposition (Lacey, 1991; Levetin, 1995). 

However, there is some debate as to the exact nature of the impact of aggregation 

behaviour on particle dispersion, as the increase in overall particle size could increase 

the deposition rate, but the increase in surface area associated with aggregates may 

lead to a delay in deposition (Lacey, 1991). 

 

Another important reason for the study of microbial aggregation and overall biaoerosol 

size is their impacts on the efficiency of bioaerosol samplers, such as bioaerosol 

impactors. This is because bigger particles (> 2 µm) impact onto the collection media 

due to their weight related momentum whilst particles smaller than 1-2 µm might 

change direction before impaction on the media as they are affected more easily by 

airflow (West et al., 2008). Therefore these devices are dependant on the particle size 

of the pollutant that they are aimed to collect (Reponen et al., 2001) and any factors that 

might increase overall particle size such as aggregation would affect their performance 
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and collection efficiency (Trunov et al., 2001). This may lead to under (Karlsson and 

Malmberg, 1989) or over-estimation of the bioaerosol particle count. Such effects on 

other sampling devices has been discussed by Eduard and Aalen (1988) who argued 

that aggregation introduced a large variation on filters when counting mould spores.  

 

Finally microbial aggregation and particle size might effect not only the transport of the 

bioaerosol and the performance of the samplers used in bioaerosol collection, but also 

the amount of inhaled particles and consequently, their adverse health effects 

(Agranovski et al., 2004; CIWM, 2002; Reponen et al., 2001; Tham and Zuraimi, 2005; 

Venkataraman and Kao, 1999). According to Carrera et al. (2005), aerosols with a high 

number of individual micro-organisms might have increased infection potential. 

Similarly, the hygroscopicity of airborne fungal spores changes their aerodynamic 

diameter, making them larger, and resulting in a different deposition pattern on the 

human respiration system (Pasanen et al., 1991; Reponen et al., 1996). This is 

particularly important in the human airway where the relative humidity is almost 100% 

and the fungal spores are likely to grow larger (Li et al., 1992). 

 

Aggregation of micro-organisms in water or soil has been studied more broadly however 

microbial aggregation in air has been referred to in a number of studies. Lacey and 

Dutkiewicz (1976a) noted possible aggregates of bacteria during their experiments on 

the isolation of bioaerosols from mouldy hay in a sedimentation chamber. They have 

argued that A. fumigatus sedimented most slowly of the fungi and the bacteria 

sedimented faster than actinomycetes due to the fact that they were distributed in 

clumps. 

 

Tham and Zuraimi (2005) studied the size relationship between airborne viable bacteria 

and particles in a controlled indoor environment study. They showed that for cell sizes 

between 3 and 7.5 µm, bacteria were found in aggregates, whilst at sizes of 1.0 and 2 µ 

m, they existed freely. Previously Ho et al. (2001) who developed an approach to 

estimate viable organisms in a single biological particle found that bacteria between the 

sizes of 2.5 and 4 µm contained 4.5 viable cells.  
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In contrast to these, Carrera et al. (2005) have studied the number of bacterial spores 

within aerosol particles and concluded that particles consisting of 1-2 cells accounted 

for 85% of overall generated particles. Similarly, Grinshpun et al. (1997) have attempted 

to study the aerosol characteristics of airborne actinomycetes and fungi and have found 

evidence of aggregation however these only accounted for 10-15% of all particles. They 

have noted that this number might have been in the range of 60% if a deagglomerating 

orifice was not used in the experimental set-up.  

 

Jankoswka et al. (2000) have studied the collection of fungal spores on air ventilation 

filters. They noted that the difference between collection efficiencies for biological 

(Penicillium) and non-biological (potassium chloride) particles might be attributed to 

spore aggregation.  

 

However there are only a limited number of studies (Reinthaler et al., 1997; Pillai and 

Ricke, 2002) that have examined the particle size distribution in composting facilities 

and in particular there is a distinct lack of information on the aggregation of biaoerosols 

emitted from compost. In addition, the mechanisms of microbial aggregation in air are 

not clear.  

 

Other studies (Calleja,1984a; 1984b) have shown that microbial aggregation is inducible 

through various factors:  

 

• genetic conditions results in some species being more susceptible to aggregation 

than others; 

• physiological state of the cell would induce cell aggregation, for example the end of 

the growth phase is the right time for the aggregation of species such as yeasts and 

myxobacteria; and 

• environmental conditions such as light, temperature, agitation, aeration, nutrient, 

energy source, stimulators would all affect the clumping tendency of the cells. 

  

In addition, it was discussed that several other factors can influence the particle size of 

micro-organism aggregates. One of these according to Amanullah et al. (2001) is 
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physico-chemical effects, such as hydrophobicity, in line with Tay et al. (2001) who 

argue that hydrophobicity may be the primary force for aggregation in aerobic granules 

due to increased cell to cell interaction. Similarly, Liao et al. (2004) argue that there are 

seasonal differences between fungal spore sizes resulting from changes of relative 

humidity and hygroscopicity.  

 

Another factor in aggregation was shown (Calleja et al.,1984b) to be temperature. This 

is because the chemical reactions that cause aggregation occur at an increased rate at 

elevated temperatures. Finally Calleja (1984b) has shown the positive affect of the 

nutrient oxygen on the aggregation of Aspergillus species on spore aggregation. 

 

1.10. CONCLUSIONS 
The previous sections have provided an overview of the literature regarding the factors 

which may affect the quality of environmental regulatory risk assessments with respect 

to bioaerosols and composting. A risk assessment is based on hazard identification, 

exposure assessment, dose-response assessment and risk characterization (Gerba et 

al., 2008). In this context, the quality of such a risk assessment aimed to address the 

bioaerosol hazard posed by a composting facility should be based on the understanding 

of the factors shown in Figure 1.2. 

 
Figure 1.2 - Factors affecting the quality of an environmental regulatory risk 
assessment aiming to address bioaerosol hazards 
 
However there are gaps in the understanding of these processes which may effect the 

assessment of the exposure of bioaerosols emitted from composting facilities.  
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1.10.1. Source Factors 
There are a number of factors that might complicate the understanding behind 

bioaerosol hazard identification at source. Firstly there is a lack of description of 

bioaerosol source and subsequently of calculating bioaerosol emission rates to be used 

in air dispersion modelling of bioaerosols (Swan et al., 2003). Source term data in 

composting facilities is often inadequate because of the practical and cost implications 

of airborne micro-organism analysis (Environment Agency, 2004; Pollard et al., 2006). 

In addition, the lack of methods to calculate bioaerosol emission rates at source has 

resulted in most studies to date having to estimate bioaerosol emission rates by fitting 

the air dispersion model to individual downwind measurements (i.e. back-extrapolation) 

(Millner et al., 1980; Dannaberg et al., 1997; Swan et al., 2002). 

 

Different methods of bioaerosol sampling and enumeration are used in different studies 

and these methods even when used in parallel yield differing results of bioaerosol 

counts (Köck et al., 1998). Therefore, it is currently exceedingly difficult to compare and 

contrast the results of different studies and evaluate best practice. Apart from the 

guidelines published by the Composting Association (1999) and Association for 

Organics Recycling (2009), there are no guidelines from the Environment Agency or 

other government bodies in the UK as to the preferred sampling and analysis methods. 

Despite the numerous reviews and evaluations of bioaerosol collection techniques, 

there remains a need for standardised methods and procedures to ensure consistency 

of practices, especially in scientific research.  

  

The levels of bioaerosols measured by the current bioaerosol sampling methods are 

often not representative of the actual long-term exposure levels. This is because the 

sampling periods are often very short-term (i.e. 15-45 mins) and do not take into 

account the episodic nature of bioaerosols emissions. A large number of current 

bioaerosol samplers rely on further culture-based enumeration that could result in 

under-estimates for species with low viability.  

 

Further complications are added due to the fact that bioaerosols occur naturally in the 

environment (Andreeva et al., 2001; Asan et al., 2004; Jones and Cookson, 1983; Köck 
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et al., 1998; Passman, 1983). The implication of this is that it may be difficult to 

establish ‘background’ levels of bioaerosols at composting facilities. This is because it 

may not always be possible to determine if the bioaerosols sampled are emitted from 

composting sources or are ubiquitous in the atmosphere regardless of the composting 

source.  

 
1.10.2. Pathway Factors 
The physical and microbiological characteristics of bioaerosols determine their 

behaviour, transport and health effects in indoor and outdoor environments (Grinshpun 

et al., 1997). Hence, the ‘safe’ distance between a sensitive receptor and a compost 

facility is governed by the aerodynamic and microbiological properties of bioaerosols 

once they are released from source. As revealed by the literature, there are gaps in the 

understanding of these characteristics.  

 

The episodic nature of bioaerosol releases is important to consider when assessing the 

risks resulting from composting facilities. This is because conventional bioaerosol 

sampling methods may not represent the actual amounts of bioaerosols present in an 

environment due to episodic bioaerosol behaviour (Sivasubramani et al., 2004), 

resulting in possible under-estimation of levels. In addition the literature shows that peak 

emissions of bioaerosols in composting facilities are associated with agitation activities 

and emissions of bioaerosols are higher downwind of mechanically agitated windrows 

(e.g. screening and turning) as opposed to static windrows with no activity. Therefore 

this should be a consideration when sampling for bioaerosols in a composting facility.  

 

The use of air dispersion models for predicting dispersal of bioaerosols from composting 

facilities is still in development and has not been adopted as official practice. Therefore 

to date there has been limited applications of commercial air dispersion models in 

predicting bioaerosol dispersal. One such application has been completed by Wheeler 

et al. (2001) who has reported several problems when using SCREEN3 to estimate 

bioaerosol dispersion from compost. Along with other factors (e.g. emission rate 

determination, thermal effects), they concluded that the difficulties in fitting model 

curves to the data was also a result of the influence of bioaerosol aggregation and loss 
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of microbial viability with time. This study indicated that the incorporation of such data 

into the air dispersion model might improve model predictions. 

 

There is a distinct lack of research regarding the inactivation and viability of airborne 

micro-organisms emitted from composting facilities. The effects of environmental factors 

(i.e relative humidity, temperature, radiation, oxygen levels, open air factors and ions, as 

well electrical charges and fields) on the viability of bioaerosols, should guide the 

direction of future composting bioaerosol research to improve the current knowledge in 

this field. 

 

Finally, aggregation of bioaerosols in air or emitted from composting facilities has not 

been widely studied. However this is an important property that might lead to settling of 

particles instead of suspension in air (i.e. non-gaseous behaviour) on emission from 

composting facilities (Wheeler et al., 2001). In addition to this the aerodynamic 

behaviour of a bioaerosol would also be determined by its tendency to form aggregates 

(Levetin, 1995). The prior art regarding aggregation mechanisms in water and soil is 

more extensively studied however it was shown that much about the aggregation 

process is still unknown due to the lack of knowledge on cell physical properties and 

their surface hydrophobicity (Dufrêne, 2000).  

 
1.10.3. Receptor Factors 

The health effects of bioaerosols vary depending on the type of bioaerosol in question, 

the industry they originate from and the receptor characteristics (worker or resident 

living close to the facility, previous exposure to bioaerosols and likely sensitisation, 

effect of smoking, age and gender). Evidence from the literature suggests that OEL and 

TLV values are used as benchmark numbers for comparisons of findings and thus 

enhance the understanding of the dose-response relationship. However the differences 

between various studies in terms of sampling procedures and analytical methods, 

individual variation of exposed subjects (e.g. smoker, pet owner, previous exposure to 

bioaerosol, lifestyle) and interpretation of results, introduce complications in making 

generalised correlations between exposure and adverse health effects. 
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There is a distinct lack of knowledge regarding the mechanisms of bioaerosol induced 

disease. In addition, a very poor association between the adverse health effects of 

bioaerosols and exposure data generated by air sampling exists (Sivasubramani et al., 

2004). Therefore a need to establish dose-response relationship between bioaerosol 

exposure and adverse health effects according to type of bioaerosol and exposure still 

remains. In addition, internationally recognised regulatory standards are required. 

 

In conclusion, there are gaps in the current understanding of bioaerosols after release 

from composting facilities.  The implication of this is the inaccurate estimation of the 

levels of bioaerosols in and around composting facilities. Therefore in order to improve 

the quality of composting bioaerosol risk assessments, bioaerosol studies in the 

composting industry need to address the gaps in the understanding of classification of 

bioaerosol source, bioaerosol emission and pathway and the implications of bioaerosol 

induced disease on the receptor. 
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CHAPTER 2.  RESEARCH STUDY RATIONALE 
 
2.1. RESEARCH AIMS AND OBJECTIVES  
There is an increased need to divert municipal solid waste from landfill as a response to 

the UK waste strategies, the European Waste Framework and the Landfill Directive. 

Therefore there has been a consistent growth in composting in the UK over the last ten 

years as a more sustainable method of waste management (Composting Association, 

2007). Operating a composting facility should be a low hazard activity however, these 

facilities do have the potential to cause pollution, harm to health and nuisance through 

odours, leachate, fires, dust, vermin and potentially harmful bioaerosols, if not operated 

properly (Environment Agency, 2004; Pollard et al., 2006). 

 

To address the public health concerns and the need for operators to demonstrate the 

safe and responsible operation of their facilities, environmental regulators request 

regulatory risk assessments in support of planning consent and environmental permits, 

in particular, where facilities are within 250m of sensitive receptors (Environment 

Agency, 2001; 2007).  

 

These regulatory risk assessments allow operators to demonstrate that they understand 

the hazards associated with their processes, and can design and implement technical 

and management procedures to minimise unacceptable risks. Therefore for assessing 

bioaerosol risk posed by composting facilities, the environmental risk assessments 

require an understanding of: 

 

• the mechanisms of release and source (e.g. agitation activities, compost windrows) 

of bioaerosols (the hazard); 

• the receptors that the hazard affects (e.g. compost facility workers and sensitive 

receptors around a composting facility); and 

• the pathway through which the bioaerosol hazard affects the receptor to assess the 

risks posed by composting facilities (Environment Agency, 2004). 
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As discussed in the previous chapter (Chapter 1) the behaviour of bioaerosols at 

source, pathway and receptor are determined by their physical and microbiological 

characteristics. However, there are gaps in the understanding of bioaerosols released 

from composting facilities. One such gap is the lack of information on the aggregation 

and size distribution of bioaerosols released from compost. This is an important 

property to consider as it has implications for bioaerosol behaviour at source, pathway 

and receptor. Consequently, addressing such gaps of knowledge would result in 

improved regulatory risk assessments. 

 

For example, at source, the aggregation and overall size distribution of bioaerosols 

would have an impact on the collection efficiency of bioaerosol samplers (Jankowska et 

al., 2000; Trunov et al., 2001). The aggregation and size of a bioaerosol as well as other 

properties such as its shape and surface characteristics would also affect their 

behaviour upon release from composting facilities (Levetin, 1995; McCartney, 1994; 

McCartney et al., 1997a). Hence, a larger particle might be subject to deposition 

velocities higher than for a small particle (Wheeler et al., 2001; Swan et al., 2003) 

suggesting that larger particles (e.g. bioaerosol aggregate), are more likely to settle out 

downwind of a bioaerosol source instead of suspension in air (Pillai and Ricke, 2002). 

As such, a larger particle might travel less distance downwind of a composting facility 

compared to a smaller particle. Finally, the understanding of bioaerosol aggregation and 

size distribution at receptor is important in predicting their inhalability and subsequent 

health effects (Agranovski et al., 2004; CIWM, 2002; Reponen et al., 2001; Tham and 

Zuraimi, 2005; Venkataraman and Kao, 1999).  

 

Therefore, to address the gap in the knowledge of bioaerosol size distribution and 

aggregation, the first aim of this research project is to: 

 

• Improve the current understanding of the aggregation and size distribution of 

bioaerosols emitted from compost.  

 

The prediction of bioaerosol concentrations at various points downwind of a composting 

facility and close to sensitive receptors would also have a significant impact on the 
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improvement of composting regulatory risk assessments. This is currently done by 

collection of bioaerosol samples at composting facilities and the subsequent analysis of 

these samples. However, there are several difficulties posed by the collection of 

bioaerosol samples at a composting facility. Therefore using commercial air dispersion 

models might be a more useful and cost effective way of assessing bioaerosol exposure 

at a composting site and exploring different bioaerosol control situations. 

 

The air dispersion models that are currently available are not designed for bioaerosols 

but for pollutants such as odours or particulates. As such, the use of air dispersion 

models for predicting dispersal of bioaerosols from composting facilities has not been 

adopted as official practice. However bioaerosols might behave as non-biological 

aerosols as well as possessing biological and specific properties hence the use of 

commercial air dispersion models for successfully predicting the emissions of 

bioaerosols from a composting source could be a possibility.  

 

There are a limited number of studies (Millner et al., 1980; Dannaberg et al., 1997; 

Dowd et al., 2000; Wheeler et al., 2001; Taha et al., 2005; Taha et al., 2006; Drew et 

al., 2006; Taha et al., 2007a) which have used such air dispersion models to predict 

downwind concentrations of bioaerosols emitted from compost sources. However these 

studies have not attempted to compare the actual measured on site downwind 

bioaerosol concentrations with those predicted by the model. Without such a 

comparison, it is not possible to verify the ability of an air dispersion model in predicting 

downwind bioaerosol concentrations.  

 

Therefore the ability and sensitivity of such models to be able to predict downwind 

bioaerosol concentrations should be vigorously tested and verified. In addition, this 

should be done before the use of air dispersion models for assessing the emission of 

bioaerosols from composting facilities is adopted as official practice in support of 

composting regulatory risk assessments. It was also discussed that factors such as 

microbial aggregation and size distribution might complicate the modelling of the 

bioaerosol dispersion (Swan et al., 2003; Wheeler et al., 2001). Therefore the effect of 
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such factors and other parameters on the modelling of bioaerosols emitted from 

compost needs to be better understood.  

 

In line with this, the second aim of this project is to:  

 

• Improve the current understanding of the potential of a commercial air dispersion 

model to predict bioaerosol concentrations at composting sites. 

 

In order to achieve these overall project aims, the following objectives were set: 

 

1) Release and measure bioaerosols in experimental conditions and use the generated 

data to classify the overall size distribution and visual properties (i.e. aggregation, 

size and shape) of bioaerosols emitted from compost.  

2) Complete site work to validate the results of such controlled experiments (objective 

1) and classify the overall size distribution and visual properties (i.e. size, shape and 

aggregation) of bioaerosols emitted from compost at composting facilities. 

3) Complete a preliminary assessment of a commercial air dispersion model, ADMS 

3.3, in predicting bioaerosol emissions from composting facilities compared to 

bioaerosol concentrations measured by on-site downwind bioaerosol sampling. 

4) Analyse the sensitivities of ADMS 3.3 and assess the effect of different modelling 

parameters on predicted bioaerosol concentrations.  

5) Complete a final assessment of the potential of ADMS 3.3 in predicting bioaerosol 

emissions from composting facilities. 
 

2.2. THESIS STRUCTURE 
This research was completed to improve the current knowledge of the understanding of 

the characterisation and dispersal of bioaerosols emitted from composting facilities and 

has two overall project aims as discussed in the previous section. As such, the thesis 

was divided into two themes and the chapters are presented in line with this. Some 

parts of this thesis have been published in a peer reviewed conference proceeding and 

previously presented as consultancy reports. Details of these publications as well as 
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other peer reviewed and published publications that the author has been involved in the 

production of are listed in Appendix A.  

 

The summary of the thesis structure is presented in Figure 2.1.
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Second research theme is in 
regards to the dispersal of 
bioaerosols emitted from 
compost, in particular in 

improving the understanding of 
bioaerosol concentration 

prediction by air dispersion 
modelling 

First research theme is in regards 
to the characterisation of 
bioaerosols emitted from 
compost, in particular in 

improving the understanding of 
their aggregation and size 

distribution 

Chapter 4 (Research Objective 1) 
Presentation and discussion of controlled experiments 

completed to generate biaoerosols in experimental 
conditions to address the gap of information regarding 
physical properties, aggregation and size distribution of 

composting bioaerosols

Chapter 7 (Research Objective 5) 
Presentation and discussion of air dispersion modelling 
studies completed to analyse the effect of certain model 

parameters further. In addition, bioaerosol 
concentration and emission data were collected from 
different sources and downwind locations at another 
composting facility to complete a final assessment of 

the potential of the model

Figure 2.1 – Overview of thesis structure 

Chapters 1 and 2 
Introduction to the project and summary of the prior art 

regarding the factors which may affect the quality of 
environmental regulatory risk assessments with respect 

to bioaerosols as well as gaps of knowledge 

Chapter 3 
Presentation and discussion of the overall 

methodology employed for the sampling, identification 
and analysis of bioaerosols emitted from compost 

Chapter 8 
Presentation of the overall results and implications of the research study 

and highlighting contributions to knowledge and overall limitations. 
Finally any future work and recommendations are discussed 

Chapter 5 (Research Objective 2) 
Presentation and discussion of site work completed to 

validate the results of the controlled experiments and to 
discuss the differences in the particle size distribution and 

aggregation of bioaerosols at a composting facility  

Chapter 6 (Research Objectives 3 and 4) 
Presentation and discussion of studies completed to 

make a preliminary assessment of the ability of a 
commercial air dispersion model in predicting bioaerosol 

emissions from a composting facility compared to 
bioaerosol concentrations measured by on-site downwind 

bioaerosol sampling  
 

Presentation and discussion of a sensitivity analysis 
completed to test the effect of different input parameters 

on predicted downwind bioaerosol concentrations to 
determine the sensitivities of the model  
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CHAPTER 3. BIOAEROSOL SAMPLING, IDENTIFICATION AND 
ANALYSIS METHODOLOGY 
 

3.1 INTRODUCTION 
 
To achieve the overall project aims and objectives as discussed previously (Chapter 2), 

a combination of controlled experiments, site work and air dispersion modelling studies 

were employed. The methodology used for the air dispersion modelling studies will be 

discussed separately in Chapters 6 and 7. Therefore, this chapter describes the 

methodology deployed for the collection of bioaerosols by air filter sampling and the 

subsequent identification and analysis by two different methods; culturing and scanning 

electron microscopy. This chapter also includes details for all the composting sites 

visited for the site work, pre and post-sampling laboratory practices, expression of 

results and the health, safety and quality control measures taken.  

 

The methodology for detection of bioaerosols following air sampling is based on 

standard filter based bioaerosol analysis as per previous studies (Taha et al., 2005; 

Taha et al., 2006; Taha et al., 2007a). However, the SEM analysis methodology has 

been developed as a novel method for studying and analysing the aggregation and size 

distribution of biaoerosols emitted from compost.  

 

3.2. COLLECTION OF BIOAEROSOLS BY AIR FILTER SAMPLING 
 

Personal air filter samplers were used to collect bioaerosol samples (SKC; Figure 3.1), 

which draw a known volume of air through a filter medium where bioaerosols are 

captured. As previously discussed (Chapter 1, Section 1.3) there is a wide variety of 

methods for sampling of bioaerosols. The sampling device of choice must be chosen 

based on the required application and some factors that need consideration include the 

bioaerosol being sampled and the ease of the transport and use of the sampler (Dowd 

and Maier, 2000). The reasons why an SKC personal air filter sampler was used will be 

compared with the alternative use of an Andersen sampler (Andersen, 1958) because 

this is the sampler of choice in the only standardised protocol for the sampling and 
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enumeration of bioaerosols at composting facilities in the UK (Composting Association, 

1999).  

 

The main reason for the use of SKC personal air filter samples for use in this study was 

because the use of filters allowed for the simultaneous identification and analysis of the 

collected bioaerosols by two different methods, namely culturing and scanning electron 

microscopy. It would not be possible to do the same by using the Andersen impactor 

because in this sampler, the micro-organisms are collected directly onto the culture 

medium. This allows for easier culturability of samples compared to the filter from which 

the bioaerosols first need to be ‘washed-off’ however this means that it would not be 

possible to identify and analyse the bioaerosols collected by the Andersen impactor by 

subsequent scanning electron microscopy.  

 

An Andersen sampler is often used for the size partitioning of the sampled bioaerosols 

and examination of the size distribution of bioaerosols was an important aspect of this 

study. However, filtration was used because it was not only size distribution of the 

bioaerosol that was of interest but also the physical characteristic that needed to be 

categorised such as the aggregation and shape of bioaerosols emitted from compost. 

This is because the response of a bioaerosol to the effects of forces such as Brownian 

motion or gravity are based on their shape as well as other physical properties (Pillai 

and Ricke, 2002).  
 

In addition, the methodology for detection of bioaerosols following air sampling is based 

on standard filter based bioaerosol analysis as per previous studies (Taha et al., 2005; 

Taha et al., 2006; Taha et al., 2007a) and these studies have all been based on the use 

of SKC personal filter samplers. Finally, filtration was used because of practical reasons 

such as the high portability and ease of handling of the sampler in line with a current 

study completed by the Environment Agency (Environment Agency, 2009).  
 

To carry out the bioaerosol sampling, firstly the sampling cassette and filter were placed 

inside the IOM sampler head. The IOM sampler head (Figure 3.1) was connected to the 

pump by a 10mm internal diameter tygon tube. Polycarbonate filters (SKC) of 0.8 µm 
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pore size and 25 mm diameter were used (with the exception of the sampling completed 

at Lount as will be explained). The pump flow rate used for sampling was 2 ± 0.2 l/min 

as suggested by the sampler supplier (SKC, 2002). All equipment, including the filter 

cassettes, filter heads and IOM sampler heads, was sterilised using an autoclave (15 

minutes, 121ºC) as recommended by Lester and Birkett (1999b) before being taken 

onto site. Pumps were calibrated before the start of sampling using a rotameter 

(variable area flowmeter, SKC).  

 
Figure 3.1- Personal air sampler pump and 25 mm IOM sampling head (SKC Ltd) 

 

3.2.1. Bioaerosol Sampling at Keenan Recycling  
 
A set of site work and subsequent preliminary air dispersion modelling was completed 

at Keenan Recycling as will be discussed in Chapter 6. Keenan Recycling is an open 

windrow composting site in Aberdeenshire, Scotland and processes green waste 

received from local councils from kerbside collections and from local authority civic 

amenity centres. The estimated mass of processed waste is 19,000 tonnes per annum 

and the maximum age of the compost on-site is approximately 19 weeks.  

 

At the time of the sampling, the site had an office, weighbridge and storage buildings. It 

is a family operated facility with the immediate family of the owner living in houses 

located adjacent to the composting facilities. A small stable is also located next to the 

houses for the horse and pony owned by the family. The site is surrounded by 

agricultural land and the nearest sensitive receptor is a farm located approximately 
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500m south of the site boundaries. There is also livestock in the fields outside the site 

boundaries, the nearest of which is at a distance of about 200m to the South/East. The 

schematic diagram of the site sampling locations is shown in Figure 3.2.  

 

 
 
Figure 3.2- Layout of the sampling completed at Keenan Recycling 

 
Throughout this site work a sampling duration of 30 minutes was used if the bioaerosol 

concentrations were expected to be quite high, and 45 minutes for lower 

measurements, such as background concentrations. Two pumps were used to take two 

simultaneous samples from each sampling location, with a third pump kept as standby. 

The average (arithmetic mean) of the two samples taken at each sampling location was 

used for analysis and reporting of results.  
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The background and on site sampling locations at Keenan Recycling were determined 

depending on the specific site details and the activities occurring during the site visit on 

the day. This meant that despite the consideration given to collect samples from the 

same location at each site visit to enable comparisons between different sampling 

dates, differences in specific sampling locations for different sampling days occurred. 

The sampling locations covered agitation activities such as shredding, turning, and 

screening (Figure 3.3). 

    
Figure 3.3- Agitation activity at Keenan Recycling  

A sampling hood (Figure 3.4, a) was used to capture bioaerosol emissions from the 

incoming waste compost windrow at Keenan Recycling for the first sampling day where 

sampling heads were placed in the top and bottom of the outlet of the sampling hood. 

The sampling hood was not available for the second and third sampling days hence the 

air samples for static sources such as compost windrows were taken by placing the 

sampling filters as close as possible to the bioaerosol source (Figure 3.4, b).  
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              (a)                                             (b)   
Figure 3.4- Bioaerosol sampling at Keenan Recycling incoming waste compost 
windrow (a) using the sampling hood (b) placing the sampling filters on the 
compost windrow.  
 
3.2.2. Bioaerosol Sampling at Donarbon Limited  
 
A set of site work were completed at Donarbon Limited to: 

 

• collect bioaerosol particle size and aggregation data (Chapter 5); and 

• complete air dispersion modelling to assess the potential of air dispersion 

modelling in predicting bioaerosol concentrations downwind of a compost facility 

(Chapter 7).  

 

Donarbon Limited is a composting site located in Waterbeach, Cambridgeshire and 

operates a composting system, refuse collection, rear end loaders and skip vehicles in 

addition to providing landfill and waste processing operations for 20,000 tonnes of 

waste for local councils. A wide variety of wastes are processed, including green waste 

and kerbside collected garden and kitchen waste.  

 

The green waste is processed in a windrow technology and is matured until 

approximately 6 months of age before it is sold for use in agriculture, landscape and 

gardening. The kerbside collected waste is made up of a variety of biodegradable 

wastes including garden waste, catering waste, commercial growers’ waste, paper and 

cardboard. This waste is processed in an Animal By-Products (ABP) compliant in-vessel 

system for the first two weeks where the oxygen levels and temperature are monitored 
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and controlled. This system ensures that all pathogens are killed. Following this, the 

compost is matured on concrete pads until approximately 6 months of age before it is 

used as a soil improver, top dressing or mixed with soils for utilisation in agricultural or 

restoration industry. The sensitive receptors surrounding this site are the Cambridge 

Research Park (offices) located approximately 400 m south of the facility and residential 

cottages and Chittering village approximately half a mile north east of the site. The 

schematic diagram of the bioaerosol sampling completed at this site is shown in Figure 

3.5.  

 

 
 
Figure 3.5- Layout of the sampling completed at Donarbon Limited  
(Note: the plan only shows the kerbside collected waste processing section of 
the site where the sampling was carried out) 

 

For the site work completed at Donarbon Limited, a sampling duration of 30 minutes 

was used. Three simultaneous samples were collected for Scanning Electron 

Microscopy (SEM) analysis whilst three samples were collected for culture based 

analysis of actinomycetes and Aspergillus fumigatus. A seventh pump was kept as a 

standby. When analysing and reporting results, the average of three replicated samples 

(two sets of three replicate samples for culture based and SEM analysis separately) 
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taken at each sampling location was used. Samples were taken upwind, at source and 

downwind from the source.  

 

The source term data was derived from either composting agitation activities (i.e. 

screening) or from static emissions (i.e. compost windrows). A wind tunnel (Figure 3.6) 

was used to capture bioaerosol emissions from static compost windrows where three 

IOM sampling heads were located at the mixing chamber (outlet chamber) of the wind 

tunnel and one IOM sampling head was located at the inlet chamber of the wind tunnel. 

The overall biaoerosol concentration in the wind tunnel was calculated by subtracting 

the inlet bioaerosol concentration from the average (arithmetic mean) of the three outlet 

bioaerosol concentrations. The wind speed inside the sampling hood was measured 

with an anonemeter (Kestrel 3000 pocket size). The wind tunnel sampling was 

replicated for further locations to determine the range of bioaerosol concentrations 

across a compost windrow or across various compost windrows.  

 

 
Figure 3.6- Schematic of wind tunnel used to take static samples (Jiang and 
Kaye, 2001; Taha et al., 2005) 
 

3.2.3. Site Work at Lount 
 

An opportunity was presented to do further site work in another site, Lount. The aim of 

this site work was to study the effect of different filter pore sizes on bioaerosol capture 

to re-create the particle size distribution obtained by the six stage Andersen sampler 

inlet  
chamber 

outlet 
chamber 



Chapter 3 – Bioaerosol Sampling, Identification and Analysis Methodology 
 

 53

(Deacon et al., 2009). This opportunity was taken as this work allowed the researcher to 

capture further bioaerosol concentration and particle size distribution data as well as 

validate the data collected at Donarbon Limited (Chapter 5).  

 

A common misconception in the use of filters for sampling aerosols is that the filters 

work as microscopic sieves which allow only particles that are smaller than the filter 

pores to get through. However, the passage of air through the filter is required and 

porous membrane filters such as the polycarbonate filters used in this study can have 

variable pore sizes which tend to restrict the flow rates going through the filter which in 

turn effects the amount of aerosols captured by the filter. Therefore the pattern of air 

flow through a filter is a key factor of the filter’s efficiency (Hidy, 1982). In addition, the 

methods through which a particle can deposit on a porous membrane filter include 

diffusion to the walls of the pores, impaction and interception occurring at the inlet to the 

pores and gravitation settling (Hinds, 1982).  

 

In the Andersen 6-stage sampler (Andersen, 1958), which allows the determination of 

the size distribution of the collected aerosol, the main principle of collection is by 

impaction of the collected aerosol (Vincent, 1989). The air is forced through a nozzle 

and ejected onto an impaction plate after which particles in the aerosol with sufficient 

inertia impact onto the plate (Hidy, 1984). As the aerosol flows through the stages of the 

sampler, the particles captured on a given stage represent those that are smaller than 

the cutoff size of the previous stage and larger than the cutoff size of the given stage 

(Hinds, 1982).  

 

Therefore during this experiment two sets of samples were collected (Figure 3.7) using 

filter sampling (SKC) to test the effect of different filter sizes. The filter sizes that were 

tested were 0.65 µm, 1 µm, 2 µm, 3 µm, 5 µm and 8 µm to correspond to the size 

distribution of that represented by the Andersen 6-stage sampler (Andersen, 1958). The 

cut-off characteristics of the membrane filter and the 6-stage Andersen sampler are 

explained further as follows:  

 



Chapter 3 – Bioaerosol Sampling, Identification and Analysis Methodology 
 

 54

• Andersen Stage 1 is aimed to capture particles in the size range of 7-10 µm, 

therefore filter size 8 µm in this site work is aimed to replicate this; 

• Andersen Stage 2 is aimed to capture particles in the size range of 4.7-7 µm, 

therefore filter size 5 µm in this site work is aimed to replicate this; 

• Andersen Stage 3 is aimed to capture particles in the size range of 3.3-4.7 µm, 

therefore filter size 3 µm in this site work is aimed to replicate this; 

• Andersen Stage 4 is aimed to capture particles in the size range of 2.1-3.3 µm, 

therefore filter size 2 µm in this site work is aimed to replicate this; 

• Andersen Stage 5 is aimed to capture particles in the size range of 1.1-2.1 µm, 

therefore filter size 1 µm in this site work is aimed to replicate this; 

• Andersen Stage 6 is aimed to capture particles in the size range of 0.65-1.1 µm, 

therefore filter size 0.65 µm in this site work is aimed to replicate this. 

 

Due to time constraints, only a single set of the filter samples were analysed by SEM. 

 
Figure 3.7- Bioaerosol sampling at Lount 

 
Lount is a green waste composting facility located in Leicestershire, with a civic amenity 

facility located on the site. It receives up to 25,000 tonnes of green waste annually with 

an application in place for an increase to 31,000 tonnes. Approximately 60% of the 

waste comes from kerbside collections and 40% from civic amenity sites. After delivery, 

the waste is sorted and contaminants (e.g. plastics) are removed. Following this, 

improved homogeneity of the size and mix of waste material is achieved through 

shredding of the waste. Post-shredding, the waste is formed into compost windrows (3 

m high, 3 m wide) and they are turned regularly to homogenise and aerate the material. 
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The moisture content of the compost windrows is kept between 30 and 60% and the 

compost is matured on concrete pads for 6-9 weeks before it is screened and passed to 

the consumer. The nearest sensitive receptor is the civic amenity facility that is located 

adjacent to the composting pad. The schematic diagram of the site sampling is shown in 

Figure 3.8. 

 

 
 
Figure 3.8- Layout of the sampling completed at the Lount Site 

 

For all site work, sampling equipment was located at 1.8m above ground for downwind 

samples to represent the average height of a sensitive receptor. A Kestrel 3000 pocket 

size anemometer (Meterologica Ltd., Lancashire) was used to determine the 

temperature, relative humidity and wind speed for each site visit. General weather 

conditions, such as wind direction, rain or strong winds, were observed and recorded 

manually.  
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3.3. IDENTIFICATION AND ANALYSIS OF BIOAEROSOLS BY CULTURING 

3.3.1. Pre-sampling Laboratory Practices 
 
The micro-organisms measured in this study were Aspergillus fumigatus and 

actinomycetes. These micro-organisms were chosen as they are known to occur in 

large amounts during the composting process (Lacey, 1997; Fischer et al., 1999), pose 

possible adverse health effects to sensitive receptors and have been widely studied in 

other research (Millner et al., 1977; Millner et al., 1980; Clark et al., 1983a; Gilbert and 

Ward, 1998; Hryhorczuk et al., 2001; Recer et al., 2001; Tolvanen et al., 2005; Fischer 

et al., 2008). Only viable micro-organisms were sampled to estimate the concentration 

of bioaerosols and in this context actinomycetes and A.fumigatus colonies were 

identified by visual inspection. Media preparation, inoculation, dilution and sterilization of 

all equipment used on site and in the laboratory were conducted in accordance with 

British Standard 5763 Part 0: General laboratory practices (BSI, 1996).  

 

The actinomycetes were grown onto Petri dishes (Fisher Scientific, aseptic, polystyrene, 

90 mm diamater and triple vent) containing two different agars, namely half strength 

nutrient agar (Oxoid) and a compost agar, developed by Taha et al. (2007b). This is 

agar-agar (Fisher Scientific, granular) mixed with a supernatant of 10% w/w loam-based 

compost (John Innes No. 1 compost). After preparation, the media were sterilised in an 

autoclave for 15 minutes at 121ºC and then allowed to cool to a temperature of 47ºC. 

Following this, 1% w/w cycloheximide (Acros Organics, 95%) in ethanol is added to the 

media to prevent the growth of fungi.  

 

Aspergillus fumigatus was inoculated onto Petri dishes containing Malt Extract Agar 

(Oxoid) (Burge, 1992). The media was treated with 0.01% w/w antibacterial 

chloramphenicol (Sigma) before sterilisation, as chloramphenicol is temperature 

resistant. The media was sterilised in an autoclave for 15 minutes at 121ºC and then 

allowed to cool to a temperature of 47ºC as described for actinomycetes.  

 

The dissolved, sterilised and treated media was poured into Petri dishes at around 2mm 

thickness (20 ml of agar per Petri dish) and left to solidify in a laminar-flow safety 

cabinet for 30 minutes with half open lids.  
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3.3.2. Post-sampling Laboratory Practices 
 
Immediately after sample collection, the sampling cassettes containing the filter were 

placed and immersed in a 30ml vial (Nalgene) that contained a 10ml buffer solution 

(0.05% w/w Tween-80, 0.1% w/w NaCl and de-ionised water) and placed in an ice-box 

maintained at <4ºC.  This solution is used to prevent cell osmosis of the collected air 

sample during transport to the laboratory. The de-ionised water and 0.1% w/w NaCl 

were sterilised at the same temperature and for the same length of time as described 

for the media. However the 0.05% w/w Tween-80 was added after the sterilisation took 

place as Tween-80 agent is heat sensitive.  

 

On return to the laboratory, the filter was separated from the filter cassette and then 

shaken in the vial for 1 minute using a rotamixer (Hook and Tucker Instruments). The 

solution was then diluted in a common logarithmic order (100 (original sample), 10-1 and 

10-2) and used to inoculate the Petri dishes. This took place within 48 hours of the 

sample collection, due to the restrictions caused by the distance between the laboratory 

and the sites. 

 

The Petri dishes were incubated for 7 days at 44ºC for actinomycetes and for between 

3-5 days at 37ºC for Aspergillus fumigatus, prior to counting by visual inspection. The 

incubation duration for A. fumigatus was variable as the petri dishes were kept in the 

incubation longer (up to 5 days) if no growth was observed after 3 days. The 

actinomycetes were identified by their white powdery appearance, as well as their 

characteristic “spider web-like” filamentous structure, depending on the stage of growth 

(Figure 3.9). 
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 Figure 3.9- Actinomycetes culture plates 

 

A. fumigatus was identified by its characteristic powdery blue-green appearance in the 

front and brown appearance at the back of the Petri dish (Figure 3.10).  

  
Figure 3.10- A. fumigatus culture plates 

3.3.3. Expression of Results 
Following incubation and counting of the colonies, the results were expressed using the 

equations from British Standard 5763 Part 0: General laboratory practices (BSI, 1996). 

If any of the inoculated plates had between 15 and 300 colonies, the concentration of 
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bioaerosols in the sampling solution (N) was calculated using the following equation as 

a weighted mean from two successive dilutions: 

 

[ ] dnnV
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××+×
∑

=
)1.0( 21

       Equation 3.1 

 
Where: 

C∑  is the sum of the colonies counted on all the dishes retained from two 

successive dilutions, and where at least one contains a minimum of 15 

colonies (CFU); 

V  is the volume of inoculums applied to each dish (ml); 

n1 is the number of dishes retained at the first dilution; 

n2 is the number of dishes retained at the second dilution; and 

d is the dilution factor corresponding to the first dilution retained [d = 1 

when the undiluted liquid product (test sample) is used]. 

 

If there were no plates with more than 15 colonies, the estimated value of bioaerosols in 

solution (N) was calculated using the following equation: 

 

dnV
C

N
××

= ∑         Equation 3.2 

 

Where: 

∑C  is the sum of colonies counted on the two dishes (CFU); 

V is the volume of the inoculums applied to each dish (ml); 

N is the number of dishes retained (in this case, n = 2); and 

d  is the dilution factor corresponding to the dilution retained. 

 

The calculated concentration of the solution (10ml liquid in 30ml vial) was then used to 

determine the concentration of bioaerosols in the sampled air in cfu/m3 using the 

following equation: 
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Where: 

conB  is the sampled air bioaerosols concentration (cfu/m3); 

N is total number of bioaerosols in solution; 

Fs is the air pumping or sampling flow rate (l/min); and 

t is the sampling period (min). 

3.4. IDENTIFICATION AND ANALYSIS OF BIOAEROSOLS BY SCANNING 
ELECTRON MICROSCOPY  

 
The samples for SEM analysis were collected by drawing air through a personal 

sampler fitted with a polycarbonate filter (25 mm diameter, 0.8 µm pore size SKC). The 

filter had an effective diameter of 15 mm and a face velocity of 7.47 cm/s. Following 

collection, the filters were placed in pre-sterilised (autoclaved at 15 min at 1210C) plastic 

vials (not filled with the buffer solution as for culture samples) for the purposes of 

transportation. On return to the laboratory, the filters were mounted onto a 25.3 mm 

(diameter) SEM stub before being gold coated within 24 hours of sample collection. The 

filters were gold-coated for the analysis (Polaron Equipment Ltd., SEM gold coating unit 

ES100) as preliminary experiments showed that non gold-coated filters resulted in very 

low resolution images. The filter was examined with high-resolution Scanning Electron 

Microscope (XL30SFEG, Phillips) in SEM mode (10-12 kV beam size, 3-4 spot size) 

according to standard SEM practices. The number of particles per sample were counted 

from a total of 100 viewing fields (as per Heikkilä et al., 1988) at a magnification of 

x2000. On average, counting of particles per sample from a total of 100 viewing fields 

took 2-3 hours per filter and scanning the entire filter with the SEM would have been 

impractical.  

3.4.1. Sampling Protocol  
 
The first viewing field of the filter was located by using the co-ordinates for the bottom 

edge of the filter at a magnification of 30 (x= -6000, y= -6000). Magnification was 

increased to x2000, the scale at which it is possible to identify the shape, size and 

structure differences between individual particles. Ten viewing fields containing 
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‘particles of interest’ (i.e. particles larger than 0.5 µm in size and not pre-existing 

particles inherent in an non-exposed filter) were selected at this magnification. When a 

particle was identified, all details were recorded on the sampling proforma (Appendix B). 

‘Blank’ field areas of the filter (areas without any particles in them) scanned at a 

magnification of x500, x1000 and x2000 were also recorded to calculate the total area 

of the filter that was scanned. The viewing fields on the sampling filter are schematically 

represented in Figure 3.11.  
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Figure 3.11-SEM sampling protocol co-ordinates where: 
1) upper edge (x= 6000, y= 6000)  
2) right edge (x= 6000, y= -6000) 
3) bottom edge (x= -6000, y= -6000) 
4) left edge (x= -6000, y= 6000)  
5) middle (x=0, y=0) 
6) upper middle  (x= 3000, y= 3000) 
7) right middle  (x= 3000, y= -3000) 
8) left middle (x= -3000, y= 3000) and  
9) bottom middle (x= -3000, y= -3000) totalling a 100 viewing fields (middle is 
scanned for 20 viewing fields). The circle denotes the sampling filter.  
 

This method was developed as it was decided that a systematic sampling regime would 

ensure the reproducible analysis of the air samples and avoid bias regarding areas of 

the filter that are concentrated with particular particles. However, it is important to note 

the limitations to this method which makes it difficult to identify areas of filter with high 
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counts (concentrated particles of interest areas). Furthermore, the classification of the 

shape and nature of particles of interest is based on subjective assessment. 

 

Scans of blank filters showed that co-ordinates of x= -11000, x= 11000, y= -11000, y= 

11000 represented left, right, top and left edges of the filter. However it was observed 

that the outer edges of the filters are high in inherent particles (Figure 3.12) which are 

probably pre-existing due to the filter production process. It was found easy to mistake 

these for genuine particles of interest, therefore the upper, bottom, left and right edge 

co-ordinates were chosen to avoid this.  

 

   
Figure 3.12- SEM images of pre-existing particles observed in filters which have 
not been used for analysis 
 

Therefore the full SEM sampling protocol was developed and is presented as follows: 

 
a) Take air sample with bioaerosol sampling filter (SKC 0.8 µm pore size, 25 mm 

diameter, polycarbonate) using SKC personal samplers. 
 

b) Mount filter onto 25.3 mm (diameter) size SEM stubs. 
 
c) Gold-coat the filter and prepare for SEM analysis (using standard SEM practices, 

10-12 kV beam size, 3-4 spot size). 
 
d) Place filter in the middle of the inspection stub (x=0, y=0). 
 
e) Begin inspection of sample in SEM according to standard SEM analysis practices. 
 
f) Record all ‘blank’ field areas of the filter (without particles of interest) scanned at a 

magnification of 500, 1000 and 2000.  
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g) Put co-ordinates for upper edge of the filter at a magnification of 30 (x=-6000, y=-
6000). 

 
h) Increase magnification to 2000 and pick 10 viewing fields containing “particles of 

interest” (i.e. particles larger than 0.5 µm in size and not pre-existing particles 
inherent in an non-exposed filter). 

 
i) If the particle visual properties are unclear, analyse the particle at a higher 

magnification.  
 
j) Record details (i.e. size, shape, type of particles and their aggregates) of all particles 

on the proforma sheet (Appendix B) 
 
k) For each co-ordinate that represents the bottom, left, right edges and the middle 

areas of the filter; re-adjust magnification to 30. 
 
l) Repeat steps h-j between each co-ordinate change. 
 
m) Calculate the particle/m3 counts of particles that were identified (will be explained in 

Section 3.4.3). 
 

3.4.2. Sampling Image Guide 
 

The collected filters were examined by SEM. The particles that were observed were 

divided into categories depending on shape and size. The number and structure of the 

particle along with experiment and image scanning details were recorded in the 

sampling proforma. 

 

The presence of numerous types and sizes of particles that were deliberated to be 

bacterial, fungal and actinomycetes cells as well as their aggregates on the sampling 

filters were identified using SEM imaging. This assumption was based on previously 

published SEM images of fungal, bacterial and actinomycetes cells and spores 

(Kormendy and Wayman, 1972; Heikkilä et al., 1988b; Karlsson and Malmberg, 1989; 

Chalupová, 1994; Prescott et al., 1999a; Prescott et al., 1999b; Klich, 2002; Wittmaack 

et al., 2005) as well as SEM images of pure cultures of A. fumigatus and actinomycetes 

captured as part of the preliminary experiments. However identification and confirmation 

of the bioaerosol species was not within the scope of this study as visual properties of 

particle size, shape and aggregation of identified particles were of interest irrespective 

of the bioaerosol species. In addition, methods of sample preparation for SEM might 
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result in the dehydration of the sample which causes collapse and distortion of the 

image. This would present difficulties in identification of particular bioaerosol species.  

Other studies (Heikkilä et al., 1988b) have reported similar difficulties where scanning 

electron microscopy classification at the species level was not possible due to 

morphological similarities between Aspergillus and Penicillium. Heikkila et al. (1988b) 

has advised that spore identification by SEM was only possible by preparation of pure 

culture spore images and comparison of the captured species with those. It is also 

important to note that for the purposes of this study, the term ‘cell’ will denote all 

bioaerosols released from compost and will refer to both spore and non-spore cells. 

 

In addition to the bacterial and fungal cells, several other particles were also identified 

on the sampling filters. These particles were identified only occasionally and some of 

them have also been observed as pre-existing particles due to the structure of the 

unexposed filter. A small number of pollen-like cells were also identified by SEM on the 

sample filters analysed for Donarbon Limited and Lount site work. However, these 

particles are not included in the analysis of results and are listed in Appendix C. The full 

image guide of the particles analysed in the results are presented in Appendix D.  

 

3.4.3. Expression of Results 
 
Following examination and counting of the images by SEM, the results were expressed 

using equations based on British Standard, BS ISO 14966:2002, ‘Ambient Air – 

Determination of numerical concentrations of inorganic fibrous particles – scanning 

electron microscopy method’ (BSI, 2002). This is in accordance with other studies 

(Heikkilä et al., 1988a, 1988b) that have used asbestos counting criteria to identify and 

count fungal spores. This method is suitable for determining concentrations of inorganic 

fibres such as asbestos particles for air quality purposes and has been suggested for 

use on non-spherical particles with a minimum aspect ratio of 3:1. This might not be 

applicable to bioaerosol particles and cells which might be spherical (i.e. aspect ratio of 

1). However due to the lack of any standards specific to determining numerical 

concentrations of bioaerosols or cells, the principles of this method have been adapted 

for determining the numerical concentrations of particles observed by scanning electron 
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microscopy. Calculation of the numerical concentration for particle classification i is as 

follows: 

B

i
i VN

n
c

.
=        Equation 3.4 

 
Where, 
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..4

eff
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B d

VF
V

π
=        Equation 3.5 

 
And  
 
ci is the numerical particle concentration of particle classification i, in 

particles per cubic metre; 

ni is the number of particles counted for particle classification i; 

N is the number of image fields examined; 

VB is the sampled air volume, in cubic metres, per image field; 

FB  is the area of the image field, in square millimetres; 

V is the sampled air volume, in cubic metres; 

deff is the effective filter diameter (diameter of the exposed circular filter 

area), in millimetres. 

 

3.5. STATISTICAL ANALYSIS 
For the data presented throughout Chapters 4-7, arithmetic mean values were 

determined to describe the data and where applicable, standard error was determined 

to measure variability. In addition, for some of the data presented in Chapter 4, a 

correlation analysis between different data groups was completed. The statistical tool 

used for these purposes was Microsoft Office Excel 2003.  

 

For the data presented in Chapters 4 and 5, a one-factor analysis of variance (ANOVA) 

and where applicable a Fisher test was used to test the differences between 

independent data groups. The accuracy of the statistical analysis was first checked 

graphically and when the data group did not follow the normal distribution then the data 

were normalized by applying a square root or a natural logarithm transformation. The 

statistical tool used for this purpose was by STATISTICA 8 (StatSoft Ltd.).   
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3.6. HEALTH, SAFETY AND ANALYTICAL QUALITY CONTROL 
Media preparation and inoculation of samples were conducted in a Class 2 laminar flow 

safety cabinet (Labcaire Systems) to prevent any cross-contamination from the 

laboratory environment and between different samples that were analysed. The safety 

cabinet was cleaned with 70% ethanol before and after use. All equipment and samples 

used were sterilised, clearly marked and care was taken to minimise the risk of cross-

contamination.   

 

A blank sample was taken for each sample to monitor any background contamination 

presented by the sampling environment.  This sample was taken in the same fashion as 

described previously however the sampling pump was not running. The blank sample 

was analysed in the same way as all samples. In addition to these, empty petri dishes, 

petri dishes inoculated with only the autoclaved buffer solution and petri dishes 

inoculated with a buffer solution containing an autoclaved but unused filter were 

incubated to determine the levels of contamination in the laboratory environment. The 

total concentrations of contamination determined from these control petri dishes were 

deducted from the experimental results.  

 

For SEM imaging, blank sampling filters taken from the container were analysed for any 

anomalies. In addition to this, filters that were autoclaved but not used for sampling 

were also analysed to determine any contamination presented by the laboratory 

environment. The transfer of sample filters onto SEM inspection stubs were conducted 

in a safety cabinet cleaned with 70% ethanol (before and after use) to avoid 

contamination from the laboratory. All equipment and samples used for the SEM 

analysis were sterilised, clearly marked and handled in a manner that minimised the risk 

of cross-contamination.   

 

The health and safety requirements of the laboratory were strictly followed and COSHH 

(Control of Substances Hazardous to Health) assessments of hazardous chemicals 

were prepared and followed. The health and safety requirements of the specific site 

were adhered to during site visits which included practices such as wearing a reflective 

jacket, steel toed safety boots, safety goggles and safety helmets. 
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CHAPTER 4.  AGGREGATION AND SIZE DISTRIBUTION OF 
BIOAEROSOLS EMITTED FROM COMPOST   
 
4.1. INTRODUCTION 
Understanding the physical and microbiological characteristics of bioaerosols is 

important when assessing their risks on emission from composting facilities. However, 

there are gaps in our understanding of bioaerosols after release from composting           

facilities. One such gap that has implications for bioaerosol behaviour at source, 

pathway and receptor is the lack of information on the aggregation and size distribution 

of bioaerosols released from compost as discussed previously (Chapter 1).  

 

Assessment of bioaerosol behaviour following emission from source is dependent on the 

study of bioaerosol properties such as aggregation and size distribution. This is because 

microbial aggregation and overall biaoerosol size has an impact on the collection 

efficiency of bioaerosol samplers such as impactors (Jankowska et al., 2000; Trunov et 

al., 2001). As such, during air sampling carried out at a bioaerosol source, aggregated 

particles, because they are larger and hence heavier, might have higher inertia 

compared to single particles resulting in an increased likelihood of impact on collection 

media (Trunov et al., 2001). Similarly Eduard and Aalen (1988) have attributed microbial 

aggregation to the non-random distribution of the spores on the filter samples they 

analysed. Such effects on the collection efficiencies of bioaerosol samplers may lead to 

under (Karlsson and Malmberg, 1989) or over-estimation of the bioaerosol particle count 

collected at source.   

 

In addition to the lack of information regarding aggregation and size distribution of 

bioaerosols released from compost, there is a distinct gap of information regarding 

observed physical properties of cells and spores in general (Dufréne, 2000). The study 

of spores by collection onto membrane filters and subsequent SEM analysis to 

determine their physical properties has previously been carried out (Eduard et al., 1988; 

Karlsson and Malmberg, 1989, Heikkilä et al., 1988a and Heikkilä et al., 1988b) for 

agricultural environments and saw mills but not for composting facilities. 
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It is important to note the difference between aerodynamic size and physical size of a 

bioaerosol. The physical size of a bioaerosol is determined by its width and length as 

measured under a microscope. The aerodynamic size takes the shape, surface 

structure and the density of the bioaerosol into account (Reponen et al., 2001). 

Bioaerosol sizes reported in studies using samplers such as the Andersen or the 

aerodynamic particle sizer are based on the aerodynamic diameter of the bioaerosol.  

 

The limited number of studies that have examined bioaerosol size distributions from 

composting facilities are based on data from size selective bioaerosol samplers (i.e. the 

Andersen sampler) or devices such as the optical particle counter (Reinthaler et al., 

1997; Pillai and Ricke, 2002; Byeon et al., 2008). This methodology might provide 

information regarding bioaerosol aggregation as this would be linked to the overall 

bioaerosol size, however determination of the visual characteristics of a particulate 

contaminant is also important. This is because the response of a bioaerosol to the 

effects of forces such as Brownian motion, gravity, thermal gradients or relative humidity 

are based on their shape as well as other physical properties (Pillai and Ricke, 2002). 

For a spherically shaped spore, the rate that this spore falls to the ground due to 

gravitational forces is proportional to the square of its radius (Gregory, 1973). However 

non-spherically shaped spores might affect this rate due to an increased surface drag 

that would result in a delay in deposition (Lacey, 1991; McCartney, 1994; Levetin, 

1995).  

 

A recent study (Kanaani et al., 2008) has explored the deposition rates of fungal spores 

in indoor environments compared to those for non-biological particles. They found that 

particle deposition rates for Penicillium and Aspergillus, which was attributed to their 

densities and shapes, were similar. The deposition rates of these fungi were also found 

to be similar to those for non-biological particles of canola oil and talcum powder which 

they believed indicated that aerosols of similar sizes behaved similarly regardless of 

their biological nature. In addition, devices such as the optical particle counter which has 

been used for determining the particle size distributions from composting facilities, were 

found to be non selective for bioaerosols (Kanaani et al., 2008). Hence unless the use of 
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such devices is complemented by others that are selective for bioaerosols, they may not 

be suitable for determining the bioaerosol size distribution at composting facilities.  

 

The behaviour of a bioaerosol after release from a source such as a compost windrow is 

governed by various physical (i.e. gravitational forces, Brownian motion) and 

environmental factors (i.e. wind speed, relative humidity and temperature) (Pillai and 

Ricke, 2002). However it is the properties of a bioaerosol cell such as the size, shape, 

surface characteristics and ‘aggregation’ tendency that also affect this behaviour 

(Levetin, 1995; McCartney, 1994; McCartney et al., 1997a). For example, a larger 

particle might be subject to deposition velocities higher than for a small particle (Wheeler 

et al., 2001; Swan et al., 2003). Hence this might suggest that larger particles, such as a 

bioaerosol aggregate, released from compost are more likely to settle out downwind of a 

bioaerosol source instead of remaining suspended in air (i.e. non-gaseous behaviour) 

(Pillai and Ricke, 2002) and travel less far downwind of source compared to smaller 

particles. Such behaviour might complicate the modelling of bioaerosols emitted from 

composting sources (Wheeler et al., 2001) and result in differences between simulated 

and measured downwind bioaerosol concentrations. Therefore, the particle size 

distribution of bioaerosols emitted from compost and their tendency to form aggregates 

may be  important factors in predicting their dispersal (Madelin and Johnson, 1992).  

 

Finally, the understanding of bioaerosol aggregation and size distribution at receptor is 

also important as it is the size of a bioaerosol that governs its inhalability predictability 

and the subsequent health effects. For example, particles that are smaller than 6 µm 

can be transported into the lung (Pillai and Ricke, 2002) and particles in the range of 1-2 

µm can be retained in the alveoli (Randall and Ledbetter, 1966; Sattar and Ijaz, 1987). 

In contrast, larger particles (i.e. > 6 µm) are lodged only in the organs of the upper 

respiratory tract such as the nose (Pillai and Ricke, 2002).  

 

Therefore controlled experiments were completed to classify the overall size distribution 

and visual properties (i.e. aggregation, size and shape) of bioaerosols emitted from 

compost. This was done to address the gap of information regarding physical 
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properties, aggregation and size distribution of compost related bioaerosols. A number 

of hypotheses were formulated for the controlled experiments. 

 

The changes in the microbial population within a typical compost windrow is dependent 

on factors that also affect the quality of the compost such as C/N ratio, moisture, pH, 

substrate particle size (Singh et al., 2006). This is especially the case for temperature 

as the stages in a compost windrow are linked to the temperature profile within it. Stage 

1 is the mesophilic stage (ambient to 45oC) where mesophilic bacteria and fungi 

dominate the composting process (IWM, 1994; Epstein, 1997). This stage has been 

reported to last for 2-3 days (IWM, 1994). Stage 2 is the further increase of temperature 

in the thermophilic stage (45-75oC) starting around day 8 (Catton, 1983 from IWM, 

1994) where at its peak, the microbial fauna consists only of thermophilic micro-

organisms (IWM, 1994; Epstein, 1997). After around day 10, the compost windrow 

might have lost 40% of its bulk and the compost is pasteurised (IWM, 1994). This 

results in a decline in temperature which prompts re-population by other mesophilic 

micro-organisms (IWM, 1994) by day 20 (Catton, 1983 from IWM, 1994). However the 

rate of growth at this stage is slower than the start of the composting process (IWM, 

1994). The third stage is the second mesophilic stage which can continue for months 

and temperature of the compost falls toward that of ambient (IWM, 1994). The 

biodiversity of micro-organisms at this stage is also reduced with only a few species 

becoming dominant (IWM, 1994). The final stage of the composting process is the 

maturation phase which can take six months or more with low levels of microbial activity 

(IWM, 1994).  Similarly, Lacey (1997) has discussed that the concentrations of 

actinomycetes might decrease as a compost windrow matures and the water content of 

the compost decreases. Therefore based on this information, it is first hypothesised that 

“total number of bioaerosols released from compost will decrease as the compost 

matures”.   

 

Compost types such as green waste and kerbside collected garden and kitchen waste 

is produced by the decay of garden waste consisting of leaves, wood etc. The fibres 

present in this matter such as wood fibre might often be present in microscopic sizes in 

compost at even its final stages. Therefore, there is the likelihood that bioaerosol 



Chapter 4 – Aggregation and Size Distribution of Bioaerosols Emitted from Compost 
 

 71

particles released from compost might be attached to these fibres, which serve as a 

‘raft’ to aid their travel following emission (Lighthart and Stetzenbach, 1994). In line with 

this, Lighthart (1997) has reported that 40% of the particles that contain bacteria in the 

atmosphere are larger than 7 µm because they are attached to debris. Therefore the 

second hypothesis is that “bioaerosols released from compost will also be attached to 

wood fibres and other non-microbial matter’”.  

 

Two of the most prevalent micro-organisms found in compost (i.e. actinomycetes and A. 

fumigatus) produce branching filamentous chain structures called mycelium (Lacey, 

1997; Reynolds and Pepper, 2000; Papagianni, 2006). An actinomycete colony usually 

has an aerial mycelium (Figure 4.1) extending above the growth substrate forming 

asexual spores called conidia or conidiospores (Prescott et al., 1999a).  

 

   
Figure 4.1 – Images of the actinomycetes branching filamentous mycelium 
structure 
 
A. fumigatus dominantly produce asexual spores in flower-like structures called 

conidiophores with individual spores named conidiospores (Figure 4.2) (Prescott et al., 

1999b; Klich, 2002).  
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Figure 4.2 – Images of the Aspergillus fumigatus structure (from: Allernet, 
www.allernet.com/PHOTOS/m002a.html, accessed 10th February 2009). 
 
Upon agitation of the compost, several scenarios would be expected regarding the 

release of such mycelia and conidiophore. The first scenario would entail the release of 

such filamentous chain structures such as those for Penicillium spores which are 

released in short chain structures when aerolised from their growth surface (Jankowska 

et al., 2000). Similarly Madelin and Madelin (1995) have reported that pieces of 

mycelium can be blown away from contaminated surfaces. Therefore, in the first 

scenario, when compost is agitated or factors such as wind affects a static compost 

windrow, the mycelial structures present in compost would be expected to break off in 

smaller pieces and be released as aggregates (e.g. filamentous aggregates). However 

upon release it would be expected that environmental effects such as wind break up 

these aggregate structures into smaller cell or spore structures. This is because the 

filamentous aggregates are fragile in nature and easily susceptible to being broken into 

smaller fragments by mechnical forces (i.e. wind). 

 conidiospores 

conidiophore



Chapter 4 – Aggregation and Size Distribution of Bioaerosols Emitted from Compost 
 

 73

A second scenario entails the release of single spores from the mycelial structure or a 

conidiophore upon agitation of the compost. This might be the predominant form of 

release as micro-organisms that are released a single spores as opposed to aggregates 

might have a competitive dissemination advantage. In addition, it is also plausible that  

wind might spread single spores from structures such as a conidiophore in unagitated 

compost. Therefore it is thirdly hypothesised that “the majority of bioaerosols released 

from compost will be in single cells”.  

 

Microbial aggregation is the gathering of individual cells to make a larger particle/unit 

(Calleja, 1984b) and might also occur if cells that were originally dispersed clump 

together (Calleja et al., 1984a). Therefore even if the majority of the bioaerosols 

released from compost are single spores or cells, these single spores emitted singly 

could aggregate after emission from compost. There is no previous literature which has 

examined the aggregation of biaoerosols released from compost. However other 

studies which have examined agricultural dust have claimed that fungal spores occur in 

aggregates made up of 2-6 spores when airborne (Karlsson and Malmberg, 1989; 

Lacey, 1991). Therefore in connection to the previous hypothesis (hypothesis three), it 

is predicted that “if bioaerosol aggregates are observed to be emitted from compost, the 

number of aggregate structures made up of 2-6 units will be in a higher percentage than 

those made up of 7 or more units”.  

 

There are no previous studies for composting facilities which have compared bioaerosol 

concentrations determined by culturing to those for particle concentrations determined 

by scanning electron microscopy. However there are a number of studies that have 

made similar comparisons for other industries. One such study by Heikkilä et al. (1988) 

has reported a 10- to 100- fold difference in culture based and SEM results when 

analysing fungal spores in cow barns and attributed this to the fact that only a small 

proportion of spores in the air were viable when collected for culture analysis methods. 

They have shown that spores are released as both single spores and aggregates of 

spores however an aggregate may form only one microbial colony when cultured 

(McCartney et al., 1997a). Hence the fourth and final hypothesis is that “compost 
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related bioaerosol concentrations determined using by scanning electron microscopy 

analysis will be higher than those determined by culture analysis”.  

 

To test these hypotheses, the following chapter objectives were set: 

 

• generate bioaerosols and particles in experimental conditions; 

• test the viability of using SEM analysis to characterise the particle size distribution 

and aggregation of bioaerosols and particles emitted from compost; 

• examine the effect of compost age on the concentrations, particle size distribution 

and aggregation of bioaerosols and particles emitted from two different feedstocks of 

compost; 

• compare the differences in culture based and scanning electron microscopy based 

bioaerosol analysis. 

 

To achieve these objectives, controlled experiments were completed to generate 

bioaerosols in experimental conditions and to study the size distribution and 

aggregation properties of bioaerosol particles released at source without interference 

from ubiquitous and background bioaerosols. The compost inside the experimental 

chamber was agitated to release the spores and particles similar to other studies which 

have used mechanical handling (Lacey and Dutkiewicz, 1976a), air currents (Madelin 

and Johnson, 1992) and swirling-flow dispenser (Reponen et al., 1997; Reponen et al., 

1998) to release spores.  

 

This chapter firstly discusses the controlled experiments methodology that was adopted. 

Following this, the results section presents the comparison of culture and scanning 

electron microscopy analysis for the controlled experiments and the scanning electron 

microscope results including details of total particle counts, particle classification and 

aggregation. Finally the results are discussed.  

 

Related studies were completed at composting sites to validate the results presented in 

this chapter and to examine the size distribution and aggregation of bioaerosols on a 

composting site. These studies will be discussed in the next chapter (Chapter 5) which 
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will also aim to present key implications of the results and conclusions from both 

chapters (Chapter 4 and 5). 

 

4.2. METHODOLOGY 
 

4.2.1. Collection of the Samples for Controlled Experiments 
A compost tumbler (Figure 4.3, Blackwall, Aerobic Compost Tumbler) was utilised for 

the controlled experiments to examine the effect of compost type and age on bioaerosol 

concentrations, size distribution and aggregation. The compost tumbler had a capacity 

of 200 L, and was made from plastic with a width of 690mm and height 1170mm. 

 

The types of compost examined for these experiments were green waste (green/garden 

waste, commercial growers’ waste) and kerbside collected kitchen and garden waste 

(variety of kerbside-collected organic waste including catering waste) that were 1 week, 

5 weeks and 6 months old. The compost used for the experiments was collected from 

Donarbon Limited, Cambridgeshire (site description presented in Section 3.2.2 of 

Chapter 3). This site was chosen due to its proximity to Cranfield University where the 

controlled experiments and laboratory analysis took place. Donarbon Limited processes 

a wide variety of wastes including green waste and kerbside collected garden and 

kitchen waste. The 2005/2006 survey by the Composting Association (2007) has 

revealed garden waste (civic amenity plus kerbside collected) to account for 85% of all 

waste types to be composted followed by those for kerbside collected kitchen and 

garden waste at 11%. These figures were similar in the latest survey (Association for 

Organics Recycling, 2008) with 83% for garden waste and 10% for kerbside collected 

kitchen and garden waste. Therefore these waste types were chosen for the controlled 

experiments as they are the most common source of waste to be composted in the UK.  

 

The ages of compost were chosen to give a representation of the compost at different 

stages as the microbial flora of compost is different at each stage (Hassen et al., 2001; 

Michel et al., 2002; Riddech et al., 2002; Ryckeboer et al., 2003; Ivanov et al., 2004). 

This might mean that a possible variation in the bioaerosols and particles emitted from 

compost at different ages will be observed. The composting stage for the green waste 
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compost samples were based on compost age versus composting stage correlations 

previously reported for green waste compost (Catton, 1983 from IWM, 1994). Based on 

this principle, the one week old green waste compost will be assumed to be in the 

thermophilic stage, the 5 week old material will represent those in the second 

mesophilic stage and the six month old material will represent stabilized and mature 

compost.  

 

The kerbside collected kitchen and garden waste is first processed in an Animal By-

Products compliant in-vessel system for the first two weeks where the oxygen levels 

and temperature are monitored and controlled. This system ensures that all pathogens 

are killed. Following this, the compost is matured on concrete pads till approximately 6 

months of age. The one week compost samples of kerbside collected kitchen and 

garden waste were taken from the in-vessel system however due to the high 

temperatures aimed for in an in-vessel system, this compost is likely to be already in the 

late thermophilic stage. Similarly, due to the differences in composting technologies, the 

5 week old material might represent those in the maturation phase. However the six 

month old material should represent stabilized and mature compost. Due to these 

differences, the comparison of results from different compost feedstock will not be 

made.  

The compost samples used for the experiments were taken at a depth of 20 cm of the 

compost windrow as per Riddech et al. (2002) on the morning of the experiment (no 

longer than four hours prior to the experiment). The samples were kept in a heavy duty 

refuse bag until experimental use to retain the compost windrow moisture and 

temperature conditions.  
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Figure 4.3-Images of the experimental chamber (Blackwall Aerobic Compost 
Tumbler) used for taking air samples for culture method and SEM analysis  
 

At the start of the experiment, the compost was placed inside the compost tumbler and 

the screw top lid was closed. The compost tumbler was rotated 3600 which manually 

forced agitation of the compost inside. The agitation was introduced to ensure that cells 

of the micro-organisms growing in the compost are released. This decision is based on 

previous studies that showed an increase of bioaerosol concentrations during site 

activities such as turning and screening, compared with background bioaerosol 

concentrations on site (Sánchez-Monedero et al., 2005; Taha et al., 2006; Taha et al., 

2007). 5 kg of compost was chosen as the amount for the experiments because it was 

not possible to agitate a larger amount of compost as this made the compost tumbler 

too heavy to rotate manually. 

 

Subsequent to the rotation of the compost tumbler, the IOM sampler heads (Figure 3.1, 

Chapter 3) attached to 1m long metal rods needed to be put in place inside the compost 

tumbler through the holes located on its sides (Figures 4.4 and 4.5). This is because 

placing the IOM sampler heads through the top of the compost tumbler by removing the 

screw top lid would result in the loss of bioaerosols and particles released into the 

overhead space of the experimental chamber. Therefore approximately 2-3 minutes 

after the agitation of the compost which released the bioaerosols into the overhead 

space of the experimental chamber, air samples were taken inside the headspace using 

SKC personal air samplers as described previously (Chapter 3).  
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Figure 4.4-Images of the experimental set-up used for taking air samples for 
culture method and SEM analysis  
 

 
Figure 4.5-Schematic of the experimental set-up  
 

Three samples were collected for Scanning Electron Microscopy (SEM) analysis whilst 

three samples were collected for culture based analysis of actinomycetes and 

Aspergillus fumigatus simultaneously. Filter sampling was the chosen method for the 

experiments as it allowed the simultaneous analysis of air samples by culture method 

and scanning electron microscopy as per previous studies (Pasanen et al., 1989). A 

further sample was taken from the area where the compost tumbler is located (i.e. the 

pilot plant hall which is housed in a building) to determine the background levels of 
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and filter 
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bioaerosols present in the air around the compost tumbler by the culture based 

analysis. A total of seven air samples per experiment were collected.  

 

The methodology, analytical quality control for culturing of actinomycetes and A. 

fumigatus and expression of results was carried out as described previously (Chapter 

3).  

 

4.2.2. Preliminary Experiments 
Preliminary experiments were carried out to test the viability of using the SEM to 

visualise the nature of bioaerosols emitted from a known quality of compost and to test 

the use of the compost tumbler as a method for conducting controlled experiments. 

These consisted of experiments undertaken to determine: 

 

• The most effective method of de-contamination between experiments; 

• The optimum agitation duration per experiment that would result in the largest 

release of bioaerosols (i.e. highest concentrations of bioaerosols);  

• The optimum sampling duration per experiment that would result in the largest 

release of bioaerosols. 

 

The de-contamination method experiment was aimed to determine the effect of de-

contamination of the compost tumbler between experiments by brushing only, rinsing by 

water or bleaching. It was hypothesised that bleaching of the compost tumbler would 

result in reduced bioaerosol concentrations and the results of the first experiment 

revealed this to be the case. This experiment was repeated a second time however this 

time the hypothesised result that bleaching of the container would result in reduced 

bioaerosol concentrations was not achieved and the lowest bioaerosol concentrations 

were achieved by brushing only after unloading of compost from the compost tumbler. 

However bleaching (sodium hypochlorite) of the compost tumbler between experiments 

was adopted as a way of de-contamination instead of cleaning by brushing or water 

only. This decision was taken as bleaching has been shown to reduce bacteria in 

previous studies (Rutala and Webber, 1997; Ikawa and Rossen, 1999), able to denature 
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Aspergillus antigens (Pacheco et al., 2007) and be more effective against other cleaning 

agents such as ammonia, vinegar or liquid dishwashing detergent (Parnes, 1997).   

 

The next preliminary experiment aimed to determine the optimum agitation duration to 

release bioaerosol cells into the compost tumbler chamber. Agitation durations of 2, 5 

and 15 minutes were tested and it was expected that the longer agitation period of 15 

minutes would result in the highest bioaerosol concentrations however it was found that 

lower agitation durations were as effective as longer ones. As a result of this an 

agitation time of 5 minutes was adopted for all the experiments as it was decided that a 

5 minute agitation time was sufficient to release bioaerosol cells and particles into the 

overhead of the compost tumbler. 

 

However these preliminary experiments were completed outdoors due to the lack of 

available indoor experimental space at the time close to the vicinity of a sewage works 

which are likely to have pre-existing bioaerosols in the air. This might have resulted in 

the contamination of the filters inside the compost tumbler.  

 

Conclusions were drawn from preliminary experiments completed to determine optimum 

sampling time. Sampling durations of 30 and 45 minutes have been used for the site 

work (Chapter 3) and in other studies which have carried out on-site sampling of 

bioaerosols with personal air filters (Dillon et al., 2006; Taha et al., 2006; Taha et al., 

2007a). Some studies have used even longer sampling durations of up to 90 minutes 

for sampling by filtration (Rautiala et al., 2003). Collection of bioaerosols on filters is the 

method chosen by the German Commission on Air Pollution and Prevention of VDI and 

DIN (VDI, 2004a) and the recommended sampling time is given as between 10 minutes 

and 24 hours.  

 

However it was determined that because of the limited air capacity inside the compost 

tumbler (200 L), air from the outdoor environment might infiltrate into the headspace of 

the compost tumbler if the sampling activity is carried out for a long duration. In this 

context, a sampling duration of 30 minutes with the pump flow rate of 2.2 L/min for 6 

pumps would result in a total sampled volume of 396 L. This might result in 
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contamination of the air samples taken inside the headspace of the compost tumbler by 

the outdoor environment air. Therefore in addition to 30 and 45 minutes sampling times, 

a shorter sampling time of 15 minutes calculated in the light of the above (15 minutes 

sampling time with a pump flow rate of 2.2 L/min for 6 pumps resulting in 200L) as well 

as the effect of 5 minutes were also tested. The results are presented (Figure 4.6) 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Sampling Duration

A
ct

in
om

yc
te

s 
co

nc
en

tr
at

io
n 

(C
FU

/m
3)

5 min

15 min

30 min

45 min

 
Figure 4.6- Effect of sampling durations of 5, 15, 30 and 45 minutes on actinomycetes 
concentrations collected by the air filter samples. The bars denote the arithmetic mean 
(n=3), the error bars denote standard error.  
 

The results showed that the 5 minute sampling duration resulted in the highest 

concentrations of bioaerosols. The subsequent one factor ANOVA analysis and further 

Fisher LSD tests also revealed that 5 minute sampling resulted in significantly higher 

concentrations of bioaerosols (p = 0.007666) compared to sampling durations of 15, 30 

and 45 minutes and these latter sampling durations were homogeneous in the 95% 

confidence limit interval. This experiment was repeated a second time to test the effect 

of shorter sampling times of 1 and 2 minutes as shown in Figure 4.7.  
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Figure 4.7- Effect of sampling durations of 1, 2, 5, 15 and 30 minutes on actinomycetes 
concentrations collected by the air filter samples.  The bars denote the arithmetic mean 
(n=3), the error bars denote standard error.  
 

The results showed that a shorter sampling duration of 2 minutes resulted in the highest 

level of bioaerosols collected from the compost tumbler environment with higher 

concentrations of bioaerosols compared to all other sampling durations. Statistical 

analysis showed that the bioaerosol concentrations for 1 and 2 minute sampling 

durations were significantly higher than those for 5, 15 and 30 minute sampling 

durations (p<0.00154) however were homogenous in the 95% confidence limit interval. 

However these results were taken from only one experiment and it was not possible 

repeat this particular experiment whose results are shown in Figure 4.7. Therefore it 

was felt that a sampling duration of 1 minute might not be sufficient to capture all the 

bioaerosol particles in the overhead space of the compost tumble and hence a more 

conservative sampling duration of 2 minutes was chosen for all controlled experiments.  

 

In the light of the findings of the preliminary work, the full sampling protocol was 

developed and is presented as follows: 

 

a) Prepare the SKC personal samplers for 2 minute sampling. 
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b) Attach the IOM filter holders to two metal rods (1 m long, needs to be able to fit 

through the holes of the compost tumbler) using standard cable ties (as shown in 

Figure 4.3). Place three IOM samplers on each metal rod and place them with the 

filter side down to enable particles to be drawn in to the filter rather than being 

deposited on the filter. Take one sample outside the compost tumbler to determine 

any background contamination in the experiment environment. 

 

c) Place aluminium foil over the IOM filter holders until the compost agitation activity is 

carried out to prevent any particles depositing on the filter before the 

commencement of the sampling.  

 

d) Tape all holes on side of the compost tumbler with standard heavy duty tape to 

prevent the escape of compost through the holes when compost is being agitated as 

well as to prevent contamination of the air inside the compost tumbler by the outside 

air. 

 

e) Manually agitate the compost tumbler for 5 minutes by turning the compost tumbler 

by 3600 

 

f) Following agitation, remove the foil over the IOM sampling heads and remove the 

tape from the top side of the compost tumbler.  

 

g) Insert the metal rod with the IOM sampling heads attached into the compost tumbler 

through the non-taped off holes without taking off the screw on compost tumbler lid. 

Ensure that the flexible foam placed at the end of the metal road covers the compost 

tumbler holes so the compost being agitated inside the tumbler is not able to 

penetrate outside the compost tumbler headspace.  

 

h) Complete the air sampling and remove the samples. 
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4.3. RESULTS 
 
4.3.1. Image Density of Sample Filters 
The total area of the sampling filters scanned by the SEM was recorded. This is the 

area occupied by 100 viewing fields containing particles of interest (i.e. particles larger 

than 0.5 µm in size and not pre-existing particles inherent in a non-exposed filter) as 

described previously and the ‘blank’ image fields empty of particles of interest (as 

explained in Section 3.4.1., Chapter 3).  Since it is not practical to scan the whole filter 

for SEM analysis, all subsequent SEM results relate to this portion of the sampling filter. 

 

If the particles of interest on a sample filter are located sparsely (Figure 4.8), this would 

result in the recording of a high number of ‘blank’ viewing fields in between the particles 

of interest. Since each sample filter needs to be scanned for 100 viewing fields 

containing particles of interest, this would result in a higher percentage of the overall 

sample filter being analysed. However, a sample filter that is heavily populated with 

particles of interest (Figure 4.9) would result in a smaller number of ‘blank’ viewing fields 

being recorded. This would mean that a lower percentage of the overall sample filter is 

scanned.  

  
Figure 4.8- SEM Images of Sampling Filters Sparsely Populated with Particles 
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Figure 4.9- SEM Images of Sampling Filters Heavily Populated with Particles  
 

The results of the percentages of filter scanned per experiment for the controlled 

experiments are presented in Figure 4.10. 
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Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
Figure 4.10 - Results of the percentage of filter scanned for controlled experiments. The 
bars indicate arithmetic mean (n=3) and error bars indicate standard error.  
 
The results show that for all sample filters taken during the controlled experiments, on 

average 0.37% of the total sampling filter was scanned by SEM. It would have been 

expected that the 6 month old compost for both feedstocks would be least heavily 

populated with particles of interest (i.e higher percentage of filter scanned) as this 
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compost represents stabilised and mature compost which should have lower 

populations of micro-organisms. However this is not the case for either compost types.  

 

4.3.2. Total Cell Counts  
The total number of numerous types and sizes of particles that were deliberated to be 

bacterial, fungal and actinomycetes cells as well as their aggregates on the sampling 

filters were identified using SEM imaging. These were classified as large cells, large cell 

aggregates, small cells, small cell aggregates, mixed large cells and mixed small cells 

(see Appendix C for the image guide). Particles that are observed very occasionally 

such as filamentous particles or rod shaped particles (see Appendix B for the image 

guide) and unstructured particles were not taken into account for these results as these 

were possible pre-existing particles resulting from the structural defects of the filters. It 

is important to note that these total cell counts per sample filter represent the counts per 

100 viewing fields which is equivalent to an area of 0.252 mm2 of the filter as opposed 

to a total filter area of 490.8 mm2 or an effective filter area of 176.7 mm2. The results are 

presented in Figure 4.11.  
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Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
Figure 4.11 - Total number of cells per 100 viewing fields for the samples taken during 
the controlled experiments. The bars indicate arithmetic mean (n=3) and error bars 
indicate standard error.  
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It would be expected that a higher total number of cells per 100 viewing fields would 

have been captured for composts aged 1 and 5 weeks. The results for “kerbside 

collected green and kitchen waste” (KW) showed this trend and the total number of cells 

per 100 viewing fields was lower for the 6 month old compost. However this was not the 

case for “green waste” (GW) compost and no common trend for compost age between 

the two compost types in terms of the total number of cells were observed. There was a 

higher number of total cells observed from KW compost compared to GW compost.  

The statistical analysis has confirmed these results where the total number of cells 

counts between the GW and the KW were significantly different (p = 0.034873). 

However the effect of compost age was not significant (p = 0.580170).  

 

4.3.3. Cell Classification and Aggregation  
 
The SEM analysis of the sample filters revealed two sizes of cells released from the 

compost samples. The large size cells were 2-3 µm in diameter (Figure 4.12) whilst the 

small size cells were 0.5-1 µm in diameter (Figure 4.13). Previous studies have reported 

physical sizes of some fungi spores or conidia as 2.5-3 µm for Aspergillus fumigatus, 

3.5-5 µm for Aspergillus niger and 3-4.5 µm for Penicillium brevicompactum (Samson et 

al., 1995; Latgé, 1999; Menetrez et al., 2007).  Most bacterial spores are reported to be 

within the physical size range of 0.5 -1 µm in diameter (Matthias-Maser and Jaenicke, 

1995; Reynolds and Pepper, 2000), specifically 0.7-1 µm for Streptomyces albus 

(Madelin and Johnson, 1992) and 0.5-1.5 µm for Thermoactinomyces vulgaris (Lacey, 

1989). Therefore based on these size ranges, the comparison of SEM images 

previously reported in literature and observed during the controlled experiments and the 

site work, it is assumed that the large cells belong to fungal species and the small cells 

belong to actinomycetes or other bacterial species. 
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Figure 4.12 - SEM Images of Large Single Cells and Large Cell Aggregates (Type B) 
 

  
Figure 4.13 - SEM Images of Small Single Cells and Small Cell Aggregates (Type B) 
 

Based on these, the distributions of single and aggregate cells for small and large cells 

for controlled experiments are presented in Figure 4.14. 
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Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
Figure 4.14 - Cell classification and aggregation for controlled experiments. The bars 
indicate arithmetic mean (n=3). 
 
The results show that for all compost types and ages, the majority of cells were single 

small cells (51-78%) followed by their aggregates (22-33%). The percentages of single 

large cells and their aggregates were much lower (0.1-14% and 0.2-2.2% respectively). 

Large cell aggregates were not identified for 6 month old green waste compost 

samples. This might indicate that cells of micro-organisms such as bacteria or 

actinomycetes were found in greater numbers in bioaerosol structures. In addition, the 

cells of these micro-organisms might be more likely to be in aggregates when airborne 

than those of larger cells of micro-organisms such as fungi. 

 

In addition to these, the culturing results for controlled experiments (presented in 

Section 4.3.9) show that on average, the concentrations of A. fumigatus were lower 

than those for actinomycetes. Hence it would be expected that the percentage of small 

cells which indicate bacteria and actinomycetes would be higher than large cells which 

indicate fungi. In addition to this lower numbers of both cell types would be expected to 

be observed for composts aged 6 months. However the results did not show significant 

differences (p>0.05) for the small and large cells measured for different compost ages.  
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4.3.4. Small Cell Aggregate Classification 
As previously discussed (Section 4.3.2), numerous types of small size cells and their 

aggregates were identified by SEM analysis (Table 4.1).  

 
Table 4.1 –Cell description and image examples of small size cells and their aggregates. 
Observed size for all cells 0.5-1 µm length 

Cell Type Cell Description Example of Aggregate Structure 
and Number 

A Round particles with smooth  

surface or with small bumps  

and occasional ‘Raspberry-like’ structure.  

 

 

 
20+ cell aggregation 

B  Oval shaped  particles with ridges 

 
20+ cell aggregation 

C Round particles with visible spikes 

 
2 cell aggregation 
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D  Round particles with ridges and a 

‘flower-like’ structure 

 
4 cell aggregation 

E Round particles with dents 

 
2 cell aggregation 

F  Oval shaped particles with ‘shrivelled’ 

appearance. Mostly occurring in ‘chain’ 

structures 

 
7 cell aggregation 

G Round particles with prominent bumps, 

‘cauliflower-like’ appearance and ‘scar’ 

 
5-6 cell aggregation 
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H  Oval shaped particles with small ‘warts’ 

 
4 cell aggregation 

 

SEM images from previous studies suggest small cell type E to be Thermoactinomyces 

sacchari (Prescott et al., 1999) and small cell types C and F to be streptomyces sp. 

(Skujiņš et al., 1971; Prescott et al., 1999), which would be consistent with the types of 

micro-organisms identified in compost (Epstein, 1997).  However as explained 

previously, the determination of the cell species was not within the scope of this study.  

 

The number of aggregates observed per type of small cell and aggregate for controlled 

experiments are presented in Figures 4.15 and 4.16 for GW and KW compost 

respectively. The aggregates consisting of 5-6, 7-10, 10-20 cells and bigger aggregates 

were classified together as it was not always possible to distinguish the exact number of 

cells in an aggregate. Small cell type H has only been identified once (KW, 5 week old) 

hence are not represented in the following results.  
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Figure 4.15- Small cell aggregate distribution for green waste compost aged (a) 1 
weeks, (b) 5 weeks and (c) 6 months. The bars indicate arithmetic mean (n=3). 
 
For sample filters of all ages of green waste compost, aggregates made up of 2 cells 

were in the majority compared to aggregates made up of more cells. For the 1 and 5 

week old green waste compost samples, small cell type A aggregates consisting of 2 

cells were dominant. The dominant species through different stages of composting is 

different with changing compost age. Therefore in line with this, for the 6 month old 

compost samples, the highest aggregate type was for small cell spore type D 

aggregates consisting of 2 cells. Higher number of aggregates made up of 3 or more 

cells was observed for the 6 month old compost compared to those for 1 week and 5 

week old compost. This is an interesting result as per the first hypothesis, the total 

number of bioaerosols and particles and hence aggregates were expected to reduce as 

compost matures however this is not the case.  

 

The number of aggregates observed per type of cells and type of aggregate for different 

ages of KW compost is presented in Figure 4.16 
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Figure 4.16- Small cell aggregate distribution for kerbside collected garden and kitchen 
waste compost aged (a) 1 week, (b) 5 weeks and (c) 6 months. The bars indicate 
arithmetic mean (n=3). 
 
Similar to the green waste compost results, aggregates made up of 2 cells were in the 

majority compared to aggregates made up of more cells. The 1 week old compost 

sample filters had similar overall numbers for small cell aggregates for types A, B, D 

and F but the highest number of 2-cell aggregates were for small cell type D at 33. 

Overall number of aggregates including those consisting of 3 or more cells were lower 

for the 6 month old compost compared to 1 week and 5 weeks old compost. These 

results were in line with what was expected which would be the reduction in the number 

of bioaerosols and particles (and hence aggregates) with an increase in compost age. 

Finally, the summary of the dominant aggregate and cell types for aggregate for the 

controlled experiments are presented in Table 4.2.   
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Table 4.2 – The dominant aggregate and cell types for all controlled experiments 
Type and Age of Compost Dominant Cell Type Dominant Aggregate  

GW 1 week  A 2 cell 

GW 5 weeks A  2 cell 

GW 6 months D 2 cell 

KW 1 week D 2 cell 

KW 5 weeks A 2 cell 

GW  months  A 2 cell 

Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
 

4.3.5. Large Cell Aggregation  
For the controlled experiments, two major types of large size cells and their aggregates 

were identified by SEM analysis (Table 4.3). A third type of large size cell (Spore Type 

C) was only observed occasionally hence will not be included in the analysis of the large 

size cells.  
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Table 4.3 – Cell description and image examples of large size cells and their aggregates. 
Observed size for all cells is 2-3µm length. 

Cell Type Cell Description Example of Aggregate Structure  
and Number 

A Round particles with bumpy or smooth  

surface and ‘raspberry-like’ structure 

6 cell aggregation 

B  Round particles with small spikes 

7 cell aggregation 
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Figure 4.17- Large cell aggregate distribution for green waste compost aged 5 weeks. 
The bars indicate arithmetic mean (n=3). 
 

The results (Figure 4.17) shown for 5 week old green waste compost are the largest 

number of large cell aggregates observed for any controlled experiment. The number of 

large cell aggregates observed for the other controlled experiments were low and are 

summarised as follows: 

 

• For 1 week old green waste compost, there was only a single 2 cell Type A 

aggregate observed for one sampling filter;  

• There were no large cell aggregates for any type observed for the 6 month old green 

waste compost; 

• For both 5 week and 1 week old kerbside collected waste compost, on average 

(n=3), one 2 cell Type A aggregate, one 2 cell and one 4 cell Type B aggregates 

were observed; 

•  For 6 month old kerbside collected waste compost, on average (n=3), one 3 cell 

Type A aggregate was observed.   
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4.3.6. Aggregate Structure 
Two different types of aggregates were observed on the sample filters analysed by 

SEM. The first type was classed as ‘chain aggregates’ as shown in Figure 4.18 where 

cells are aggregated resulting in a long chain-like structure. The second type of 

aggregate was classed as a ‘cluster aggregate’ as shown in Figure 4.19 where cells are 

aggregated in a shorter bunched structure.   

 

  
Figure 4.18- SEM Images of chain aggregates 
 
 

  
Figure 4.19- SEM Images of cluster aggregates 
 

The classification of aggregates for small and large cells for controlled experiments is 

presented in Figure 4.20. 
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Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
Figure 4.20- Small and large cell aggregate distribution for controlled experiments. The 
bars indicate arithmetic mean (n=3) 
 
In line with hypothesis three, the chain aggregates are probably the fragments of 

filamentous mycelial structures present in compost which have broken into smaller 

pieces on release from compost. However the cluster aggregates are more likely to be 

either aggregates of micro-organisms in compost which do not grow in filaments or are 

single spores which have aggregated upon release. Based on these, the results show 

that for all compost types and ages, the cluster aggregates for both types of cell sizes 

were in the majority indicating that either a larger percentage of non-filamentous micro-

organism aggregates are being aerolised or that cells are clustering into aggregates 

upon release from compost . 

 
4.3.7. Size Distribution  
The 2D image dimensions (width and length) of the small and large cell aggregates 

observed with SEM were noted as shown in Figure 4.21. The cell aggregates were 

classified according to the dimension which is the greatest. Therefore, for instance, a 

cell aggregate with the dimensions of 2 µm (width) and 10 µm (length), is classified as 

having an aggregate diameter of 10 µm. 
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Figure 4.21 - 2D Dimensions of SEM cell aggregate images 
 

The small and large cell size aggregate distributions for controlled experiments are 

shown in Figure 4.22.  
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Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
Figure 4.22- Small cell (a) and large cell (b) aggregate size distribution for controlled 
experiments.  The bars indicate arithmetic mean (n=3) 
 
The aggregate size distribution for small cells for all the filter samples taken for 

controlled experiments show that aggregates of 1 and 2 µm in diameter were the most 

profuse at an average of 50% of all aggregates observed. Since the size of a single 

small cell is 0.5-1 µm, this would equate to 2-3 cell aggregates hence these are in line 

with the results presented in Section 4.3.4. The aggregate size distribution for large 

cells show that, on average, aggregates of 4 and 5 µm in diameter were dominant with 

the exception of samples of 1 week old green waste compost and 6 months old 

kerbside collected kitchen and garden waste compost. The size of a single large cell is 

1-2 µm, therefore this would equate to 2-4 spore aggregates.  

 

In addition to these results, the largest aggregate particle observed per sample for the 

controlled experiments and site work was analysed. Based on this, the following tables 

show the number of individual units for the largest aggregate of small and large cells for 

controlled experiments (Tables 4.4 and 4.5).  
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Table 4.4 – The number of individual units for the largest aggregate of small cells 
identified per sample for the controlled experiments. The values within the brackets 
denote the length and height of the observed aggregate in µm. 

Green Waste Kerbside Waste Compost  
Age Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

1 week 4 (3,4) 6 (4,4) 6 (4,2) 110 (15,8) 150 (12,11) 60 (10,10) 
 
5 weeks 
 

 
7 (6,3) 

No sample 
due

to pump 
malfunction

13 (11,10) 12 (11,8)
 

100 (13,8) 14 (8,11)

6 months 13 (7,7) 30 (6,7) 100 (8,8) 22 (4,5) 75 (13,14) 18 (6,5)
 
 
Table 4.5 – The number of individual units for the largest aggregate of large cells 
identified per sample for the controlled experiments. The values within the brackets 
denote the length and height of the observed aggregate in µm. 

Green Waste Kerbside Waste Compost  
Age Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3 

1 week None None 2 (3,3)       4 (5,7) 4 (5,5)        3 (4,4)
 
5 weeks 
 

3 (4,4) No sample 
due

to pump 
malfunction

7 (5,6) 4 (5,6) 7 (6,7) 3 (5,5)

6 months None None None None 4 (3,6) 3 (5,4)
 
The results show that small cells are more likely to form aggregates consisting of 7 or 

more aggregates and the particle diameter of these aggregates increased considerably 

(e.g. 10 µm) compared to the size of a single cell (0.5-1 µm). However there is no 

evidence of age or compost feedstock related trends.  

 
4.3.8. Particle Shape Distribution  
The aspect ratios of aggregate structures for the small and large cell aggregates were 

observed with the SEM. Some aggregate structures had an aspect ratio of 1:1 as shown 

in Figure 4.23 (a). Alternatively, aggregate structures also showed aspect ratios other 

than 1:1 as shown in Figure 4.23 (b). Therefore the analysis presented in this section 

will help to determine the percentage of particles with different aspect ratios because 

such particle shape characteristics will have implications in terms of their aerodynamic 

behaviour.  
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         (a)              (b) 

Figure 4.23- SEM images of  aggregate structures with an aspect ratio of 1 (a) and 
aggregate structures with an aspect ratio other than 1 (b)  
 
The small and large cell size particle shape distributions for controlled experiments are 

shown in Figure 4.24  
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Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 
Figure 4.24- Aspect ratio distribution for small cell (a) and large cell (b) aggregates for 
controlled experiments.  The bars indicate arithmetic mean (n=3) 
 
The results for all samples show that the majority of small cell aggregates had an 

aspect ratio of 1 (63% to 86%). Similar results for large cell aggregates were observed 

where the majority of all aggregates also had an aspect ratio of 1. However the number 

of aggregates with an aspect ratio between 1 and 1.5 were higher for larger cell 

aggregates compared to small cell aggregates.  

 

4.3.9. Comparison of Culturing and SEM Results  
 
The concentrations (in CFU/m3) of A. fumigatus and actinomycetes calculated by the 

culture method are compared with the concentrations (in particle/m3) of large and small 

cells and their aggregates. To enable this comparison, the assumption is made that 

large cells and their aggregates represent A. fumigatus counts whilst small cells and 

their aggregates represent actinomycetes counts as explained previously (Section 

3.4.2., Chapter 3).  

 

Previous studies (McCartney et al., 1997a) have shown that an aggregate may form 

only one microbial colony when cultured. However it is likely that these aggregates 
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might shatter on impact with a sampling filter and result in an increased number of 

colonies resulting from one aggregate. The results shown in the previous sections have 

shown the presence of aggregates on the sampling filters following impact hence 

aggregates do not always shatter on impact with a sampling filter. However, the 

culturing methodology involves the rigorous mixing of any aggregates which would 

result in them breaking into single cells. Therefore for the purposes of the particle 

concentration determination, the assumption has been made that an aggregate when 

cultured will result in the same number of colonies as the individual number of cells in 

that aggregate. Hence, for example 2-spore aggregate will result in two colonies when 

cultured and a 6-spore aggregate will result in six colonies when cultured. Based on 

this, Tables 4.6 and 4.7 presents the concentrations of micro-organisms and 

bioaerosols detected in green and kerbside collected kitchen and garden waste 

compost by culture and SEM analysis for A.fumigatus and actinomycetes respectively. 

 
Table 4.6 – Controlled experiments Aspergillus fumigatus and large cell and aggregates 
concentrations (arithmetic mean of 3 samples ± standard error) 

 Green Waste Compost 
Bioaerosol Concentrations 

Kerbside Collected Waste 
Compost Bioaerosol 

Concentrations 
Compost  

Age 
Culture  

(CFU/m3) 
SEM  

(particle/m3) 
Culture  

 (CFU/m3) 
SEM  

(particle/m3) 

 
1 week 

3.9x104 
± 5.7x102 

1.1x105 

± 3.0x104 

 

1.3x106 

± 3.0x105 

 

4.1x105

± 1.8x105

 
5 weeks 

1.1x106 

± 5.3x105 

 

1.2x105 

± 5.0x104
None detected 1.7x105

± 5.4x104

 
6 months  

None 
detected 

5.9x103 

± 3.0x102 
None detected 4.4x105

± 2.0x104 

 

The correlation analysis of the results of culturing vs SEM of these results revealed a 

weak relationship between the A. fumigatus concentrations determined by culture 

methods and the total (i.e. single and aggregate) large cell particle concentrations 

determined by the SEM method (r2 = 0.0801). 
 
 
 
 
 



Chapter 4 – Aggregation and Size Distribution of Bioaerosols Emitted from Compost 
 

 108

Table 4.7 – Controlled experiments actinomycetes and small cell and aggregates 
concentrations (arithmetic mean of 3 samples ± standard error) 

 Green Waste Compost 
Bioaerosol Concentrations 

Kerbside Collected Waste 
Compost Bioaerosol 

Concentrations 
Compost  

Age 
Culture  

(CFU/m3) 
SEM  

(particle/m3) 
Culture  

 (CFU/m3) 
SEM  

(particle/m3) 
 
1 week 

2.9x105 
± 5.3x104 

 

1.5x106

± 4.4x105
1.8x106 

± 5.0x105 
 

1.0x107

± 3.0x106

 
5 weeks 

9.4x105 
± 3.9x105 

 

1.8x106

± 1.9x105 
2.4x106 

± 9.0x104 
1.0x107

± 2.0x106

 
6 months  

2.7x107 
± 3.3x106 

 

7.9x106

± 2.1x106
3.7x106 

± 5.2x105 
 

6.0x107

± 2.0x106

 
The correlation analysis of the results of culturing vs. SEM methods for actinomycetes 

also revealed a weak relationship between the results calculated by the culture and 

SEM methods (r2 = 0.0043). Following this, a further analysis was completed to 

determine the ratios of scanning electron microscopy particle concentrations to culture 

based microbial concentrations (Table 4.8).  

 
Table 4.8 - Quantitative comparison of culture and SEM results for the controlled 
experiments 

Sample Type or 
Location 

A.fumigatus 
SEM/CFU ratio 

Actinomycetes 
SEM/CFU ratio 

GW 1 week old 2.8 4.9 

GW 5 week old 0.1 1.9 

GW 6 month old No result 0.3 

KW 1 week old 0.3 5.1 

KW 5 week old No result 5.3 

KW 6 month old No result 15.5 

Note: GW denotes Green Waste and KW denotes Kerbside Collected Kitchen and Garden Waste 

 

A ratio value of 1.0 would denote that the culture concentrations for actinomycetes are 

equal to particle per metre cube concentrations for small cells and their aggregates. 

Ratio values higher than 1 denote that the microbial concentrations calculated by 

culture methods were less than particle concentrations calculated by scanning electron 

microscopy methods for the same sample. Likewise, ratio values smaller than 1 denote 
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that microbial concentrations calculated by culture methods are higher than the particle 

concentrations by scanning electron microscopy methods for the same sample. 

 

Based on this, for all experiments, on average, large cell and large cell aggregate 

concentrations were 1.1 times higher than A. fumigatus concentrations. For the same 

set of experiments, small cell and small cell aggregate concentrations, on average, 

were 5.5 times higher than those for actinomycetes concentrations. 

 

4.4. DISCUSSION 
Physical properties of a bioaerosol spore such as its size, shape, surface characteristics 

and their tendency to aggregate affects the aerodynamic behaviour of the bioaerosol 

(Levetin, 1995; McCartney, 1994; McCartney et al., 1997a) and the understanding of 

this behaviour is essential for analysing their release from composting facilities.  

 

The efficiency of bioaerosol samplers, such as bioaerosol impactors, is also dependant 

on the particle size (Reponen et al., 2001) and particle aggregation affects their 

performance and collection efficiency (Trunov et al., 2001). This may lead to under 

(Karlsson and Malmberg, 1989) or over-estimation of the bioaerosol particle count or 

large variations on filters when counting spores (Eduard and Aalen, 1988).   

 

Furthermore, particle size and aggregation of bioaerosol particles has an impact on the 

amount of inhaled particles and consequently, their adverse health effects (Morrow, 

1980; Venkataraman and Kao, 1999; Reponen et al., 2001; CIWM, 2002; Agranovski et 

al., 2004; Tham and Zuraimi, 2005;). Allergic alveolitis resulting from infiltration into the 

alveolar space of the lung (Houman and Morgan, 1977) has been observed to be 

caused by particles with a diameter of 5 µm. According to Carrera et al. (2005), 

aerosols with a high number of single micro-organisms might have increased infection 

potential however aerosols with a high number of aggregated micro-organisms might 

have increased survival.  

 

Fungal spores such as Cladosporium, Penicillum and other airborne micro-organisms of 

epidemiological interest often occur as aggregates when aerosolized (Bell et al., 2000; 
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Lacey, 1991; Levetin, 1995; Trunov et al., 2001; Zollinger et al., 2005), in clumps or 

chains (Madelin and Johnson, 1992) or attached to non-viable particles (Gregory, 1973; 

Akers and Won, 1979). Tham and Zurami (2005) have reported the presence of viable 

bacteria in clumps of 2-5 µm and Lacey and Dutkiewicz (1976a; 1976b) have found 

aggregate structures consisting of 5 spores in their study. 

 

However literature review of previous research (Chapter 1) has revealed a distinct gap 

of information regarding the size, shape, surface characteristics and aggregation of 

bioaerosols released from composting facilities. Byeon et al. (2008) who have studied 

the size distribution of micro-organisms in a municipal composting facility found that the 

size of the microorganisms detected (Bacillus, Staphylococcus and Streptomyces) in 

their study were larger than those reported by previous studies and they have attributed 

this to the likely aggregation of the bioaerosols within the composting facility. However 

they have also discussed a distinct lack of data regarding total airborne particles and 

bioaerosols from municipal composting facilities. Therefore the overall research 

objective of this chapter was to release bioaerosols in experimental conditions and use 

the generated data to characterise the overall size distribution and visual properties (i.e. 

aggregation, size and shape) of bioaerosols emitted from compost. In order to achieve 

this, a set of hypothesis and chapter objectives were set. Each hypothesis will be 

discussed separately in light of the results.  

 
4.4.1. Effect of Compost Age on Bioaerosols Released from Compost 
The first hypothesis stated that the “total number of bioaerosols released from compost 

will decrease as the compost matures”. This hypothesis was based on previous studies 

which have discussed declines in micro-organisms found in compost as compost age 

increases for different compost types and technologies including the windrow 

composting of biosolids and bark (Epstein,1997) (with data taken from Walke (1975)), 

composting of source separated household waste (i.e. vegetable, fruit and garden 

waste with paper) in a 200-l insulated composting bin (Ryckeboer et al., 2003), 

composting of biowaste composts (i.e. vegetable, fruit, garden waste with paper and 

cardboard) in reactors with a capacity of 170-l (Lemunier et al., 2005) and composting 

of municipal solid waste (Hassen et al., 2001). 
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To test this hypothesis, firstly the image density analysis of the sample filters taken 

during the controlled experiments was analysed. The sample filters taken for 1 and 5 

week old compost were expected to be more heavily populated with particles of interest 

(i.e. particles larger than 0.5 µm in size and not pre-existing particles inherent in an non-

exposed filter) compared to those for 6 month old compost. However as shown by the 

results presented in Figure 4.10 (Section 4.3.1) this was not the case for either of the 

compost types. Secondly, the total cell counts (per 100 viewing fields) per filter were 

analysed. In contrast to expectations, the 6 month old sample for green waste compost 

showed the highest number of total cells as shown in Figure 4.11 (Section 4.3.2). The 

results for the kerbside collected kitchen and garden waste were in line with the 

expected and the number of total cells for 6 month old compost were the lowest of all 

three ages of compost. However this difference was not statistically significant (p>0.05). 

Therefore the hypothesis was rejected and the results showed that the number of 

bioaerosols released from different types of compost is not dependent on compost age. 

This indicates that even stabilised and mature compost (i.e. 6 months old) which would 

be expected to pose minimal risk in terms of bioaerosol emissions is likely to emit a high 

number of bioaerosols which will have implications in terms of health impacts on 

sensitive receptors. This result is in line with a study by Millner et al. (1977) who has 

examined concentrations of A. fumigatus in sewage sludge compost. The compost was 

formed into windrows covered with a layer of cured compost and subjected to forced 

aeration for 3 weeks before being disassembled and left untreated for curing (4 weeks). 

The cured compost was subsequently screened and stored further for up to 6 months. 

High levels of A. fumigatus were found in cured and screened compost. This was 

attributed to re-inoculation of previously A. fumigatus free patches of the compost when 

the cured compost was agitated. In contrast, stationary storage of A. fumigatus for a 

month or longer caused a decline in the A. fumigatus concentrations in the compost.  

 

One possible reason for these results might be due to the limitations caused by the fact 

that it was not possible to determine the exact stage of composting for the compost 

samples. Assumptions were made on composting stage based on compost age 

however the real determination of the compost stage will be based on the monitoring of 

compost properties such as temperature. This is because the growth temperatures of 
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active micro-organisms in compost are used to describe the composting stages (e.g. 

mesophilic, thermophilic) (IWM, 1994). The compost samples were taken at a depth of 

20 cm and the temperature of material collected at this depth might be closer to that of 

ambient. This might mean that the compost sample collected might be at a different 

stage than those in the middle of the compost windrow.  

 

In summary, the results indicate that the number of bioaerosols released from different 

types of compost was not dependent on compost age and the agitation of mature 

compost may also be a source of bioaerosols.  

 

4.4.2. Nature of Bioaerosols Released from Compost 
Previous studies (Eduard and Aalen, 1988; Karlsson and Malmberg, 1989; Lacey, 1991; 

Reponen et al., 1996; Swan et al., 2003; ADAS/SWICEB 2005) have reported that 

particles are released from their growth source as a combination of single cells, 

aggregate of cells or cells attached to dust particle/wood fibres. Similarly Lighthart and 

Stetzenbach (1994) have discussed that biaoerosols released will be attached to 

particles such as wood fibres which would serve as a ‘raft’ to aid their travel on 

emission. Another study (Lighthart, 1997) which has analysed particles in alfresco 

atmosphere reported that 40% of the particles containing bacteria were greater than 7 

µm. This was attributed to the attachment of the bacteria to debris.  

 

Therefore it was next hypothesised that “bioaerosols released from compost will also be 

attached to wood fibres and other non-microbial matter”. However there was no 

evidence of cells attached to dust particle/wood fibres for any samples and the 

hypothesis was rejected. This indicates that the release mechanisms for the bioaerosols 

in compost is not dependent on the aeropathway of inorganic matter such as wood 

fibres. However it was only possible to examine a small section of each filter hence it is 

possible that such occurrences might have been on parts of the filter that were not 

looked at. Also, it is likely that the filters lacked sufficient face velocity to be able to 

retain other inorganic matter such as wood fibres. The effect of this is that the low face 

velocity of the suction at the filter face may not be sufficient to overcome the inertia of 
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some larger sized particles (i.e. wood fibres) as they settle. As a result, particles such 

as wood fibres would not be able to be retained by the filter.  

 

The third hypothesis set concerning the nature of bioaerosols from compost was that 

“the majority of bioaerosols released from compost will be in single cells”. This was 

based on the argument that the most prominent micro-organisms in compost, such as 

actinomycetes, have a filamentous mycelium structure with spores that become easily 

airborne when disturbed in agitation activities such as turning of compost, releasing 

individual spores (Lacey, 1997). In addition, even if shorter filamentous mycelium 

structures are released into the atmosphere, they would be expected to break up due to 

environmental effects such as wind speed (Pillai and Ricke, 2002). This hypothesis was 

supported as shown by the results presented in Section 4.3.3 (Figure 4.14). Variations 

between each sample was observed however the general trend for all samples was that 

the percentage of single cells released from compost compared to their aggregates was 

higher. For all compost types and ages, the majority of small cells were single cells at 

71.6% for all small single and aggregate cell counts. In contrast, the percentage of small 

cell aggregates were 28.4%. Similar results were observed for the large cells, where the 

percentage of single cells were 92% compared to those for large cell aggregates at 

0.8%.  

 

One factor which might affect the release of bioaerosols from compost is moisture 

content of both the compost and the cells released from it. The moisture content of the 

spores affects both the aerodynamic and physical sizes of a cell (Lacey, 1991; Liao et 

al., 2004; Madelin and Johnson, 1992; Meklin et al., 2000; Pasanen et al., 1991; 

Reponen et al., 1996; Reponen et al., 2001). Madelin and Johnson (1992) have 

discussed that an increase in moisture content might cause an increase in the 

aerodynamic diameter of the spore which leads to the breakage of structures consisting 

of spore chains. Such a scenario might indicate that the high moisture contents found 

within a typical compost environment might induce an increase of the aerodynamic 

diameter of the individual spores in a chain which might result in the breakage of the 

spore chains and lead to the release of single spores into the atmosphere. However, in 

contrast, Górny et al. (2002) have discussed that adhesion forces such as those caused 
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by moisture might reduce the release of fungal propagules. This may suggest that 

composts with a higher moisture content might have an increase in adhesion forces and 

will have a reduced number of particles being released from it compared to a drier 

compost.  

 

The moisture levels of the composts used for the controlled experiments (Table 4.9) 

was calculated by the following equation.  

 

100
)(

x
W

WW
MC

w

dw −=                   Equation 4.1 

Where; 

MC is the moisture content of compost (%); 

Ww is the wet weight of compost (g); and 

Wd is the dry weight of compost (g).  
 
Table 4.9-  Moisture contents of the compost material used for the controlled 
experiments. Values show mean contents (n=6) 
Type of Compost Age of Compost Moisture Content 

1 week 64.4% 

5 weeks 62.6% 

Kerbside Collected Kitchen and 

Garden Waste 

6 months 41.5% 

1 week 48.7% 

5 weeks 57.8% 

Green Waste 

6 months 42.4% 

 

Therefore, testing the argument based on the study by Madelin and Johnson (1992) the 

material with the highest moisture content for garden waste and kerbside collected 

kitchen and garden waste compost (i.e. aged 5 weeks and 1 week respectively) might 

have the higher percentage of single cells released from the compost. However the 

results shown in Section 4.3.4 (Figure 4.14) show that this is not the case for small size 

cells released from either of the compost types and a higher percentage of aggregates 

are released from this material. This means that the argument based on the study by 

Górny et al. (2002) may be applicable to these results and might indicate that a greater 
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release of small size cells (i.e. bacteria or actinomycetes) are released from composts 

with lower moisture content.  

 

However for large size cells the argument based on the study by Madelin and Johnson 

(1992) was applicable as higher percentages of single cells were observed for the 

materials with the highest moisture content. Hence this might indicate that high moisture 

contents of the compost might break the mycelial chain structure of micro-organisms 

such as fungi and result in an increase in cell release.  

 
4.4.3. The Evaluation of Bioaerosol Aggregate Structures  
In connection with hypothesis three, it was also expected that “if bioaerosol aggregates 

are observed to be emitted from compost, the number of aggregate structures made up 

of 2-6 units will be in a higher percentage than those made up of 7 or more units”. This 

was based on previous studies which have examined agricultural dust (Karlsson and 

Malmberg, 1989; Lacey, 1991).  

 

The results presented in Section 4.3.4. showed that the most abundant aggregate type 

for small cells was a 2-cell aggregate at a percentage range of 51% for all small cell 

aggregates. In contrast, the percentage of three to six small cell aggregates were 38% 

and seven or more small cell aggregates were 11%. Aggregates of large cells were less 

often observed (Section 4.3.5.) however on average 2-cell aggregates for this cell size 

were also more abundant. Therefore in the light of these findings this hypothesis was 

supported. Similar results were found in previous studies such as that by Carrera et al. 

(2005) who attempted to determine the number of bacterial spores within aerosol 

particles generated by a small pressurized metered-dose inhaler. They found that the 

percentage of aerosol particles consisting of one spore was 70%, consisting of two 

spores was 15%, three to five spores was 11% and six or more spores was 4%.  

 

Another finding from the results that are shown in Figure 4.20 (Section 4.3.6) was in 

terms of the types of bioaerosol aggregation observed. Micro-organisms dominant in 

compost such as actinomycetes have a filamentous mycelium structure. Specifically 

species such as promicromonospora, saccharopolyspora, actinomadura and 
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amycolatposis have been reported to occur in short or long chains which can break into 

fragments of different sizes and shapes (Lacey, 1997). Other studies (Latgé, 1999) 

have observed such chains of conidia of 20-30 µm for Aspergillus fumigatus species 

and A. fumigatus is also dominant through the composting process. When compost is 

agitated or environmental factors such as wind effects a compost windrow, these 

mycelial structures would be expected to break off into smaller pieces. Therefore on 

emission from compost, these might be released in ‘chain aggregates’ such as those 

shown in Figure 4.18 (Section 4.3.6). On the other hand the ‘cluster aggregates’ shown 

in Figure 4.19 (Section 4.3.6) might represent the aggregates of other micro-organisms 

in compost that do not grow in filaments but have aggregated within the compost before 

release. Alternatively they might represent the clustering of spores when airborne.  

 

The results (Figure 4.20, Section 4.3.6) have revealed that the number of cluster 

aggregates for all compost types and ages was much higher than those for chain 

aggregates. The results have also revealed that the differences between chain 

aggregates for different compost ages (for either compost type) were not significant 

(p>0.05). This might indicate that a higher number of micro-organisms that do not grow 

in filaments are forming aggregates or that cells are forming aggregates after release 

from compost regardless of compost age.  

 

Finally, it is important to note that the cluster aggregates emitted from compost 

consisted of the same cell type to indicate single species of micro-organisms rather than 

a mixture of different cells types. This indicates that the cluster aggregates are more 

likely to have formed when the bioaerosol was suspended in air rather than on impact 

with the filter surface.  

 

4.4.4. Size Distribution of Bioaerosols Released from Compost 
The results presented in Section 4.3.7 show that the majority of all bioaerosols (single 

or aggregates) emitted from compost were smaller than 3 µm. This was in line with 

previous studies (Kamilaki and Stentiford, 2001; Reinthaler et al., 1997; Byeon et al., 

2008) that have reported the particle size distribution of bioaerosols in composting 

facilities using an Andersen 6 stage sampler. They found that the numbers of particles 
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less than 3.3 µm in diameter were higher compared to others. As previously discussed, 

the majority of bioaerosols emitted from compost are single cells that are 0.5-1 µm for 

small size cells and 1-2 µm for large size cells. The size distribution for aggregates were 

based on either the width or length of the aggregate whichever was the highest. Since 

the majority of the aggregates were spherical or almost spherical, the width and length 

for most aggregates were equal and would represent the diameter of the particle. The 

majority of small and large cell aggregates for all controlled experiment samples were in 

the vicinity of 1-2 µm and 4-5 µm respectively.  

 
To the author’s current knowledge, this is the first study that has classified bioaerosols 

emitted from compost according to shape, size and number. One other study (Byeon et 

al., 2008) which has examined total airborne particles and bioaerosols in a municipal 

composting facility have reported total airborne particle concentrations sized 0.3 µm to 

be the majority of all particles examined at 108 particles/m3. This was captured near the 

screening process. Another study (Kamilaki and Stentiford, 2001) has reported that 80% 

of all A. fumigatus colonies monitored in a composting plant were captured in the 

Stages 3, 4 and 5 of the Andersen 6 stage sampler corresponding to spores and 

particulates in the size range of 1.1 to 3.3 µm. Similar results were found by Reinthaler 

et al. (1997) who have also used an Andersen 6 stage sampler found that 56-73% of all 

particles sampled were smaller than 3.4 µm.  

 

These diameters reported in studies that have used an Andersen 6 stage sampler are 

based on the aerodynamic diameter of the bioaerosols. Other studies (Madelin and 

Johnson, 1992; Reponen et al., 1996; Reponen et al., 1998; Trunov et al., 2001) that 

have used an aerodynamic particle sizer have also reported spore size in aerodynamic 

diameter terms. The aerodynamic diameter of a particle is the diameter of a sphere of 

unit density (i.e. oρ = 1000 kg/cm3 ) which has the same settling velocity (i.e. vg ) of the 

particle (Griffiths et al., 1984). It was not within the scope of this project to calculate the 

density of the bioaerosols emitted from compost however it has been reported that the 

average density of a spore is heavier than water at 1.1 g/cm3 or 1.2 g/cm3 (Gregory, 

1973).  Therefore assuming the latter density and that all bioaerosols are spherical, the 

aerodynamic diameter range for the small cell aggregates are calculated to be 1.1 – 2.2 
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µm. With the same assumptions, the aerodynamic diameter range for the large cell 

aggregates are calculated to be 4.4 – 5.5 µm by using the following equation from Colls 

(2002). 

 

part
part

a dd ×=
1000
ρ

       Equation 4.2 

Where, 

da is the aerodynamic diameter of the particle (µm); 

ρpart is the density of the particle (kg/cm3); and 

dpart is the physical diameter of the particle (µm).  

 

Therefore despite the fact that the aerodynamic diameter range of 4.4 – 5.5 µm for large 

cell aggregates are higher than the aerodynamic diameters reported in other studies 

(Kamilaki and Stentiford, 2001; Reinthaler et al., 1997; Byeon et al., 2008), the majority 

of all cells detected represent small size cells and their aggregates with the 

aerodynamic diameter range of 1.1 – 2.2 µm in line with these studies.  

 

4.4.5. Shape and Aspect Ratio of Bioaerosols Released from Compost 
 
There are no previous studies that have examined the physical shape and aspect ratio 

range of bioaerosols emitted from compost. However there is a wide diversity of micro-

organisms growing in compost (and possibly released from compost) such as those 

identified by Michel et al. (2002) where over 42 species of micro-organisms were 

identified in 29 day old green waste compost, and over 94 species of micro-organisms 

were identified in 64 day old green waste compost. Similarly Epstein (1997) have listed 

16 species of bacteria, 16 species of actinomycetes and 35 species of fungi identified in 

compost. Therefore it would be expected for the bioaerosols released from compost to 

exhibit a wide range of physical characteristics (e.g. the presence of ridges on cell 

surface) due to a wide range of micro-organisms naturally present in compost. The 

results were in line with this (Section 4.3.4) where eight types of small size cells were 

identified. In contrast, only two major large cell types were identified (Section 4.3.5). 
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However, despite a range in observed physical characteristics, the results for both cells 

showed that (Section 4.4.4), the majority of bioaerosols emitted from compost are single 

cells that are 0.5-1 µm for small size cells and 1-2 µm for large size cells. The physical 

shapes of the single cells and their aggregates were also expressed in terms of aspect 

ratios (Section 4.3.8). The majority of the single small cell types that were identified had 

an aspect ratio of 1. The other half had aspect ratios at 1.4-1.5. However the results 

(Section 4.3.4) showed that on average for all controlled experiments and site work, 

small cells with an aspect ratio of 1 such as types A and D were dominant compared to 

other small cell types. Both of the large cell types that were identified also had an 

aspect ratio of 1. The range of bioaerosol aggregates were more varied with varying 

aspect ratios however the majority of the small cell aggregates had an aspect ratio of 1. 

For larger cell aggregates a higher percentage of particles with an aspect ratio of 1 to 

1.5 were observed. However in conclusion, for all cell types and all samples the majority 

of single and aggregated particles observed to be emitted from compost had an aspect 

ratio of 1.  

 

4.4.6. Differences in Culture and SEM Analysis 
Previous studies have analysed air samples from agricultural dusts by scanning 

electron microscopy (SEM), fluorescence microscopy (FM) and the culture method 

(Karlsson and Malmberg,1989). They have found that the average CFU count was one 

sixth of the total count estimated by SEM or FM and attributed this to slow growth or 

high aggregating tendencies. Hence it was expected that “bioaerosol concentrations 

determined by scanning electron microscopy analysis will be higher than those 

determined by culture analysis”. This hypothesis was supported based on the results of 

the controlled experiments and site work as presented in Section 4.3.8. On average, 

large spore and large spore aggregate concentrations detected using SEM methods 

were 1.1 times higher than A. fumigatus concentrations detected using culture methods. 

The difference between small spore and small spore aggregate concentrations 

compared to those for actinomycetes concentrations were even higher by 5.5 times.  

 

Similarly, Heikkilä et al. (1988a; 1988b) reported a 10- to 100- fold difference in culture 

based and SEM results (i.e. the SEM results were higher) when analysing fungal spores 
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in cow barns and attributed this to the fact that only a small proportion of spores in the 

air was viable when collected for culture analysis methods. Some airborne spores are 

more likely to lose their viability quickly upon release from a source (Levetin and Horner, 

2002) hence the dead spores captured with the sampling filters are not able to colonise 

on the culture plates. It is still possible to visualise these spores with the SEM method 

hence the number of total particles visualised with SEM should be higher than those 

captured with the culture method.  

 

4.4.7. Limitations of the Controlled Experiments 
SEM is able to provide accurate and detailed information on particle surface and 

physical particle size however the samples are prepared and scanned under vacuum 

conditions, which causes dehydration, collapse and distortion of particles that might 

introduce bias on the actual size and surface characteristic information of the particle 

(Heywood, 1969; Skujiņš et al., 1971; Gwaze et al., 2007).  Therefore it is not possible 

to identify some small spores with the SEM as the size of these spores might result in 

the user not being able to identify the distinct morphological features of the species 

(Levetin and Horner, 2002). This is the case for some large cells where distinction 

between morphologically similar species such as Aspergillus and Penicillium is difficult 

by microscopy. Accurate distinction of cell characteristics requires the use of high 

magnifications that present time limitations on examination of samples. Subsequently, 

this results in microscopic samples being only a representation and not absolute values 

of the overall bioaerosol concentrations and proportions of release. Therefore firstly, it is 

important to analyse all results in the context that a very small percentage of the overall 

filter was analysed due to the time consuming nature of the method.  

 

The classification of the shape and nature of particles of interest was based on 

subjective assessment. Similar limitations for Atomic Force Microscopy (AFM) and SEM 

techniques were discussed in previous studies that have reported the tendency of the 

operator to neglect some particles and consider more interesting particle features 

(Gwaze et al., 2007; Shekunov et al., 2007) and difficulties in distinguishing between 

species of similar morphology such as Penicillium and Aspergillus (Wittmaack et al., 

2005). However similar difficulties might exist for identification of micro-organisms 
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through different microscopy techniques. For example, Lacey and Dutkiewicz (1976b), 

during their experiments examining mouldy hay have noted that actinomycete spores 

were not able to be distinguished microscopically from bacterial spores.  

 

Madelin and Johnson (1992) have shown that spore chain and aggregates shatter on 

impact in line with Trunov et al. (2001) who have noted that whilst aggregate particles 

are more likely to impact on a collection media, they may also deaggregate during 

impaction. Such an effect might have an implication in analysing the results because it 

might indicate that airborne aggregates are shattering on impact with the filter. This 

would mean that the number of airborne aggregates in air at the time of sampling may 

be higher than those that are captured on the filters.  

 

Microscopic examination is needed to analyse the results of the air samples collected 

by other methods such as the Burkard spore trap. The counting methods of the 

microscopic slides commonly used for the Burkard spore trap are 12 vertical sweeps 

(Figure 4.25, a), single longitudinal sweep (Figure 4.25, b) or 3 or 4 longitudinal sweeps 

across the slide (Figure 4.25, c) (Levetin and Horner, 2002).  

 

 

 

 

 
Figure 4.25 – Counting methods frequently used for Burkard spore trap slide analysis 
(from Levetin and Horner, 2002) 
 
Levetin and Horner (2002) note other studies that have assessed the accuracy of 

different methods for counting of Burkard spore trap slides when compared with total 

slide counts. They have reported that a study (Kapyla and Penttinen, 1981), which had 

assessed the accuracy of different methods concluded that the method shown in Figure 

4.25, a resulted in reliable estimates of daily airborne pollen compared to the method 

shown in Figure 4.25, b. This was in line with another study (Comtois et al., 1999) who 

studied patterns of pollen and concluded that the method shown in Figure 4.25, a and c 

had smaller percentages of error compared to Figure 4.25, b. Finally a study completed 

a b c 
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by Sterling et al., (1999) examined the results for methods shown in Figures 4.25 b and 

a and concluded that method a was slightly advantageous in providing better 

approximations.  

 

The SEM sampling protocol that was developed is a systematic way of ensuring 

reproducible analysis of the samples. The methodology developed for scanning a 

circular sample filter combines tranverse as well as longitudinal sweeps of the filter. 

Hence based on the argument for Burkard spore trap slide counting, it should present a 

good approximation of the presence of various spores and other particles emitted from 

compost. However, it is important to note that these are still indications of the outdoor 

bioaerosol concentrations rather than absolute values. In addition, the filter method 

collects air samples for 30 minutes at a time as opposed to continuous sampling with 

samplers such as the Burkard spore trap.  

 

The protocol aims to avoid bias regarding areas of the filter that are concentrated with 

particular particles however, this very factor might have introduced a limitation to the 

methodology. Therefore if areas of the filter with high counts (concentrated particles of 

interest areas) are included in the analysis this might increase the particle 

concentrations predicted by SEM.  

 

SEM has been previously used as a technique for characterising morphological 

properties of small particles (Friedbacher and Grasserbauer, 1995), examination of 

actinomycetes spores (Williams, 1970) and agricultural spores (Hiranuma et al., 2008) 

and the study of actinomycetes in soil (Skujins et al., 1971). Pasanen et al. (1989) used 

SEM to study fungi in farm houses whilst Borrego et al., (2000) have studied microbial 

aggregation in mycobacterium using electron microscopy. Karlsson and Malmberg 

(1989) have noted that the study of microbial aggregation using SEM or optical 

microscopy is preferable to detection by Fluorescence Microscopy (FM). They have 

attributed this to the fact that SEM or optical microscopy allows direct examination of the 

original collection filter as opposed to collecting the bioaerosols on a second filter for FM 

detection by washing them off from the original collection filter.  
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Dead or unviable spores might still have health implications in terms of their potential to 

be allergens (Levetin and Horner, 2002). Therefore it is important to capture a 

combination of viable and non-viable bioaerosol spores in order to assess their health 

impacts. Based on this, a major advantage of the use of microscopic methods such as 

SEM in assessing the bioaerosol emissions is that microscopy allows to determine the 

number of viable as well as non-viable particles emitted from compost (Donham et al., 

1986; Karlsson and Malmberg, 1989; Levetin and Horner, 2002). In addition, use of 

SEM methods would allow the study of the presence of other particle in the air spora 

such as pollen which might be important when assessing the full health impact of the 

total air spora.  

 

Advantages of SEM over other microscopy methods such as the light microscope is the 

ability of SEM to provide higher magnifications for the study of small particles, the ‘life-

like’ images that are produced, greater image resolution and also the ease and 

practicality of sample preparation (Heywood, 1969; Hawker, 1971; Locci, 1972). 

Transmission Electron Microscopy (TEM) is another method used for the analysis of 

environmental particles however SEM has been discussed to be the superior technique 

(Mavrocordatos et al., 2004). Atomic Force Microscopy (AFM) which is also based on 

the scanning of the sample surface is slower than SEM and the sample preparation 

methodologies are much more complicated than those for SEM (Shekunov et al., 2007). 

However regardless of technique, any air samples taken only reflect a portion of the air 

spora collected at that point in time (Levetin and Horner, 2002).  

 

The main advantage of the controlled experiments was that they were easy to conduct 

and allowed for a greater number of experimental repetition within research time 

constraints compared to the preparation and conduct of experiments in a composting 

site. Hence, they were a very useful and novel way of a thorough analysis of the nature 

of bioaerosols emitted from compost.  

 

However, there were some possible concerns regarding the controlled experiments. 

The main concern was due to the collection of the compost sample used for the 

controlled experiments as discussed previously. As the sample was collected from a 
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depth of 20 cm, there is a possibility that it might not be representative of the material in 

the core of the compost windrow. Precautions were taken to use the material within an 

hour or so of collection and keep it sealed to ensure that the temperature and relative 

humidity of the sample were not compromised. However some changes of temperature 

and relative humidity might still have occurred.  

 

The sealing of the environmental chamber was an important consideration to minimise 

interference from bioaerosols outside the chamber and to ensure that the spores 

released from the compost represent compost source data. Any holes inherent to the 

compost tumbler were sealed with heavy duty tape as per Kanaani et al. (2008). 

However the metal rod to which the IOM sampling heads were attached to had to be 

inserted into the compost tumbler through the non-taped off holes without taking off the 

screw on compost tumbler lid to ensure that no bioaerosols and particles escaped 

outside the compost tumbler. Flexible foam had to be placed at the end of the metal 

rods to cover the non-taped off holes to ensure that compost being agitated inside the 

tumbler is not able to penetrate outside the compost tumbler headspace (Figure 4.4). It 

is considered that some air from the outside environment might have penetrated 

through foam. However the use of foam was justified as a flexible material was needed 

and the effects of any possible contamination should be reduced by the use of the short 

sampling duration of 2 minutes.  

 

Finally, subsequent to the agitation of the compost inside the compost tumbler, the 

procedure of inserting the metal rod to which the IOM sampling heads were attached to 

into the compost tumbler through the non-taped off holes without taking off the screw on 

compost tumbler lid took between 2-3 minutes. Therefore even though the results show 

that the use of the compost tumbler successfully released bioaerosols in the compost 

sample into the tumbler overhead, some of the bioaerosols released might have settled 

back into the compost within these 2-3 minutes. In addition, the amount of compost 

used for the experiments was small compared to a typical compost windrow. Hence 

based on these, in a composting facility, the numbers of bioaerosols emitted from 

compost might be higher than those studied in a controlled environment.  
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As a result of these possible concerns, the requirement to ensure that any site work 

produces results comparible to those for the controlled experiments arose. Therefore 

the methodology developed for the study of size distribution and aggregation emitted 

from compost as discussed in this chapter was used for further site work (Chapter 5) to 

examine the size distribution and aggregation of bioaerosol and particles emitted at a 

composting site.  

 

These studies were also completed to validate the results of the controlled experiments 

and also to study the differences in the particle size distribution and aggregation of 

bioaerosols at a composting source and downwind from source. Therefore, the results 

presented in this chapter will be discussed in validation of the trends shown in the site 

work studies (Chapter 5) with emphasis on key implications. Finally, the conclusions for 

all studies completed to study the size distribution and aggregation of bioaerosols 

released from compost (Chapters 4 and 5) will be presented and discussed in the next 

chapter. 
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CHAPTER 5.  AGGREGATION AND SIZE DISTRIBUTION OF 
BIOAEROSOLS EMITTED FROM COMPOSTING FACILITIES  
 
5.1. INTRODUCTION 
The gaps in the understanding of bioaerosols after release from composting facilities 

has been previously discussed (Chapter 1). One such gap with implications for 

bioaerosol behaviour at source, pathway and receptor is the lack of information on the 

aggregation and size distribution of bioaerosols released from compost. Due to this, 

controlled experiments were completed to generate bioaerosols in experimental 

conditions and to study the size distribution and aggregation properties of bioaerosol 

particles released from compost (i.e. source) (Chapter 4). 

 

The controlled experiments had a number of advantages, including the fact that they 

were easy to conduct and repeat. However there were also some potential concerns 

regarding these experiments discussed in Chapter 4 including: 

 

• the possibility of the compost sample collected for the experiments not being a 

representative of the material in a commercial compost windrow; 

• the possibility of some bioaerosols released from the compost to settle in the 2-3 

minutes it took to start the sampling; 

• the possibility of the overhead space inside the compost tumbler being contaminated 

by other bioaerosols and 

• the amount of compost sample used in the experiments being smaller compared to a 

commercial compost windrow.  

 

Therefore it was felt that a requirement to ensure that any site work produces results 

comparible to those for the controlled experiments arose. As such, the developed 

methodology was used for further site work discussed in this chapter to examine the 

size distribution and aggregation of bioaerosols and particles emitted at a composting 

site. This was completed to validate the results of the controlled experiments discussed 

previously (Chapter 4) and classify the overall size distribution and visual properties (i.e. 

size, shape and aggregation) of bioaerosols emitted from compost at composting 

facilities. In addition, a number of additional composting site specific hypotheses were 
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formulated as these hypotheses were not possible to test in previous controlled 

experiments.   

 

It was previously discussed (Chapter 4) that two of the dominant micro-organisms in 

compost (i.e A. fumigatus and actinomycetes) grow in branching filamentous structures 

(Lacey, 1997; Reynolds and Pepper, 2000; Papagianni, 2006) that might be released 

with activities (e.g. agitation of the compost) in a composting facility. However upon 

release, environmental effects such as wind would break up these aggregate structures 

into single cells. The results of the controlled experiments have supported this and the 

majority of the bioaerosols released from compost were in single cells.   

 

Despite the low percentage of bioaerosol aggregates compared to the single cells, the 

results of the controlled experiments showed some evidence of aggregates in 

bioaerosols emitted from compost. However in a composting facility, even if a 

bioaerosol is released as an aggregate from compost, as this aggregate travels further 

downwind, it would be expected to break up further into single cells due to 

environmental effects. In addition, any larger particles such as aggregates present at 

source are likely to settle out with increasing distances downwind from source. 

Therefore it is hypothesised that “if bioaerosol aggregates are observed to be emitted 

from compost in a composting facility, the percentage of aggregates compared to single 

cells will decrease with increasing distances downwind from bioaerosol source”. 

 

As discussed previously (Chapter 4), the number of aggregate structures made up of 2-

6 units were hypothesised to be in higher percentage than those made up of 7 or more 

units. In light of the results, this hypothesis was supported. If a bioaerosol aggregate 

travelling downwind from a compost source does not break into single cells, it will 

definetely be expected to break into smaller aggregates. Therefore in line with this and 

the noted hypothesis, it would also be expected that “the size distribution of bioaerosols 

at a composting facility will change with increasing distances downwind from bioaerosol 

source as the larger particles settle”. 
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Based on these, the studies presented and discussed in this chapter were completed to 

examine the particle size distribution and aggregation of bioaerosols emitted upwind, at 

source and downwind at a composting facility (Donarbon Limited as previously 

discussed in Section 3.2.2, Chapter 3).  

 

Finally, an opportunity was presented to take part in a study completed to examine the 

size distribution of bioaerosols in a composting site (Lount as previous discussed in 

Section 3.2.3, Chapter 3) and re-create the air sampling results that would typically be 

achieved by an Andersen six stage bioaerosol sampler by using different size air 

sampling filters. This opportunity was taken to collect further site work data to validate 

the developed SEM methodology and to gain further understanding of the size 

distribution and aggregation of biaoerosols emitted from compost.  

 

The methodology used for the studies discussed in this chapter have previously been 

presented (Chapter 3). Therefore this chapter presents the results of the site work 

including details of total particle counts, particle classification and aggregation details. It 

is important to note that clear comparisons between the two sets of results from the 

different composting facilities cannot be made. The samples taken at Donarbon Limited 

were taken from various locations including upwind, downwind, agitation and static 

compost sources. It might only be possible to compare the agitation data collected at 

Donarbon Limited to the data collected at Lount as both sets of samples were taken in 

the vicinity of an agitation activity at a composting facility however variations through the 

use of different size filters are introduced at the site work completed at Lount. Therefore 

the results will be presented to reflect this and despite some comparisons in the 

analysis of the results, the data sets will be treated separately.  

 

As this chapter aims to validate the hypotheses set and the results presented in the 

previous chapter (Chapter 4), the trends from all sets of data (i.e. controlled 

experiments and all site work) will also be discussed with emphasis on implications of 

the results. Finally, the key conclusions from this chapter and the previous chapter 

(Chapter 4) will be presented.  
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5.2. RESULTS - DONARBON LIMITED 
 
5.2.1. Image Density of Sample Filters 
The importance of the image density of the sample filters has previously been explained 

(Section 4.3.1., Chapter 4). Based on these, the results of the percentages of filter 

scanned per sampling location for the site work completed at Donarbon Limited are 

presented in Figure 5.1.  
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Figure 5.1- Results of the percentage of filter scanned for site work at Donarbon 
Limited. The bars indicate arithmetic mean (n=3) and error bars indicate standard error. 
 
The filters taken at the upwind sampling location would not be expected to be heavily 

populated as these represent the background pollutant concentrations. In contrast, the 

filters taken at source (i.e. wind tunnel and agitation) would be expected to be most 

heavily populated with particles of interest as these capture the concentrations of the 

actual pollutant. However the filters taken at the agitation activity would be expected to 

be more densely populated with particles of interest as the agitation activity releases 

bioaerosols within static compost as well as other particles such as wood fibres or plant 

material. The image density of the filters would be expected to reduce as the pollutant 

plume travels downwind due to the pollutant being distributed due to effects such as 

wind and thermal diffusion.  
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As would be expected, the results show that the filters that were most sparsely 

populated were those for the upwind sampling and 0.39% of the overall sampling filter 

was scanned. Filters most heavily populated were those for the compost windrow wind 

tunnel sampling and 0.11% of the overall sampling filter was scanned. This is an 

unexpected result as the filters taken at the agitation activity were expected to be more 

densely populated with particles of interest compared to the ones taken at the static 

compost windrow using the wind tunnel. Of all downwind samples, the filters collected 

50m downwind from the source were the least heavily populated with particles 

compared to those for the 10m and 100m downwind sampling locations this difference 

was not statistically significant (p= 0.160120). Finally for all sample filters taken during 

the site work at Donarbon Limited, on average 0.19% of the total sampling filter was 

scanned by SEM.  

 

5.2.2.  Total Cell Counts  
The total number of particles that are assumed to be bacterial, fungal and 

actinomycetes cells and their aggregates counted with the scanning electron 

microscope were noted for the site work completed at Donarbon Limited. The same 

particles observed for the controlled experiments (see Appendix D) were also observed 

for the sampling completed at Donarbon Limited. Therefore these were classified as 

explained previously (Section 4.3.2., Chapter 4) and the results are presented in Figure 

5.2.  
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Figure 5.2 - Total number of cells per 100 viewing fields for the samples taken during 
the site work at Donarbon Limited. The bars indicate arithmetic mean (n=3) and error 
bars indicate standard error. 
 
The filters taken at source (i.e. wind tunnel and agitation activity) would be expected to 

have the highest count of total cells at this site followed by those downwind. The results 

are in line with this and show that the highest number of cells were counted on the filters 

analysed at source for the agitation activity, followed by the filters analysed for the 

compost windrow wind tunnel. As expected, downwind total cell counts were lower than 

those measured at source. However the statistical analysis revealed the total number of 

cells sampled at different sampling locations were not significantly different than each 

other (p= 0.071011).  

 

No cells were observed on the upwind sampling location air sample filter which might 

indicate low or no background concentrations of cells in line with the culturing results for 

Donarbon Limited (presented in Section 5.2.8.). However it is important to keep in mind 

that these results represent the cells observed on 100 viewing fields therefore it is 

possible that cells were present on other viewing fields on the upwind sampling location 

air sample filter.  
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5.2.3.  Cell Classification and Aggregation  
Similar to the results presented for the controlled experiments (Chapter 4), the SEM 

analysis of the sample filters taken at Donarbon Limited revealed two sizes of cells 

observed on the samples. These were classified as explained previously (Section 

4.3.3., Chapter 4). As such, the distribution of single and aggregate cells for small and 

large cells for site work completed at Donarbon Limited is presented in Figure 5.3. 
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Figure 5.3 – Cell classification and aggregation for site work at Donarbon Limited. The 
bars indicate arithmetic mean (n=3). 
 
At Donarbon Limited, it was expected that the sample collected at source (i.e. wind 

tunnel and agitation) would have the highest number of aggregate structures. However 

the cells released at source would either be expected to be broken up into single cell 

structures or deposited due to the increase in particle size and mass. Therefore the 

number of aggregate structures would be expected to decrease with increasing distance 

downwind from the source.  

 

In summary, the results of the samples collected at Donarbon Limited showed that the 

majority of spores observed for all sampling locations were single small cells at 66-99% 

followed by their aggregates at 1.4-30%. In contrast, the percentage of single large cells 

and their aggregates are 1.3-6% and 0.7-1.4% respectively. Since it was not possible to 
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grow at A. fumigatus this might be indicative of other fungal cells that are aerolised. In 

line with this, no single large cells were identified 100m downwind at Donarbon Limited.  

 

In terms of aggregation trends, the results are as expected in that the number of total 

cell (i.e. large and small size) aggregates at agitation are the highest followed by those 

at the static compost windrow. The results at 100 m downwind from source are also as 

expected as the majority of cells identified in this location were single small cells. The 

one way ANOVA results revealed that the variation across large aggregates between 

different sampling locations was not statistically significant (p = 0.601810) however the 

variation across small aggregates between different sampling locations were statistically 

significant (p = 0.005390).  

 

The percentage of small cell aggregates 50 m downwind would be expected to be less 

than those at 10 m downwind, however the results do not support this. Further analysis 

by Fisher LSD test also revealed that the small cells aggregate percentages at 50m and 

100m downwind from source were not homogenous at the 95% confidence interval. 

Finally no cells of any type were identified upwind of compost source at Donarbon 

Limited hence this location was not presented in the results.  

 

In summary, similar to the results presented for the controlled experiments, the results 

for all the site work completed at Donarbon Limited show that single small cells at 0.5-1 

µm size range are the dominant cell type followed by their aggregates.  

 

5.2.4. Small and Large Cell Aggregation 
The same types of small size (Section 4.3.4., Chapter 4) and large size (Section 4.3.5., 

Chapter 4) cells and their aggregates listed previously for the controlled experiments 

were also observed for the samples taken during the site work at Donarbon Limited.  

For the small size cells, as in line with the controlled experiments results (Sections 

4.3.4. and 4.3.5., Chapter 4), the aggregates consisting of 5-6, 7-10, 10-20 cells and 

bigger aggregates were classified together as it was not always possible to distinguish 

the exact number of cells in an aggregate. Based on this, the small cell aggregate 

distributions for site work completed at Donarbon Limited are presented in Figure 5.4. In 
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contrast to the results of the controlled experiments where small spore type H was 

occasionally identified, small spore type H was not identified for any of the samples 

hence are not represented in the following results.  
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Figure 5.4- Small cell aggregate distribution for Donarbon Limited at (a) wind tunnel, (b) 
agitation, (c) downwind 10m, (d) downwind 50m and e) downwind 100m sampling 
locations. No small cell aggregates were observed for upwind sampling location. The 
bars indicate arithmetic mean (n=3). 
 

The results show that similar to controlled experiments, the most abundant aggregate 

type for all sampling locations was a 2-cell aggregate. The types of aggregate structures 

made up of 3 or more cells at source were higher compared to the data from downwind 

sampling locations. The number of multi-celled aggregates were the highest for filters 

taken in the vicinity of the agitation activity compared to those taken with the wind tunnel 

at the static compost source. The agitation activity releases a large number of 

biaoerosols than those that might be sampled from a static compost source (as shown 

in the results presented in Section 5.2) hence this might account for this difference.  

 

The results for the cell types show that small cell types B and D aggregates were 

dominant for wind tunnel compost windrow sample filters, in contrast to the agitation 

source sample filters where the small cell type A and D aggregates were dominant. For 

sample filters collected 10m and 50m downwind from source, small cell type A 

aggregates were higher in number however at 100m downwind small cell type G 

aggregates were in higher numbers. These indicate that on average, in line with the 
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results presented for the controlled experiments, particles with an aspect ratio of 1 are 

aerolised from compost. 

 

The number of large cell aggregates observed at Donarbon Limited were much lower 

than those for small cell aggregates. Upwind, 50m downwind and 100m downwind from 

source, no large cell aggregates of any type were observed. For wind tunnel, agitation 

and 10m downwind sampling locations, on average (n=3), only one 2 cell Type A 

aggregate was observed. Therefore these results will not be shown in a graph. 

 

5.2.5.  Aggregate Structure 
Similar to the trends observed for the controlled experiments, two different types of 

aggregates were observed on the sample filters analysed by SEM as discussed 

previously for the controlled experiments (Section 4.3.6, Chapter 4). As such, the 

classification of aggregates for small and large cells for the site work at Donarbon 

Limited are presented below in Figure 5.5.  
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Figure 5.5- Small and large cell aggregate distribution for site work at Donarbon 
Limited. The bars indicate arithmetic mean (n=3) 
 
The results show that the number of chain aggregates at source (i.e. wind tunnel and 

agitation) are higher. This is an expected result as chain aggregates are probably 

fragments of filamentous mycelial structures present in compost which have broken into 
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smaller pieces on release from compost. However the majority of the aggregates seen 

on the filters collected at Donarbon Limited are cluster aggregates. Therefore, similar to 

the results presented for the controlled experiments, the results indicate that either a 

larger percentage of non-filamentous micro-organism aggregates are being aerolised or 

that cells are clustering into aggregates upon release from compost . 

 

5.2.6.  Size Distribution  
The 2D image dimensions (width and length) of the small and large cell aggregates 

were observed with SEM as explained previously (Section 4.3.7, Chapter 4). Based on 

this, the small cell size aggregate distribution for the site work completed at Donarbon 

Limited is shown in Figure 5.6.  
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Figure 5.6- Small cell aggregate size distribution for site work at Donarbon Limited. The 
bars indicate arithmetic mean (n=3) 
 

The small cell aggregates observed at Donarbon Limited with numbers of aggregates of 

2 µm in diameter were highest followed by aggregates of 3 µm in diameter. Since the 

size of a single small cell is 0.5-1 µm, this would equate to 2-4 cell aggregates in line 

with the results presented in Section 5.2.4.  
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The aggregate size distribution for large cells were more varied where the majority of 

large cell aggregates for the agitation activity sampling location were 9 µm in diameter 

followed by 2 and 3 µm in diameter. The other sampling location where large cell 

aggregates were observed was the wind tunnel sampling location and the majority of 

the cell aggregates for this location were 2 µm in diameter. However the actual number 

of large cell aggregates were very low compared to small cell aggregates. 

 
In addition to these results, the following table shows the number of individual units for 

the largest aggregate of small and large cells for site work at Donarbon Limited (Table 

5.1).  

 
Table 5.1 – The number of individual units for the largest aggregate of small and large 
cells identified per sample at Donarbon Limited. The values within the brackets denote 
the length and height of the observed aggregate in µm. 

Sample 1 Sample 2 Sample 3 Sampling 
Location 

Large 
cells 

Small 
cells 

Large 
cells 

Small 
cells 

Large 
cells 

Small 
cells 

Wind Tunnel 2 (5,4) 5 (5,4) 3 (3,3) 6 (7,3) None 9 (6,4)
Agitation 10 (5,5) 40 (7,6) 2 (2,3) 50 (10,7) None 11 (5,3)
Downwind 10m 2 (4,3) 6 (4,4) None 7 (4,4) None 7 (3,3)
Downwind 50m  None 5 (3,3) None 9 (3,3) None 2 (2,2)
Downwind 100m None None None 3 (3,3) None None

 

The results show expected trends where the number of individual units per aggregate 

as well as the overall size of the aggregate is reduced with increasing distances 

downwind from bioaerosol source. Also in line with the expectations, the size of 

aggregates formed during the agitation activity are the biggest for all sampling locations. 

Surprisingly the aggregates sampled at the static compost windrow (wind tunnel) are 

lower in the number of individual units compared to the agitation activity however the 

overall size of the aggregate particle is similar to the aggregates observed for the 

agitation activity.  

 

5.2.7.  Particle Shape Distribution  
The aspect ratios of aggregate structures for the small and large cell aggregates were 

observed with the SEM as explained previously (Section 4.3.8, Chapter 4). Based on 
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this, the small and large cell size particle shape distributions for the site work completed 

at Donarbon Limited are shown in Figure 5.7. 
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Figure 5.7- Aspect ratio distribution for small cell (a) and large cell (b) aggregates for 
site work at Donarbon Limited. The bars indicate arithmetic mean (n=3) 
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The results show that, similar to the results presented for the controlled experiments, 

the majority of small cell aggregates had an aspect ratio of 1. However a distinct peak of 

aggregates with an aspect ratio of 1 for the agitation activity samples was observed. 

The aspect ratios for larger cell aggregates were more varied where for the wind tunnel 

sample, the aggregates with an aspect ratio of 1 to 1.5 was higher than those with an 

aspect ratio of 1.  

 

5.3. RESULTS - LOUNT 
 

5.3.1. Image Density of Sample Filters 
The importance of the image density of the sample filters has previously been explained 

(Section 4.3.1., Chapter 4). Based on this, the results of the percentages of filter 

scanned per sample for the site work completed at Lount is presented in Figure 5.8.  
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Figure 5.8- Results of the percentage of filter scanned for site work at Lount. The bars 
are the results from one filter.  
 

The sample filters collected at Lount were all taken at the same location at an agitation 

source. Therefore as expected the sampling filters collected at Lount were more heavily 

populated with particles of interest when compared to the sampling filters collected at 

the controlled experiments or at site work completed at Donarbon Limited (0.1%). The 

results showed that the sample with a filter pore size of 0.65 µm was most sparsely 
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populated and the sample filter pore size at the mid range of 3 µm was most heavily 

populated with particles of interest. However it is important to note that these results are 

from one filter per sample and hence a statistical analysis of the results was not 

possible.  

 

5.3.2. Total Cell Counts  
The total number of particles that are assumed to be bacterial, fungal and 

actinomycetes cells and their aggregates counted with the scanning electron 

microscope were noted for the site work completed at Lount, in line with the results 

presented previously for the controlled experiments and the site work at Donarbon 

Limited. These were classified as explained previously (Section 4.3.2., Chapter 4) and 

the results are presented in Figure 5.9.  
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Figure 5.9 - Total number of cells per 100 viewing fields for the samples taken during 
the site work at Lount. The bars for are the results from one filter.  
 
The results show that the highest number of total cells are counted on 5 µm filters 

followed by those counted on 8 µm filters. The lowest number of cells were counted on 

0.65 and 1 µm size filters. These results show that filters with larger holes are able to 

retain a higher number of total cells as well as filters with smaller holes. This might 

indicate that the bioaerosols are sticking to the filter and not permeating through the 

large holes despite the flow of air through the filter.   
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5.3.3.  Cell Classification and Aggregation 

Similar to the results presented for the controlled experiments and the Donarbon 

Limited site work, the SEM analysis of the sample filters at Lount also revealed two 

sizes of cells observed on the samples.These were classified as explained previously 

(Section 4.3.3., Chapter 4). In line with this, the distribution of single and aggregate cells 

for small and large cells for site work completed at Lount is presented in Figure 5.10. 
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Figure 5.10 - Cell classification and aggregation for site work at Lount. The bars 
indicate results from one filter.  
 

The majority of cells observed for filter sizes were single small cells at  36-70% followed 

by their aggregates at 26-40%. In contrast, the percentage of single large cells and their 

aggregates are 4-20% and 0.1-5% respectively. In terms of individual filter pore sizes, 

no clear trend in microbial aggregation was observed. The largest percentages of 

aggregates were observed for filter sizes 2 and 5 µm with the smallest percentages 

aggregates observed for filter sizes of 0.65 and 8 µm.  

 

5.3.4. Small and Large Cell Aggregation  
The same types of small size (Section 4.3.4., Chapter 4) and large size (Section 4.3.5., 

Chapter 4) cells and their aggregates listed previously for the controlled experiments 

and Donarbon site work were also observed for the samples taken during the site work 

at Lount. However in addition to these, two other types of small size cells and their 
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aggregates were also observed for the samples taken at Lount and these are listed in 

Table 5.2.  

 
Table 5.2 –Cell description and image examples of new small size cells and their 
aggregates observed at Lount. Observed size for all cells 0.5-1 µm length 

Cell Type Cell Description Example of Aggregate Structure 
and Number 

I Oval shaped particles with  

smooth appearance 

 
8 cell aggregation 

J  Oval shaped particles with ‘ridged’  

appearance 

 

5 cell aggregation 

 

For the small size cells,  as in line with the controlled experiments results (Sections 

4.3.4., Chapter 4), the aggregates consisting of 5-6, 7-10, 10-20 cells and bigger 

aggregates were classified together as it was not always possible to distinguish the 

exact number of cells in an aggregate. The small cell aggregate distributions for the 

sample filters collected during the site work at Lount are presented in Figure 5.11. 

Similar to the Donarbon Limited site work results, small cell type H was not identified for 

any of the samples taken at Lount hence are not represented in the following results.  
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Figure 5.11 – Small cell aggregate distribution for Lount Site work for (a) 0.65 µm (b) 1 
µm, (c) 2 µm (d) 3 µm, (e) 5 µm and (f) 8 µm filter sizes. The bars for are the results from 
one filter.  
 
The results show overall trends that are similar to controlled experiments and Donarbon 

Limited site work, the most abundant aggregate type for all sampling locations was a 2-

cell aggregate and for all filter sizes, small cell type D aggregates.  However apart from 
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this, no clear trends such as those that might be expected are evident. Finally, in terms 

of the number of aggregates, the average number of 2-cell aggregates counted on the 

Lount sampling filters is 15 aggregates compared 5 aggregates for Donarbon Limited 

sample filters and 40 aggregates for controlled experiment sample filters.  

 

The highest number of large cell aggregates overall for any experiments or site work 

were observed at Lount and these are shown in Figures 5.12 and 5.13 for spore types A 

and B respectively.  
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Figure 5.12- Large cell type A aggregate distribution for site work at Lount. The bars for 
are the results from one filter.  
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Figure 5.13- Large cell type B aggregate distribution for site work at Lount. The bars for 
are the results from one filter. 
 

The results expected for the sampling filters taken at Lount in terms of large cell 

aggregate structures would be the same for those observed for the small cell aggregate 

structures. However the results show that for large cell type A, the number of smaller 

aggregate structures (2 and 3 cells) were higher for filter sizes of 3, 5 and 8 µm. No 

large cells of type B were observed on filter sizes of 0.65 and 1 µm and the majority of 

aggregate structures were on filter sizes 2 and 3 µm.  

 

5.3.5.  Aggregate Structure 
Similar to the trends observed for the controlled experiments and Donarbon Limited site 

work, two different types of aggregates were observed on the sample filters analysed by 

SEM as discussed previously (Section 4.3.6, Chapter 4). Based on this, the 

classification of aggregates for small and large cells for the site work at Lount are 

presented below in Figure 5.14.  
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Figure 5.14- Small and large cell aggregate type distribution for site work at Lount. The 
bars for are the results from one filter.  
 
The results for Lount are similar to those for controlled experiments and Donarbon 

where cluster aggregates are the most abundant type of aggregate for both small and 

large cells.  

 

5.3.6.  Size Distribution  
The 2D image dimensions (width and length) of the small and large cell aggregates 

were observed with SEM as explained previously (Section 4.3.7., Chapter 4). As such, 

the small and large cell size aggregate distributions for the site work completed at Lount 

are shown in Figure 5.15. 



Chapter 5 – Aggregation and Size Distribution of Bioaerosols Emitted from  
Composting Facilities 

 

 151

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 15 20

Aggregate Diameter (µm)

Pe
rc

en
ta

ge
 o

f A
gg

re
ga

te
s 

(%
)

0.65 µm

1 µm

2 µm

3 µm

5 µm

8 µm

 
(a) 

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10 20

Aggregate Diameter (µm)

Pe
rc

en
ta

ge
 o

f A
gg

re
ga

te
s 

(%
)

0.65 µm

1 µm

2 µm

3 µm

5 µm

8 µm
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Figure 5.15- Small cell (a) and large cell (b) aggregate size distribution for site work at 
Lount. The bars for are the results from one filter. 
 
The numbers of aggregates for small spores of 2 and 3 µm overall diameter were the 

highest.  The number of small spore aggregates with overall diameters of 10 µm or 

more were limited. This trend is the same as those observed previously for controlled 

experiments and for Donarbon Limited site work.  
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5.3.7.  Particle Shape Distribution  
The aspect ratios of aggregate structures for the small and large cell aggregates were 

observed with the SEM as explained previously (Section 4.3.8, Chapter 4). Based on 

this, the small and large cell size particle shape distributions for the site work completed 

at Lount are shown in Figure 5.16. 
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        (b) 
Figure 5.16- Aspect ratio distribution of small cell (a) and large cell (b) aggregates for 
site work at Lount. The bars for are the results from one filter. 
 

The results show that the majority of small cell aggregates had an aspect ratio of 1 in 

line with the trends shown for the controlled experiments and the Donarbon Limited site 

work. However, the aspect ratio distribution was very distinct for large cells where the 

majority of all aggregates had an aspect ratio of 1 whilst for the controlled experiments 

there was a larger percentage of large cells with an aspect ratio of 1 to 1.5.  

 

5.4. DISCUSSION 
The previous chapter (Chapter 4) has presented and discussed the results of the 

controlled experiments designed to release bioaerosols into an experimental chamber. 

This novel methodology allowed for quick conduct of experiments and allowed the 

researcher to collect repetitive data. However some potential concerns were identified 

which identified the need to validate the results for the controlled experiments with those 

at a composting facility. Therefore, the site work presented in this chapter were 

completed to validate the methodology and results presented in the previous chapter 

and also to study the study the aggregation and size distribution of bioaerosols emitted 

from composting facilities. Firstly the results presented in this chapter will be discussed 
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in validation of the trends shown throughout the previous chapter and overall 

implications will be presented.  In addition, a set of hypothesis which were not possible 

to test within the controlled experiments were set. Therefore following the discussion of 

key implications, each hypothesis and objective will be discussed separately in light of 

the results. Finally the key conclusions from both chapters (Chapters 4 and 5) will be 

presented.  

 

5.4.1. The Validation of the Controlled Experiments  
 

Due to a number of potential concerns regarding the controlled experiments, similar 

studies were completed at two different composting sites to ensure that any site work 

produces results comparible to those for the controlled experiments. Therefore the 

comparison of the general trends shown for the controlled experiments and site work 

would help to validate the methodology developed for the controlled experiments.  

 

However it is important to discuss the potential differences between the methodology of 

data collection for the three set of studies as the results should be analysed in this 

context. The methodology developed for the controlled experiments was designed to 

ensure that bioaerosols were released into the experimental chamber. The turning of 

the compost tumbler was introduced based on the argument that that a higher number 

of bioaerosols are released from agitation activities compared to static compost 

windrows. Hence the results of the controlled experiments might be comparable to 

those at an agitation activity at a composting site and comparisons between the results 

at Donarbon Limited and the controlled experiments will be made on this basis. 

However there are some potential differences between the pollutant plume for the two 

methods. The plume released into the compost tumbler headspace represents those 

micro-organisms that are in the source term only and a closed environment was chosen 

for the experiments to ensure that there was minimal interference from other 

background micro-organisms. However the plume in an agitation activity taking place at 

a composting site might also include background micro-organisms as well as those 

released from other agitation activities at the compost facility. 
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The studies at Donarbon Limited and Lount were both conducted on site however there 

are some distinct differences between the two. The samples taken at Donarbon Limited 

were taken from various locations including upwind, downwind, agitation and static 

compost sources. In contrast, the data collected at Lount were taken in the vicinity of an 

agitation activity. Therefore it might only be possible to compare the agitation data 

collected at Donarbon Limited to the data collected at Lount, however it is important to 

remember that other variations are introduced through the use of different size filters. In 

the light of these, the trends for key conclusions are presented and discussed.  

Image Density 

For all controlled experiments and site work the percentage of the sample filter that was 

scanned was analysed to provide an indication of how populated a sample filter was. In 

this context, if the particles of interest on a sample filter were located sparsely this 

would result in the recording of a high number of ‘blank’ viewing fields in between the 

particles of interest. Since each sample filter needs to be scanned for 100 viewing fields 

containing particles of interest, this would result in a higher percentage of the overall 

sample filter being analysed. However, if a sample filter was heavily populated with 

particles of interest, this would result in a smaller number of ‘blank’ viewing fields being 

recorded resulting in a lower percentage of the overall sample filter being scanned.  

 

The results showed that for all sample filters taken during the controlled experiments 

(Figure 4.10), the range of the percentage of the total sampling filter scanned by SEM 

was 0.19 -1.1%. In contrast, the sample filters taken at the agitation activity for 

Donarbon Limited (Figure 5.1) were slightly more populated with particles of interest at 

a lower percentage of the total sampling filter being scanned by SEM at 0.13%. The 

results for Lount (Figure 5.18) were similar to those at Donarbon Limited and, on 

average, 0.1% of the total filter was scanned. This comparison shows that the controlled 

experiments are able to produce overall results comparable to those at a composting 

site. It might have been expected that the sample filters in the compost tumbler might 

have experienced overloading on the filter due to the close proximity of the filter to the 

compost but the results show that this is not the case. In addition, the results show that 

the sample filters collected for the controlled experiments were not contaminated inside 



Chapter 5 – Aggregation and Size Distribution of Bioaerosols Emitted from  
Composting Facilities 

 

 156

the experimental chamber by a scenario such as the compost falling onto the sampling 

filter which might have resulted in sampling filters heavily populated with particles of 

interest. One potential problem in the compost tumbler might have been that 

bioaerosols would settle on the compost filter instead of being captured by the filter and 

resulting in data not representative of sampling of bioaerosols at a composting site. This 

is the reason why the sampling filters were placed upside down in the compost tumbler. 

However the results show that this is not the case and provides further validation of this 

methodology.  

Total Cell Counts 

The total number of cells counted on the agitation sampling filters collected during the 

site work at Donarbon Limited (Figure 5.2) were on average 1-log lower than those 

collected for the controlled experiments (Figure 4.11). This indicates that the 

methodology developed for the controlled experiments were effective at releasing 

bioaerosols from a compost source. This is despite the fact that the bioaerosols 

sampled at Donarbon Limited were released from an industrial compost windrow as 

opposed to those released from a 5 kg sample for the controlled experiments. Hence 

the potential concerns regarding the amount of compost used in the controlled 

experiments or the possibility of aerolised bioaerosols settling back into the compost 

after tumbling may no longer be considered potential concerns.  In line with the results 

collected at Donarbon, the total number of cells counted on the sample filters collected 

during the site work at Lount (Figure 5.9) were also lower than those collected during 

the controlled experiments.  

Cell Classification and Aggregation 

The results of the samples collected during agitation at Donarbon Limited (Fig 5.3) 

showed that the majority of all observed cells were single small cells at 70% followed by 

their aggregates at 25%. These results were similar to those for the controlled 

experiments (Fig 4.14) where the majority of all observed cells were single small cells at 

a range of 56-77% followed by their aggregates at 23-31%. The results of the samples 

collected at Lount (Figure 5.10) were also similar to those for the controlled experiments 

and site work completed at Donarbon Limited. In general for all controlled experiments 
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and site work, there were a smaller percentage of single large cells and their 

aggregates observed compared to those for small cells and their aggregates. Hence 

these results suggest that the use of compost tumbler releases cells from compost in a 

similar way to those observed in composting facilities.  

Small Cell Aggregate Classification 

The results for the controlled experiments (Figures 4.15 and 4.16) show that for both 

green waste compost and kerbside collected garden and kitchen waste compost, small 

cell types A and D predominate. Similarly, for the site work completed at Lount (Figure 

5.11), the most abundant aggregate type for all sampling locations was the small cell 

type D aggregate. The results of the Donarbon site work for the cell types (Figure 5.4) 

show that small cell type A and D aggregates were dominant for the agitation source 

sample filters, however, for the wind tunnel compost windrow sample filters, B and D 

aggregates were dominant. These results show that the controlled experiments are able 

to generate the same type of cells that would be generated during an agitation activity at 

a composting facility however the cells generated by a static windrow might differ 

somewhat from the results of the controlled experiments.  
 

More importantly, the trends for all controlled experiments and site work regarding the 

number of aggregates were similar where the 2-spore aggregate type was the most 

dominant for all sampling filters.  The average number of 2-spore aggregates counted 

on the Lount sampling filters was 15 aggregates compared 5 aggregates for Donarbon 

Limited sample filters and 40 aggregates for controlled experiment sample filters. The 

samples taken at Lount are all from the agitation activity where a higher number of 

overall particles including aggregates would be expected as opposed to the samples 

taken at Donarbon where only one of the samples represented the agitation activity. 

These results also suggest that the controlled experiments might be generating a higher 

number of 2-cell aggregates compared to those found on site however the general trend 

for bioaerosol release for all controlled experiments and site work is that a higher 

number of single cells are released compared to any type of bioaerosol aggregate. 
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Aggregate Structure 

The general trends for the aggregate structure (i.e. cluster versus chain) were similar for 

all controlled experiments and site work where cluster aggregates are the most 

abundant type of aggregate both small and large cells. However the actual figures for 

the number of small cell cluster aggregates were more variable. The number of small 

cell cluster aggregates at the agitation activity at Donarbon (Figure 5.5) was 40 and in 

contrast, the number of cluster aggregates for the controlled experiments (Figure 4.20) 

was higher and ranged from 40-350 small cells. The results taken at Lount (Figure 5.14) 

showed that the number of small cell cluster aggregates ranged from 40-90. In addition, 

contrasting with the results of the controlled experiments and site work, the number of 

large cell cluster aggregates were higher at Lount than those observed for the controlled 

experiments and Donarbon site work. These results suggest that for all controlled 

experiments and site work, there is a possibility that cells are clustering into aggregates 

upon release from compost.  

Particle Shape and Size Distribution 

For all controlled experiments (Figure 4.24) and site work at Donarbon Limited (Figure 

5.7) and Lount (Figure 5.16), on average, the observed single cell bioaerosols and 

bioaerosol aggregates had an aspect ratio of 1. Similarly for all controlled experiments 

and site work, on average, there was a higher percentage of small cells compared to 

large cells observed on release from compost. Therefore the size distribution of 

bioaerosols emitted from compost will be analysed in terms of the small cell size. The 

individual results show that for the controlled experiments (Figure 4.22), the percentage 

of small cells with an aggregate diameter of 1 and 2 µm were dominant compared to 

other aggregate diameters. The size of the small cell aggregates observed for the 

agitation activity at Donarbon Limited (Figure 5.6) were also dominantly of 2 µm in 

diameter however, in contrast to the controlled experiments, there were no aggregates 

observed with a diameter of 1 µm. The small cell aggregates observed at Lount (Figure 

5.15) showed a small percentage of aggregates at 1 µm diameter however more 

dominantly they were sized 2 µm. The results show that the trends in aggregate size for 

small cells throughout the controlled experiments are similar to those for site work 
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however the compost tumbler seems to release a higher number of small cell 

aggregates of a smaller size compared to those for the site work.  

However it is important to remember that for all controlled experiments and site work 

overall, the majority of bioaerosols observed were single small cells and the overall 

trends between individual studies are very similar. This is demonstrated by the following 

graph (Figure 5.17). 
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Figure 5.17- The bioaerosol size distribution summary for all controlled experiments and 
site work.  

Therefore in conclusion, there are some exceptions between different studies 

conducted in a controlled chamber and on site however in general, similar trends are 

observed. This indicates that the methodology developed for the controlled experiments 

is able to generate data similar to those shown in composting sites with regards to the 

characterisation of bioaerosols emitted from compost. In addition, it was shown that the 

potential concerns presented regarding the controlled experiments did not have an 

impact on the results of the controlled experiments. Hence the controlled experiment 

methodology might be used in future studies using other compost types to generate 

further data for characterisation of bioaerosols released from compost. The controlled 

experiments are easy to conduct and repeat and hence would have distinct advantages 
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as a method of generating bioaerosol characterisation data compared to those for site 

work.  

 

5.4.2. The Implications of Common Trends 
As discussed previously (Section 5.4.1.), the trends concerning the size, shape and 

aggregation of biaoerosols shown in the previous chapter (Chapter 4) were similar to 

the trends shown for the site work completed at Donarbon Limited and Lount. The 

implications of these common trends are discussed as follows.  

 

The Implications in Terms of Bioaerosol Dispersal and Deposition 

There was evidence of biaoerosol aggregation in the samples taken for all studies 

however in general, the majority of all bioaerosols emitted were single cells. Aerosols 

containing aggregate structures will be larger and heavier than aerosols consisting of 

single cells. Therefore these results indicate that the bioaerosols released from compost 

are more likely to be dispersed in air for longer distances than if the majority of the 

bioaerosols observed were in aggregate structures.  

 

In addition to this, for all cell types and all samples the majority of single and aggregated 

cells observed to be emitted from compost had an aspect ratio of 1. It has been shown 

that for a spherically shaped spore, the rate that this spore falls to the ground due to 

gravitational forces is proportional to the square of its radius (Gregory, 1973). However 

non-spherically shaped spores might affect this rate due to an increased surface drag 

that would result in a delay in deposition (Lacey, 1991; McCartney, 1994; Levetin, 

1995). Balazy and Podgórski (2007) have studied the agglomeration of aerosols of non-

biological origin such as diesel exhausts and concluded that the deposition efficiency of 

nonspherical fractal-like aggregates were significantly different from those for the 

spherical particles. Since the majority of the single and aggregated cells observed in 

this study have aspect ratios of 1 to 1.5, this might implicate that the effects of surface 

drag on the bioaerosols would be minimal.  

 

 

 



Chapter 5 – Aggregation and Size Distribution of Bioaerosols Emitted from  
Composting Facilities 

 

 161

Implications in Terms of Cell Viability 
The majority of any aggregate structure observed for all studies consisted of 2 cells and 

an implication of this is in regards to cell viability. Recent studies (Duncan and Ho, 

2008) have discussed that micro-organisms might be more likely to be dispersed as 

aggregates due to an ecological survival advantage. This was in line with Marthi et al. 

(1990) who have found that larger particles of bacteria (i.e. aggregates) had higher 

viability compared to smaller particles. Similarly, it has been reported that bacterial cells 

survive better in particles of 7 µm compared to particles of 1.1 µm due to effects of 

temperature, solar radiation and relative humidity (Lighthart and Schaffer, 1997; Tong 

and Lighthart, 1997; Carrera et al., 2005). This was attributed to the aggregation of the 

bacterial cells within the 7 µm particle therefore, there was a higher chance of the 

overall particle surviving due to increased number of individual cells. Therefore the outer 

layer of the aggregate may act as a protective ‘blanket’ for the inner layer of the cells in 

the aggregate (Thomas et al., 2008). Based on these arguments, since the majority of 

aggregate structures emitted from compost consisted of 2 cells, this might mean that 

even if they are dispersed for further distances downwind, there might be less protection 

from the effects of temperature, solar radiation and relative humidity. Hence this might 

result in reduced cell viability. It is also important to note that the majority of all 

bioaerosols emitted from compost were in single cells. Hence such lack of aggregation 

protection in terms of cell viability is valid for the majority of all bioaerosols emitted from 

compost .  

 

Aerosols of Bacillus atrophaeus have been shown to exist in aggregates ranging from 1-

9 µm (Ho et al., 2001) however it has been shown that only a percentage of the 

individual cells in this aggregate may be viable (Duncan and Ho, 2008). This would 

have implications in terms of bioaerosol aggregate dispersal on release from 

composting facilities as aggregates are more likely to be deposited due to their weight 

and size compared to single aerosols. However the effect of factors such as radiation, 

temperature or oxygen might have a reduced impact on aggregated particles compared 

to those for single cells.   
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Implications in Terms of Infectivity and Health Impacts 
Another implication of micro-organism aggregation is in terms of their infectivity (Duncan 

and Ho, 2008). Thomas et al. (2008) showed that since an aggregated particle contains 

a higher number of individual cells compared to a non-aggregate particle, a lower 

number of aggregate particles need to be inhaled to result in the dose that is needed to 

initiate a health impact. Therefore the aggregation of bioaerosols emitted from compost 

might also have important implications in determining a dose-response relationship for 

bioaerosols. However since the number of single cells emitted from compost were in 

majority compared to those emitted as aggregates, this would indicate that larger doses 

of single cells might also initiate an adverse health impact.  

 

Air pollution studies have shown that particles smaller than 3 µm are able to penetrate 

the secondary and terminal bronchi (Spengler and Wilson, 1996). A finding common to 

all studies was that the majority of all bioaerosols (single or aggregates) emitted from 

compost were smaller than 3 µm which might suggest that bioaerosols emitted from 

compost are able to penetrate into these regions as well as the bronchioli of the lung. In 

addition bioaerosol aggregates with a size of 10 µm or more were very limited. 

Therefore these results might indicate that the majority of bioaerosols detected in 

controlled experiments and site work are able to penetrate the alveolar space and 

cause allergic alveolitis because they are smaller than 5 µm (Houman and Morgan, 

1977; Palmgren et al., 1986). Air pollution studies (Dockery et al., 1993; Schwartz et al., 

1996; Levy et al., 2000) on the health impacts of particulate pollutants have discussed 

that particles that are <2.5 µm are more likely to have adverse health outcomes 

compared to coarse particles. Hence the results presented in all studies  (i.e. controlled 

experiments and site work) show that size of bioaerosols emitted from compost are in 

the range that might result in adverse health impacts. The results have also indicated 

that the majority of the bioaerosols are single cells which indicated that they might be 

able to travel for distances longer than if they were all in aggregate structures. Despite 

this, it is not possible to make any conclusions on the possible health impacts of 

biaoerosols emitted from composting facilities on sensitive receptors living within 250 m 

of the facility. However, the dispersal of bioaerosols which were studied might affect the 
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health of the operatives inside the composting facility who are in high proximity to 

compost and hence exposure to biaoerosols.  

 

5.4.3. The Aggregation and Size Distribution of Bioaerosols Emitted at a 
Composting Facility  

 
The first hypothesis set for the site work was that “if bioaerosol aggregates are 

observed to be emitted from compost in a composting facility, the percentage of 

aggregates compared to single cells will decrease with increasing distances downwind 

from bioaerosol source”. This hypothesis was supported by the results presented in 

Figure 5.3 (Section 5.2.3) where 100m downwind from the compost source, the 

percentage of small cell aggregates was at less than 5% compared to over 95% for 

small single cells.  

 

In line with this hypothesis, it was also expected that “the size distribution of bioaerosols 

at a composting facility will change with increasing distances downwind from bioaerosol 

source as the larger particles settle”. The results of Figure 5.6 (Section 5.2.6) show that 

for small cell aggregates, the number of aggregates with a diameter of 2 , 3 and 4 µm 

were lower at 10m downwind compared to those detected at the wind tunnel (i.e. static 

compost windrow) and agitation activity. These aggregates were at even lower numbers 

(<5) at 50m downwind and only one aggregate was detected at 100m downwind. This is 

an interesting result because in terms of the percentages of small spore aggregates as 

discussed previously (Figure 5.4) the percentage of these aggregates was higher at 

50m downwind compared to 10m and 100m downwind. Therefore this might indicate 

that even though there are a larger percentage of small spore aggregates 50m 

downwind compared to 10m downwind, the actual number of aggregates and the size 

distribution of aggregates at this sampling location is lower. Therefore in light of these 

findings, this expectation was also supported.  

 

Other results Figure 5.4 (Section 5.2.4) presented in this chapter show that aggregate 

structures emitted from compost measured downwind from the source were on majority 

made of up <6 cells. In addition, the number of aggregates made up of 2 or more units 

decreased with increasing downwind distances from source. In specific for source 
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samples, the number of aggregates made up of 6 or more units for the agitation activity 

were the highest however for the compost windrow sample taken with the wind tunnel 

the number of aggregates made up of 6 or more units is also low.  

 

Aggregate structures consisting of a large number of individual cell units will be larger 

and heavier than those consisting of a smaller number of aggregates or single cells. 

The implications of this is that larger particles would settle out of the airstream faster 

than smaller particles (Dowd and Maier, 2000; Pillai and Ricke, 2002). In addition, this 

increase in weight and size of the particle will indicate that they are more likely to be 

impacted onto surfaces (Gregory, 1973). In the absence of air movement, the effects of 

gravitational pull are described by Stokes Law which is calculated by (Dowd and Maier, 

2000). 

 

η
ρ

18

2dgv ××
=                     Equation 5.1 

 

Where 

v is the terminal velocity of the particle (cm/s); 

ρ is the particle density (g/cm3); 

g is acceleration due to gravity (cm/s2);  

d is the particle diameter and 

η is the viscosity of air (g/cm-s) 

 

The results of the size distribution analysis (Table 5.1) presented in Section 5.2.6 

showed that the largest aggregate structure observed for compost source at Donarbon 

Limited was an aggregate comprising of 50 individual cells sampled during the agitation 

activity. This aggregate structure had an observed length of 10 µm and width of 7 µm. 

Assuming that the particle diameter is 10 µm, the particle density of 1.2 g/cm3 (Gregory, 

1973), under normal gravitational acceleration (981 cm/s2) and under normal air 

viscosity (at 18oC, the average surface temperature during the actual sampling day was 

20.5oC) at 1.8 x 10-4 g/cm-s (Dowd and Maier, 2000), the terminal velocity of this 

particle would be 0.4 cm/s. Experiments by Gregory et al. (1961) on Lycopodium spore 
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plumes showed that only 13.5% of the spores liberated at a wind speed of 0.83 m/s (this 

wind speed is within the range to those found in this study as shown in Table 5.3) and 

height of liberation of 1 m were deposited within 2.5-10 m from source (Gregory, 1973). 

The terminal velocities of such larger spores (i.e. Lycopodium sp.) have been reported 

to be similar to that calculated in the previous page (i.e. 0.4 cm/s) and range from 0.7-

3.5 cm/s for a 32 µm particle size (Gregory, 1950; Chamberlain 1967 from Sehmel, 

1980).  Hence this would indicate that only a small percentage of any large aggregated 

particles of 10 µm observed in this study would deposit within 10 m from source. In 

addition, the results also showed that the majority of all aggregates were in 2-3 spore 

structures and smaller than 10 µm therefore this might imply that these particles are 

likely to be dispersed in air for even longer distances than heavier particles. 

 

The effect of gravitational settling on microbial particles subjected to winds above 2.2 

m/s may be negligible (Dowd and Maier, 2000). Table 5.3 summarises the weather 

conditions measured on site at Donarbon Limited on the day of the sampling. Therefore 

based on the above argument, the higher wind speeds observed on top of the compost 

windrow where the wind tunnel sampling took place might cause the dispersal of any 

bioaerosols and particles released from top of the compost windrow instead of any 

released particles being settled back into the compost. In line with this logic, the low 

wind speeds observed at 10m and 50 m downwind from the compost source might have 

also influenced the deposition of any aggregates due to gravitational forces.  

 
Table 5.3 – Weather conditions measured on site at Donarbon Limited 

Type of 
Sample 

Sampling Location Relative 
Humidity (%) 

Wind Speed 
(m/s) 

Temperature 
(oC) 

Background Upwind 37.9 0.9 20.3 

Top of compost windrow 

(average n=3) 

43.6 3.0 20.3 Source 

Agitation activity 53.5 1.1 19.7 

Downwind 10m 35.5 0.9 20 

Downwind 50m 37.8 1.8 22.2 

Background 

Downwind 100m 38 2.2 20.9 
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Such environmental factors might also have implications for breaking of aggregates into 

individual spores. A recent study (Thomas et al., 2008) has discussed that large 

environmental aerosols (> 20 µm) are likely to contain water which might evaporate to 

result in dried smaller particles of a diameter such as 5 µm (Nicas et al., 2005). This 

rate of evaporation has been attributed to the constituents of the particle as well as 

environmental factors such as the relative humidity, temperature and wind effects 

(Thomas et al., 2008). Surface temperature might also affect the density of airborne 

spore particles (Madelin and Johnson,1992) and it was concluded that increasing the 

temperature from 20oC to 38oC resulted in an increase in aerodynamic size of the 

spores and breaking of the chains of spores. Such a high temperature increase from 

20oC to 38oC in a single day at a composting facility might be unusual however this 

might still suggest that changes in temperature in different locations in a composting 

facility might result in such changes in aerodynamic size of spores and breaking of the 

chains of spores resulting in an increased number of single particles.  

 

At Donarbon Limited the highest percentage of single small spores with respect to small 

aggregate spores was observed 100m downwind. The temperatures measured at this 

location are slightly higher than those for source sampling locations however the highest 

surface temperature observed during the sampling day was at 50m downwind and the 

percentage of aggregates at this point compared to single spores was higher than those 

at 100m. Therefore this implies that the effect of temperature on the breaking of 

aggregate structures downwind from a compost source was not evident. This is 

confirmed by the results presented in Figure 5.3.  

 

5.4.4. The Evaluation of Bioaerosol Aggregate Structures at a Composting Facility 
 
As discussed previously (Chapter 4) the chain aggregates that represent mycelially 

growing micro-organisms growing in compost would be expected to break up as 

transported downwind. Therefore it would be expected that in a composting facility, the 

number of chain aggregate structures for bioaerosols measured at source to be higher 

than those measured downwind from source. The results presented in Figure 5.5 

(Section 5.2.5) are in line with this and show that the number of chain aggregates for 

the compost windrow (i.e. wind tunnel) and agitation sampling locations representing 
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compost source are higher than those at 10m downwind from source. In addition, as 

would be expected no chain aggregates were seen 50m and 100m downwind which 

suggests that mycelial chain structures for aggregates are broken into single spores as 

the particles travel further downwind such as represented in Figure 5.17 in which (a) 

might indicate a mycelial chain aggregate at a compost source however (b) might 

indicate single cells of the same micro-organism as they are dispersed further 

downwind. 

 

   
(a)        (b) 

Figure 5.18- SEM Image of (a) mycelial chain aggregate for small spore type G (b) single 
cells for small spore type G 
 

However the number of cluster aggregates for all sampling locations at Donarbon were 

much higher compared to the number of chain aggregates indicating that single spores 

are aggregating after release from compost or aggregates of non-filamentous micro-

organisms present in compost are released in higher numbers.  

 

5.4.5. Factors Affecting Bioaerosol Release from Compost at a Composting Facility 
 
The results shown in Figure 5.2 (Section 5.2.2) show that the highest number of cells 

were counted on the filters analysed at source for the agitation activity. This was an 

expected result as higher number of bioaerosols are expected to be emitted from the 

agitation activity compared to those emitted from a static compost windrow. This is 

because comparisons of bioaerosol concentrations during compost agitation activities 

(i.e. turning or shredding) with static compost concentrations (i.e. compost windrows) 
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have shown the former to be higher than the latter with differences of up to 3-log 

(Sánchez-Monedero et al., 2005; Taha et al., 2006; Taha et al., 2007). However in 

contrast, the results shown in Figure 5.1 (Section 5.2.1) show that the filters most 

heavily populated were those for the compost windrow wind tunnel sampling and not for 

the agitation activity although this suggests that a larger number of particles of interest 

other than cells were collected on the filter taken with the wind tunnel on the compost 

windrow.  

 

The compost windrow samples were taken from three different compost windrows which 

were joined together to represent the overall emission of bioaerosols and particles from 

the compost windrow structure on site. Therefore the material represented a mixture of 

2, 3 and 4 week old compost. In contrast the compost that was agitated consisted only 

of 4 week old compost. It was previously shown (Chapter 4) that compost age was not a 

factor in the number of bioaerosols released. Therefore this is probably not a factor in 

these results. However it is important to note that the differences between sampling 

locations for both set of results were not statistically significant (p>0.05).  

 

Previous studies (Gregory and Lacey, 1963; Pasanen et al., 1991; Górny et al., 2001) 

have reported that the release of fungal spores increase with increasing air velocities 

above the contaminated surface. The wind speed measured near the agitation activity 

was 1.1 m/s which is much lower than the air velocity inside the wind tunnel that ranged 

between 2.5-3.4 m/s for replicate samples. However it was not possible to measure the 

air velocity created by the agitation activity because the filter samples taken within the 

agitation activity were collected 1 m downwind of the agitation activity due to health and 

safety precautions. The air velocities inside the agitation plume might have been much 

higher. Therefore determining the typical air velocity created by an agitation activity and 

comparing this with the air velocity in the wind tunnel might provide further analysis of 

the effect of air velocity in spore release from compost.  

 

However the effect of air velocity for particles smaller than 1.6 µm might be negligible. 

This is based on studies by Górny et al. (2002) on the release of fungal fragments in an 

aerolization chamber by using either an agar plate or a ceiling tile as the contaminated 
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material. Different air velocities were applied to contaminated surfaces to represent 

indoor air, outdoor air and ventilation duct air velocities. The results showed that the 

release of fungal fragments from smooth agar surfaces did not increase with the 

increasing air velocity. This was attributed to differing release mechanisms for single 

spores and fragments. SEM images of the fungal fragments reported in Górny et al. 

(2002) were not available for a comparison however if some of the small spores 

identified in this study are fungal fragments this might indicate that the mechanisms of 

release for these particles and those of large size spores would be different.  

 

5.4.6. Effects of Filter Size on the Capture of Bioaerosols Emitted from Compost 
 
Finally, the effects of filter size on the capture of bioaerosols emitted from compost are 

discussed. In terms of total ‘particles of interest’, the results in Figure 5.8 (Section 5.3.1) 

showed that the sample with a filter pore size of 0.65 µm was most sparsely populated 

and the sample filter pore size at the mid range of 3 µm was most heavily populated 

with particles of interest. Similar results were shown for total spore counts where the 

number of spores on the largest filter sizes were the highest. This might indicate that the 

bioaerosols and particles captured on these filters are sticking to them and not 

permeating through as shown in Figure 5.18. However, this sample was taken at close 

proximity to the agitation activity therefore a bioaerosol overloading on the filter might 

also account for this result. In addition these results are only from one sample and in the 

light of this, the results are inconclusive. Therefore repeated site work would need to be 

completed to study these effects further.  

  
Figure 5.19 - SEM Images of ‘stickiness’ of spores captured on filter size 8 µm.  
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5.5. CONCLUSIONS 
A set of hypothesis and objectives were set to address the gap of information regarding 

microbial aggregation and bioaerosol particle size distribution. Despite some potential 

concerns, scanning electron microscopy (SEM) was proven to be a viable method for 

visualising the size, shape, particle surface and aggregation characteristics of 

bioaerosol and particles emitted from compost. 

 
The results suggest the following statements regarding the release and dispersal of 

bioaerosols and particles from compost for both controlled experiments and on 

composting sites.  

 

• 7-9 different types of small (0.5 – 1 µm) cells and 2 different types of large (1-2 

µm) cells and their aggregates are released from both static (i.e. compost 

windrow) and active (i.e. agitation) compost sources regardless of compost age 

or feedstock. 

 

• The majority of these bioaerosols are single cells with an aspect ratio of 1. This 

would implicate that these cells are more likely to be dispersed in air for longer 

distances than if they were in aggregate structures (i.e. heavier units). In addition 

the effects of surface drag in dispersal would be minimal. However, the 

bioaerosols were not attached to particles such as wood fibres that might have 

aided their dispersal.  

 

• The majority of all aggregates were in 2-3 cell structures and smaller than 10 µm. 

This might imply that these cells are more likely to be dispersed in air for longer 

distances than heavier cells. However this could also indicate that even if they 

are dispersed for further distances downwind, there might be less protection from 

the effects of temperature, solar radiation and relative humidity due to the lack of 

‘blanket’ protection offered by the outer cells to the inside cells in a larger 

aggregate. This would mean that these cells would lose their viability quicker 

however its important to remember that sometimes a non-viable bioaerosol is still 

able to cause adverse health effects.  
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• The aggregate structures that are released from static and active compost 

sources are in clusters as opposed to chains. This might indicate that a higher 

number of micro-organisms that do not grow in filaments are forming aggregates 

or that cells are forming aggregates upon release from compost. However any 

mycelial chain structures for aggregates are broken into single cells as the 

particles travel further downwind. 

 

• A decrease in aggregates is observed within 10m from the compost source 

boundary. The percentage of small cell aggregates at 50m downwind (in relation 

to single cells at this location) is higher compared to the same result for 10m 

downwind. However the actual number of aggregates and the size distribution of 

aggregates 50m downwind is lower than 10m downwind.  

 

• There are no aggregate structures observed at 100m downwind from compost 

source. Since non-viable aggregates would still be captured on the filter and 

visualised by SEM, this might suggest that aggregates drop out from the pollutant 

plume.  

 
Therefore in conclusion, there was evidence of aggregation in biaoerosols released 

from compost and that these aggregate structures drop out of the pollutant plume by 

100m downwind from source. However despite this, the majority of these bioaerosols 

were in single cell units. This indicates that they are more likely to dispersed for longer 

distances.  

 

The studies discussed in this chapter and the previous chapter (Chapter 4) have 

improved the understanding of the release of biaoerosols emitted from compost (i.e. 

source). It has been previously discussed that (Chapter 1) such improvements of 

knowledge would allow for improved regulatory risk assessments.  

 

The prediction of bioaerosol concentrations at various points downwind of a composting 

facility and close to sensitive receptors would also have a significant impact on the 

improvement of composting regulatory risk assessments. This is currently done by 
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collection of bioaerosol samples at composting facilities and the subsequent analysis of 

these samples. However, there are several difficulties posed by the collection of 

bioaerosol samples at a composting facility including factors such as the costly and time 

consuming nature of bioaerosol sampling and analysis. Therefore one potential method 

of predicting bioaerosol dispersal is the use of commercial air dispersion models in 

assessing the risks of bioaerosols released from composting facilities. The use of such 

models might be a very useful and cost effective way of exploring different bioaerosol 

control situations and assessing bioaerosol emissions in a composting site.  

 

The air dispersion models that are currently available are not designed for bioaerosols 

but for other aerosol pollutants such as odours or particulates. However, the results 

shown imply that bioaerosols might behave as non-biological aerosols according to their 

size, shape and aggregation tendencies as well as possessing biological properties. 

Therefore the use of commercial air dispersion models for successfully predicting the 

emissions of bioaerosols from a composting source might be a possibility. 

 

A limited number of studies (Millner et al., 1980; Dannaberg et al., 1997; Dowd et al., 

2000; Taha et al., 2005; Taha et al., 2006; Drew et al., 2006; Taha et al., 2007a) have 

used such air dispersion models to predict downwind concentrations of bioaerosols 

emitted from compost sources. However, some of these studies have indicated that 

factors discussed in study such as biaoerosol aggregation and size distribution might 

complicate their modelling (Swan et al., 2003; Wheeler et al., 2001; ADAS/SWICEB, 

2005; Taha et al., 2006; Drew et al., 2006; Taha et al., 2007a). Therefore the next two 

chapters will discuss the potential of one air dispersion model,  ADMS 3.3, in predicting 

downwind bioaerosol concentrations at composting sites. In addition, the sensitivities of 

the model to parameters such as microbial aggregation and size distribution will also be 

explored.  
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6. PRELIMINARY AIR DISPERSION MODELLING AND SENSITIVITY 
ANALYSIS OF THE MODEL  
 
6.1. INTRODUCTION 
 
There are several gaps in the assessment of bioaerosol related risk in composting 

facilities as previously discussed (Chapter 1). Gaps in the understanding of these 

bioaerosols such as the lack of sufficient knowledge on their viability or aggregation 

properties as well as the deficiency of a dose response relationship in bioaerosol 

induced disease have significant impacts in composting regulatory risk assessments. In 

addition, there are several difficulties posed by the collection of bioaerosol samples at a 

composting facility. Some of these problems which have been encountered throughout 

the studies in this thesis include: 

 

• costly and time consuming nature of bioaerosol sampling and analysis (e.g. up to 1 

week enumeration period between sample collection and confirmation of 

concentration results); 

• practical difficulties of bioaerosol sampling on site (e.g. unexpected loss of power in 

sampling pump due to problems with battery);  

• unpredictable weather conditions at a composting facility on the day of sampling 

(e.g. unexpected heavy weather); 

• unplanned variation in site practices at a composting facility on the day of sampling 

(e.g. unexpected or lack of agitation activities );  

• sampling limitations posed by on-site or surrounding area topography (e.g. 

downwind samples); 

• difficulties in source apportionment of compost related bioaerosols (e.g. presence of 

ubiquitous bioaerosols).  

 

In addition to these, as previously discussed (Chapter 1) there is lack of a single 

standardised bioaerosol sampling method or bioaerosol specific methods for 

determining their emission rate upon release. These problems might cause difficulties in 

collecting bioaerosol emission data at a composting facility for regulatory purposes. As 

such the collection of adequate downwind bioaerosol concentration data at a 
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composting facility to better assess the risk of bioaerosols close to sensitive receptors 

may be difficult. Air dispersion models have been in use for assessing the impacts of 

other pollutants such as chemicals or particulates for air quality purposes for many 

years. Therefore the use of air dispersion models in predicting bioaerosol 

concentrations at various points downwind of a composting facility has a very big 

potential in improving composting regulatory risk assessments.  

 

The potential of air dispersion models in predicting bioaerosol dispersal in composting 

facilities has previously been discussed (Section 1.6, Chapter 1). Despite the fact that 

such use of commercial air dispersion models has not been adopted as official practice 

by environmental regulators, successful prediction of the emissions of bioaerosols from 

a composting source is a plausible possibility. This is because bioaerosols may have 

similar properties (e.g. density, shape or size) (Kanaani et al., 2008) to other more 

traditional and non-biological pollutants (i.e. particulates) that the current commercial air 

dispersion models are used for. In line with this, the studies presented in the last two 

previous chapters (Chapters 4 and 5) have improved the understanding of the release 

of bioaerosols emitted from compost and showed that bioaerosols emitted from 

compost show certain size, shape and aggregation characteristics.  

 

Therefore if the currently available air dispersion models can be proved to be successful 

in predicting the concentrations of bioaerosols at a composting site, they can be very 

useful tools in predicting bioaerosol concentrations downwind of a composting facility. 

Such model outputs would enable new composting facilities to assess the risks of 

bioaerosols released from their operations and would subsequently accompany the 

composting facility risk assessments required by the regulators. In addition, air 

dispersion models would be useful for use in existing composting facilities which are 

planning to make significant changes on their site such as changing their composting 

technology or composting operations. Hence the model would enable the facility to 

predict and assess the relative changes in downwind bioaerosol concentrations 

resulting from different operating scenarios. The current methods of bioaerosol 

sampling and analysis are generally time consuming and costly. Therefore finally, the 
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use of air dispersion models in estimating risk of bioaerosols released from composting 

facilities might be a cheaper and faster option.  

 

A limited number of studies (Millner et al., 1980; Dannaberg et al., 1997; Dowd et al., 

2000; Taha et al., 2005; Taha et al., 2006; Drew et al., 2006; Taha et al., 2007a) have 

used such air dispersion models to predict downwind concentrations of bioaerosols 

emitted from compost sources. However these studies have not compared the actual 

measured on site downwind bioaerosol concentrations with those predicted by the 

model. Without such a comparison, it is not possible to verify the ability of an air 

dispersion model in predicting downwind bioaerosol concentrations.  

 

Therefore to the authors’ current knowledge, this is the first type of study which 

completes a preliminary assessment of the ability of a commercial air dispersion model 

to predict bioaerosol emissions from a composting facility compared to bioaerosol 

concentrations measured by on-site downwind bioaerosol sampling. If the model is able 

to predict the bioaerosol concentrations measured downwind, then this might indicate a 

potential for the use of the model in support of composting regulatory risk assessments. 

The preliminary dispersion modelling studies discussed in this chapter have been 

previously presented in two other publications (Tamer Vestlund et al., 2007; 

SEPA/SNIFFER, 2006) which also focused on predicted versus measured bioaerosol 

concentrations from two in-vessel systems as well as an open windrow composting site. 

However this thesis focuses on windrow composting, so only the studies completed at 

the open windrow composting site, namely Keenan Recycling, are discussed.  

 

The potential reasons why the estimation of bioaerosol dispersal by air dispersion 

models might prove problematic has been previously discussed (Section 1.6, Chapter 

1). In addition, properties of bioaerosols such as their aggregation and size distribution 

(as studied previously in Chapters 4 and 5) might further complicate their modelling 

(Swan et al., 2003; Wheeler et al., 2001). Throughout the bioaerosol air dispersion 

modelling studies completed to date (Millner et al., 1980; Dannaberg et al., 1997; 

Wheeler et al., 2001), bioaerosols have been assumed to be gas pollutants due to their 

small size and bioaerosol aggregation has not been considered. However the clumping 
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of bioaerosols results in the increase of their overall size and hence might indicate that 

they behave as a non-gaseous pollutant instead (Drew et al., 2006). This means that a 

bioaerosol aggregate which has a larger size than a single bioaerosol is more likely to 

settle out downwind upon release and travel shorter distances downwind of source 

compared to the single bioaerosol which is more likely to be suspended in air (Pillai and 

Ricke, 2002).  

 

The effect of such factors on the modelling of bioaerosols emitted from compost needs 

to be better understood. Therefore, following the preliminary air dispersion modelling, a 

sensitivity analysis of the model was completed to enable this.  

 

In addition, the sensitivity analysis provides an examination of any possible 

uncertainties posed by the preliminary dispersion modelling by testing the effect of 

different input parameters on predicted downwind bioaerosol concentrations to 

determine which modelling parameters the model is sensitive to. Therefore the studies 

presented in this chapter were also completed to analyse the sensitivities of a 

commercial air dispersion model and assess the effect of different modelling parameters 

on predicted versus measured bioaerosol concentrations. In order to fulfill this, the 

following objectives were set for the sensitivity analysis: 

 

• determine which parameters in a composting facility (e.g. source, pollutant, 

meteorology) the model is most sensitive to and 

• determine if the model is most sensitive to adjusting the pollutant size and 

aggregation parameters or if other parameters such as source definition (i.e. point or 

area source) are just as important. 

 

Firstly the methodology that was adopted is explained including details of the air 

dispersion model that was used for the studies and the determination of the bioaerosol 

emission rate. Following this, the results of the preliminary air dispersion modelling of 

the site work completed at Keenan Recycling are presented and discussed. Finally the 

results of the sensitivity analysis are presented and discussed. The next chapter 

(Chapter 7) will incorporate the findings from this chapter in order to assess the 
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potential of the model in determining the concentrations of bioaerosols emitted from 

composting facilities. Therefore, the key conclusions for the overall air dispersion 

modelling studies will be discussed in the next chapter.  

 

6.2. MODELLING THEORY  
The range of dispersion models available is large (as discussed in Chapter 1) but for the 

modelling of bioaerosol emission from composting facilities, certain model types would 

be more advantageous than others.  

 

The air dispersion model that is most frequently used for assessment of pollutants at the 

local scale (i.e. up to tens of km) is the Gaussian dispersion model (Petts and Eduljee, 

1994). The Gaussian model theory works on the principle of a ‘plume’ (i.e. 

instantaneous release of pollutant from a source) moving downwind along the wind 

direction away from its source (Colls, 2002) as shown in Figure 6.1. As the pollutant 

‘plume’ travels away from its source it expands in volume and becomes diluted in the air 

surrounding it subject to other random movements in the air surrounding it, due to air 

turbulence. This would enable the concentration of the pollutant to be calculated at any 

point downwind from its source. The Gaussian model assumes that the plume and the 

pollutants in the plume are horizontally and vertically distributed in a Gaussian curve 

(i.e. normal distribution). 

 

 

 
Figure 6.1- Pictorial of a Gaussian plume (adapted from Carruthers, 1998) 

 

Source  
Strength  Q 

σz 

σy 

wind speed U 

zs 

  (xs, ys, zs) Location of source 



Chapter 6 – Preliminary Air Dispersion Modelling and Sensitivity 
 Analysis of the Model 

 

 178

Based on this theory, the Gaussian plume diffusion equation is described as follows 

(Carruthers, 1998): 
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         Equation 6.1 

 

Where: 

C is the concentration distribution (units/ m3) when pollutant is 

continously emitted at a constant rate from a single point source 

into a uniform flow with speed U, and spread due to turbulence; 

Q  is the rate of discharge of the pollutant (mass units/s); 

xs, ys, zs is the source location.  

σz, σy is the standard deviation of the horizontal or vertical spread or 

dimension of the plume.  

 

To enable the calculation of downwind pollutant concentrations, Gaussian models take 

the effects of wind direction, wind speed and atmospheric stability into account 

(McCartney, 1994). The pollutant concentration heavily depends on the wind speed (i.e. 

U) and the dimension of the plume (i.e. σz, σy) (Carruthers, 1998). These further depend 

on how the atmospheric boundary layer (i.e. layer in which the dispersion of the 

pollutant occurs and is affected by the earth’s surface) is characterised, therefore the 

characterisation of this boundary layer can significantly affect the model predictions of 

the pollutant concentrations (Carruthers, 1998). Traditionally these dispersion models 

express the degree of atmospheric stability using Pasquill (Pasquill, 1962) stability 

classes that range from a class of A (very unstable) to G (very stable) with the Pasquill 

stability class D having the highest occurrence in the UK (Colls, 2002). The neutral 

condition (i.e. stability class D) represents medium to strong wind speeds and vigorous 

mixing of the atmospheric boundary layer is observed (CERC, 2004).  

 

However more modern models (e.g. ADMS) describe the state of the atmospheric 

boundary layer by  employing recent stability theories in which the Monin-Obukhov 
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length (Gostelow et al., 2001) and the boundary layer depth are the added parameters 

(McHugh et al., 1997). Monin-Obukhov length is the ‘height at which buoyancy and wind 

generated turbulence are equal’ and is derived from friction velocity and heat flux 

(Gostelow et al., 2001). The implications of this is that in neutral and stable conditions, a 

vertical Gaussian concentration distribution is assumed however in unstable conditions 

a skewed-Gaussion distribution is assumed (McHugh et al., 1999) which is a more 

realistic representation of the atmospheric boundary layer (Carruthers, 1998).  

 

Gaussian plume dispersion models are advantageous over other model types 

(Carruthers, 1998). For example, box models which are based on the conservation of 

mass and assuming uniform mixing within single or multiple boxes whose height are 

estimated by the mixing depth or height of the atmospheric boundary layer (Carruthers, 

1998) are not able to model the detailed structure of the pollutant. However, as 

discussed in previous studies (Wheeler et al., 2001), the structure of a bioaerosol 

pollutant (e.g. size or aggregation) might have a significant impact on the predicted 

downwind concentrations. Therefore, box models would not be suitable for use in 

predicting bioaerosol emissions. 

 

On the other hand, particle models that ‘simulate’ the mean flow and turbulence for 

weather conditions allowing the tracking of individual particles of pollution (Carruthers, 

1998) are too demanding for use in regulatory purposes. Similarly computational fluid 

dynamics (CFD) models that use the full or partial solutions of motion equations to 

determine the flow field and dispersion of a pollutant (Carruthers, 1998) are too 

expensive and difficult to run for regulatory purposes. However, a model which will have 

potential to be used for predicting the concentrations of biaoerosols emitted from 

composting facilities would need to be user-friendly and cost-effective to run to be 

adopted as a common tool by the environmental regulators.  

 

Similar observations were made by Riddle et al. (2004) who evaluated the performance 

of ADMS compared with FLUENT which uses Computational Fluid Dynamics (CFD) 

software. ADMS and FLUENT were set up to simulate the dynamics of a basic 

atmospheric boundary layer and the prediction of gas dispersion from a single stack. 
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Although the CFD simulations were satisfactory, it was concluded that ADMS was a 

more appropriate method for normal atmospheric dispersion studies. This was due to 

the larger run times and greater complexity that were needed to set up to run the 

FLUENT model. 

 

ADMS was therefore chosen as the commercial air dispersion model to be used for the 

air dispersion modelling studies in this project. ADMS is an advanced steady state, 

Gaussian plume dispersion model which has been developed by CERC (Carruthers et 

al., 1994; CERC, 2003) and the UK Meteorological Office. ADMS is used for predicting 

the dispersion of gases and particulate emissions into the atmosphere. There is a 

choice of modelling the effects of plume rise, wet and dry deposition, radio-active decay, 

variable roughness terrain, coastal regions and buildings (Carruthers et al., 1994). It is 

one of the four models in common use (Carruthers, 1998) along with AERMOD, ISC3 

and models based on the R-91 algorithms. 

 

This model is currently used by government regulatory authorities such as the UK 

Health and Safety Executive (HSE), Environment Agency of England and Wales, 

Scottish Environmental Protection Agency (SEPA) in Scotland, UK Food Standards 

Agency and Environment and Heritage Service in Northern Ireland. It is in use by some 

local authorities in the UK for managing urban air quality (Arciszewska and McClatchey, 

2001). In addition to this, the model is used by a variety of industries including power 

generation companies, consultants, light and heavy industry and academics (McHugh et 

al., 1997). As previously mentioned, the use of air dispersion modelling for predicting 

bioaerosol concentrations at composting facilities has not been accepted officially. 

However there have been limited applications of ADMS to predict bioaerosol 

concentrations emitted from composting facilities (Drew et al., 2005; ADAS/SWICEB, 

2005; Taha et al., 2006; Drew et al., 2006; Taha et al., 2007a). Therefore the wide 

application of ADMS indicates that it is currently the air dispersion model of choice for 

various applications and studies in the UK and this has been the most important 

determining factor in choosing it for the studies discussed here.  
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In addition to this, the model was also chosen because it allowed the user to define 

multiple pollutant sources. This is a more realistic estimation of the possible compost 

sources at a composting site because at a typical composting site, various sources of 

bioaerosols would be expected to be present, for example compost windrows as well as 

the agitation activity area for an open compost windrow site. This means that, in reality 

a combination of bioaerosol sources would contribute to the downwind bioaerosol 

concentrations at a composting site rather than single bioaerosol sources. 

 

The model also allows the user to consider dry deposition. As previously discussed the 

aggregation of a bioaerosol might complicate its modelling due to increased particle size 

(Wheeler et al., 2001; Swan et al., 2003). In limited bioaerosol air dispersion modelling 

studies to date, bioaerosols have been modelled as gases however an increase in 

particle size might require them to be modelled as particles. However to study the 

effects of this, the air dispersion model being used needs to enable the user to consider 

dry deposition.  

 

6.3. PRELIMINARY AIR DISPERSION MODELLING 
 
6.3.1. Methodology 
The bioaerosol concentrations measured at Keenan Recycling (see Section 3.2.1, 

Chapter 3 for site description) were modelled as a combination of area and point 

sources. Pollutant sources such as static compost windrows were modelled as area 

sources and agitation activities such as screening or shredding observed on site were 

modelled as point sources.  

 

The air dispersion modelling completed for Keenan Recycling aimed to complete a 

preliminary assesment of ADMS 3.3 in predicting the concentrations of bioaerosols 

emitted from an open windrow composting facility. Hence for simplicity reasons, no 

model options (e.g. dry deposition) were used and ADMS 3.3 default values were used 

where appropriate. A site surface roughness of 0.2 was chosen to denote an agricultural 

area which was decided as the best description of the area surrounding this open 

windrow composting facility.  
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The parameters used for the source (e.g. source height, diameter, geometry or 

temperature) represented the measurements taken on site. The model output 

represented bioaerosol concentrations at a height of 1.8 m which was the height at 

which bioaerosol samples were collected on site. Exit velocity was chosen as the efflux 

format and the model default values to represent air were used for the parameters 

defining the release material, because the release material is predominantly air. The 

bioaerosol pollutant was assumed to be gas and no deposition velocity or washout 

coefficient was defined. For meteorological data, stability class D (neutral conditions) 

(Pasquill, 1961; 1962) of the ADMS 3.3 file R91A-G was used for all modelling 

exercises, as this represents the most frequently occurring atmospheric state in the UK 

(Colls, 2002). The model output is presented in terms of short or long term 

concentrations. The long term modelling option is useful for assessing any percentiles in 

concentration or exceedence values for comparison with regulatory standards and is 

generally used with hourly sequential meteorological data. However for the air 

dispersion modelling at Keenan Recycling, since it was a preliminary assessment of the 

model and the ADMS 3.3 file R91A-G was utilised instead of hourly sequential 

meteorological data recorded on site, the short term modelling option was used. In 

addition, the preliminary site work represents bioaerosol emissions from Keenan 

Recycling throughout only a single sampling day as opposed to representing bioaerosol 

emissions from a composting facility for a longer time limit (i.e. one year).  

 

The air dispersion modelling studies for Keenan Recycling aimed to make a preliminary 

assessment of the model in predicting bioaerosol concentrations. Therefore to reduce 

the number of variables and for simplicity reasons, several simplifying assumptions 

were made as per Taha et al. (2005; 2006; 2007a): 

 

• The modelled surface is flat, hence the effects of terrain have not been taken into 

account; 

• The effects of building downwash have not been taken into account; 

• Wind velocity and direction are constant over the modelled time and distance; 

• Bioaerosol size distribution and  aggregation was not taken into account.  
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The bioaerosol emission rates and a list other modelling parameters used for Keenan 

Recycling modelling studies is presented in Appendix E.  The methods used for 

calculating all emission rates (Chapters 6 and 7) are described below. 

 
a) Estimation of the Bioaerosol Emission Rate for an Area Source 
An area source is defined as a release over a specified height over a horizontal convex 

polygon (e.g. sewage tank) (CERC, 2003). Therefore the compost windrow from which 

bioaerosol samples were collected during the first sampling date was assumed to be an 

area emission source and the sampling hood method was employed to directly measure 

the emission rates based on previous studies by Taha et al. (2005). The basis of this 

method is to isolate a section of the emission surface and to force air to flow over this 

surface. Two sets of bioaerosol samples were collected using the sampling hood placed 

on both sides of a compost windrow, with an approximate size of 22m x 10m x 4m 

(length, width, height) (Chapter 3, Section 3.2.1, Figure 3.4). However for modelling 

purposes, the bioaerosol emissions from both sides of the compost windrow were used 

as an average. This is because the contribution of downwind bioaerosol concentrations 

from a windrow is likely to be the combined emission from the entire windrow.  

 

The average (arithmetic mean) of the bioaerosol concentrations measured at the bottom 

and top of the outlet of the sampling hood were used to calculate the net bioaerosol 

concentration in the sampling hood. The wind speed inside the sampling hood was 

measured with an anonemeter (Kestrel 3000). Following this the air velocity inside the 

sampling hood was calculated using the following equation (Taha et al., 2005): 
 

V1 = V2xA2/A1                             Equation 6.2 

 

Where: 

V1  is the air velocity the main section of wind tunnel (m/s); 

A1 is the area of the main section of wind tunnel (m2);  

V2  is the air velocity of the mixing chamber, where sampling is carried out 

(m/s); and 
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A2  is the area of the mixing chamber where sampling is carried out (m2). 

 

The specific bioaerosol emission rate (SBER) is the quantity of bioaerosols emitted per 

unit time from a unit surface area. The equation used (Equation 6.3) is adapted from 

odour measurement calculations to calculate the bioaerosol emission rate inside the 

wind tunnel chamber (Jiang and Kaye, 2001).  

 

A
BCQSBER ×

=                                              Equation 6.3 

 

Where: 

SBER is the specific bioaerosol emission rate (cfu/m2/s); 

Q is the flow rate through the wind tunnel (m3/s); 

BC is the bioaerosol concentration in air (cfu/m3); and 

A is the area covered by the wind tunnel (m2). 

 

Following this, the specific bioaerosol emission rate corresponding to ground level air 

velocity was estimated using the following adapted from Jiang and Kaye, 2001:  
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                                    Equation  6.4 

 

Where: 

SBER1 is the surface bioaerosols emission rate measured using the wind tunnel  

(cfu/m2/s); 

SBER2 is the surface bioaerosols emission rate corresponding to ground level 

air velocity (cfu/m2/s); 

V1  is the air velocity inside wind tunnel (m/s); and 
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V2  is the ground level air velocity (m/s). 

 

For the first sampling date, no agitation activities were observed hence the incoming 

waste compost windrow emissions were assumed to be the sole contributor to the 

downwind bioaerosol concentrations.  

 

b) Estimation of the Bioaerosol Emission Rate for a Point Source 
The agitation activities of shredding and screening (Chapter 3, Section 3.2.1, Figure 

3.3) captured at Keenan Recycling during the second and third sampling days were 

modelled as point sources. It was not possible to directly measure the bioaerosol 

emissions rates at the point of release due to health and safety measures that must be 

taken to minimise risk of injury from agitation processes. Furthermore, as these are 

activities, and not static sources (i.e. compost windrows), it was not possible to use a 

wind tunnel or sampling hood to collect source term data. Therefore the bioaerosol 

emission rate was estimated by performing a back-extrapolation using the air dispersion 

model ADMS 3.3 (CERC, 2003) as described by Taha et al. (2005) based on the known 

bioaerosol concentrations measured at 2m and 10m downwind of the agitation activity. 

Various emission rates were tested as inputs to ADMS 3.3, together with the measured 

mean temperature, wind speed and the height of sampling. The size of the dust cloud 

created by agitation was observed and the dimensions were estimated to be 3m x 3m x 

3m in line with Taha et al. (2005). These dimensions were also entered as model inputs.  

 

At a typical composting site, multiple sources of bioaerosols would be expected to be 

present. As such, the definition of the source term data for the preliminary air dispersion 

modelling subsequent to the initial site work completed at Keenan Recycling was based 

on a combination of potential biaoerosol souce term data per sampling day per site 

rather than defining each bioaerosol source separately and modelling them individually. 

However it was not possible to capture source term data from every possible bioaerosol 

source at the compost site throughout a sampling day due to practical difficulties of 

bioaerosol sampling (as discussed previously in Section 6.1). In addition, the sampling 

hood was not available for the second and third sampling days hence it was not 

possible to calculate a bioaerosol emission rate for any static bioaerosol emission 
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sources (i.e. compost windrows) on those days. Subsequently these sources could not 

be included in the air dispersion modelling. In the light of these, Table 6.1 summarises 

the combined bioaerosol source term data used for the preliminary air dispersion 

modelling for the emission from each site per sampling day.  

 
Table 6.1 – Combined source term data used for the preliminary air dispersion 
modelling per sampling day at Keenan Recycling 
Sampling 
Day 

Source Term Data Used for 
the Modelling 

Number of Total Sampling Points at 
Source ( 2 per sampling location) 

First Compost windrow left 

Compost windrow right 

n = 4 

Second Agitation activity n = 2 

Third Agitation activity n = 2 

 

This also means that even though individual measured concentrations at source are 

from two sampling replicates only (i.e. n = 2), the overall source term data is a 

combination of various sources.  

 
6.3.2. Results 
 
a) Area Source Modelling 
Figure 6.2 shows the results of the ADMS 3.3 modelling of A. fumigatus and 

actinomycetes emitted from one compost windrow (i.e. the incoming waste compost 

windrow as per Figure 3.2, Chapter 3) at Keenan Recycling during the first sampling 

day. The material in this windrow was less than 5 days old and this was the only 

sampling location in which it was possible to collect bioaerosol source samples and 

hence determine a bioaerosol emission rate (as shown in Table 6.1). Bioaerosols were 

sampled approximately 50m downwind of all site operations, which equates to 500m 

downwind of the incoming waste compost windrow where the bioaerosol source 

sampling took place. Comparing the measured downwind concentrations of A. 

fumigatus and actinomycetes with the model predictions at 500m downwind distance 

can give some idea of how accurate the predictions of ADMS 3.3 are.  
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Figure 6.2- Predicted vs. measured downwind concentrations of bioaerosol 
emissions from incoming waste compost windrow (sampling hood) at Keenan 
Recycling site during the first sampling day. (Af is A.fumigatus, Ac is 
actinomycetes, the y axis is in logarithmic scale and the bars denote standard 
error for measured bioaerosol source and downwind concentrations) 

 

The model predictions for 1 m downwind were at 0 CFU/m3 ground level concentration 

therefore the results are shown from 2 m downwind only. In addition, the emission curve 

for both micro-organisms were the same order of magnitude hence they appear to be as 

one line. This is because the emission rates for both micro-organisms used in the 

modelling are also of the same order of magnitude.  

 

The model emission curve showed an initial increase in ground concentrations for both 

micro-organisms at approximately 20m downwind from source before a steady 

decrease. The results showed that the model under predicts the concentrations of both 

species by up to 4-log. The source term data was the average of 4 sampling locations 

on the compost windrow as shown in Table 6.1 and a standard error between these 

concentrations was shown. The downwind bioaerosol concentration was the average of 

2 replicate samples and a standard error between these concentrations was also 

shown. However considering the standard error for the bioaerosol concentrations 
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measured on site for source and downwind sampling locations did not have an effect on 

the scale of this difference.  

 

There are three possible explanations for the differences between the predicted and 

measured downwind concentrations. Firstly, bioaerosol concentrations measured at 

source are also approximately 3-log higher than the first prediction of the model at 2m 

downwind from source. Hence because the model is not able to make accurate 

predictions close to the bioaerosol source as shown by these results, it would be 

expected that this would have an impact on the bioaerosol concentrations predicted 

further downwind.  

 

During this sampling day, it was only possible to calculate an emission rate for 

bioaerosol release from the incoming waste compost windrow due to practical 

bioaerosol sampling difficulties. However as shown on the site diagram (Chapter 3, 

Figure 3.2), this was not the only possible bioaerosol source on this site. Other sources 

included compost windrows during various stages of maturity as well as compost 

agitation activities that take place on site (as shown in Figure 3.2, Chapter 3). In 

addition, the owners of the composting facility reside on-site and kept horses in stables. 

These were likely additional contributors to the downwind bioaerosols. Therefore 

secondly, these results might indicate that other bioaerosol sources that are not 

reflected in the model input have contributed to the downwind bioaerosol concentrations 

measured on site. Previous studies have found increased levels of bioaerosol 

concentrations for agitation activities (Taha et al., 2005; Taha et al., 2006; Crook et al., 

2006; Taha et al., 2007a) and reported that biaoerosol concentrations during site 

operations are approximately 2-log higher than background bioaerosol concentrations 

measured at composting facilities (Sanchez-Monedero and Stentiford, 2003). However 

there were no noted agitation activities during this sampling day hence this could not 

account for the elevated downwind bioaerosol concentrations. Therefore it is likely that 

the other compost windrows or the activities of the residents (i.e. keeping of horses) on 

the site have contributed to the downwind bioaerosol concentrations.  
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Upwind background concentrations of A. fumigatus were detected during the first 

sampling day and they were in the same order of magnitude as the bioaerosol 

concentrations detected downwind and in the vicinity of the houses and stables located 

on site.  Therefore this might suggest that an unidentified upwind source of A. fumigatus 

was present during this sampling day. Hence for A.fumigatus this might have been the 

major contributor to the bioaerosols measured downwind irrespective of the biaoerosols 

generated within the composting site.  

 
In contrast, no concentrations for actinomycetes were detected upwind or in the vicinity 

of the on site residencies hence there are no background concentrations of 

actinomycetes for the summer sampling that might have contributed to the levels of 

actinomycetes detected downwind. However, it is possible that bioaerosol plumes from 

other compost windrows might contribute to the downwind actinomycetes levels.  

 

b) Point Source Modelling 

Two further site visits were completed at Keenan Recycling. Due to changing site 

practices between different site visits, it was not possible to take samples at the same 

locations at each site visit. For both sampling days, bioaerosols were sampled 

approximately 35m downwind of all site operations, which equated to about 40m and 

50m downwind of where the agitation activities were taking place for second and third 

sampling days respectively. The modelling results of A. fumigatus and actinomycetes 

emissions for the second (compost screening) sampling day at Keenan Recycling site is 

shown in Figure 6.3. 
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Figure 6.3- Predicted vs. measured downwind concentrations of bioaerosol 
emissions from agitation activities at Keenan Recycling site during the second 
sampling day (Af is A.fumigatus, Ac is actinomycetes and the y axis is in 
logarithmic scale) 
 

The results presented for the second sampling date show that the model predictions of 

the bioaerosol concentrations for agitation activity were much closer (less than 1-log) to 

the bioaerosol concentrations measured on site than the model predictions of the 

bioaerosol concentrations for compost windrows as discussed previously (Section 

6.2.2.1). Similar results were observed for the model predictions for the agitation activity 

during the third sampling day where the difference between predicted and modelled 

actinomycetes concentrations were less than 1-log. This might suggest that for both 

sampling days the major contribution to downwind bioaerosol concentrations are from 

the agitation activities.  

 

It was not possible to estimate the bioaerosol emission rate from the incoming waste 

compost windrow during the second and third sampling days to the lack of the sampling 

hood. However air samples were taken 5 m downwind from this compost windrow. 

Therefore as a final analysis of the effect of point and area source modelling, the back-

extrapolation methodology was repeated for the 5 m downwind actinomycetes 

concentrations to estimate a bioaerosol emission rate for this area source. The emission 

rates estimated by back-extrapolation were then used to generate emission curves in 
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ADMS 3.3 for the incoming waste compost windrow modelled as an area source. The 

results of this analysis are presented in Figure 6.4.  
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Figure 6.4- Predicted vs. measured downwind concentrations of actinomycetes 
emissions from incoming compost windrow at Keenan Recycling site during the 
second and third sampling days (Ac is actinomycetes and the y axis is in 
logarithmic scale) 

 

The results presented in Figure 6.4 also showed that similar to the emission curves 

generated by using the agitation activity emission rates for the second and third 

sampling dates, the model was able to predict downwind bioaerosol concentrations 

within a difference of less than 1-log. However the estimated actinomycetes emission 

rates from the incoming compost windrow using the back-extrapolation methodology 

were 103,000 cfu/m2/s and 13,000 cfu/m2/s for the second and third sampling days as 

opposed to the actinomycetes emission rates determined for the same compost 

windrow by using the sampling hood in the first sampling day being at a considerably 

lower at 121 cfu/m2/s and 606 cfu/m2/s. The difference between these values is due to 

the differing methods of emission rate calculation where odour emission rate equations 

(Equations 6.2 to 6.4) were used for the determination of the emission rate for the first 

sampling day but a back-extrapolation estimation method was used for the second and 

third sampling days. The implications of this is that the actual bioaerosol emission rate 

has a profound effect on the overall emission curves. However, the back-extrapolation 
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method is just an estimation of the bioaerosol emission rate as opposed to the method 

which uses the sampling hood which is a standard method for determining the emission 

rate for another common air quality pollutant. Hence the validity of this analysis should 

be assessed in this context.  

 

It is also interesting to note that even though the model predicted distinct differences 

between the shape of the emission curves generated by point and area source 

modelling (Figures 6.4 and 6.5 as opposed to Figure 6.6), the differences between 

predicted and measured downwind bioaerosol emissions remain for both source type 

modelling results. This indicates that even though the model appears to be more 

successful at predicting individual bioaerosol concentrations downwind of a compost 

source by using the back-extrapolation bioaerosol emission rate methodology, the fit of 

other downwind bioaerosol concentrations to the model predictions might differ 

significantly depending on how the source is defined. However it was not possible to 

test this further due to a major limitation in the site work methodology which was the 

lack of multiple downwind sampling points.   

 
6.3.3. Discussion 
The objective of the air dispersion modelling studies discussed so far was to complete a 

preliminary assessment of the ability of a commercial air dispersion model, ADMS 3.3, 

in predicting bioaerosol emissions from a composting facility compared to bioaerosol 

concentrations measured by on-site downwind bioaerosol sampling.  

 

Two different methods were employed to determine the bioaerosol emission rates at the 

open windrow site, Keenan Recycling. One of these methods was the determination of 

the bioaerosol emission rate by back-extrapolating the known bioaerosol concentrations 

downwind of a bioaerosol source as per the methodology outlined in Taha et al. (2005). 

This resulted in a difference of less than 1-log between measured versus predicted 

bioaerosol concentrations regardless of the bioaerosol source being defined as a point 

or area source for agitation activity or compost windrow respectively. In contrast, the 

use of the sampling hood methodology outlined in the same study (Taha et al., 2005) for 

determining bioaerosol emission rates from a compost windrow defined as an area 
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source resulted in the under prediction of the measured downwind concentrations by up 

to 4-log. 

 

For the model to have the potential for use in support of composting regulatory risk 

assessments, it should be able to make an approximate match of bioaerosol 

concentrations measured on a composting site. However the results discussed in this 

chapter lack consistency and show a wide variety of bioaerosol concentrations and 

emission curves predicted by the model depending on how the bioaerosol source is 

defined (i.e. point or area source). This indicated that the differences in ADMS 3.3 

predictions for different sources at a composting facility might be due to the variation in 

the use and determination of bioaerosol emission rates.  

 

However another reason for the discrepancy in the modelling output might also be the 

limitations of the initial site work and preliminary air dispersion modelling studies 

completed at Keenan Recycling. The emission curves shown in Figures 6.3 and 6.4 

showed that the model might be able to successfully predict individual bioaerosol 

concentrations downwind of a compost source by using the back-extrapolation 

bioaerosol emission rate methodology. However the main limitation to the methodology 

discussed throughout this chapter is regarding the determination of the bioaerosol 

emission rates used for the air dispersion modelling of point sources (i.e. back-

extrapolation method). The method of bioaerosol emission rate determination by use of 

wind tunnels is based on standard methods of odour emission calculations (Jiang and 

Kaye, 2001) as well as other studies which have used a wind tunnel to determine the 

emission rate of a bioaerosol (Taha et al., 2005). The determination of a bioaerosol 

emission rate by back-extrapolation has also been previously used by other studies 

(Millner et al., 1980; Dannaberg et al., 1997; Swan et al., 2002; Taha et al., 2007a) 

however is only an estimation of the bioaerosol concentration at source rather than a 

standardised method. Hence the result of more successful model predictions of the 

back-extrapolation technique rather than the wind tunnel methodology should be 

approached with caution and hence no definitive conclusions can be drawn on the 

advantages of one method over the other.  
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Another important limitation of this study is the lack of multiple downwind sampling 

points. The bioaerosol concentrations measured downwind of site to which the 

predicted model concentrations are compared with represent those for one sampling 

location only however the model cannot be validated without other downwind sampling 

locations. There are distinct differences in the shape of the emission curves predicted 

for a point or area source hence the fit of other downwind bioaerosol concentrations to 

the model predictions might differ significantly depending on how the source is defined. 

Therefore if other downwind sampling locations were available, it would be possible to 

analyse the differences between measured and predicted downwind bioaerosol 

concentrations for different source definitions. Finally for downwind concentrations, it is 

important to remember that the measured concentrations are from two sampling 

replicates only and at some instances from only one sampling point with no replicates. 

Hence this would also have been expected to affect the validity of the results and 

analysis. The limitations of the sampling strategy were presented due to the practical 

difficulties of bioaerosol sampling at a composting facility such as those discussed in 

Section 6.1  

 

The analysis of upwind and other background bioaerosol concentrations per site 

indicated the possibility of other sources of bioaerosols at Keenan Recycling site. This 

site is mainly surrounded by fields so it is likely that a constant source of bioaerosols 

upwind is present due to sources such as soil dust and decay of vegetation (e.g. leaves) 

(Swan et al., 2002). In addition, bioaerosols are ubiquitous and are present in nature 

(Borodulin, 2005; Bovallius et al., 1978; Köck et al., 1998; Fang et al., 2005; Mancinelli 

and Shulls, 1978; Spicer and Gangloff, 2005). Therefore another major limitation of the 

initial site work is the likelihood that the bioaerosol concentrations at the downwind 

location to which the model predictions are compared to do not only represent the 

bioaerosol sources that were used for determining the bioaerosol emission rates. For 

example, for the preliminary site work completed at Keenan Recycling, it was not 

possible to determine an emission rate for a majority of the composting windrows and 

hence they were not included in the modelling studies. On-site agitation of the compost 

has previously been shown to be the major contributor to bioaerosol emissions from 

composting sites (Taha et al., 2005; 2006; 2007a) which indicates that modelling the 
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agitation activity at a composting facility might be sufficient to determine the 

approximate overall bioaerosol emissions from a composting site. However, compost 

windrows would also be expected to be emission sources due to the effects of wind 

blowing on a compost windrow as well as thermal convection of bioaerosols as they 

move from an environment of higher temperature (i.e. compost windrow) to lower 

temperatures (i.e. ambient). Hence a static bioaerosol source such as a composting 

windrow should also be considered when determining the bioaerosol emission from a 

composting facility along with the consideration of emission from active sources such as 

agitation activities.   

 

Therefore in the light of these limitations and the lack of further analysis of model 

predictions for more downwind sampling locations, the effect of model parameters on 

the prediction of downwind bioaerosol concentrations was not clear. In addition the 

results of the preliminary dispersion modelling studies indicated that the definition of the 

source term (i.e. area or point source) might have a significant effect on the output 

concentrations predicted by the model. As such, the next section of this chapter will 

analyse the sensitivities of ADMS 3.3 to determine which input parameters the model is 

most sensitive to.  

 
6.4. SENSITIVITY ANALYSIS  
 
6.4.1. Methodology 

In model development, a sensitivity analysis of a model might be conducted for various 

reasons including the determination of parameters which need further research for 

validation of the model or the determination of insignificant parameters for elimination 

from the model (Hamby, 1994). Once a model is commercially available, a sensitivity 

analysis can be used to determine how a model reacts to any changes in input 

parameters and to evaluate the parameters with the biggest effect on modeling output 

(Hamby, 1994). Such an analysis would differ according to the purpose that the model 

is used for.  

 

Air dispersion models are used to simulate very complex physical and environmental 

phenomena (Hamby, 1994) and there may be a level of uncertainty in the 
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concentrations predicted by the model (Tilden and Seinfeld, 1982). An additional level of 

uncertainty is presented for modelling of bioaerosols emitted from composting facilities 

because currently there are no dispersion models developed specifically for this 

purpose. Therefore a sensitivity analysis of the model was completed to analyse these 

uncertainties in ADMS 3.3 by testing the effect of different modelling parameters on 

predicted downwind bioaerosol concentrations to determine which modelling 

parameters the model is sensitive to.  

 

Throughout the preliminary air dispersion modelling completed for Keenan Recycling, 

the bioaerosol pollutant was assumed to exhibit gas like properties, hence particle size 

distribution and particle aggregation was not taken into account. However, it has been 

discussed that (Wheeler et al., 2001) dispersion modelling of bioaerosols from 

composting facilities was difficult due to the influence of factors such as aggregation of 

bioaerosol spores to form larger particles (which would cause them to exhibit particle 

like properties instead of exhibiting gas like properties). Therefore the incorporation of 

these properties into the air dispersion model parameters is important to assess the 

potential improvement in model predictions compared to bioaerosol concentrations 

measured on site.  

 

Based on this, the sensitivity analysis involved establishing a base model created by 

using parameters measured previously at Keenan Recycling to represent realistic 

parameter values measured at a composting facility. Then these parameters were 

increased by certain factors to create adjusted models. Finally the differences between 

the model output generated by the base and adjusted models were analysed using a 

simple quantitative analysis. This analysis method was adapted from performance 

measurement assessments for different dispersion models in previous studies (Petts 

and Eduljee, 1994; Beychok, 2001; Hanna et al., 2001) and compared ratios of base 

and adjusted bioaerosol concentrations. The basis of the quantitative analysis is that if a 

ratio of base and adjusted bioaerosol concentration is smaller than 1.00, this indicates 

that the model under predicts downwind concentrations compared to those predicted by 

the base model. If this ratio is higher than 1.00, this indicates that the model over 

predicts downwind concentrations compared to those predicted by the base model. A 
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ratio of 1.00 indicates that the model is successfully able to simulate the measured 

downwind bioaerosol emissions from source.  

 

The model was not expected to perfectly (i.e. ratio of 1.00) simulate downwind 

bioaerosol concentrations for each study and some error margin was expected. 

Therefore an initial arbitrary 20% range (as per Hanna et al., 1999) within 1.00 (i.e. 0.80 

to 1.20) was also set as a ratio range which is considered for the model to successfully 

simulate the measured downwind actinomycetes emissions from source. This range 

enables an easy understanding of the distinction between parameters which are 

successfully able to match predicted versus measured downwind bioaerosol 

concentrations.  

 

In addition to this, the numerical differences between the calculated ratios and 1.00 

were also determined. This was completed to analyse the effect of a certain adjusted 

parameter on the downwind bioaerosol concentrations relative to other adjusted 

parameters. A higher difference between the ratio and 1.00 indicates the scenario with 

the most effect on the downwind bioaerosol concentrations and a lower difference 

indicates the parameter which has the least effect on the downwind bioaerosol 

concentrations.  

 

For sensitivity analysis of source and meteorological parameters, the pollutant was 

assumed to be a gas and dry deposition effects were not taken into account for 

simplicity reasons. However, for sensitivity analysis of pollutant parameters, effects of 

both gaseous and particulate pollutants were explored using the dry deposition option. 

This is because the model needs to take the effect of dry deposition into account to 

study the effects of particulate pollutant parameters. Otherwise the dispersion of the 

particles in the atmosphere is treated in the same way as it will be for gases.   

 

The sensitivity analysis discussed in this study was based on varying one parameter at 

a time (changed parameters are presented in detail in Appendix G) and some model 

parameters were kept constant. The details of these parameters are presented in 
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Appendix F. Further details of methodology used for sensitivity analysis of source, 

pollutant and meteorological parameters are discussed below.  

 

a)  Effect of Source Parameters on Downwind Concentrations 
 
For the sensitivity analysis of the source parameter, three different source types were 

considered. These were the point source which represents source term data derived 

from agitation activities and the area source which represents source term data derived 

from wind tunnel sampling of the compost windrows, as explained previously.  

 

Compost windrows have been modelled as two dimensional area sources for the 

preliminary air dispersion modelling at Keenan Recycling and this was repeated for the 

air dispersion modelling studies discussed in this chapter. However compost windrows 

are three dimensional structures and hence may be defined instead as a volume source 

as per Wheeler et al., (2001).  Therefore, a third source was tested for the sensitivity 

analysis which assumed that a compost windrow was a volume source as opposed to 

an area source. The model manual (CERC, 2003) describes a volume source as “a 

release from an area source with vertical extent but no plume rise”. A volume source 

emission rate is described as “area emission rate divided by the vertical extent of the 

volume source”. Therefore, to calculate the emission rate when the compost windrow is 

assumed to be a volume source the average wind tunnel emission rate calculated for 

experiment three was divided by 3 m as the vertical extent of the volume source and the 

resulting emission rate was used for the sensitivity analysis of the volume source.  

 

For point and area sources, all parameters that could be adjusted (limited by the model) 

were adjusted and these parameters were source height, source temperature and 

source velocity. In addition to these, for a point source, source diameter could also be 

adjusted. The parameters that could be adjusted for a volume source were the vertical 

dimension of source and mid height of volume source (i.e. vertical dimension of source 

by two) above ground.  

 

The base parameters for all sources were those measured on site (Appendix F) to 

represent the realistic parameter values usually measured on a composting site. These 
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parameters were then increased by factors of 10 and 100 to create adjusted model 

scenarios used to test the sensitivity of the model to different source parameters (Table 

6.2). Instead of adjusting the base parameters by a factor of for example, 20% or 50% 

increase, multiplying the parameters by factors of 10 and 100 allowed to explore a wider 

range of parameter values allowed by the model (i.e. maximum and minimum 

parameter values permitted by model). In addition, multiplying the base parameters by 

factors of 10 were applicable to other parameters changed (i.e. pollutant and 

meteorological) hence allowed comparisons to be made between different parameter 

groups.  
 
Table 6.2- Details of adjusted model scenarios for source parameter sensitivity 
analysis  
Type of 
Source 

Adjusted Model Scenario 
Label 

Description of Model Scenario 

A Source height 
B Source temperature 
C Source velocity 

Point 

D Source diameter 
E Source height 
F Source temperature 

Area 

G Source velocity 
H Mid height of the volume above ground Volume 
I Vertical dimension of volume source 

 
 
b)  Effect of Pollutant Parameters on Downwind Concentrations 
 

A sensitivity analysis study was completed to test the sensitivity of ADMS 3.3 to 

changing the pollutant parameters and to further examine the effect of bioaerosol 

aggregation and size distribution data into the model. Similar to the sensitivity analysis 

completed for source parameters, all parameters that could be adjusted (limited by the 

model) were adjusted. In addition, especially the parameters adjusted for a particulate 

pollutant such as particle density, particle diameter or particle mass fraction assumed to 

denote aggregation will determine the behavior and deposition of the pollutant when 

airborne. These concepts have been previously discussed in detail in Chapters 4 and 5.  

 

Base parameters for particulate and gaseous pollutants for an average pollutant were 

chosen based on values given for gas and particulate properties (Gregory, 1950; 

Gregory, 1973; Chamberlain, 1967; Lacey and Dutkiewicz, 1976a; Sehmel, 1980; Cox, 
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1995; Muilenberg, 1995; Tisa et al., 1982; and Carrera et al., 2008) as well as the 

results presented previously (Chapters 4 and 5) to represent the realistic parameter 

values which would usually be measured for a bioaerosol particle. These properties 

then were increased by factors of 10, 100 and 1000 to create the adjusted models as 

described below for the sensitivity analysis (Table 6.3). The reason for increasing the 

pollutant parameters by these factors were the same as those discussed previously by 

source parameters. In addition, the parameter range for pollutant parameters allowed to 

increase the base parameters by an additional factor of 10 (i.e. 1000). Hence this was 

also explored to further analyse the effect of parameter factor increase on the model 

output.  

 
Table 6.3- Details of adjusted model scenarios for pollutant parameter sensitivity 
analysis and parameterisation 
Type of 
Pollutant 

Adjusted Model Scenario 
Label 

Description of Model Scenario 

J Particle deposition and terminal 
velocity 

K Particle density 
L Particle diameter 

Particulate 

M Particle mass fraction*  
Gaseous N Deposition velocity 

* Note: This parameter was changed by factors of 2, 2.5, 5 and 10 because changing 
this parameter by factors of 100 and 1000 were beyond the range allowed by the 
model. 
 
c) Effect of Meteorological Parameters on Downwind Concentrations 
 
Finally, a sensitivity analysis was completed to test the sensitivity of ADMS 3.3 to 

changing the meteorological parameters. Wind speed is a major factor in generation 

and dispersing of bioaerosols from composting facilities (Aylor and Parlange, 1975; 

Crook et al., 2006) and environmental conditions such as temperature and relative 

humidity as well as wind or rain are important in spore release (Muilenberg, 1995) and 

dispersal mechanisms (McCartney, 1994). Therefore wind speed, relative humidity and 

surface temperature were chosen as the meteorological parameters which would be 

adjusted to study the effect on predicted actinomycetes concentrations. 

 

The base parameters for meteorological factors described in Appendix F (chosen to 

represent the realistic parameter values usually measured on a composting site) were 
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changed by factors of 0.1 and 10 (as limited by the model), to create the adjusted model 

scenarios as described below for the sensitivity analysis: 

 

• Adjusted Model Scenario O: Wind speed. 

• Adjusted Model Scenario P: Relative humidity. 

• Adjusted Model Scenario Q: Surface temperature. 

 
6.4.2. Results 
 
a) Effect of Source Parameters on Downwind Concentrations 
 
The results of the quantitative analysis for point, area and volume sources are 

summarised in Tables 1, 2 and 3 of Appendix H. Results for all source types showed 

that any increases in parameter values result in under prediction of the model output 

generated for the base model (i.e. running the model with the realistic parameters 

detected on site). 

 

a.1) Point Source 

The analysis of most and least sensitive parameter and increase factors are shown in 

Figure 6.5.   

Downwind  
Distance 

Most Sensitive                                                                                Least Sensitive 

1 m Height x 10 

Height x 100  

Velocity x 100 

Diameter 

x 33 

Velocity 

x 10 

Diameter 

x 10 

Temp 

x 100 

Temp 

x 10 

10 m Height x 10 

Height x 100 

Velocity x 100 

Diameter 

x 33 

Velocity 

x 10 

Diameter 

x 10 

Temp 

x 100 

Temp 

x 10 

100 m Height x 100 

Velocity x 100 

Height 

x 10 

Diameter 

x 33 

Temp 

x 100 

Diameter 

x 10 

Temp 

x 10 

Velocity 

x 10 

250 m Height  

x 100 

Velocity 

x 100 

Diameter 

x 33 

Height  

x 10 

Diameter 

x 10 

Temp 

x 100 

Temp 

x 10 

Velocity 

x 10 

500 m Height  

x 100 

Velocity 

x 100 

Diameter 

x 33 

Diameter 

x 10 

Temp 

x 100 

Height 

x 10 

Temp 

x 10 

Velocity 

x 10 

Figure 6.5 – Analysis of most and least sensitive parameter and increase factors for point 
source parameters 
Note: ‘Temp’ denotes ‘Temperature’ 
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The analysis of the results showed that increases in parameter values affected the 

model differently depending on distance downwind from source. However, a common 

parameter and increase factor for all downwind distances was source height and 

running the model when using a source height of 300 m (highlighted in yellow). This 

made the most difference between predicted downwind actinomycetes concentrations 

compared to running the model with a base source height of 3 m as measured on site.  

 

The model in general was less sensitive to varying source temperature for all downwind 

distances (highlighted in two shades of blue) and the results also showed that for a 

point source the model was least sensitive to varying the source temperature by a factor 

of 10 at 1 and 10m downwind. Similarly, the model was less sensitive to varying the 

source velocity by a factor of 10 at 100, 250 and 500m downwind even though for the 

same distances the model was more sensitive to varying this same parameter by a 

factor of 100.  

 

Increasing some parameters with certain factors had no difference on the model output 

when compared with the base model output (ratio 1.00 ± 20%) as highlighted in Table 1 

of Appendix H. These are listed as follows: 

 

• Source velocity x 10 (100, 250 and 500m) 

• Source temperature x 10 (1m)  

 
a.2) Area Source 

The analysis of the most and least sensitive parameter and increase factors for the area 

source were similar to those shown for the point source (Figure 6.5). As such increases 

in parameter values affected the model differently depending on distance downwind 

from source.  

 

The two common parameters and increase factors for all downwind distances was 

increasing both the source height and source velocity by a factor 100. Therefore similar 

to point source modelling, running the model using a source height of 300 m made the 

most difference between predicted downwind bioaerosol concentrations compared to 

running the model with a base source height of 3 m as measured on site.  
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Running the model with a source velocity of 120 m/s also had a large effect on the 

difference between predicted downwind bioaerosol concentrations compared to running 

the model with a base source velocity of 1.2 m/s as measured on site. This was similar 

to results for a point source where the model was sensitive to increasing the source 

velocity by a factor 100. 

 

The results also showed that for an area source (the same as a point source), the 

model was least sensitive to varying the source temperature by a factor of 10 at 1 and 

10m downwind. Similarly, the model was least sensitive to varying the source velocity 

by a factor of 10 at 100, 250 and 500m downwind. However the model was more 

sensitive to varying the source height for an area source by a factor 10 at 100, 250 and 

500m downwind. This was in contrast to varying the source temperature by a factor of 

10 as it was for a point source. Increasing the source velocity by 10 at 100, 250 and 

500m downwind of source had no difference on the model output when compared with 

the base model output (ratio 1.00 ± 20%).These ratios are highlighted in Table 2 of 

Appendix H.  

 

a.3)  Volume Source 
 
The analysis of most and least sensitive parameter and increase factors for a volume 

source are shown in Figure 6.6. 

Downwind  
Distance 

Most Sensitive                                                          Least Sensitive        

1 m Mid Height x 100  

Vertical Dimension x 100 

Vertical Dimension x 10 

10 m Mid Height x 10 

Mid Height x 100  

Vertical Dimension x 100 

Vertical Dimension x 10 

100 m Mid Height x 100  

Vertical Dimension x 100 

Mid Height  

x 10 

Vertical Dimension 

 x 10 

250 m Mid Height x 100  

Vertical Dimension x 100 

Mid Height  

x 10 

Vertical Dimension 

 x 10 

500 m Mid Height x 100  

Vertical Dimension x 100 

Mid Height  

x 10 

Vertical Dimension 

 x 10 

Figure 6.6 – Analysis of most and least sensitive parameter and increase factors  
for volume source parameters 
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It was not possible to compare these results with those for point and area sources as 

different parameters are used for volume source modelling. However, similar to point 

and area sources, the model was less sensitive to smaller increases in parameters (i.e. 

increasing a parameter by a factor of 10 as opposed to a factor of 100).  The model 

(CERC, 2003) defines a volume source as “a release from an area source with vertical 

extent but no plume rise”. Hence the volume source would be expected to behave 

similarly to an area source and might explain this outcome.  

 

The analysis showed that for all downwind distances, changing both parameters for a 

volume source by a factor of 100 had the largest output change. The only exception to 

this was that changing the mid height of the source above ground by a factor of 10 at 

10m downwind from source to which the model was also most sensitive. The least 

output change for all downwind distances was detected when the vertical dimension of 

volume source was increased by a factor of 10 (hence at 30m).  

 

Increasing the vertical dimension of volume source by a factor of 10 at 100, 250 and 

500m downwind from source had no difference on the model output when compared 

with the base model output (ratio 1.00 ± 20%). These ratios are highlighted in yellow in 

Table 3 of Appendix H.  

 
b) Effect of Pollutant Parameters on Downwind Concentrations 
 
b.1) Particulate Pollutant Parameters  
Two separate quantitative analyses were completed following the particulate pollutant 

sensitivity analysis. The first quantitative analysis (Appendix H, Table 4) aimed to 

analyse the sensitivity of the model to increasing particle parameters from the chosen 

base parameters (for a realistic pollutant) when modelling the pollutant as a particulate 

and considering the effects of dry deposition. The summary of the first quantitative 

analysis is shown in Table 6.5 for a point source. This quantitative analysis showed that 

changing the particle mass fraction (denoting particle aggregation) of the pollutant has 

no effect on the modelling output regardless of the source type (i.e. ratio is equal to 

1.00). Therefore this parameter was not analysed further in Table 6.4. 
 



Chapter 6 – Preliminary Air Dispersion Modelling and Sensitivity 
 Analysis of the Model 

 

 205

Table 6.4 – Point source modelling particle pollutant sensitivity analysis 
summary; N denotes ‘no’, Y denotes ‘yes’, NR denotes ‘no-result’, UP denotes ‘ 
under prediction’, OP denotes ‘over prediction’.  

Is the Model Sensitive? 
(at downwind distances, m) 

Over or under prediction?  
(at downwind distances, m) 

Parameter Change 
Factor 

1 10 100 250 500 1 10 100 250 500 

X 10 N N N N N NR NR NR NR NR 
X 100 N N N N N NR NR NR NR NR 

Deposition 
and Terminal 
Velocity 
 X 1000 Y Y Y Y Y UP UP UP UP UP 

X 10 N N N N N NR NR NR NR NR 
X 100 N N N N N NR NR NR NR NR 

Particle 
Density 
 

X 1000 N N N N N NR NR NR NR NR 
X 10 Y N Y Y Y UP NR UP UP UP 

X 100 Y N Y Y Y UP NR UP UP UP 

Particle 
Diameter 
 

X 1000 Y Y Y Y Y UP UP UP UP UP 

 

The results showed that the model was most sensitive to changing the particle diameter 

of a particle pollutant as opposed to other properties such as deposition/terminal 

velocity, particle density and particle mass fraction. Similar results were observed for 

the pollutant modelling of area and volume source types.  

 

A second quantitative analysis was also completed (Appendix H, Table 5) to compare 

the effects of various particle pollutant parameter values for all source types between 

two scenarios, first of which assumed the pollutant to be a particulate and second that 

assumed the pollutant to be a gas (i.e effects of dry deposition not taken into account). 

The results of this analysis were similar to those described for the first quantitative 

analysis. They showed that:  

 

• The model was not sensitive to differences in modelling the pollutant as a 

particulate aggregate with a defined particle mass fraction or as a gas;  

• The model was not sensitive to differences in modelling the pollutant as a particle 

with a defined particle density or modelling the pollutant as a gas (only exception 

when an unrealistic particle density of 1,000,000 kg/m3 is assumed for a pollutant 

emitted from a volume source at which instance the average ratio is an under 

prediction of 0.64 as an average of all downwind distances); 
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• The model was not sensitive to differences in modelling the pollutant as a particle 

with a defined deposition/ terminal deposition or modelling the pollutant as a gas 

(only exception when an unrealistic deposition/terminal velocity 0.01 m/s is 

assumed for the pollutant emitted from a point source, under prediction of 0.01 

as an average of all downwind distances). 

 

The model was sensitive to changing the particle diameter only. This had an effect on 

the model output when compared to modelling the pollutant as a gas with overall ratios 

of 0.73, 0.82 and 0.57 (under prediction) for all downwind distances for point, area and 

volume sources respectively.  The ratios at which the parameter is noted to have no 

effect on the output (0.8 to 1.2) are also highlighted in Tables 4 and 5 in Appendix H.  

 

b.2) Gaseous Pollutant Parameters  
Two separate quantitative analyses were completed following the gas pollutant 

sensitivity analysis and parameterisation. The first quantitative analysis (Appendix H, 

Table 6) was completed to analyse the effect of changing the gas deposition velocity 

when modelling the pollutant as a gas and considering the effects of dry deposition. 

This is summarised in Table 6.5. Please note that the only parameter adjusted was gas 

pollutant deposition velocity.  
Table 6.5 – Gas pollutant sensitivity analysis summary for first quantitative 
analysis; N denotes ‘no’, Y denotes ‘yes’, NR denotes ‘no-result’, UP denotes ‘ 
under prediction’, OP denotes ‘over prediction’.  

Is the Model Sensitive? 
(at downwind distances, m) 

Over or under prediction?  
(at downwind distances, m) 

Source 
Type 

Change 
Factor 

1 10 100 250 500 1 10 100 250 500 

X 10 N N N N N NR NR NR NR NR 
X 100 Y Y Y Y Y UP UP UP UP UP 

Point 

X 1000 Y Y Y Y Y UP UP UP UP UP 

X 10 N N N N N NR NR NR NR NR 
X 100 Y Y Y Y Y UP UP UP UP UP 

Area 

X 1000 Y Y Y Y Y UP UP UP UP UP 

X 10 N N Y Y Y NR NR UP UP UP 

X 100 Y Y Y Y Y UP UP UP UP UP 

Volume 

X 1000 Y Y Y Y Y UP UP UP UP UP 
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The results showed that for all source types, increasing the deposition velocity of the 

gas pollutant by factors of 100 and 1000 resulted in the highest change for all downwind 

distances. In contrast increasing the deposition velocity of the gas pollutant by a factor 

of 10 resulted in the least change for all downwind distances with the exception of gas 

pollutant emitted from a volume source. This means that increasing the deposition 

velocity of a gas pollutant from the base parameter of 0.003 m/s to 0.3 m/s and 3 m/s 

has a profound effect on the predicted downwind bioaerosol concentrations.  

 

The second quantitative analysis was carried out (Appendix H, Table 7) to analyse the 

difference between modelling the pollutant as a gas (no model effects) and modelling 

the pollutant as a gas with defined deposition velocity (dry deposition).  This is 

summarised in Table 6.6. Please note that the only parameter adjusted was gas 

pollutant deposition velocity.  
 
Table 6.6 – Gas pollutant sensitivity analysis summary for second quantitative 
analysis; N denotes ‘no’, Y denotes ‘yes’, NR denotes ‘no-result’, UP denotes ‘ 
under prediction’, OP denotes ‘over prediction’.  

Is the Model Sensitive? 
(at downwind distances, m) 

Over or under prediction?  
(at downwind distances, m) 

Source 
Type 

Value 
(m/s) 

1 10 100 250 500 1 10 100 250 500 

0.003  N N N N N NR NR NR NR NR 
0.03 Y N Y Y Y UP NR UP UP UP 

0.3 Y Y Y Y Y UP UP UP UP UP 

Point 

3 Y Y Y Y Y UP UP UP UP UP 

0.003  N N N N N NR NR NR NR NR 
0.03 Y Y Y Y Y UP UP UP UP UP 

0.3 Y Y Y Y Y UP UP UP UP UP 

Area 

3 Y Y Y Y Y UP UP UP UP UP 

0.003  N N N N N NR NR NR NR NR 
0.03 N Y Y Y Y NR UP UP UP UP 

0.3 Y Y Y Y Y UP UP UP UP UP 

Volume 

3 Y Y Y Y Y UP UP UP UP UP 

 

The results of the second quantitative analysis were similar to those described for the 

first quantitative analysis and they showed that: 
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• The model was not sensitive to increasing the deposition velocity of the gas 

pollutant by a factor of 10;  

• The model was sensitive to increasing the deposition velocity of the gas pollutant 

by a factor of 100 or 1000.  

 

The ratios at which the parameter is noted to have no effect on the output (0.8 to 1.2) 

are highlighted in yellow in Tables 6 and 7 in Appendix G. 

 
c) Effect of Meteorological Parameters on Downwind Concentrations 

 
Two separate quantitative analyses were completed following the sensitivity analysis of 

meteorological parameters. The first quantitative analysis (Appendix H, Table 8) was 

completed to analyse the effect of increasing the meteorological parameters with factors 

of 10 and 100. The parameters were increased from base meteorological parameters 

which are those measured on site. This is summarised in Table 6.7. 
 
Table 6.7 – Meteorological parameter sensitivity analysis summary for first 
quantitative analysis; N denotes ‘no’, Y denotes ‘yes’, NR denotes ‘no-result’, UP 
denotes ‘ under prediction’, OP denotes ‘over prediction’.  

Is the Model Sensitive? 
(at downwind distances, m) 

Over or under prediction?  
(at downwind distances, m) 

Source 
Type 

Parameter Change 
Factor 

1 10 100 250 500 1 10 100 250 500 

X 10 NR NR NR NR NR NR NR NR NR NR Wind 

Speed X 100 Y Y Y Y Y UP UP UP UP UP 

X 10 N N N N N NR NR NR NR NR Relative 

Humidity X 100 N N N N N NR NR NR NR NR 
X 10 N N N N N NR NR NR NR NR 

Point 

Surface 

Temp X 100 N Y Y Y Y NR OP OP OP OP 

X 10 NR NR NR NR NR NR NR NR NR NR Wind 

Speed X 100 Y Y Y N Y UP UP OP NR UP 

X 10 N N N N N NR NR NR NR NR Relative 

Humidity X 100 N N N N N NR NR NR NR NR 
X 10 N N N N N NR NR NR NR NR 

Area 

Surface 

Temp X 100 NR NR NR NR NR NR NR NR NR NR 
Volume Wind X 10 NR NR NR NR NR NR NR NR NR NR 
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Speed X 100 Y Y Y Y Y UP UP UP UP UP 

X 10 N N N N N NR NR NR NR NR Relative 

Humidity X 100 N N N N N NR NR NR NR NR 
X 10 Y Y Y Y Y UP UP UP UP UP 

 

Surface 

Temp X 100 N N Y Y Y NR NR OP OP OP 

 

It was not possible to run the model with a wind speed of 0.5 m/s for any of the source 

types as the minimum wind speed value allowed by the model was 0.5 m/s. In addition, 

it was not possible to run the model with a surface temperature of 500C for an area 

source hence these are represented as NA and highlighted in grey in Table 6.7.  

 

The results showed that increasing the relative humidity did not have an effect for any of 

the downwind distances with a ratio of 1.00 for all source types. On average for all 

source emission types, the model was most sensitive to changing the wind speed by a 

factor of 100 (from 5 m/s to 50 m/s) with under predictions observed with the exception 

of an over prediction for 100m downwind distance for an area emission source type. 

The model was also sensitive to increasing the surface temperature by a factor of 100 

for point and volume emission source types with over predictions of outputs observed 

when results were compared to running the model with parameters measured on site.  

 

In addition to this, a second quantitative analysis was carried out (Appendix H, Table 9) 

which compared modelling the effects of various meteorological parameters (as 

described for the first quantitative analysis) for all source types and modelling using the 

ADMS 3.3 meteorological file R91A-G which represents the effects of different Pasquill 

stability classes (the Pasquill stability class D was chosen as discussed previously). The 

results of the this analysis showed that: 

 

• for all source types and at all downwind points, modelling using a wind speed of 

50 m/s had the most effect compared to modelling with Pasquill stability class D.  

• For both volume and point sources, the least effect was observed when 

modelling with a surface temperature of 500C compared to modelling with 

Pasquill stability class D. In contrast for an area modelling using a surface 
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temperature of 50C had the least effect compared to when modelling with 

Pasquill stability class D.  However, it should be noted that it was not possible to 

model for an area source using a surface temperature of 500C. 

• In addition for an area source, modelling with any relative humidity (1, 10 or 

100%) and using a wind speed of 5 m/s also had a small effect compared to 

when modelling with Pasquill stability class D.   

 
The ratios at which the parameter is noted to have no effect on the output (0.8 to 1.2) 

are highlighted in yellow in Tables 8 and 9 in Appendix H.   

 

6.4.3. Discussion 
 
The sensitivity analysis studies were completed to improve the understanding of the 

sensitivity and limitations of the model. In order to achieve this aim, objectives were set 

to: 

• determine which parameters characteristic of a composting facility (e.g. source, 

pollutant, meteorological) the model is most sensitive to and 

• determine if the model is most sensitive to adjusting the pollutant size and 

aggregation parameters or if other parameters such as source definition (i.e. point or 

area source) are just as important. 

 

Sensitivity analysis of source, pollutant and meteorological parameters was carried out 

by assigning a set of base parameters for each parameter which were based on 

parameters measured during the site work (Appendix E) or other values which have 

been noted by previous studies (Appendix G). The emission curves and downwind 

concentration data were generated for this base model. Then these base parameters 

were changed by a set of factors to create adjusted models and the emission curves 

and downwind concentration data were generated for these adjusted model scenarios. 

The quantitative analysis was completed which determined ratios of the adjusted to 

base model output to analyse and determine parameters which have the most and least 

effect on the bioaerosol concentrations predicted by the base model. 

 



Chapter 6 – Preliminary Air Dispersion Modelling and Sensitivity 
 Analysis of the Model 

 

 211

Currently the regulator in England and Wales requires a risk assessment for any facility 

that has a sensitive receptor (e.g. a home or office building) within 250 m of the site 

boundary (Environment Agency 2001; 2007). Therefore the following summary (Figure 

6.7) of the quantitative analysis results for the sensitivity analysis of emission source, 

pollutant and meteorological parameters is based on model predictions at 250 m from 

source. 

 
Figure 6.7- Summary of source, pollutant and meteorological parameter change 
analysis. Blue symbols denote point source parameters, red symbols denote 
area source parameters and green symbols denote volume source parameters.  
 
Note: Legend for Symbols 

Parameter Type Parameter Name Base Value Symbol 

Point Source Height 3 m  

Point Source Velocity 1.1 m/s  

Point Source Temperature 19.7oC  

Emission Source 

Point Source Diameter 3 m   

     Lower   
% 20 range 

     Upper   
% 20 range 

X 1000 

0.0 

0.4 

0.8 

1.0 

1.2 

2.0 

X 100 

Ratio 

X 10 

      Under predict 

Over predict 



Chapter 6 – Preliminary Air Dispersion Modelling and Sensitivity 
 Analysis of the Model 

 

 212

Area Source Height 3 m  

Area Source Velocity 1.2 m/s  

Area Source Temperature 25.6oC  

Volume Source  
Mid height above ground 
 

1.5 m  

Volume Source  
Vertical dimension 

3 m  

Deposition/Terminal 
Velocity (Point Source) 

0.00001 m/s  

Particle Density  
(Point Source) 

1000 kg/m3  

Particle Diameter  
(Point Source) 

0.000001 m 
 

Particle Mass Fraction 
(Point Source) 

0.1 
 

Deposition/Terminal 
Velocity (Area Source) 

0.00001 m/s  

Particle Density  
(Area Source) 

1000 kg/m3  

Particle Diameter  
(Area Source) 

0.000001 m  

Particle Mass Fraction 
(Area Source) 

0.1  

Deposition/Terminal 
Velocity (Volume Source) 

0.00001 m/s  

Particle Density  
(Volume Source) 

1000 kg/m3  

Particle Diameter  
(Volume Source) 

0.000001 m   

Particulate 

Pollutant 

Particle Mass Fraction 
(Volume Source) 

0.1  

Deposition Velocity 
(Point Source) 

0.003 m/s  

Deposition Velocity 
(Area Source) 

0.003 m/s  

Gas Pollutant 

Deposition Velocity 
(Area Source) 

0.003 m/s  

Wind Speed 
(Point Source) 

5 m/s 
 

Relative Humidity 
(Point Source) 

10 % 
 

Surface Temperature 
(Point Source) 

5oC 
 

Meteorological 

Wind Speed 
(Area Source) 

5 m/s  



Chapter 6 – Preliminary Air Dispersion Modelling and Sensitivity 
 Analysis of the Model 

 

 213

Relative Humidity 
(Area Source) 

10 %  

Surface Temperature 
(Area Source) 

5oC 
 

Wind Speed 
(Volume Source) 

5 m/s  

Relative Humidity 
(Volume Source) 

10 %  

Surface Temperature 
(Volume Source) 

5oC  

 

The sensitivity analysis for emission source, pollutant and meteorological parameters as 

summarised above (Figure 6.7) revealed the parameters which have the least and most 

overall change on the bioaerosol concentrations predicted by the base model and the 

factors by which these changes are observed at 250m downwind from source.  

 

One objective of the sensitivity analysis was to analyse the effect of source definition 

(i.e. point or area source) on model output. Hence all parameters were tested 

separately for a point and area source (shown by blue and red symbols respectively). 

The definition of the source resulted in a difference between model output for a point or 

area source for a limited number of model parameters. For example, increasing the 

particle deposition/terminal velocity by a factor of 1000 had the largest effect for a point 

source but did not have any effect for an area source. However, in general, the results 

(Figure 6.7) showed that model output for the parameterisation of different parameters 

did not differ for a point or area source. 

 

The results (Figure 6.7) also showed that common to all source types, the parameter 

which had the most effect on the predicted downwind concentrations was increasing the 

source height by a factor of 100 (shown by blue, red and green filled circles). This would 

mean that modelling the source as one that is 300m high as opposed to 3m high which 

was taken as the base parameter. This was in line with previous studies which have 

reported that exposure of bioaerosols emitted from sewage was modulated by season 

as well as the height at which these waste was agitated (Nielsen et al., 1997). The 

height of a composting windrow (bioaerosol source) for all compost windrows at all 

sampling days was determined to be 3m. The height of an agitation cloud had also been 

observed to be 3m as reported in previous studies (Taha et al., 2006). Therefore, 
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increasing the source height parameter which denotes the bioaerosol source in a 

composting facility by a factor of 100 would result in a value that will never be likely or 

practical in a composting facility.  

 

For both point and area sources, increasing the source velocity by a factor of 100 also 

had a big effect on the predicted downwind concentrations (shown by blue and red filled 

squares). The base value taken for this parameter is 1.2 m/s which was the wind speed 

measured on top of a composting windrow or inside the agitation cloud which would 

denote the velocity by which bioaerosols are dispersed from source. A wind speed of 

120 m/s might occur in hurricane-tornado environments (McCaul, 1991) but would be 

very unlikely to occur in a composting facility.  

 

The model describes particle mass fraction as the mass fraction of the particles with 

specified velocities/diameters which must add up to 1 (CERC, 2003). This parameter is 

used for particle emissions and allows the user to model particulate mixtures where up 

to 10 different particle size/density combinations can be specified. For the purposes of 

this study, the particle mass fraction was assumed to denote bioaerosol aggregation as 

per previous studies (Drew et al., 2006). Therefore a number of particle pollutants were 

defined in terms of their deposition parameters with their mass fraction adding up to 1 

representing a whole aggregate. It is also important to note that the sensitivity analysis 

discussed in this study was based on varying one parameter at a time hence the 

particle size and density was kept constant whilst different particle mass fractions were 

tested. The results showed that for particle pollutant parameters, changing the particle 

mass fraction of the pollutant did not have an effect for any source type or any increase 

factor.  

 

Changing the particle density of a particle pollutant by any factor for point and area 

sources and by 10 and 100 for a volume source also did not have an effect on the 

model output. In addition changing the particle terminal/deposition velocities by any 

factor for area and volume sources resulted in no effect on the model output. Therefore 

ADMS 3.3 was not sensitive to any of these pollutant parameters for a particulate 

pollutant. 
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The model was not sensitive to increases in particle deposition/terminal velocity for an 

area source. In contrast, increasing the particle deposition/terminal velocity by a factor 

of 1000 had the largest effect for a point source. However this change would indicate a 

parameter which is equivalent to 1x10-2 m/s deposition/terminal velocity. The base value 

for the deposition and terminal velocities of a particle pollutant was 1x10-5 m/s. This 

parameter value was chosen in the range of model minimum, maximum and various 

velocities listed in previous literature (Table 6.8). 

 
Table 6.8- Velocities of various microorganisms 

Microorganism Type of Velocity Value of Velocity Reference 

thermoactinomycetes 5x10-5 m/s 

A.fumigatus 

Terminal  

5x10-4 m/s 

Gregory, 1973 

Bacteria Settling 1x10-4 m/s Muilenberg, 1995 

A. fumigatus 2.9x10-4 m/s 

Penicillium 3.1x10-4 m/s 

Thermoactinomyces 
vulgaris 

1x10-5 m/s 

Micropolyspora faeni 1.1x10-4 m/s 

Saccharomonospora 
viridis 

1x10-4 m/s 

Nocardia sp 1.3x10-4 m/s 

Bacteria 

Sedimentation 

2.1x10-4 m/s 

Lacey and 
Dutkiewicz, 1976a 

 

In addition to these Chamberlain (1967) has noted terminal velocities of spheres with a 

unit density of 3.5x10-5 and 1.3x10-4 for 1 and 2 µm spheres. Therefore a 

deposition/terminal velocity of 1x10-2 m/s would be unlikely to occur for actinomycetes, 

bacterial or fungal species. However the terminal velocities of bigger particles such as 

Lycopodium spores have been reported to range from 0.7-3.5x10-2 m/s for a 32 µm 

spore size (Gregory, 1950; Chamberlain 1967 from Sehmel, 1980), 1.5 – 4.5x10-2 m/s 

for a spore size of 20 µm; 3.3-9.9x10-2 m/s for a spore size of 32-35 µm and 2-6x10-1 

m/s for a spore size of 90-100 µm (Raynor, 1976 from Sehmel, 1980). Therefore even 

though the model was sensitive to incorporation of the deposition/terminal velocity of a 

particulate pollutant, the results show that it is sensitive to the deposition/terminal 

velocity rates of larger particles such as a Lycopodium spore (i.e. 32 µm). Therefore, if a 
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bioaerosol forms an aggregate in a size similar to that of a Lycopodium spore, then the 

model would be able to account for this. However, the results shown in Chapters 4 and 

5 have revealed that the majority of bioaerosols emitted from compost are in single cells 

and even in aggregates, their overall size is not bigger than approximately 15 µm in 

length hence this result does not have implications in the use of the model for 

bioaerosol modelling.  

 

The base value for the particle diameter used was 1x10-6 m which was chosen in the 

range of model maximum, minimum and the results of SEM analysis of controlled 

experiments and site work (Chapters 4 and 5) which observed particles within the size 

ranges of 5x10-7 to 1x10-6 m (0.5-1 µm) for small spores and 2x10-6 to 3x10-6 m (2-3 µm) 

for large spores. The model was sensitive to parameterisation of particle size for all 

source types and for all multiplication factors of 10. In addition, the definition of a larger 

particle size (≥1x10-6 m equating to ≥10 µm) such as that for a bioaerosol aggregate 

resulted in the under prediction of the model output compared to the scenario where the 

pollutant was assumed to be gas. This might indicate that the model is able to consider 

the effect of a larger pollutant settling out compared to that for a smaller pollutant. 

Hence even if the model was not sensitive to definition of particle mass fraction (i.e. 

used for modelling particulate mixtures equalling to an overall particle mass fraction of 

1) which was assumed to denote aggregation, these results might indicate that the 

model is sensitive to defining the bioaerosol as an aggregate due to its sensitivity to 

larger particle sizes. However, it is important to remember that the model only appears 

to be sensitive to particle sizes ≥10 µm compared to modelling the pollutant as a gas. 

The results of the controlled experiments and site work showed evidence of larger 

bioaerosols emitted from compost however the largest of such particles had a length of 

15 µm and width of 8 µm and in general, the bioaerosols emitted from compost were in 

single cells. As such, there is no definitive evidence to suggest that bioaerosols should 

be re-defined as particles when modelling their dispersion with ADMS 3.3.  

 
For gas pollutant parameters, it was only possible to analyse the sensitivity of the 

deposition velocity. For all source types, increasing the deposition velocity by 10 had 

the least effect and increasing the deposition velocity by 1000 had the most effect on 
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the model output. The base deposition velocity parameter for a gas pollutant was taken 

as 0.003 m/s for a non reactive gas for CO2 (Hill, 1971 from Sehmel, 1980). Therefore 

ADMS 3.3 was sensitive to only using an unlikely deposition velocity of 3.0 m/s. As 

such, there is no evidence to show that when bioaerosols are modelled as gases, their 

dry deposition should be taken into account.  

 

The composition, concentration and size of microbial populations in the atmosphere are 

expected to change with the changes in the environmental conditions (Cox, 1987) as 

well as changes in bioaerosol source (Pillai, 2002; Pillai and Ricke, 2002). Therefore the 

model needs to be able to reflect changes in meteorological conditions such as wind 

speed, temperature or relative humidity against predicted bioaerosol concentrations.  

 

For meteorological parameters, for all source types, parameterisation of relative 

humidity had no effect on the predicted downwind concentrations. This is in contrast to 

previous studies (Lighthart et al., 1987; Muilenberg, 1995, Stetzenbach, 1997) which 

have noted that relative humidity is an important parameter which would effect the 

transport of bioaerosols in air and low relative humidity was discussed to cause daily 

peaks of some fungal spores such as Basidiospores and Ascospores whose diurnal 

rhythm requires atmospheric moisture for spore release (Levetin and Horner, 2002). 

 

The parameter which had the most effect for a point and area source was increasing the 

wind speed by 100 and increasing the surface temperature by a factor of 100 had the 

most effect for a volume source. The effect of wind speed on the predicted downwind 

actinomycetes concentrations are in line with previous studies (Gostelow et al., 2001; 

Colls, 2002) which have discussed the effect of wind speed on the dispersion of 

bioaerosols. In addition, daily peaks of some fungal spores such as Cladosporium, 

Alternaria and Epicoccum have been discussed to occur at high temperatures and wind 

speeds (Levetin and Horner, 2002). This is because these spores are released 

passively and their dispersal is dependent on weather effects such as the wind speed. 

However, increasing the base speed 0.5 m/s by a factor of 100 would result in a wind 

speed of 50 m/s which is not a realistic value for a wind speed usually observed in a 

composting facility. Similarly, increasing the surface temperature by a factor of 100 
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would result in a surface temperature of 1970oC which will not occur in a composting 

facility. 

 

As discussed previously, the methodology developed for the sensitivity analysis 

involved the use of base parameter values used to generate the base models which 

were those measured on site or reported in previous studies for particle or gas 

pollutants. Therefore, it was important to analyse the results of the sensitivity analysis 

with regards to the parameter values which would occur in nature and a composting 

facility. This is because even if changing a certain parameter in ADMS 3.3 by a certain 

factor might result in improved predicted downwind concentrations in a composting site, 

if that final parameter is one that would not occur in real-life then this would not be a real 

improvement in the ability of the model to predict bioaerosol dispersion.  

 

The results lead to the conclusion that when the model was sensitive to a parameter, 

the value of this parameter was generally unlikely to occur in nature or in a composting 

facility. However, one potential reason for this might also be due to the limitations of the 

sensitivity analysis approach that remits discussion.  

 

The sensitivity analysis approach involved establishing a base (i.e. baseline scenario) 

model created by using parameters measured previously at a composting site or in 

previous studies to represent realistic parameter values measured at a composting 

facility. Then these parameters were increased by 10 and its multiplication factors (e.g. 

100, 1000) to create adjusted models (i.e. scenarios). This approach was taken as the 

multiplication of base parameters by factors such as 10 and 100 allowed the exploration 

of a wider range of parameter values allowed by the model (i.e. maximum and minimum 

parameter values permitted by model) compared to using smaller factors such as an 

increase by x2 or x5. In addition, multiplying the base parameters by multiplication 

factors of 10 were applicable to other parameter groups (i.e. pollutant and 

meteorological) that were explored simultaneously and hence allowed comparisons to 

be made between different parameter groups. The approach of dividing the base 

parameter by values such as 0.1 or 0.01 was not feasible to achieve across a higher 
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number of parameters because the range of parameter values allowed by the model 

was limited.  

 

However, multiplication of the base parameter by factors such as 10 and higher values 

results in the creation of parameters which are unlikely to occur in nature or a 

composting facility. This is a limitation of the sensitivity analysis approach rather than a 

critique of the model. The sensitivity analysis was one of the many different studies 

explored within this thesis and hence was constrained by time limitations. As such, 

some model parameters were kept constant and other model parameters which were 

deemed to have an increased likelihood on model output were explored. However, for 

future studies, it would be recommended that, for parameters which the model has been 

shown to be sensitive to at a multiplication factor of 10, the approach should be further 

refined to explore smaller changes in model parameters. Hence a factor such as the 

parameterisation of the particle diameter which for a point and area source the model 

was sensitive to at a factor of 10 (blue and red filled plus sign as shown in Figure 6.7) 

should be further tested to analyse its effect on the model output at a smaller factor of x 

2 or x 5 which would further represent values likely to occur in a composting facility in 

line with the results shown in Chapters 4 and 5. Such an analysis might have 

implications in the definition of the pollutant (i.e. particulate or gas) for future studies.  

 

An arbitrary range of 20% within 1.00 (i.e. 0.80 to 1.20) was set as a ratio range which 

was considered for the model to successfully simulate the measured downwind 

actinomycetes emissions from source. However, the results shown in Figure 6.7 show 

that a lower arbitrary range such as 10% within 1.00 (i.e. 0.90 to 1.10) might be more 

suitable for the data range. In addition, in line with the above argument for the 

multiplication factors, this might further refine the sensitivity analysis approach.  

 

However, on average, the model was not sensitive to a larger number of parameters 

than the number of parameters it was sensitive to. Therefore the further refinement of 

the model to test the effect of lower factors on a large number of parameters is unlikely 

to result in a significantly different outcome.  
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6.5. CONCLUSIONS 
 
Preliminary air dispersion modelling completed at Keenan Recycling was discussed. 

The bioaerosol sources at this open windrow site were defined as either point or area 

sources. The determination of the bioaerosol emission rate by back-extrapolating the 

known bioaerosol concentrations downwind of a bioaerosol source as per the 

methodology outlined in Taha et al. (2005) resulted in a difference of less than 1-log 

between measured versus predicted bioaerosol concentrations for Keenan Recycling 

agitation and compost windrow sampling locations. In contrast, the use of the sampling 

hood methodology outlined in the same study (Taha et al., 2005) for determining 

bioaerosol emission rates from a compost windrow defined as a bioaerosol source 

resulted in the under prediction of the measured downwind concentrations by up to 4-

log. The results of the preliminary dispersion modelling studies therefore indicated that 

the definition of the source term (i.e. point or area source) might have a significant effect 

on the output concentrations predicted by the model and the differences in model 

predictions for different sources might be due to the variation in the use and 

determination of bioaerosol emission rates.  

 

Following this, an analysis was completed to analyse the sensitivities of ADMS 3.3 to 

determine which parameters that the model is most sensitive to. In addition, it was 

aimed to explore if the model was most sensitive to adjusting the pollutant size and 

aggregation parameters as discussed in other studies (Wheeler et al., 2001) or if other 

parameters such as source definition (i.e. point or area source) as implied by the results 

of the preliminary dispersion modelling were just as important. The results showed that, 

in general, the model output for the parameterisation of different parameters did not 

differ for a point or area source. 

 

In conclusion, the model was not sensitive to a larger number of parameters than the 

number of parameters it was sensitive to. Some of the key parameters that the model 

was sensitive to included source height (change by x10 and x100), source velocity 

(change by x100), particle diameter and wind speed (change by x100). In contrast, the 

model was not sensitive to a number of key parameters including particle mass fraction 
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(denoting aggregation), particle density, gas deposition velocity (change by x10), 

relative humidity and surface temperature. 

 

Previous studies have discussed the possibility of bioaerosols emitted from composting 

facilities forming aggregates that might result in overall particle sizes exhibiting non-

gaseous behaviour (Wheeler et al., 2001; Swan et al., 2002). In line with this, the results 

of the sensitivity analysis showed that the model was not sensitive to changes in particle 

mass fraction which was assumed to denote defining the particulate pollutant as an 

aggregate. However the model was found to be somewhat sensitive to definition of a 

particulate pollutant size. The method developed for the sensivity analysis was based 

on varying one parameter at a time hence the particle pollutant size and density was 

kept constant whilst the particle mass fraction was changed. Hence this might also 

explain why the model was not sensitive to mass fraction but somewhat sensitive to 

pollutant size. However the results of the controlled experiments and site work 

(Chapters 4 and 5) showed that despite the evidence of aggregation, the majority of the 

bioaerosols emitted from compost were in single cells. Hence even though the model is 

sensitive to the definition of particle pollutant size, there was no conclusive evidence to 

re-define bioaerosols to be modelled as particulates. Therefore in line with previous 

studies (Drew et al., 2006; Taha et al., 2007a), the principle that bioaerosol cells are of 

a sufficiently small size to justify the assumption of them acting as gaseous pollutants 

remains.  

 

The next chapter (Chapter 7) discusses the further assessment of the potential of 

ADMS 3.3 in determining the concentrations of bioaerosols emitted from composting 

facilities. In addition, the next chapter also aims to present and discuss the key 

conclusions for the overall air dispersion modelling studies.  

 



Chapter 7- Potential of ADMS 3.3 to  Predict Bioaerosol Concentrations at a  
Composting Facility 

 

 222

7. POTENTIAL OF ADMS 3.3 TO PREDICT BIOAEROSOL 
CONCENTRATIONS AT A COMPOSTING FACILITY  
 
 
7.1. INTRODUCTION 
 
The preliminary air dispersion modelling completed at Keenan Recycling (Chapter 6) 

showed that modelling of bioaerosol sources at an open windrow site, resulted in a 

difference of up to 4-log between measured and predicted bioaerosol concentrations for 

point and area sources. The results of the preliminary dispersion modelling studies 

indicated that the definition of the source term (i.e. point or area source) may have a 

significant effect on the output concentrations predicted by the model.  

 

Therefore, a sensitivity analysis of the model was completed to determine which 

parameters that the model is most sensitive to. In addition, it was aimed to explore if the 

model was sensitive to adjusting the pollutant size and aggregation parameters as 

discussed in other studies (Wheeler et al., 2001) or if other parameters such as source 

definition are just as important. The results showed that, in general, the model output for 

the parameterisation of different parameters did not differ for a point or area source. In 

addition, in general, the model was sensitive to only a limited number of parameters.  

 

The results of the sensitivity analysis also showed that the model was not sensitive to 

defining the particulate pollutant as an aggregate however was somewhat sensitive to 

the particulate pollutant size parameter. However the results presented in the previous 

chapters (Chapters 4 and 5) have showed that despite the evidence of aggregation, the 

majority of the bioaerosols emitted from compost were in single cells. Hence even 

though the model is sensitive to the definition of particle pollutant size, it was felt that 

there was no conclusive evidence to re-define bioaerosols to be modelled as 

particulates. 

 

The preliminary air dispersion modelling studies presented and discussed in Chapter 6 

also indicated that the bioaerosol emission rate was a factor which affected the ability of 

the model to successfully predict pollutant concentrations. Therefore site work was 

undertaken with the objective to analyse the effect of source definition further and to 
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collect bioaerosol concentration and emission data from different sources and 

downwind locations at another composting facility. The initial site work completed 

previously at Keenan Recycling had various limitations including the lack of multiple 

downwind bioaerosol concentrations to compare with the bioaerosol concentrations 

predicted by the model and a lack of an emission rate for some bioaerosol sources due 

to practical bioaerosol sampling difficulties. Therefore the studies completed in this 

chapter were designed to address some of the limitations encountered during the 

previous site work.  

 

Firstly the methodology that was adopted is explained including details of the bioaerosol 

sampling and air dispersion modelling studies. Following this, the culturing results of the 

bioaerosol concentrations detected on site are compared with the results of the air 

dispersion modelling for varying scenarios and discussed. Finally, the key conclusions 

for all air dispersion modelling studies (Chapter 6 and this chapter) are presented and 

recommendations are made on the best use of the model in predicting bioaerosol 

concentrations at a composting site. 

 

7.2. METHODOLOGY 
 
7.2.1. Bioaerosol Sampling 
The details of the bioaerosol sampling completed at Donarbon Limited including site 

description, sampling methodology, expression of results and the health, safety and 

quality control precautions were discussed previously (Chapter 3, Section 3.2.2). 

However, it is important to separately discuss the design of the sampling methodology 

to enable generation of data in support of the model evaluation. The site work 

completed at Keenan Recycling was aimed to complete a preliminary assessment of the 

ability of a commercial air dispersion model, ADMS 3.3, in predicting bioaerosol 

emissions from a composting facility compared to bioaerosol concentrations measured 

by on-site downwind bioaerosol sampling. However a series of limitations were 

encountered throughout the initial site work visits at Keenan Recycling as discussed 

previously (Chapter 6) including: 
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• the lack of multiple downwind sampling points; 

• the likelihood that the bioaerosol concentrations at the downwind location to 

which the model predictions are compared to not solely representing the 

bioaerosol sources that were used for determining the bioaerosol emission rates; 

and 

• the lack of an emission rate determined for a majority of the composting 

windrows.  

 

Therefore, the site work discussed in this chapter was designed to generate specific 

data to further improve the understanding of the ADMS 3.3 model in predicting 

downwind bioaerosol concentrations. The composting site, Donarbon Limited, was 

evaluated beforehand to locate the most suitable location to complete such experiments 

in light of the above limitations. The kerbside collected waste compost windrow 

maturation area with adjacent compost agitation activity was therefore deemed as this 

location. This is because at the time of sampling, this area was not surrounded by other 

possible sources of bioaerosols, allowed the researcher to determine an emission rate 

from both compost windrows and agitation activities and to take multiple downwind 

samples.  

 

During the first and second sampling days, the prevailing wind direction was north 

easterly and the downwind sampling points were evaluated according to this. However, 

during the third sampling day, the prevailing wind direction was in the opposite direction 

hence the downwind sampling points were not the same as those for the first and 

second experiments.  

 

In addition, it was not possible to take downwind bioaerosol samples at a distance of 

further than 100m downwind due to the constraints presented by the site geography. It 

was also considered important to collect downwind concentration data at distances 

close to the emission source to reduce the effect of other bioaerosol sources on the 

downwind concentrations. In the light of these, the sampling points for each sampling 

day are shown in the schematic (Figure 7.1).   
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Figure 7.1. Layout of the sampling completed at Donarbon Limited Site.  
Key:  
Symbol Meaning of Symbol 

 bioaerosol samples taken at 
source 

 downwind bioaerosol sampling 
points for the 1st and 2nd 
sampling days 

 bioaerosol sampling points for 
the 3rd sampling day 

 
Note: It was not possible to obtain actinomycetes concentration data for the third 
sampling day at 5m downwind from bioaerosol source 
 
7.2.2. Air Dispersion Modelling 
Following the collection of source and downwind bioaerosol concentration data, air 

dispersion modelling was completed using the air dispersion model ADMS 3.3.  

 

The compost source term static emissions were modelled as area sources as in 

previous studies (Taha et al., 2005; Taha et al., 2007a) and as per the preliminary 

dispersion modelling completed in the previous chapter (Chapter 6). These emissions 
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were determined by taking bioaerosol samples collected using a wind tunnel placed on 

a compost windrow (Figure 7.2). 

  
Figure 7.2. Static source bioaerosol sampling by wind tunnel  

 

The air velocity inside the wind tunnel, the specific bioaerosol emission rate (SBER)  

and the specific bioaerosol emission rate corresponding to ground level air velocity were 

calculated using equations 6.2, 6.3 and 6.4 as described previously (Chapter 6). 

 

The agitation activity of screening captured at Donarbon Limited was modelled as a 

point source as described in the previous chapter (Section 6.3.1). The bioaerosol 

emission rate was estimated by performing the back-extrapolation using ADMS 3.3 as 

previously described in Section 6.3.1 and was based on the known bioaerosol 

concentrations measured at 15m downwind of the agitation activity.  

 

Agitation activities were observed for the first two sampling days however, it was not 

possible to capture agitation activity bioaerosol concentrations on these dates due to 

unforeseen changes in site practices on the day. Hence the emission rate calculated 

from the data gathered from the third sampling day was used for modelling of the data 

from the previous two experiments.  

 

The results presented in Chapters 4, 5 and 6 indicated that there no conclusive 

evidence to re-define bioaerosols to be modelled as particulates. Therefore, similar to 
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the preliminary air dispersion modelling completed at Keenan Recycling, the bioaerosol 

pollutant was assumed to be gas and no deposition velocity or washout coefficient was 

defined (i.e. no model option). As per the preliminary modelling completed at Keenan 

Recycling, the parameters used for the source (e.g. source height, diameter, geometry 

or temperature) represented the measurements taken on site. The results of the 

sensitivity analysis also showed that the model was sensitive to meteorological 

parameters such as wind speed and surface temperature however not at values likely to 

occur in a composting facility. Therefore stability class D (neutral conditions) (Pasquill, 

1961) of the ADMS 3.3 file R91A-G was used for all modelling exercises representing 

the most frequently occurring atmospheric state in the UK (Colls, 2002). Finally, the 

same simplifying assumptions as listed in Chapter 6 (Section 6.3.1) were made. Based 

on these, the bioaerosol emission rates and a list other modelling parameters used for 

the Donarbon Limited modelling studies are presented in Appendix I. 

 

Previous air dispersion modelling subsequent to the preliminary site work at Keenan 

Recycling was completed to test the ability of ADMS 3.3 in predicting downwind 

bioaerosol concentrations from various sources at a composting site to assess the 

potential of the model for use in support of regulatory risk assessments. To this end, 

data collected during the preliminary site work were assumed to represent ‘typical’ 

bioaerosol regulatory risk assessment data that might be collected at a compost site. 

However, since the site work discussed in this chapter are aimed to analyse the effect 

of source definition further, it was decided to test different scenarios to determine the 

effect of these scenarios in the ability of the model to predict downwind bioaerosol 

concentrations.  

 

Therefore the aim of testing the first two scenarios was to determine if modelling three 

different compost windrow locations as a separate source term is better at predicting 

measured downwind concentrations compared to modelling three different compost 

windrows as one single source term. The kerbside composting windrows at Donarbon 

that were used consisted of compost of different ages which might result in differing 

bioaerosol emissions from each windrow, however the resulting downwind bioaerosol 

emission would be emitted from a combination of these windrows as a source area.  
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In addition to this, two different scenarios were tested when calculating the agitation 

activity emission rate. The first scenario assumed the temperature of the material being 

agitated to be equal to ambient temperature. However, the temperature range needed 

to optimise the rate of biodegradation of waste material inside a compost windrow are 

between 45-55oC (Stutzenberger, F.T., 1970; Kane and Mullins, 1973; Stentiford, 1996) 

with temperatures rising up to 70-80oC (Lacey et al., 1996). Therefore, when a compost 

windrow is subjected to activities such as turning or screening, the agitation of the 

material inside the compost windrow which is at an elevated temperature might give rise 

to the release of hot material and air. This might cause an increase in heat flow rate on 

the surface of a windrow (Swan et al., 2003). Therefore the second scenario assumed 

the temperature of the material being agitated to be 550C and two different emission 

rates were calculated and used for the initial air dispersion modelling. The scenarios 

tested for the air dispersion modelling are as described in Table 7.1. 

 
Table 7.1 – ADMS 3.3 Site Modelling Scenarios 

Scenario Name of 
Scenario 

Description of Scenario 

1 

 

Multiple 
Source 

Modelling wind tunnel bioaerosol emissions from three different 

compost windrows locations as 3 separate sources  

2 Single 

Source 

Modelling an average (arithmetic mean) for the wind tunnel 

bioaerosol emissions as one single source  

3 Ambient 

Temperature 

Modelling a combination of wind tunnel and agitation activities. 

This scenario best represents the conditions observed on site.  

The agitation activity source temperature is equal to that of 

ambient temperature 

4 High  

Temperature 

Modelling a combination of wind tunnel and agitation activities. 

This scenario best represents the experiment conditions 

observed on site.  The agitation activity source temperature is 

55oC. 

 

A quantitative analysis was completed following this study which compared the 

modelling outputs from different scenarios as described previously in Section 6.3.1 

(Chapter 6). 
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The preliminary air dispersion modelling site work discussed in Chapter 6 revealed that 

bioaerosol emission rate might be an important factor in the likelihood of ADMS 3.3 in 

predicting of bioaerosol concentrations. Therefore, as a final study the effect of different 

emission rates on model output were tested to attempt to match the predicted downwind 

bioaerosol concentrations to those measured on site. 

 
7.3. RESULTS  
 
7.3.1. Downwind Bioaerosol Concentrations 
It was not possible to culture Aspergillus fumigatus from the site work carried out at 

Donarbon Limited hence concentrations for actinomycetes only are presented and 

modelled. The actinomycetes concentrations detected downwind from the bioaerosol 

source (i.e. compost windrow or agitation activity) for all sampling dates are presented 

in Figure 7.3. 
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Sampling Day 2
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Figure 7.3- Culture results for downwind actinomycetes concentrations for all 
site work completed at Donarbon Limited (a)sampling day 1; (b) sampling day 2; 
(c) sampling day 3  
 

The downwind actinomycetes concentrations showed an inconsistent emission pattern 

for the first two sampling days. At downwind distances closer to the bioaerosol emission 
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source (i.e. static compost windrows and agitation activity), the bioaerosol 

concentrations would be expected to be the highest (i.e. at 5 m). However it would be 

expected for the bioaerosol concentrations tend to decline with distance and time from 

source, due to dispersion within the atmosphere and dilution (Composting Association, 

2004; Taha et al., 2006). The final sampling day showed a downwind concentration 

pattern which would be as expected with highest concentrations measured 10 m 

downwind from source and decreasing steadily.  

 

The prevailing wind direction for the first and second sampling days were the same but 

in the opposite direction of that detected for the third sampling day. Hence this might 

account for the differences in patterns of bioaerosol emission. It is also important to note 

that the downwind sampling points at 10, 50 and 100m for the first and second 

experiments were taken at the nearby field due to site geography constraints. This field 

was elevated by approximately a meter compared to the site where the sampling took 

place. Therefore this might also have accounted for the differences in bioaerosol 

emission patterns as demonstrated in Figure 7.4. 
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 (b) 
Figure 7.4- Relationship between downwind sampling points and expected 
bioaerosol emission patterns for (a)sampling days 1 and 2 ; (b) sampling day 3. 
 

However, for sampling days 1 and 3, the highest downwind actinomycetes 

concentrations were both detected at 10 m downwind from source despite differences in 

the prevailing wind direction. In addition to these, actinomycetes concentrations at static 

compost windrow source were determined as presented in Table 7.2. 
 
Table 7.2 - Actinomycetes concentrations detected at Donarbon Limited  
Static Compost Windrow Bioaerosol Source  
 
Sampling  
Day 

Sample 
Location  

Actinomycetes 
Concentrations 
(cfu/m3)  

Wind Tunnel 1 86,226  
Wind Tunnel 2 53,030  

 
1 

Wind Tunnel 3 52,617  
Wind Tunnel 1 4,040 
Wind Tunnel 2 3,535  

2 

Wind Tunnel 3 18,572  
Wind Tunnel 1 4,293   
Wind Tunnel 2 3,283  

3 

Wind Tunnel 3 1,894   
 

These results showed that for the second and third sampling days, the average 

actinomycetes concentrations were approximately 1-log lower than those detected for 

the first sampling day. In addition for the third sampling day, the source actinomycetes 

concentrations were approximately 1-log lower than those for downwind measurements 

in contrast to the results of the first and second sampling days.  
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The bioaerosol concentrations measured at a static source (compost windrow) using a 

wind tunnel were lower than those measured downwind. This might also indicate that a 

combination of bioaerosol sources (agitation and compost windrow) contribute to 

downwind bioaerosol concentrations as opposed to compost windrows only. In addition, 

for the third sampling day, the highest actinomycetes concentration was detected for the 

agitation activity at 148,232 cfu/m3. This is also the highest actinomycetes concentration 

detected overall for all three sampling days, however it is important to remember that it 

was not possible to calculate this source concentration in previous experiments due to 

unforeseen changes in site practices on the day. This value is in the range reported by 

previous studies for agitation activity concentrations for bioaerosols (Wheeler et al., 

2001; Taha et al., 2006). 

 

Upwind (background) concentrations measured for sampling days 2 and 3 were both 

the lowest overall bioaerosol concentrations detected (2,847 cfu/m3 and 1,515 cfu/m3 

respectively). The downwind concentrations did not reduce to background 

measurements however the furthest downwind concentration measured was at 100m 

from source. Hence the downwind concentrations might have reduced to background 

measurements for further downwind actinomycetes sampling points however it was not 

possible to collect further downwind actinomycetes concentration data. This was 

because of practicality constraints presented by the sampling methodology and the site 

geography. It was also considered important to collect downwind concentration data at 

distances close to the emission source to reduce the effect of other bioaerosol sources 

on the downwind concentrations. These results are consistent with Crook et al. (2006) 

where the thermophilic actinomycetes concentrations measured at 125m downwind at 

various composting sites were higher than those measured for upwind (background).  

 
7.3.2. Air Dispersion Modelling 
The air dispersion modelling results for all sampling days completed at Donarbon 

Limited are presented below (Figure 7.5).  



Chapter 7- Potential of ADMS 3.3 to  Predict Bioaerosol Concentrations at a  
Composting Facility 

 

 234

Sampling Day 1 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 2 5 10 20 30 40 50 100 200 250 300 400 500

Distance from Source (m)

A
ct

in
om

yc
et

es
 C

on
ce

nt
ra

tio
n 

(C
FU

/m
3)

site measurement

Multiple Source

Single Source

Ambient
Temperature

High Temperature

 
(a) 

Sampling Day 2

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 2 5 10 20 30 40 50 100 200 250 300 400 500

Distance from source (m)

A
ct

in
om

yc
et

es
 c

on
ce

nt
ra

tio
n 

(C
FU

/m
3)

site measurement

Multiple Source

Single Source

Ambient
Temperature

High Temperature

 
(b) 



Chapter 7- Potential of ADMS 3.3 to  Predict Bioaerosol Concentrations at a  
Composting Facility 

 

 235

Sampling Day 3

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 2 5 10 20 30 40 50 100 200 250 300 400 500

Distance from source (m)

A
ct

in
om

yc
et

es
 c

on
ce

nt
ra

tio
n 

(C
FU

/m
3)

site measurement

Multiple Source

Single Source

Ambient
Temperature

High Temperature

 
(c) 

Figure 7.5 –Modelling results for all site work completed at Donarbon Limited (a) 
sampling day 1; (b) sampling day 2; (c) sampling day 3. 
 

The results showed that, on average, modelling wind tunnel bioaerosol concentrations 

as the only source term data (Scenarios 1 and 2) under predicted downwind 

concentrations measured on site by a factor of up to 3-log. However modelling wind 

tunnel bioaerosol concentrations combined with the agitation activity (Scenarios 3 and 

4) provided better predictions. This was also confirmed by the results of the quantitative 

analysis (Table 7.3) where the ratios highlighted in yellow indicated scenarios which 

were successfully able to predict downwind bioaerosol concentrations when compared 

to values measured on site. However the emission curves as well as the results of the 

quantitative analysis also showed that differences between Scenarios 3 and 4 were 

more distinct after 10m downwind from source. Similarly for scenarios 1 and 2, 

differences between scenarios were more distinct after 50m downwind from source.  

 

The quantitative analysis results (Table 7.3) showed that modelling three different 

compost windrow locations as separate source term data do not have any difference to 

modelling them as an average one single source term data. These similarities in ratios 

between Scenario 1 and 2 are highlighted in green. Likewise the assumption of the 
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agitation activity source temperature being equal to that of ambient temperature did not 

have a significant (with ratios numerically similar) difference to the assumption of the 

agitation activity source temperature being 55oC and not equal to that of ambient 

temperature.  

 
Table 7.3- Quantitative analysis of the results of the four different scenarios for 
initial ADMS modelling 

Ratio of predicted/measured actinomycetes 
concentrations at downwind distances 

Sampling 
Day 

Scenario 

5m 10m 50m 100m 

1 0.10 0.10 0.03 0.02 

2 0.04 0.04 0.03 0.02 

3 7.83 3.94 0.76 0.39 

1 

4 9.59 4.13 0.77 0.42 

1 0.02 0.07 0.00 0.00 

2 0.01 0.02 0.00 0.00 

3 23.03 36.08 1.07 0.81 

2 

4 27.52 38.11 1.07 0.86 

1 N/A 0.00 0.00 0.00 

2 N/A 0.00 0.00 0.00 

3 N/A 3.79 1.69 0.94 

3 

4 N/A 3.98 1.70 1.00 

Note: The ratios highlighted in yellow denote those within the arbitrary 20% range of 1.00 
 
7.3.3. Effect of Emission Rates on Downwind Concentrations 
The effect of changing the bioaerosol emission rates for static (compost windrow) and 

agitation source term data was also explored. The aim of this exercise was to determine 

the approximate factor by which the emission rates need to be changed to match the 

downwind actinomycetes concentrations measured on site. The results of these are 

presented below (Figure 7.6). 
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      (c) 
Figure 7.6 – The effect of emission rate on the prediction of downwind bioaerosol 
concentrations for all site work completed at Donarbon Limited (a) sampling day 
1; (b) sampling day 2; (c) sampling day 3. The bold lines show the dispersal 
curves derived from the actinomycetes concentrations measured on site. The 
non-bold lines show the dispersal curves predicted by the model. The y axis is in 
logarithmic scale. 
 

A comparison of the bold and non-bold lines show that the model is not successfully 

able to replicate the dispersal curves for downwind actinomycetes concentrations. 
Therefore the results show that by changing the emission rate by a known factor, it was 

possible to match the modelled downwind bioaerosol concentrations to those measured 

on site however only for one downwind bioaerosol concentration point at a time. The 

following table (Table 7.4) explores this argument further in which the factors that are 

needed to multiply the emission rates are listed to match the predicted and measured 

downwind actinomycetes concentrations. An ideal multiplication factor would be the 

same for all downwind distances.  
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Table 7.4 - Emission rate multiplication factors needed to match predicted and 
measured actinomycetes concentrations  

Approximate factor for downwind distances Sampling 
Day 5m 10m 50m 100m 

1 0.2 0.5 2 2 

2 0.03 0.03 None* None* 

3 N/A 0.5 0.2 None* 

Note: *This indicates that the base model matches the actinomycetes concentration measured 
on site 
 
For sampling day one, the calculated actinomycetes emission rate would need to be 

reduced by a factor of 0.2 to match the predicted and measured downwind 

concentrations at 5m downwind. The emission rate would need to be reduced by half to 

match the predicted and measured downwind concentrations at 10m however would 

need to be doubled to match the predicted and measured downwind concentrations at 

50m and 100m. For the second sampling day, the model was successfully able to 

predict downwind actinomycetes concentrations measured at 50m and 100m downwind. 

However the actinomycetes emission rate would need to be reduced by a factor of 

0.033 to match the predicted and measured concentrations at 5m and 10m. 

 

For the third sampling day, the model was successfully able to predict downwind 

actinomycetes concentrations measured at 100m downwind. However the 

actinomycetes emission rate would need to be reduced by factors of 0.5 and 0.2 to 

match the predicted and measured concentrations at 10m and 50m respectively. It was 

not possible to measure the actinomycetes concentrations at 5m for the third sampling 

day. Therefore, in conclusion, it was not possible to match the predicted actinomycetes 

concentrations to those measured on site by changing the actinomycetes emission rate 

by the same factor for all downwind distances for any experiment.  

 

The results of further quantitative analysis (Appendix J, Table 1) revealed that for all 

sampling days, when emission rates are changed by a certain factor, the ratio of 

actinomycetes concentration of adjusted to a base model also changes by that certain 

factor for all downwind distances that were examined. This is because the emission rate 

(rate of discharge of the pollutant) is directly proportional to the concentration 

distribution of the pollutant as shown in Equation 6.1 (Section 6.2). As such, this was 
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different from the results of the sensitivity analysis completed for source term, 

meteorological and pollutant parameters as presented previously (Chapter 6) in which 

the factors by which parameters were changed did not match the factors by which the 

output concentrations changed. 

 
7.4. DISCUSSION 
 
 
7.4.1. Modelling of Bioaerosol Emissions at Donarbon Limited 
Pollutants such as odours (McIntyre, 2000; Sarkar et al., 2005; Sheridan et al., 2004) 

and fine particulates that may have similar properties to those of bioaerosols have 

previously been successfully modelled using air dispersion models (Silibello et al., 

2008). In addition models have been developed to examine the dispersion of 

bioaerosols emitted from agricultural operations (Lighthart, 1984) and spread of 

biosolids (Dowd et al., 2000).  

 

However, the use of air dispersion models for bioaerosol emissions from composting 

facilities is relatively new. Several previous studies (Millner et al., 1980; Wheeler et al., 

2001; ADAS/SWICEB, 2005; Drew et al., 2005; Taha et al., 2006) have tested the 

applicability of Gaussian air dispersion models for use in modelling of bioaerosols from 

composting facilities. More recent studies (Drew et al., 2006; Taha et al., 2007a) have 

examined the applicability of ADMS 3.3 in predicting dispersion of bioaerosols emitted 

from composting facilities. However these studies have not made a comparison of 

predicted versus measured downwind concentrations of bioaerosols. 

  

Therefore, preliminary site work was completed at an open windrow composting site to 

improve the understanding of the applicability of ADMS 3.3 for modelling dispersion of 

bioaerosols emitted from composting sites (Chapter 6; SEPA/SNIFFER, 2007; Tamer 

Vestlund et al., 2007). The results showed that the model was not consistent in 

predicting downwind bioaerosol concentrations across different sampling days and 

showed a wide variety of bioaerosol concentrations and emission curves predicted by 

the model depending on how the bioaerosol source was defined. 
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Previous air dispersion modelling studies of bioaerosols from composting sources used 

the principle that bioaerosol spores were of a sufficiently small size to justify the 

assumption of them acting as gaseous pollutants (Drew et al., 2006; Taha et al., 

2007a). However, bioaerosols emitted from composting facilities might form aggregates 

that would result in overall particle sizes which would exhibit non-gaseous behaviour 

(Wheeler et al., 2001; Swan et al., 2002).  Previous studies have shown that a larger 

particle such as an aggregate might be subject to higher deposition velocities than 

those for smaller particles (Wheeler et al., 2001; Swan et al., 2003). This might suggest 

that on release from compost, a bioaerosol aggregate is more likely to settle out 

downwind of a bioaerosol source instead of remaining suspended in air (i.e. non-

gaseous behaviour) (Pillai and Ricke, 2002). The results of the model sensitivity 

analysis (Chapter 6) showed that the model is somewhat sensitive to the definition of 

particle pollutant size. However the controlled experiments and site work discussed 

previously (Chapters 4 and 5) showed that the majority of bioaerosols emitted from 

compost were in single cell units despite the evidence of bioaerosol aggregation. 

Therefore since the results show that the majority of the bioaerosols released from 

compost were in single cell units, this indicates that the majority of these bioaerosols 

might travel longer distances downwind of source compared to a situation where the 

majority of released bioaerosols were in aggregates.   

 

These results (Chapter 4 and 5) also showed that the majority of these bioaerosols had 

an aspect ratio of 1 or 1.4-1.5. For non-spherically shaped spores, an increase in 

surface drag might result in a delay in deposition (Lacey, 1991; McCartney, 1994; 

Levetin, 1995). Therefore these results suggest that the majority of bioaerosols emitted 

from compost were less likely to disperse for longer distances because there will not be 

any such delays in deposition. In addition the results also suggested that aggregate 

structures drop out of the pollutant plume by 100m downwind from source. As such, 

there was no conclusive evidence that showed a need to define bioaerosols as particles 

rather than gases.  

 

The preliminary air dispersion modelling studies presented and discussed in Chapter 6 

also indicated that the bioaerosol emission rate was a factor which affected the ability of 
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the model to successfully predict pollutant concentrations. Therefore to explore the 

importance of bioaerosol emission rate and to further improve the understanding of the 

model, a set of site work were completed to collect bioaerosol emission data from 

bioaerosol sources. Subsequently further air dispersion modelling studies were 

completed to test the effect on predicted versus measured concentrations. This work 

was similar to the air dispersion modelling studies discussed in Chapter 6 and was 

based on the same simplifying assumptions.  

 

The results of these studies (at Donarbon Limited) were in line with the preliminary air 

dispersion modelling completed for Keenan Recycling and showed that:  

 

• Modelling the emissions from compost windrows as the only source of bioaerosols 

under predicted measured actinomycetes downwind concentrations by up to 3-log 

whether the individual compost windrow concentrations were modelled as single 

sources or combined as one source.  

• When the compost windrow bioaerosol emissions and the agitation activity are 

modelled together, the model was more successful at predicting measured 

downwind concentrations and was able to match the downwind bioaerosol 

concentrations at some of the downwind sampling points.  

 

Transport of bioaerosol particles is affected by thermal gradients where they would be 

expected to move from higher to lower temperatures (Pillai and Ricke, 2002). On this 

principle, it might be expected that the downwind concentrations of bioaerosols at a 

composting site would be significantly different in different scenarios which assume the 

source temperature to be equal to that of ambient or higher. However, the model output 

suggests that the model is not able to reflect this as the results were very similar 

whether the agitation source temperature is assumed to be equal to ambient 

temperature or equal to 550C. However, to calculate the starting emission rate for an 

agitation activity, source temperature had to be taken into account and the calculated 

emission rates were different for the two different scenarios. Hence the effects of 

thermal gradients might be reflected in how the model is used to estimate the bioaerosol 

emission rate.  
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The ADMS 3.3 depletion curves for all sampling days showed a steady decline from 

source to downwind. However, air flow patterns in outdoor environments are rarely 

laminar or constant (Pillai and Ricke, 2002) which is likely to be the reason why an 

inconsistent pattern of decline of actinomycetes concentrations were observed in the 

culture results for the first two sampling days. Unpredictable weather conditions at a 

composting facility on the day of sampling are one of the problems posed by sampling 

for bioaerosols at a composting site. In line with this, for all sampling days, slight 

changes in wind direction were observed throughout the day.  Other studies are in line 

with this where ADAS/SWICEB (2005) report that the pattern of bioaerosol 

concentration downwind from source varied considerably on a sampling day. However, 

in general, an expected pattern of high levels at 25m downwind, lower levels at 75m 

downwind and background levels at 125m downwind from the boundary of the 

composting facility was observed. In contrast Crook et al. (2006) found an inconsistent 

pattern of decline in bioaerosol concentrations for downwind locations and argued that 

this might be due to unpredictable influences on bioaerosol concentrations such as wind 

current patterns, particle size distributions and variations in site topography (Colls, 

2002) and elevation. Hence, it would be very difficult for a commercial air dispersion 

model to account for such changes in a sampling day.  

 

Other reasons for the inconsistent pattern of decline of actinomycetes concentrations in 

the culture results for the first two sampling days may be as follows. The 10m, 50m and 

100m downwind actinomycetes concentrations for the first two sampling days were 

taken at the field next to the Donarbon Limited site (Figure 5.4) however in the last 

experiment all downwind concentrations were collected on site due to changes in the 

prevailing wind direction for different sampling days. These downwind locations 

measured during the first two sampling days were on a slope compared to the 

downwind locations measured during the last experiment.  

 

Finally, the presence of other bioaerosol sources such as those naturally occurring in 

the environment (Borodulin, 2005; Bovallius et al., 1978; Köck et al., 1998; Fang et al., 

2005; Mancinelli and Shulls, 1978; Spicer and Gangloff, 2005; Swan et al., 2002) might 
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have added complications to the bioaerosol concentrations measured downwind from 

source.  

 

In conclusion, the results of the air dispersion modelling from three different site visits 

showed that the model is not able to match the overall emission curves that were 

measured on site. However it is also possible that the inherent difficulties of bioaerosol 

sampling practices at a composting site also make it difficult to collect valid data to 

which the model output can be compared.  

 

7.4.2. Bioaerosol Emission Rates 
Calculation of bioaerosol emission rates as an input into air dispersion models has been 

recognized as a main challenge in air dispersion modelling studies (Wheeler et al., 

2001) and the air dispersion models are only as good as the data input to the model. 

Fixed emission rates are used for modelling studies and in reality, the emission rate 

might be inconsistent because of the changes in the source throughout the sampling 

day (Gostelow et al., 2001). In addition, there are no direct methods to measure 

bioaerosol emission from point sources such as agitation activities at present and the 

emission rates are based on back-extrapolation of downwind bioaerosol concentrations 

(Millner et al., 1980; Dannaberg et al., 1997; Swan et al., 2002; Taha et al., 2006). 

Therefore a final study was completed to examine the effect of changing different 

emission rates on the predicted downwind bioaerosol concentrations. 

 

The results of this study showed that for all sampling days, when emission rates are 

changed by a certain factor, the ratio of actinomycetes concentration of adjusted to the 

base model also changes by that certain factor. This is in contrast to the results of the 

previous sensitivity analysis studies for source, pollutant and meteorological parameters 

(Chapter 6) in which the factors by which parameters were changed did not match the 

factors by which the output concentrations changed. The model defines a pollutant by 

its mass emission rate (i.e. plume) (CERC, 2003) which indicates that the definition of 

the emission rate is a parameter directly influencing the model output. Hence this might 

be the reason for these results. 
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In addition to this, a comparison of the downwind depletion curves for culture based 

measured concentrations and those for predicted concentrations showed differences 

between the two. Hence in conclusion, by changing the emission rate by a known 

factor, it was possible to match some of the modelled downwind bioaerosol 

concentrations to those measured on site. However such a match was possible only for 

one downwind bioaerosol concentration point at a time and it was not possible to match 

the overall emission curves.  

 

7.4.3. Limitations of Modelling 
The results of the studies discussed in this and the previous chapter (Chapter 6) 

showed that there are many limitations to air dispersion modelling which should be 

considered when analysing the results of air dispersion modelling studies. 

 
Firstly, the results suggest that ADMS 3.3 was not capable of dealing with changes in 

site measurements from one sampling day to another. This is in line with Carruthers 

(1998) who has shown that in Gaussian models, if the weather conditions in a day are 

highly variable, then this might have problems in terms of the ability of the model to 

predict pollutant concentrations. However there are also problems when sampling for 

bioaerosols at a composting site (previously mentioned in Section 6.1 of Chapter 6) 

which may result in the data collected by bioaerosol sampling not representing what is 

really happening at the composting site. In addition, in a compost site, there are likely to 

be a wide range of variations between different sampling days in factors such as 

weather conditions, prevailing wind direction or site practices. Hence when comparing 

results of measured versus modelled concentrations, the capability of a commercial air 

dispersion model in assessing the risks of bioaerosols at composting facilities should be 

analysed in this context.  

 

Bioaerosols possess biological as well as physical properties. ADMS 3.3 is not 

designed for use on bioaerosols however the representation of the physical properties 

of bioaerosols (i.e. size, density, aggregation) might allow for them to be successfully 

modelled by ADMS 3.3. The model was somewhat sensitive to the definition of pollutant 

size however was not sensitive to the definition of other pollutant parameters such as 
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aggregation or density. In addition, the variabilities in bioaerosol occurrence due to their 

biological properties are not represented by ADMS 3.3. This includes properties such as 

spore shape or aggregate structure discussed in Chapters 4 and 5.  

 

Other variabilities such as the variability of spore presence in the atmosphere and spore 

discharge have been mentioned by previous studies (Stetzenbach and Lighthart, 1994; 

Levetin and Horner, 2002). This variability has been attributed to diurnal rhythms of 

spore discharge as well as weather and seasonal effects.  Another study (Levetin and 

Horner, 2002) has reported an increase of spore levels from 27,000 to 144,000 

spores/m3 in a matter of 2 hours in atmospheric spore levels in Tulsa. They have 

attributed this to increases in wind speed. Therefore an air dispersion model that aims 

to predict bioaerosol emissions may need added algorithms to reflect such biological 

variability to ensure accurate predictions of bioaerosol concentrations.  

 

The use of Gaussian models also presents some limitations. These models have been 

shown to be less applicable for prediction of emissions closer to the source term, at low 

wind speeds and when predicting emissions in varied terrain (Environment Agency, 

2004). The results presented for all modelling studies are in line with this where the 

prediction of bioaerosol emissions closer to source term was weak. Other limiting 

assumptions are made when Gaussian models such as ADMS 3.3 are used 

(Stetzenbach, 1997), including (Colls, 2002): 

 

• The pollutant release is steady state.  

• Timescales of hours rather than minutes are implied; 

• Pollutant is chemically stable;  

• Pollutant is <20 µm hence the effects of sedimentation from plume is negligible. 

 

However as discussed within this chapter, some of these assumptions are rarely true in 

real life (Colls, 2002). In a composting facility, the pollutant (i.e. bioaerosols) would 

mostly be expected to be released in steady state (e.g. constant bioaerosol plume 

released from a compost windrow) however compost related bioaerosols also exhibit 

episodic behaviour due to site practices or daily differences (Recer et al., 2001; 
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Sánchez-Monedero et al., 2005; Taha et al., 2006; Taha et al., 2007a). Secondly, the 

sampling duration used at Donarbon Limited was 30 min (as previously presented in 

Chapter 3, Section 3.2.2) which only provides a snapshot of the bioaerosol 

concentrations at a composting facility at a certain sampling point. This is a limitation of 

bioaerosol sampling completed in composting facilities. However, if in a Gaussian 

model timescales of hours rather than minutes are implied, this would indicate that the 

concentrations predicted by the model might differ than snapshot concentrations 

measured on site. Hence this might also account for some of the discrepancies between 

the predictions by the model and concentrations measured on site.  

 

The results of the previous chapters (Chapters 4 and 5) have shown that the majority of 

the bioaerosols emitted from compost are smaller than <20 µm hence this limiting 

assumption is correct for modelling bioaerosols emitted from composting facilities. 

However the chemical stability of the bioaerosol as well as their properties such as 

inactivation are not clearly understood. These have been previously discussed in 

Chapter 1.  

 

It is important to remember that air dispersion modelling is only an estimate of the 

behaviour of a pollutant in the atmosphere and it is not possible to capture the effects of 

slight changes in the atmospheric conditions throughout the sampling day (Gostelow et 

al., 2001) which has been shown by the results presented in this chapter. McIntyre 

(2000) showed that air dispersion models do not provide absolute predictions of 

pollutants as there are too many variables in the models themselves. In addition, there 

are emission variations of pollutant from source and difficulties in obtaining accurate 

data such as those discussed within this study.  

 

McIntyre (2000) mentions that successful agreement between measured and modelled 

values in odour emissions is an exception rather than the norm. Validation studies 

completed for ADMS for various data sets including a volume release in a field and a 

power plant stack in flat terrain also concluded that for the highest predicted and 

observed concentrations, ADMS under predicted on average by 20% (Hanna et al., 

1999). Therefore the tendency of the model to under predict concentrations indicates 
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that ADMS 3.3 has the potential to be used as a screening tool to assess relative 

changes in the emission of bioaerosols from the compost site, however the results 

should preferably be compared with the downwind bioaerosol concentrations measured 

on a composting site to assess the percentage of model under prediction.  

 

7.5. CONCLUSIONS 
 
The results of the preliminary air dispersion modelling at Keenan Recycling showed that 

the model was not able to consistently predict the bioaerosol concentrations downwind 

of a composting source. It was also shown that there were differences between the 

measured and predicted bioaerosol concentrations depending on the bioaerosol 

emission rate and how the biaoerosol source was defined (i.e. point or area). Previous 

studies (Wheeler et al., 2001) had suggested that the incorporation of bioaerosol 

aggregation into such dispersion models might improve the fit of the model to 

concentrations measured on site. The results of the sensitivity analysis showed that the 

model was not sensitive to defining the particulate pollutant as an aggregate but was 

somewhat sensitive to the particulate pollutant size parameter. However the results 

presented in the previous chapters (Chapters 4 and 5) showed that despite the 

evidence of aggregation, the majority of the bioaerosols emitted from compost were in 

single cells. Therefore it was felt that there was no conclusive evidence to re-define 

bioaerosols to be modelled as particulates. In addition, in general, the model was 

sensitive to only a limited number of parameters.  

 

There were a number of limitations identified in the preliminary air dispersion modelling 

studies. Therefore based on this, further studies were designed to analyse the effect of 

source definition and to collect bioaerosol concentration and emission data from 

different sources and downwind locations at another composting facility. Several 

scenarios were tested and the results showed that modelling only the emissions 

measured on the compost windrows at Donarbon Limited resulted in a difference of up 

to 3-log between predicted and measured concentrations (regardless of modelling 

individual compost windrow concentrations were modelled as single sources or 

combined as one source). In contrast, modelling both bioaerosol sources (compost 

windrow and agitation activity) at Donarbon Limited was found to be more successful at 
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predicting measured downwind concentrations and was able to match the downwind 

bioaerosol concentrations at some of the downwind sampling points. 

 

The results of the culturing results for the studies completed at Donarbon Limited 

showed an inconsistent pattern of decline in downwind actinomycetes concentrations 

for the first two sampling days. Therefore, ADMS 3.3 was not able to successfully 

predict the downwind source depletion curve for these experiments. In contrast, the 

model was more successful at predicting the source depletion curves for sampling day 

three. This might indicate that the model is not capable of dealing with changes in site 

measurements from one sampling day to another. However the culturing results might 

also be indicative of the inherent difficulties of bioaerosol sampling practices at a 

composting site. Such difficulties make it difficult to collect valid data to which the model 

output can be compared. Therefore when comparing results of measured versus 

modelled concentrations, the capability of a commercial air dispersion model in 

assessing the risks of bioaerosols at composting facilities should be analysed in this 

context. Finally, it was shown that it was possible to match the individual measured 

downwind concentrations by changing the actinomycetes emission rates however it was 

not possible to match the overall depletion curve. 

 
Therefore the overall results from the modelling studies indicate that ADMS 3.3 was not 

able to consistently predict absolute downwind bioaerosol concentrations at a 

composting facility. However air dispersion models have been useful (Carruthers et al., 

1998) for testing the effect of different emission scenarios which might be beneficial in 

completing regulatory risk assessment for composting facilities. Hence if an existing 

composting facility is planning changes to their operations, ADMS 3.3 might be a 

valuable tool for predicting and assessing relative changes in downwind bioaerosol 

concentrations resulting from different operating scenarios. In addition, air dispersion 

models might be the only way to explore different bioaerosol control situations and to 

assess bioaerosol emissions in a composting site. Therefore despite any limitations of 

using air dispersion models in assessing bioaerosol exposure, models such as ADMS 

3.3 may provide a useful overview of emissions in a composting site (Environment 

Agency, 2008). Therefore further research should be employed to improving the 

understanding of these models for modelling downwind concentrations of bioaerosols in 
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a composting facility. Such research should aim to complete extensive validation work 

to compare the measured versus modelled bioaerosol concentrations at different 

composting sites.  

 

Another area which needs extensive research in improving the prediction of bioaerosol 

concentrations by air dispersion models is the generation of further bioaerosol emission 

data. This is because air dispersion models are only as good as the data input to the 

model and one of the main challenges in air dispersion modelling studies is the 

calculation of bioaerosol emission rates as an input into air dispersion models (Wheeler 

et al., 2001). The results of all modelling studies presented in this research (Chapters 6 

and 7) and previous studies (Millner et al., 1977; Millner et al., 1980; Clark et al.,1983a; 

Jager et al., 1994; Sánchez-Monedero et al., 2005; Taha et al., 2006) show that 

agitation activity at a composting site is likely to be the major contributor of bioaerosols 

emitted from composting sites. However, there are no direct methods to measure 

bioaerosol emission from point sources such as agitation activities at present and the 

emission rates are based on estimation by back-extrapolation of downwind bioaerosol 

concentrations (Millner et al., 1980; Dannaberg et al., 1997; Swan et al., 2002; Taha et 

al., 2006).  

 

As such, it is not possible to recommend a definitive emission rate for bioaerosols 

emitted from composting facilities. However the variation of bioaerosol emission rates 

estimated for Aspergillus fumigatus and actinomycetes in various sites for this study are 

compared with the emission rates estimated by Taha (2005) in two different open 

windrow green waste composting facilities (Table 7.5). From this, a range of bioaerosol 

emission rates can be recommended to be used in future modelling exercises in the 

absence of any other site specific bioaerosol emission data. However, it is emphasised 

that any future studies should prioritise the collection of further bioaerosol emission data 

to validate any such existing emission rates .  
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Table 7.5 – Variation of bioaerosol emission rates at various open windrow green waste 
composting facilities  

Type of 
bioaerosol 

Range of estimated emission rate 
(cfu/s) 

Detail of collection site  

0.75 – 4.7 x 106 Keenan Recycling (Chapter 6) 

0.2 – 890 x 106 Site 1 (Taha et al., 2005) 

Aspergillus  
fumigatus 

0.055 -16 x 106 Site 2 (Taha et al., 2005) 

22 -135 x 106 Keenan Recycling (Chapter 6) 

5.77 x 106 Donarbon Limited (Chapter 7) 

0.5 – 860 x106  Site 1 (Taha et al., 2005) 

Actinomycetes 

0.0048 – 11 x 106 Site 2 (Taha et al., 2005) 

 

Based on the emission rates per individual bioaerosol as presented above (Table 7.5), 

when modelling the dispersal of A. fumigatus and actinomycetes from point sources (i.e. 

agitation activity), ‘high’, ‘medium’ or ‘low’ range of emission rates may be used to 

represent worst case, medium or best case scenarios at a composting site. Hence for 

actinomycetes, a best case emission rate of 4.8 x 103 cfu/s, a worst case emission rate 

of 8.6 x 108 cfu/s or a medium emission rate of 14.8 x 107 cfu/s (i.e. arithmetic mean for 

all actinomycetes rates) may be used.  

 

In the light of the site work and subsequent air dispersion modelling studies (Chapters 6 

and 7), a set of recommendations are made for assessing the risk of bioaerosols at an 

open windrow compost site. It may not always be possible to collect bioaerosol 

sampling data at a composting site prior to attempts at air dispersion modelling 

especially for sites which are assessed for bioaerosol exposure prior to construction. 

Hence the first set of key recommendations (Table 7.6) give general advice regarding 

the set up of the air dispersion model in the absence of any data collected on site. 

However ideally, any air dispersion modelling studies should be accompanied by 

bioaerosol sampling data collected on site. Therefore the second set of 

recommendations (Table 7.7) focuses on the collection of data for input into ADMS 3.3 

for assessing the downwind concentrations of bioaerosols at a composting facility. The 

model input parameters recommended in Table 7.6 may be used as general parameters 

subsequent to modelling of bioaerosol emission data collected at a composting facility. 

However, the model predictions (i.e. output) are recommended to be analysed in the 
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context of any data measured on site. In addition, the use of data collected on site 

specific to the site and sampling day (e.g. meteorological or source data) rather than 

generic data should always be preferred if possible.  

 
Table 7.6 – Key recommendations for model set-up 

• The bioaerosol source should be classified as a point source (to represent an agitation  

activity) . ‘High’, ‘medium’ or ‘low’ range of bioaerosol emission rates (Table 7.4) may  

be used to represent worst case, medium or best case scenarios at a composting site 

• The pollutant should be represented as a gas pollutant with no model option unless  

the use of deposition or other model options are specifically required.   

• Stability Class D of ADMS 3.3 file R91A-G can be used for meteorological data  

 
Table 7.7 – Recommendations for model input data collection 

• An upwind sample should be taken in close proximity to the site, ideally downwind 

of any sensitive receptors. It is important to remember that  this upwind sample might be 

the downwind sample at another sampling day if the prevailing wind direction changes.  

• The compost site should be assessed before sampling to define the bioaerosol source 

area (i.e. compost windrow or agitation activity) which will be assumed to contribute to  

downwind bioaerosol concentrations. 

• The determination of on site background bioaerosol concentrations such as those 

upwind of the bioaerosol source area (different from the site upwind sampling location) 

or other sources of bioaerosols in the compost site should be noted and included in the 

analysis. 

• Multiple samples downwind of the bioaerosol source area should be taken ideally at 4-5  

separate sampling locations to ensure the comparison of the model output with the  

downwind  bioaerosol concentrations measured on site 

• Changes in direction of the prevailing wind direction and wind velocity throughout the  

day should be noted and included in the subsequent assessment.  

• If agitation activities (i.e. screening, shredding, turning) are taking place on the sampling 

day, the biaoerosol emission rate determined from this (i.e. back-extrapolation  

method) is sufficient representation of bioaerosols released into the air from the  

compost source area. This should be represented as a point source.  

• However if there are no agitation activities taking place on the sampling day, the  

bioaerosol emission rates should be determined from a representation of the compost  
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windrows on site (i.e different ages). In the absence of a more appropriate method, the 

emission rate should be determined by using the back-extrapolation method and these  

should be represented as area sources. 

• The weather conditions during the sampling day should be noted for each sampling  

location and input into ADMS 3.3 to define the meteorological parameters. However, if 

it is not possible to measure the weather conditions on the sampling day, then it is  

recommended that ‘real-time’ meteorological data specific to the sampling site available  

from the Met Office is used. 

 

It is important to bear in mind that these recommendations can only be made for an 

open windrow compost site with compost sources comprising of compost windrows or 

agitation activities only. The definition of other bioaerosol sources such as in-vessel 

composting facilities as a source parameter should be assessed based on the type of 

in-vessel facility. In addition, the determination of the biaoerosol emission rate for such 

facilities is likely to differ from those for an open windrow compost site. An initial attempt 

at modelling two different in-vessel facilities was presented by Tamer Vestlund et al. 

(2007) and SEPA/SNIFFER (2006). However without a detailed sensitivity analysis of 

the ability of the model to predict bioaerosol emissions from in-vessel facilities, it is not 

currently possible to make recommendations for this composting technology.   

 

The previous chapters (Chapters 4 and 5) have improved the understanding of the 

release of bioaerosols emitted from compost and have assessed the indications of the 

results with respect to their dispersal in order to fulfill the first aim of the overall project. 

The chapters which discussed modelling of bioaerosols (Chapters 6 and 7) have 

assessed the potential of ADMS 3.3 to predict downwind bioaerosol concentrations at 

composting sites. In addition, the sensitivities of the model were explored. These 

chapters have fulfilled the second aim of this project, namely to improve the current 

understanding of the potential of a commercial air dispersion model to predict 

bioaerosol concentrations at composting sites. The next chapter will present the overall 

research conclusions as well as highlighting contributions to knowledge. 
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8. CONCLUSIONS 
 

8.1 RESEARCH BACKGROUND SUMMARY  
The amount of waste that is currently produced is an important environmental 

challenge that needs to be addressed as a matter of priority. To this end, it is 

important to develop the role of more sustainable and natural processes such as 

composting.  However there are potential risks from poorly operated composting 

facilities (Environment Agency, 2004; Pollard et al., 2006), including the release and 

dispersal of bioaerosols with the potential to result in adverse health effects in 

sensitive receptors. Therefore, to assess the bioaerosol risk posed by composting 

facilities, environmental regulators request regulatory risk assessments in support of 

planning consent and environmental permits from facilities that are within 250m of 

sensitive receptors (Environment Agency, 2001). 

 

There is a large scientific base regarding composting processes and compost quality. 

In contrast, the prior art in compost related bioaerosol release and dispersal 

assessment is not extensive. Previous research has improved the quality of source 

term data used in regulatory risk assessment (Taha et al., 2005; 2006; 2007a). 

However gaps in the understanding of bioaerosols at source, on release from 

composting facilities and at receptor remain. Addressing these gaps of knowledge 

would allow for improved regulatory risk assessments.  

 

Therefore, this research was undertaken to address some of these gaps in current 

knowledge and to improve the understanding of the characterisation and dispersal of 

bioaerosols emitted from compost. Two overall project aims were set both of which 

were achieved by the research conducted: 

 

• Improve the current understanding of the aggregation and size distribution of 

bioaerosols emitted from compost.  

• Improve the current understanding of the potential of a commercial air dispersion 

model to predict bioaerosol concentrations at composting sites 

 

The thesis was divided into two themes based on these two aims and research 

conclusions will be presented in line with this.   
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8.2 RESEARCH CONCLUSIONS 
 

8.2.1. Research Theme 1 
The first theme of this project, in line with the first research aim, was in regards to the 

characterisation of bioaerosols emitted from compost, in particular in improving the 

understanding of their aggregation and size distribution. To fulfill this aim, two 

objectives were set.  
 

The first research objective set was to release and measure bioaerosols in 

experimental conditions and use the generated data to classify the overall size 

distribution and visual properties (i.e. aggregation, size and shape) of bioaerosols 

emitted from compost. To fulfill this objective, a novel methodology (the compost 

tumbler) was developed to release bioaerosols in experimental conditions. Data was 

generated using a combination of culturing and scanning electron microscopy 

methods to classify the overall size distribution and visual properties of bioaerosols 

emitted from compost.  

 

The second research objective set was to complete site work to validate the results of 

the controlled experiments and classify the overall size distribution and visual 

properties (i.e. size, shape and aggregation) of bioaerosols emitted from compost at 

composting facilities. The methodology developed to fulfill objective 1 was used to 

generate further data regarding the classification of the size distribution and visual 

properties of bioaerosols at a composting source and downwind from source.   

 

The results from the controlled experiments and site work showed that the 

methodology developed for the controlled experiments was able to generate data 

similar to those shown in composting sites with regards to the characterisation of 

bioaerosols emitted from compost. As such trends concerning the size, shape and 

aggregation of bioaerosols shown in the controlled experiments were similar to the 

trends shown for the site work. In line with this, a summary of the main findings for 

Objectives 1 and 2 as well as key implications are presented in Table 8.1  
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Table 8.1 - Summary of main findings and implications for the first research theme  
 Main Findings and Implications 

Objective 1 

Release and 

measure bioaerosols 

in experimental 

conditions and use 

the generated data to 

classify the  

overall size 

distribution and visual 

properties (i.e. 

aggregation, size and 

shape) of bioaerosols 

emitted from compost 

 

• 7-9 morphologically-distinct  types of small (0.5 – 1 µm) cells and 2 

morphologically-distinct types of large (1-2 µm) cells and their aggregates 

were released from compost regardless of compost age or feedstock. This 

indicates that agitation of mature compost is likely to be a source of 

bioaerosols. Spore morphological characteristics indicate that the small 

spores are actinomycetes and the large spores are fungi. 

• The majority of the bioaerosols released from compost were in single cells 

with an aspect ratio of 1. This would implicate that these cells are more likely 

to be dispersed in air for longer distances than if they were in aggregate 

structures (i.e. heavier units). In addition the effects of surface drag in 

dispersal would be minimal. 

• The bioaerosols released from compost were not attached to particles such 

as wood fibres so their dispersal could not be aided by such particles acting 

as a ‘raft’.  

• Aggregates of cells were less commonly found than single cells. Where 

aggregates were detectable, the majority were in 2-3 cell structures and 

smaller than 10 µm. This might imply that these particles are more likely to 

be dispersed in air for longer distances than heavier particles. However this 

may also indicate that even if they are possibly dispersed for further 

distances downwind, there might be less protection from the effects of 

temperature, solar radiation and relative humidity due to the lack of ‘blanket’ 

protection offered by the outer cells to the inside cells in a larger aggregate. 

This would mean that these particles might lose their viability quicker 

although non-viable bioaerosols can still cause adverse health effects. 

• The aggregate structures released from static and active compost sources 

were found to be in clusters as opposed to chains. This might indicate that 

cells are forming aggregates upon release from compost.  

• The majority of the bioaerosols released from compost were in the 

respirable range and hence had an increased likelihood of causing adverse 

health effects. 

Objective 2 

Complete site work to 

validate the results of 

• There were some exceptions between different studies conducted in a 

controlled chamber and on site however in general, similar trends were 

observed. This indicated that the methodology developed for the controlled 
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controlled 

experiments and 

classify the overall 

size distribution  

and visual properties 

(i.e. size, shape and 

aggregation) 

of bioaerosols 

emitted from compost 

at composting  

facilities. 

 

experiments was able to produce data comparable to those shown in 

composting sites with regards to the characterisation of bioaerosols emitted 

from compost. 

• In line with this, the same conclusions listed for Objective 1 were also 

observed for this objective regarding the aggreation, size distribution and 

visual properties of bioaerosols.  

• A decrease in any cell aggregates was observed within 10m from the 

compost source boundary.  

• There were no aggregate structures observed at 100m downwind from 

compost source. Since non-viable aggregates would still be captured on the 

filter and visualised by SEM, this suggests that aggregates drop out from the 

pollutant plume. 

 

In conclusion, the controlled experiments and site work showed evidence of aggregation 

in bioaerosols released from compost. However, the majority of these bioaerosols were 

in single cell units hence they are more likely to be dispersed for longer distances.  

 

8.2.2. Research Theme 2 
The second theme of this project, in line with the second research aim, was in regards 

to the dispersal of bioaerosols emitted from compost, in particular in improving the 

understanding of bioaerosol concentration prediction by air dispersion modelling. To 

fulfill this aim, three objectives were set and these are discussed as follows.  

 

The third research objective was to complete a preliminary assessment of the ability of 

a commercial air dispersion model, ADMS 3.3, to predict bioaerosol emissions from 

composting facilities compared to bioaerosol concentrations measured by on-site 

downwind bioaerosol sampling. To fulfill this objective, preliminary air dispersion 

modelling was completed using data collected during site work conducted at an open 

windrow composting site.  

 

The fourth research objective was to analyse the sensitivities of ADMS 3.3 and assess 

the effect of different modelling parameters on predicted bioaerosol concentrations. To 
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fulfill this objective, a sensitivity analysis of ADMS 3.3 was completed to analyse the 

sensitivities of the model to the following parameter categories: 

 

• Emission source (point, area and volume source) 

• Pollutant (particulate and gas) 

• Meteorology 

 

The fifth and final research objective was to complete a final assessment of the potential 

of ADMS 3.3 to predict bioaerosol emissions from composting facilities. A set of site 

work was completed to collect bioaerosol concentration and emission data from 

different sources and downwind locations at another composting facility to be used as 

model input data. The summary of the main findings and implications for air dispersion 

modelling studies are presented in Table 8.2. 

 
Table 8.2 - Summary of main findings and implications for the second research theme 

 Main Findings and Implications 

Objective 3 
Complete a preliminary 

assessment of a  

commercial air 

dispersion model, 

ADMS 3.3, in 

predicting bioaerosol 

emissions from 

composting facilities 

compared to bioaerosol 

concentrations 

measured by on-site 

downwind bioaerosol 

sampling. 

• The determination of the bioaerosol emission rate from agitation of 

compost by back-extrapolating the known bioaerosol concentrations 

downwind of the bioaerosol source resulted in a difference of less than 1-

log between measured versus predicted bioaerosol concentrations. 

• The use of the sampling hood methodology for determining bioaerosol 

emission rates from a static compost windrow defined as a bioaerosol 

source resulted in the under prediction of the measured downwind 

concentrations by up to 4-log.  

• The results of the preliminary dispersion modelling studies therefore 

indicated that the definition of the source term (i.e. point or area source) 

has a significant effect on the output concentrations predicted by the 

model and the differences in model predictions for different sources might 

be due to the variation in the use and determination of bioaerosol emission 

rates. 

Objective 4 
Analyse the 

sensitivities of ADMS 

3.3 and assess the 

• The results showed that, in general, the model output for the 

parameterisation of different parameters did not differ for a point or area 

source  

• In general, the model was sensitive to only a limited number of 
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effect of different 

modelling parameters 

on predicted bioaerosol 

concentrations.  
 

parameters.  

• The results of the sensitivity analysis showed that the model was not 

sensitive to defining the particulate pollutant as an aggregate and was 

somewhat sensitive to definition of a particulate pollutant size. However 

the results of the controlled experiments and site work (Chapters 4 and 5) 

showed that despite the evidence of aggregation, the majority of the 

bioaerosols emitted from compost were in single cells. Hence even though 

the model appears to be sensitive to the definition of particle pollutant size, 

there was no conclusive evidence to re-define bioaerosols to be modelled 

as particulates. 

• Therefore when using this model, the principle that bioaerosol cells are of 

a sufficiently small size to justify the assumption of them acting as 

gaseous pollutants remains. 

Objective 5 
Complete a final 

assessment of the 

potential of ADMS 3.3 

in predicting bioaerosol 

emissions from 

composting facilities. 

 

• Modelling only the emissions measured on the compost windrows resulted 

in a difference of up to 3-log between predicted and measured 

concentrations (regardless of modelling individual compost windrow 

concentrations were modelled as single sources or combined as one 

source). 

• Modelling both bioaerosol sources (static compost windrow and agitation 

activity) was more successful at predicting measured downwind 

concentrations and was able to match the downwind bioaerosol 

concentrations at some of the downwind sampling points. These results 

further highlight that source definition and the use and determination of 

bioaerosol emission rates are important factors in air dispersion modelling 

of bioaerosols.  

• It was shown to be possible to match the individual measured downwind 

concentrations by changing the bioaerosol emission rates however it was 

not possible to match the overall depletion curve. 

• The results of the culturing results for the studies showed an inconsistent 

pattern of decline in downwind bioaerosol concentrations for the first two 

sampling days. Therefore, ADMS 3.3 was not able to successfully predict 

the downwind source depletion curve trend for these experiments. In 

contrast, the model was more successful at predicting the source 

depletion curves for sampling day three. This might indicate that the model 

is not capable of dealing with changes in site measurements from one 
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sampling day to another. However the culturing results might also be 

indicative of the inherent difficulties of bioaerosol sampling practices at a 

composting site. Such difficulties make it difficult to collect valid data to 

which the model output can be compared. Therefore when comparing 

results of measured versus modelled concentrations, the capability of a 

commercial air dispersion model in assessing the risks of bioaerosols at 

composting facilities should be analysed in this context.  

 

Therefore the overall results from the modelling studies indicate that ADMS 3.3 was not 

able to consistently predict absolute downwind bioaerosol concentrations at composting 

facilities. However ADMS 3.3 still has potential in testing the effect of different emission 

scenarios which might be beneficial in completing regulatory risk assessment for 

composting facilities. Hence if an existing composting facility wish to make changes to 

their operations (e.g. expansion of the facility), the model might be a valuable tool for 

predicting and assessing relative changes in downwind bioaerosol concentrations 

resulting from different operating scenarios. Therefore, it is concluded that ADMS 3.3 

can be a useful tool for the initial screening and assessing relative changes of 

bioaerosols at a compost facility however detailed assessment of absolute bioaerosol 

emissions should be made in conjunction with measurement of downwind bioaerosol 

concentrations.  
 

8.3. CONTRIBUTIONS TO KNOWLEDGE 

The research presented in this thesis makes a significant contribution to knowledge in 

terms of improving the understanding of the characterisation and dispersal of 

bioaerosols emitted from composting facilities.  

 

As previously discussed, the understanding of factors that effect bioaerosol behaviour at 

source, pathway and receptor is essential in analysing the risk of composting related 

bioaerosol exposure. However there are gaps in the scientific prior art of the processes 

(e.g. aggregation and size distribution) which may affect the analysis of bioaerosols 

emitted from composting facilities. As such, to the author’s current knowledge, this is 

the first study that has aimed to close the gap in one of these processes and hence has 

developed a novel methodology to characterise the size distribution and visual 
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properties (i.e. size, shape, and aggregation) of bioaerosols emitted from compost. This 

methodology was used to generate extensive data on the characterisation of the 

aggregation, size distribution and other physical properties of bioaerosols emitted from 

compost. To the author’s current knowledge, this is the first such library of data 

generated for compost related bioaerosols. Furthermore this novel methodology was 

shown to produce results comparable with those that would be seen in a composting 

facility. Hence, in line with this, another novel aspect of the study has been the 

classification of the aggregation and size distribution of bioaerosols emitted from 

composting facilities. 

 

The use of air dispersion modelling to predict bioaerosol concentrations at composting 

facilities has not been adopted as official practice. As previously discussed, there are a 

limited number of studies which have used air dispersion models to predict downwind 

concentrations of bioaerosols emitted from compost sources. However these studies 

have not attempted to compare the actual measured downwind bioaerosol 

concentrations with those predicted by the model. Therefore another novel aspect of 

this research was the completion of a number of studies which have compared 

predicted bioaerosols emissions to those measured on site and downwind. In addition, 

this is the first study of its kind which has completed a detailed assessment (including a 

sensitivity analysis specific to bioaerosols) of the potential of the air dispersion model, 

ADMS 3.3 to predict bioaerosol emissions from composting sites. Finally, a set of novel 

recommendations have been made for assessing the risk of bioaerosols at an open 

windrow compost site. 

 

In conclusion, the results achieved by this research have introduced new insights to the 

current understanding of the characterisation and dispersal of bioaerosols emitted from 

composting facilities. As such, these new insights would be expected to make a 

significant contribution to the needs of new and existing composting facilities in 

quantifying bioaerosol site exposures to meet increased regulatory requirements as well 

as the needs of the regulatory body, Environment Agency, in evaluating the exposure 

risks of bioaerosols from composting facilities. 
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8.4. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORK 
The specific limitations for each stage of the research have been discussed individually 

throughout the previous chapters. However, in addition to these, a number of general 

limitations were identified. These limitations represent additional studies which might 

have improved the findings of this research project but could not be completed due to 

time restrictions. They are as follows: 

 

• Exploring the effect of seasonal differences or other weather related episodic 

behaviour on the characterisation of the properties of bioaerosols emitted from 

composting facilities. This would have provided additional insight into the 

mechanisms of characterisation and dispersal of bioaerosols. Therefore future 

studies are recommended to explore the effect of seasonal differences or other 

weather related episodic behaviour.  

 

• The characterisation (i.e. aggregation, size distribution) of bioaerosols at sampling 

locations in the vicinity of sensitive receptors. This would have provided additional 

understanding of bioaerosol exposure risk at receptor. Therefore the methodology 

developed in this research project for completing bioaerosol classification studies is 

recommended for use at sampling points in the vicinity of sensitive receptors within 

250 m of composting facilities.  
 

This research was completed to improve the current knowledge of the understanding of 

the characterisation and dispersal of bioaerosols emitted from compost. However other 

gaps in the understanding of bioaerosol behaviour at source, pathway and receptor and 

hence the assessment of bioaerosol risk from composting facilities remain. These gaps 

need to address the lack of knowledge on their viability and inactivation on release from 

compost and use this understanding to assess the pathway of a bioaerosol. In this 

context, the effect of environmental factors (relative humidity, temperature, radiation, 

oxygen levels, open air factors and ionisation) on the viability of bioaerosols should be 

considered.  
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The release, dispersal and deposition of bioaerosols from composting facilities are 

significantly affected by the regional, environmental, geographical and meteorological 

factors. Therefore it is important to know and understand these parameters to be able to 

make site based judgements when analysing the results of sampling and modelling from 

composting sites.  

 

There remains a significant gap in establishing dose-response relationships between 

bioaerosol exposure and adverse health effects. To this end international regulation 

standards need to be introduced to establish this relationship according to type of 

bioaerosol and exposure. 

 

The scope of this study was to visually characterise the bioaerosols emitted from 

compost and species determination was not included. However future studies should 

complete visual characterisation of bioaerosols released from compost on a species 

level to determine the effect of their biological properties on bioaerosol release and 

dispersal. In line with this, studies which account for the species and concentrations of 

bioaerosols in the compost flora (i.e. not airborne) with respect to those released from it 

(i.e. airborne) should be considered.  

 

Further research should be employed to improving the understanding of ADMS or other 

air dispersion models for modelling downwind concentrations of bioaerosols in a 

composting facility. In addition, extensive validation work should be completed to 

compare predicted versus measured bioaerosol concentrations at a number of other 

composting facilities. 

 

Bioaerosols behave according to their unique biological properties as well as being 

influenced by physical laws that other non-biological aerosols are subject to. This 

introduces an extra challenge in understanding their aeromicrobiological behaviour. In 

this context, future studies which aim to improve the understanding of bioaerosol 

release and dispersal should combine the understanding of species specific behaviour 

(e.g. fungal life cycle) with those for aerosol physical laws.  
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The potential of optical detection tools such as LIDARS for determining the structure of 

the atmosphere for bioaerosol plume detection has been explored by numerous studies 

(Yee et al., 1992; Roy and Roy, 2008). Other studies have attempted to predict the 

limits of buoyant plume rise in a well-mixed boundary layer using LIDAR technology 

(Bennett, 1995). Bennett and Hunter (1997) have compared the estimates of peak 

ground-level concentrations of LIDAR with those by ADMS and an agreement between 

the two was found depending on the meteorological data that were used. There is no 

evidence of any studies that use these technologies in assessing the bioaerosol plume 

emitted from a compost source. Therefore as a final recommendation, the use of such 

technologies should be considered for future studies that aim to analyse bioaerosol 

plumes emitted from compost sources. In addition, the use of LIDAR and other such 

technologies should be used to validate the results of any future air dispersion 

modelling studies that attempt to predict the emission of bioaerosols from compost.  

 

In conclusion, future bioaerosol studies need to tackle these issues and explore the use 

of new technologies in order to improve the quality of composting risk assessments.
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Sample Name: 
 
Sampling Date: 

Scanning Started At:                      (AM/PM)  Scanning Finished At:           (AM/PM) 
 

 

TYPE OF PARTICLE 
 

NUMBER OF PARTICLES 

Large Cell Type A  

Large Cell Type B  

Large Cell Type C  

Large Cell Aggregate Type A  
(Specify number of cells, total aggregate size and type) 

 

Large Cell Aggregate Type B 
(Specify number of cells, total aggregate size and type) 

 

Large Cell Aggregate Type C 
(Specify number of cells, total aggregate size and type) 

 

Large Cell Mixed Aggregates  

Mixed Large and Small Cells  

Small Cell Type A  

Small Cell Type B   

Small Cell Type C   

Small Cell Type D   

Small Cell Type E  

Small Cell Type F  

Small Cell Type G  

Small Cell Type H  
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Small Cell Type I  

Small Cell Type J  

Small Cell Aggregate Type A 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type B 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type C 
(Specify number of cells, total aggregate size and type) 

 

Small Spore Aggregate Type D 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type E 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type F 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type G 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type H 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type I 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Aggregate Type J 
(Specify number of cells, total aggregate size and type) 

 

Small Cell Mixed Aggregates  
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Large Cell-like Particles  

Plant-like Cell Particle  

Filamentous Particle  

Rod Shaped Particles  

Crystal Cluster Particles  

Unstructured Particles  

Pollen-like Particles (Specify Type)  
 
 
Fields with Particles of Interest at 2000 mag: 

 

 
Blank Fields at 500 mag: 

 

 
Blank Fields at 1000 mag: 

 

 
Blank Fields at 2000 mag: 

 

 
 
Notes:
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Name of Particle Description Size Image 
Filamentous 
particles 
 

Particles with ‘fibre-
like’ structure 

Physical size range of 1 
to 100 µm or larger 
(length) 

   
Crystal cluster 
particles 

Aggregates of 
crystal-like particles 

Physical size range of 
size 1-3 µm or larger 
(length). The individual 
crystal-like particles are 
smaller than 0.5 µm 
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Large cell-like 
particles 
 

Smooth particles 
with an ellipsoidal 
shape, 3-D 
structure 

Physical size range of 
7-8 µm (length) 

 
Rod shaped 
particles 
 

Rod shaped 
particles with small 
bumps on surface 

Physical size range of 
1-3 µm (length) 
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Pollen-Like 
Particles Type 1 
 

Oval particles with 
textured surface 
and with prominent 
‘2 ridges’ structure 

Physical size of 
approximately 30 µm 
(length). 

 
Pollen-Like 
Particles Type 2 
 

Round particles 
with ‘worty’ surface 

Physical size of 
approximately 6-7 µm 
(length) 
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Small Cell Type A and Aggregates: 
 
Round particles with smooth surface or with small bumps. Some have characteristic ‘Raspberry-like’ structure. Physical size range of 0.5-1 µm (length).  
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Small Cell Type B and Aggregates: 
 
Oval shaped  particles with ridges. Physical size range of 0.5-1 µm (length).  
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Small Cell Type C and Aggregates: 
 
Round particles with visible spikes. Physical size range of 0.5-1 µm (length).  
 

   
 

  



                                              Appendix D 
                                                                                                               Image Guide of the Particles Identified by Scanning Electron Microscopy  

   

    307

Small Cell Type D and Aggregates : 
 
Round particles with ridges and a ‘flower-like’ structure. Physical size range of 0.5-1 µm (length).  
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Small Cell Type E  and Aggregates:  
 
Round particles with dents. Physical size range 0.5-1 µm (length).  
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Small Cell Type F and Aggregates:  
 
Oval shaped particles with ‘shrivelled’ appearance. Mostly occurring in ‘chain’ structures. Physical size range 0.5-1 µm (length).  
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Small Cell Type G and Aggregates: 
 
Round particles with prominent bumps, ‘cauliflower-like’ appearance and ‘scar’. Physical size range 0.5-1 µm (length). 
 

   
 

  



                                              Appendix D 
                                                                                                               Image Guide of the Particles Identified by Scanning Electron Microscopy  

   

    311

Small Cell Type H and Aggregates: 
 
Oval shaped particles with small ‘warts’.  Physical size range 0.5-1 µm (length).  
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Small CellType I and Aggregates: 
 
Oval shaped particles with smooth appearance.  Physical size range 0.5-1 µm (length).  
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Small Cell Type J and Aggregates:  
 
Oval shaped particles with ‘ridged’ appearance.  Physical size range 0.5-1 µm (length).  
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Small Size Mixed Aggregates:  
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Large Cell Type A and Aggregates: 
 
Round particles with bumpy or smooth surface and ‘raspberry-like’ structure. Physical size range of 2-3 µm (length).  
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Large Cell Type B and Aggregates: 
 
Round particles with small spikes.  Physical size range of 2-3 µm (length).  
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Large Cell Type C and Aggregates:  
 
Oval particles with bumpy surface and with prominent ‘scar’. Physical size range of 2-3 µm (length).  
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Large and Small Cell Aggregates  
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 FIRST SAMPLING DAY SECOND SAMPLING DAY THIRD SAMPLING DAY 

ADMS Parameter/Sampling Location 
On incoming waste  
compost windrow  
wind tunnel 1 

On incoming waste  
compost windrow  
wind tunnel 2 

Agitation Screening Agitation Shredding 

Site Surface Roughness (m) 
(denotes agricultural area) 0.2 0.2 0.2 0.2 

Site Latitude (0) 
(default) 52 52 52 52 

Source type Area Area Point Point 

Pollutant emission rate for A.fumigatus  350 cfu/m2/s 410 cfu/m2/s 750,000 cfu/s 4,700,000 cfu/s 

Pollutant emission rate for 
actinomycetes  121 cfu/m2/s 606 cfu/m2/s 135,000,000 cfu/s 22,000,000 cfu/s 

Pollutant type (deposition velocity not 
specified) Gas Gas Gas Gas 

Source height (m) 3 3 3 3 

Source diameter (m) 22 22 3 3 
Source exit velocity (m/s) 1.1 1.3 N/A N/A 

Ambient temperature (0C) 24.2 27 11.5 5 

Ambient velocity  (m/s) 0.9 0.6 1.7 3.6 
Source specific heat capacity-Cp 
(J/kg/0C) (default) 1012 1012 1012 1012 

Source molecular weight (g/mol) 
(default) 28.966 28.966 28.966 28.966 

Efflux  Volumetric flow rate Volumetric flow rate Volumetric flow rate Volumetric flow rate 
Stability class D D D D 
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Parameter 
type 

Parameter name and 
chosen value 

Allowed model 
range 

Model 
default  

Notes 

Site Surface Roughness: 
0.2 m 
 

10-7m to 10 m 0.1 m Chosen value represents agricultural areas Set-Up 
 

Site Latitude: 
52O 

-90O to 90O 52O  

Geometry of Source for 
area and volume source 
(four corners):  
 

N/A X Y 
-21 -23 
-21 23 
21 23 
21 -23  

Source geometry kept at 0,0 for point source. The X,Y co-ordinates 
used for the area source reflect the actual compost windrow 
measurements taken on site.  

Known Efflux Format: 
Exit  
Velocity  

See notes Exit Velocity  Model allows Efflux choice of Vol: volumetric flow rate, Fm, Fb: 
momentum flux and heat release rate and Mass: mass flow rate. Exit 
velocity is chosen as that of the efflux is known.  

T, RHO or Ambient: 
T 

See notes T T is chosen when the temperature of the release is known, RHO is 
entered when the density of release is known. Ambient is to be 
entered when release is at ambient temperature and density. T chosen 
as the temperature of the release is known.  

Actual or NTP: 
Actual 

See notes Actual Chosen value means that emission parameters are to be entered at 
actual temperature and pressure. NTP would be 1 atm and 273 K. 

Molecular mass of the 
release material: 
28.966 g 

1 to 300 g 28.966 g This is the typical value for air. This value is chosen as the release 
material is predominantly air 

Source 

Specific heat capacity of 
the release, Cp: 
1012 J/Co/kg 

1 to 105 J/Co/kg 1012 J/Co/kg This is the specific heat capacity of air. This value is chosen as the 
release material is predominantly air 

Meteorology For source and pollutant parameter sensitivy analysis, ADMS File R91A-G is used. Stability Class D (neutral) values chosen.  
 
For meteorological parameter sensitivity analysis, the following parameters were kept constant: wind angle: 2700 (this angle allows to user to 
align the specified points with the wind and hence they would be downwind of the source), year: 2006, julian day number: 168, local time: 13, 
cloud cover: 4. 
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Grid Output Grid Information: Cartesian co-ordinate system chosen (refers to a point by a pair of x,y co-ordinates as opposed to radius and angle as 
for Polar co-ordinate system), specified points analysed as below 
 
14 Specified X(m) points of 1, 2, 5, 10, 20, 30, 40, 50, 100, 200, 250, 300, 400, 500. 
 
Y(m) points kept at 0 and Z(m) points at 1.8 m. (Z(m) point refers to the height above ground at which output is calculated. 1.8m is chosen to 
represent the average height of sensitive receptor).  

Output Short Term Average Results (1 hr averaging time). Short term average results denote the output for the first 24 lines of meteorological data 
only. 1 hr averaging time is the model default.  
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Parameter 
Type 

Parameter name, chosen and adjusted 
values 

Allowed model range Model default 

Set-Up 
 
 

Model Option: 
None and Dry Deposition 

Dry deposition, wet deposition, radioactive decay, plume visibility, 
odours, chemistry, buildings, hills, coastline, puff and fluctuations.  
 
Note: No model option denotes concentrations for a continuous (plume) 
release in flat terrain. Dry deposition denotes the loss of material from 
plume at the surface of ground with specified deposition velocity. Other 
model options are not applicable. 

N/A 

Area and Point Source:  Height (m): 3 
(site measurement for area or point 
source),  30, 300 

0 to 2000 m 50 m 

Area Source: Temperature of Release 
(oC): 25.6 (site measurement), 256, 2560 

-100 to 5000oC 14 oC 

Area Source: Vertical velocity of release 
at source exit (m/s): 1.2 (site 
measurement), 12, 120 

0 to 1000 m/s 15 m/s 

Point Source: Internal diameter of the 
source (m): 3 (site measurement), 30, 100 

0 to 100 m 1 m 

Point Source: 
Temperature of Release (oC): 19.7 (site 
measurement), 197, 1970 

-100 to 5000oC 14 oC 

Point Source: Vertical velocity of release 
at source exit (m/s): 1.1 (site 
measurement), 0, 11, 110 

0 to 1000 m/s 15 m/s 

Volume Source: Mid height of the 
volume source above ground (m): 1.5 
(site measurement), 15, 150.  

0 to 2000 m 50 m 

Source 
 
 

Volume Source: Vertical dimension of 
volume source (m): 3 (site measurement), 
0.001, 30, 300 

0.001 to 1000 m 1 m 

Wind Speed: 5 (m/s), 0.5, 50 0.5 to 50 m/s 5 m/s 
Relative Humidity: 10 (%), 0.1, 100 0 to 100% 50% 

Meteorological 
 

Surface Temperature: 5 (oC), 0.5, 50.  -80 to 80 oC 15 oC 
Pollutant Gas Pollutant Deposition Velocity (m/s): 3 

x 10-3 , 3 x 10-2, 3 x 10-1,  
0 to 10 m/s 0 m/s 
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3.0 
Pollutant Deposition and Terminal 
Velocity (m/s): 1 x 10-5 , 1 x 10-4, 1 x 10-3, 
1 x 10-2 
 

0 to 10 m/s 
 
Note: Deposition velocity parameter is required for both gases and 
particles. Terminal velocity parameter is required for particles only. In 
order to determine the effect of deposition velocity, dry deposition model 
option needs to be enabled 

0 m/s 

Pollutant Particle Diameter (m): 1 x 10-6 
(observed particle size for actinomycetes) 
1 x 10-5, 1 x 10-4, 1 x 10-3, 1 x 10-2 

1 x 10-2 to  
1 x 10-9 m 
 

1 x 10-5 m (10 µm) 
for PM10 particles 
and 1 x 10-6 m 
(1µm) for user 
defined particles 

Pollutant Particle Mass Fraction: 
1, 0.5, 0.25, 0.2, 0.1 (no aggregate, 2 
aggregate, 4 aggregate, 5 aggregate and 
10 aggregate) 

0.0000000001 to 1 
 
 

1 

Particle with defined particle density 
(kg/m3): 1000 (density of water), 10000, 
100000, 1000000) 

 

 
 

1 to 1000000 kg/m3 

 

Note: The base parameter value used was 1000 kg/m3 which is the 
density of water. This value is also within the range model minimum, 
maximum and densities of various species measured by previous 
studies. Some of these are the reported density range of bioaerosols at 
900-1300 kg/m3 (Cox, 1995) measured density of fungi at  560 -1440 
kg/m3 (Gregory, 1973), the dry densities of Bacillus species at 1400-
1520 kg/m3 (Carrera et al., 2008) and the dry densities of bacterial 
species including B. cereus and B. subtilis at 1050-1500 kg/m3 (Tisa et 
al., 1982). 

1000 kg/m3 
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For all tables, values in brackets indicate the numerical deviation of ratio from 1.00. Higher values indicate parameters which  
have the most effect on the model output compared to the base model output. 
 
Table 1 - Quantitative Analysis for Point Source Parameters  
Model 
Scenario 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Change 
Factor  

Bioaerosol Concentration Ratio of Adjusted Model/Base Model at 
various downwind distances 

Base Parameter: 3 m 1 m 10 m 100 m 250 m 500 m  
30 10 0.00 

(1.00)
0.00 

 (1.00)
0.01

(0.99)
0.26

(0.74)
0.62

(0.38)

A Point 
Source Height 

300 100 0.00 

 (1.00)
0.00 

 (1.00)
0.00 

 (1.00)
0.00 

 (1.00)
0.00 

 (1.00)
Base Parameter: 1.1 m/s 
11 10 0.04

(0.96)
0.04

(0.96)
1.00

(0)
1.00

(0)
1.00

(0)

B Point 
Source 
Velocity 

110 100 0.00 

 (1.00)
0.00 

 (1.00)
0.00 

 (1.00)
0.01

(0.99)
0.03

(0.97)
Base Parameter: 19.7oC  
197 10 0.94

(0.06)
0.41

(0.59)
0.52

(0.48)
0.64

(0.36)
0.72

(0.28)

C Point 
Source 
Temperature 

1970 100 0.77
(0.23)

0.16
(0.84)

0.32
(0.68)

0.49
(0.52)

0.59
(0.41)

Base Parameter: 3 m  
3 10 0.07

(0.93)
0.06

(0.94)
0.36

(0.64)
0.47

(0.53)
0.54

(0.46)

D Point 
Source 
Diameter 

100 33* 0.02
(0.98)

0.01
(0.99)

0.06
(0.94)

0.15
(0.85)

0.24
(0.76)

*change factor limited by model parameter range 
 
Table 2 - Quantitative Analysis for Area Source Parameters  
Model 
Scenario 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Change 
Factor  

Bioaerosol Concentration Ratio of Adjusted Model/Base Model at various 
downwind distances 

Base Parameter: 3 m 1 m 10 m 100 m 250 m 500 m  E Area 
Source  30 10 

0.01 0.01 0.05 0.09 0.44
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(0.99) (0.99) (0.95) (0.91) (0.56)Height 
300 100 0.00 

 (1.00) 
0.00 

 (1.00) 
0.00 

 (1.00)
0.00 

 (1.00)
0.00 

 (1.00)
Base Parameter: 1.2 m/s  
12 10 0.23

(0.77)
0.19 

(0.81) 
1.00

(0)
1.00

(0)
1.00

(0)

F Area 
Source 
Velocity 

120 100 0.00 

 (1.00)
0.00 

 (1.00) 
0.00 

 (1.00)
0.00 

 (1.00)
0.00 

(1.00)
Base Parameter: 25.6oC  
256 10 0.74

(0.26)
0.33

(0.67)
0.01

(0.99)
0.01

(0.99)
0.02

(0.98)

G Area 
Source 
Temperature 

2560 100 0.07
(0.93)

0.04
(0.96)

0.00 

 (1.00)
0.00

(1.00)
0.00

(1.00)
 
Table 3 - Quantitative Analysis for Volume Source Parameters  
Model 
Scenario 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Change 
Factor  

Bioaerosol Concentration Ratio of Adjusted Model/Base Model at various 
downwind distances 

Base Parameter: 1.5 m 1 m 10 m 100 m 250 m 500 m  
15 10 N/A 0.00 

 (1.00)
0.02

(0.98)
0.07

(0.93)
0.09

(0.91)

H Mid height of 
the volume 
source above 
ground 150 100 0.00

(1.00)
0.00

(1.00)
0.00

(1.00)
0.00

(1.00)
0.00 

 (1.00)
Base Parameter: 3 m 
30 10 0.03

(0.97)
0.03

(0.97)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

I Vertical 
dimension of 
volume source 

300 100 0.00 

 (1.00)
0.00 

 (1.00)
0.00 

 (1.00)
0.00 

(1.00)
0.00 

(1.00)
Note: N/A indicates where modelling was not possible 
 
Table 4 - Quantitative Analysis for Particle Pollutant Parameters  
Source 
Type 

Model 
Scenario 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Change  
factor  

Bioaerosol Concentration Ratio of Adjusted Models/Base Model 
at various downwind distances 

Base Parameter: 0.00001  1 m 10 m 100 m 250 m 500 m  Point J Deposition 
and Terminal 0.0001 10 

1.00 1.00 1.00 1.00 1.00
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(0.00) (0.00) (0.00) (0.00) (0.00)
0.001 100 0.99 

(0.01) 
1.00

(0.00)
0.99

(0.01)
0.99

(0.01)
0.99

(0.01)

Velocity 
in (m/s) 

0.01 1000 0.00 
(1.00) 

0.01
(0.99)

0.01
(0.99)

0.01
(0.99)

0.02
(0.98)

Base Parameter: 1000   
10000 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
100000 100 1.00 

(0.00) 
1.01

(0.01)
1.00

(0.00)
0.99

(0.01)
0.99

(0.01)

K Particle 
Density 
in (kg/m3) 

1000000 1000 1.01 
(0.01) 

1.05
(0.05)

0.99
(0.01)

0.94
(0.06)

0.89
(0.11)

Base Parameter: 0.000001   
0.00001 10 0.77 

(0.23) 
0.88

(0.12)
0.79

(0.21)
0.73

(0.27)
0.67

(0.33)
0.0001 100 0.69 

(0.31) 
0.81

(0.19)
0.66

(0.34)
0.56

(0.44)
0.49

(0.51)

L Particle 
Diameter 
in (m) 

0.001 1000 0.69 
(0.31) 

0.79
(0.21)

0.66
(0.34)

0.55
(0.45)

0.48
(0.52)

Base Parameter: 0.1  
0.2 2 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.25 2.5 1.00 

(0.00) 
1.000

(0)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.5 5 1.00 

(0.00) 
1.000

(0)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

M Particle Mass 
Fraction 
(unitless) 

1 10 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Base Parameter: 0.00001   
0.0001 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.001 100 0.99 

(0.01) 
0.99

(0.01)
1.00

(0.00)
0.99

(0.01)
0.99

(0.01)

J Deposition 
and Terminal 
Velocity 
in (m/s) 

0.01 1000 0.90 
(0.01) 

0.92
(0.08)

0.99
(0.01)

0.97
(0.03)

0.96
(0.04)

Area 

K Particle Base Parameter: 1000   
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10000 10 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

100000 100 1.00 
(0.00) 

1.00
(0.00)

1.02
(0.02)

1.01
(0.01)

1.01
(0.01)

Density 
in (kg/m3) 

1000000 1000 0.99 
(0.01) 

1.00
(0.00)

1.15
(0.15)

1.07
(0.07)

1.04
(0.04)

Base Parameter: 0.000001   
0.00001 10 0.68 

(0.32) 
0.71

(0.29)
0.79

(0.21)
0.78

(0.22)
0.76

(0.24)
0.0001 100 0.54 

(0.46) 
0.57

(0.43)
0.65

(0.35)
0.63

(0.37)
0.61

(0.39)

L Particle 
Diameter 
in (m) 

0.001 1000 0.53 
(0.47) 

0.56
(0.44)

0.64
(0.36)

0.63
(0.37)

0.61
(0.39)

Base Parameter: 0.1  
0.2 2 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.25 2.5 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.5 5 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

M Particle Mass 
Fraction 
(unitless) 

1 10 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Base Parameter: 0.00001   
0.0001 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.001 100 1.00 

(0.00) 
0.99

(0.01)
0.98

(0.02)
0.97

(0.03)
0.96

(0.04)

J Deposition 
and Terminal 
Velocity 
in (m/s) 

0.01 1000 0.96 
(0.04) 

0.95
(0.05)

0.79
(0.21)

0.71
(0.29)

0.66
(0.34)

Base Parameter: 1000   
10000 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
100000 100 1.00 

(0.00) 
0.99

(0.01)
0.97

(0.03)
0.96

(0.04)
0.95

(0.05)

Volume 

K Particle 
Density 
in (kg/m3) 

1000000 1000 0.92 
(0.08) 

0.89
(0.11)

0.62
(0.38)

0.47
(0.53)

0.39
(0.61)
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Base Parameter: 0.000001   
0.00001 10 0.88 

(0.12) 
0.83

(0.17)
0.46

(0.54)
0.34

(0.66)
0.27

(0.73)
0.0001 100 0.79 

(0.21) 
0.73

(0.27)
0.25

(0.75)
0.15

(0.85)
0.10

(0.90)

L Particle 
Diameter 
in (m) 

0.001 1000 0.79 
(0.21) 

0.72
(0.28)

0.24
(0.76)

0.14
(0.86)

0.09
(0.91)

Base Parameter: 0.1  
0.2 2 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.25 2.5 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.5 5 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

M Particle Mass 
Fraction 
(unitless) 

1 10 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

 
Table 5 - Quantitative Analysis of the Effect of Particle Pollutant Parameters on Particle versus Gas Pollutant Modelling 
Source 
Type 

Changed Parameter Parameter 
Value 

Bioaerosol Concentration Ratio of Pollutant Model/Gas Model at 
various downwind distances 

 1 m 10 m 100 m 250 m 500 m  
0.00001 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.0001 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
0.001 0.99 

(0.01) 
1.00

(0.00)
1.00

(0.00)
0.99

(0.01)
0.99

(0.01)

Deposition and Terminal 
Velocity in (m/s) 

0.01 0.00 
(1.00) 

0.00
(1.00)

0.01
(0.99)

0.01
(0.99)

0.02
(0.98)

1000 0.98 
(0.02) 

0.99
(0.01)

0.99
(0.01)

0.99
(0.01)

0.98
(0.02)

10000 0.98 
(0.02) 

0.99
(0.01)

0.99
(0.01)

0.99
(0.01)

0.98
(0.02)

100000 0.98 
(0.02) 

1.00
(0.00)

0.99
(0.01)

0.99
(0.01)

0.98
(0.02)

Point 

Particle Density 
in (kg/m3) 

1000000 
0.99 1.04 0.98 0.92 0.88
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(0.01) (0.04) (0.02) (0.08) (0.12)
0.000001 0.98 

(0.02) 
0.99

(0.01)
0.99

(0.01)
0.99

(0.01)
0.98

(0.20)
0.00001 0.76 

(0.24) 
0.88

(0.12)
0.79

(0.21)
0.72

(0.28)
0.66

(0.34)
0.0001 0.68 

(0.32) 
0.80

(0.20)
0.66

(0.34)
0.55

(0.45)
0.48

(0.52)
0.001 0.68 

(0.32) 
0.79

(0.21)
0.65

(0.35)
0.54

(0.46)
0.47

(0.53)

Particle Diameter 
in (m) 

0.01 0.68 
(0.32) 

0.79
(0.21)

0.65
(0.35)

0.55
(0.45)

0.47
(0.53)

0.1 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.2 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.25 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.5 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Particle Mass Fraction 
(unitless) 

1 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.00001 1.00 
(0.00) 

1.000
(0)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.0001 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.001 0.99 
(0.01) 

0.99
(0.01)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Deposition and Terminal 
Velocity in (m/s) 

0.01 0.90 
(0.10) 

0.92
(0.08)

0.99
(0.01)

0.97
(0.03)

0.96
(0.04)

1000 0.98 
(0.02) 

0.98
(0.02)

0.99
(0.01)

0.99
(0.01)

0.99
(0.01)

10000 0.98 
(0.02) 

0.98
(0.02)

0.99
(0.01)

0.99
(0.01)

0.99
(0.01)

100000 0.98 
(0.02) 

0.98
(0.02)

1.01
(0.01)

1.00
(0.00)

0.99
(0.01)

Area 

Particle Density 
in (kg/m3) 

1000000 
0.98 0.98 1.14 1.06 1.03
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(0.02) (0.02) (0.14) (0.06) (0.03)
0.000001 0.98 

(0.02) 
0.98

(0.02)
0.99

(0.01)
0.99

(0.01)
0.99

(0.011)
0.00001 0.67 

(0.33) 
0.70

(0.30)
0.78

(0.22)
0.77

(0.23)
0.76

(0.24)
0.0001 0.53 

(0.47) 
0.56

(0.44)
0.64

(0.36)
0.63

(0.37)
0.61

(0.39)
0.001 0.52 

(0.48) 
0.55

(0.45)
0.63

(0.37)
0.62

(0.38)
0.60

(0.40)

Particle Diameter 
in (m) 

0.01 0.52 
(0.48) 

0.55
(0.45)

0.64
(0.36)

0.62
(0.38)

0.60
(0.40)

0.1 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.2 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.25 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.5 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Particle Mass Fraction 
(unitless) 

1 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.00001 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.0001 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.001 1.00 
(0.00) 

0.99
(0.01)

0.98
(0.02)

0.97
(0.03)

0.96
(0.04)

Deposition and Terminal 
Velocity in (m/s) 

0.01 0.96 
(0.04) 

0.95
(0.05)

0.79
(0.21)

0.71
(0.29)

0.65
(0.35)

1000 0.99 
(0.01) 

0.99
(0.01)

0.97
(0.03)

0.95
(0.05)

0.95
(0.05)

10000 0.99 
(0.01) 

0.99
(0.01)

0.97
(0.03)

0.95
(0.05)

0.94
(0.06)

100000 0.99 
(0.01) 

0.99
(0.01)

0.94
(0.06)

0.92
(0.08)

0.89
(0.11)

Volume 

Particle Density 
in (kg/m3) 

1000000 
0.91 0.89 0.60 0.45 0.37
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(0.09) (0.114) (0.40) (0.55) (0.63)
0.000001 0.99 

(0.01) 
0.99

(0.01)
0.97

(0.03)
0.95

(0.05)
0.95

(0.05)
0.00001 0.87 

(0.13) 
0.82

(0.18)
0.44

(0.56)
0.32

(0.68)
0.25

(0.75)
0.0001 0.79 

(0.21) 
0.72

(0.28)
0.24

(0.76)
0.14

(0.86)
0.09

(0.91)
0.001 0.79 

(0.21) 
0.72

(0.28)
0.24

(0.76)
0.13

(0.87)
0.09

(0.91)

Particle Diameter 
in (m) 

0.01 0.79 
(0.21) 

0.72
(0.28)

0.24
(0.76)

0.13
(0.87)

0.09
(0.91)

0.1 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.2 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.25 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.5 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Particle Mass Fraction 
(unitless) 

1 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

 
Table 6 - Quantitative Analysis for Gas Pollutant Parameters  
Source 
Type 

Model 
Scenario 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Change  
factor  

Bioaerosol Concentration Ratio of Adjusted Model/Base Model at 
various downwind distances 

Base Parameter: 0.003 m/s 1 m 10 m 100 m 250 m 500 m  
0.03 10 0.85 

(0.15) 
0.93

(0.07)
0.89

(0.11)
0.84

(0.16)
0.81

(0.19)
0.3 100 0.63 

(0.37) 
0.67

(0.33)
0.45

(0.55)
0.33

(0.67)
0.25

(0.75)

Point N Deposition  
Velocity 

3 1000 0.58 
(0.42) 

0.48
(0.52)

0.18
(0.82)

0.08
(0.92)

0.05
(0.95)

Base Parameter: 0.003 m/s      Area N Deposition  
Velocity 0.03 10 0.80 

(0.20) 
0.82

(0.18)
0.88

(0.12)
0.87

(0.13)
0.87

(0.13)
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0.3 100 0.37 
(0.63) 

0.39
(0.61)

0.42
(0.58)

0.40
(0.60)

0.38
(0.62)

3 1000 0.20 
(0.80) 

0.20
(0.80)

0.12
(0.88)

0.09
(0.91)

0.08
(0.92)

Base Parameter: 0.003 m/s      
0.03 10 0.93 

(0.07) 
0.90

(0.10)
0.65

(0.35)
0.55

(0.45)
0.49

(0.51)
0.3 100 0.69 

(0.31) 
0.59

(0.41)
0.08

(0.92)
0.03

(0.97)
0.01

(0.99)

Volume N Deposition  
Velocity 

3 1000 0.56 
(0.44) 

0.45
(0.55)

0.01
(0.99)

0.00
(1.00)

0.00
(1.00)

 
Table 7 - Quantitative Analysis of the Effect of Gas Pollutant Parameters on Dry Deposition versus Non Dry Deposition Modelling 
Source 
Type 

Changed 
Parameter 

Parameter Value Bioaerosol Concentration Ratio of Dry Deposition versus Non Dry 
Deposition Model at Various Downwind Distances 

 1 m 10 m 100 m 250 m 500 m  
0.003  0.97 

(0.03) 
0.99

(0.01)
0.99

(0.01)
0.98

(0.02)
0.97

(0.03)
0.03 0.82 

(0.18) 
0.93

(0.07)
0.87

(0.13)
0.82

(0.18)
0.76

(0.24)
0.3 0.61 

(0.39) 
0.66

(0.34)
0.45

(0.55)
0.32

(0.68)
0.25

(0.75)

Point Deposition  
Velocity in (m/s) 

3 0.56 
(0.44) 

0.48
(0.52)

0.40
(0.60)

0.08
(0.92)

0.04
(0.96)

0.003  0.97 
(0.03) 

0.97
(0.03)

0.98
(0.02)

0.98
(0.02)

0.98
(0.02)

0.03 0.77 
(0.23) 

0.80
(0.20)

0.87
(0.13)

0.86
(0.14)

0.85
(0.15)

0.3 0.36 
(0.64) 

0.38
(0.62)

0.42
(0.58)

0.40
(0.60)

0.37
(0.63)

Area Deposition  
Velocity in (m/s) 

3 0.19 
(0.81) 

0.19
(0.81)

0.12
(0.88)

0.09
(0.91)

0.07
(0.93)

0.003  0.99 
(0.01) 

0.99
(0.01)

0.95
(0.05)

0.93
(0.07)

0.92
(0.08)

Volume Deposition  
Velocity in (m/s) 

0.03 0.92 
(0.08) 

0.89
(0.11)

0.62
(0.38)

0.51
(0.49)

0.44
(0.56)
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0.3 0.68 
(0.32) 

0.58
(0.42)

0.08
(0.92)

0.03
(0.97)

0.01
(0.99)

3 0.56 
(0.44) 

0.45
(0.55)

0.01
(0.99)

0.00
(1.00)

0.00
(1.00)

 
Table 8 - Quantitative Analysis for Meteorological Parameters  
Source 
Type 

Model 
Scenario 

Adjusted 
Parameter 

Parameter 
Value 

Change  
Factor  

Bioaerosol Concentration Ratio of Adjusted Model/Base Model 
at various downwind distances 

Base Parameter: 5 m/s 1 m 10 m 100 m 250 m 500 m  
0.5 10 N/A N/A N/A N/A N/A

O Wind Speed 

50 100 0.11 
(0.89) 

0.11
(0.89)

0.17
(0.83)

0.23
(0.77)

0.27
(0.73)

Base Parameter: 10 %  
1 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

P Relative 
Humidity 

100 100 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Base Parameter: 5oC 
0.5 10 0.99 

(0.01) 
0.99

(0.01)
0.95

(0.05)
0.93

(0.07)
0.92

(0.08)

Volume 

Q Surface 
Temperature 

50 100 1.09 
(0.09) 

1.11
(0.11)

1.33
(0.33)

1.99
(0.99)

2.28
(1.28)

Base Parameter: 5 m/s 
0.5 10 N/A N/A N/A N/A N/A

O Wind Speed 

50 100 0.31 
(0.69) 

0.36
(0.64)

1.93
(0.93)

0.90
(0.10)

0.62
(0.38)

Base Parameter: 10 % 
1 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

P Relative 
Humidity 

100 100 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Base Parameter: 5oC 
0.5 10 0.98 

(0.02) 
0.96

(0.04)
0.81

(0.19)
0.85

(0.15)
0.89

(0.11)

Area 

Q Surface 
Temperature 

50 100 N/A N/A N/A N/A N/A



                                              Appendix H 
                                                                                                                                Quantitative Analysis Results for Bioaerosol Concentrations  

   

    334

Base Parameter: 5 m/s 
0.5 10 N/A N/A N/A N/A N/A

O Wind Speed 

50 100 0.15 
 (0.85) 

0.22
(0.78)

0.20
(0.80)

0.23
(0.77)

0.26
(0.74)

Base Parameter: 10 % 
1 10 1.00 

(0.00) 
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)
1.00

(0.00)

P Relative 
Humidity 

100 100 1.00 
(0.00) 

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

1.00
(0.00)

Base Parameter: 5oC 
0.5 10 0.99  

(0.01) 
0.95 

(0.05)
0.94

(0.06)
0.94

(0.06)
0.93

(0.07)

Point 

Q Surface 
Temperature 

50 100 1.17  
(0.17) 

1.92 
(0.92)

2.02
 (1.02)

2.04 
(1.04)

2.28 
(1.28)

 
Table 9 - Quantitative Analysis of the Effect of Meteorological Parameters on Site Met Data vs ADMS Pasquill Stability Class D Modelling 
Source 
Type 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Bioaerosol Concentration Ratio Site Met Data/ ADMS Pasquill Stability Class D Model 
at various downwind distances 

 1 m 10 m 100 m 250 m 500 m  
0.5 N/A N/A N/A N/A N/A
5 0.90

(0.10)
0.89 

(0.11) 
0.58

(0.42)
0.43

(0.57)
0.37

(0.63)

 
Wind Speed 
in (m/s) 

50 0.10
(0.90)

0.10 
(0.90) 

0.10
(0.90)

0.10
(0.90)

0.10
(0.90)

1 0.90
(0.10)

0.89 
(0.11) 

0.58
(0.42)

0.43
(0.57)

0.37
(0.63)

10 0.90
(0.10)

0.89 
(0.11) 

0.58
(0.42)

0.43
(0.57)

0.37
(0.63)

 
Relative Humidity  
in (%) 

100 0.90
(0.10)

0.89 
(0.11) 

0.58
(0.42)

0.43
(0.57)

0.37
(0.63)

0.5 0.89
(0.11)

0.88 
(0.12) 

0.55
(0.45)

0.40
(0.60)

0.34
(0.66)

5 0.90
(0.10)

0.89 
(0.11) 

0.58
(0.42)

0.43
(0.57)

0.37
(0.63)

Volume 

Surface Temperature 
in (oC) 

50 0.98 0.98 0.95 0.86 0.84
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(0.02) (0.02) (0.05) (0.14) (0.16)
0.5 N/A N/A N/A N/A N/A
5 0.92

(0.08)
0.85 

(0.15) 
0.78

(0.22)
0.73

(0.27)
0.70

(0.30)

 
Wind Speed 
in (m/s) 

50 0.29
(0.71)

0.31 
(0.69) 

1.51
(0.51)

0.66
(0.34)

0.43
(0.57)

1 0.94
(0.06)

0.88 
(0.12) 

0.98
(0.02)

0.86
(0.14)

0.79
(0.21)

10 0.94
(0.06)

0.88 
(0.12) 

0.97
(0.03)

0.86
(0.14)

0.79
(0.21)

 
 
Relative Humidity  
in (%) 

100 0.94
(0.06)

0.88 
(0.12) 

0.97
(0.03)

0.86
(0.14)

0.79
(0.21)

0.5 0.92
(0.08)

0.85 
(0.15) 

0.79
(0.21)

0.73
(0.27)

0.70
(0.30)

5 0.94
(0.06)

0.88 
(0.12) 

0.97
(0.03)

0.86
(0.14)

0.79
(0.21)

Area 

Surface Temperature 
in (oC) 

50 N/A N/A N/A N/A N/A
0.5 N/A N/A N/A N/A N/A
5 0.82

(0.18)
0.70 

(0.30) 
0.59

(0.41)
0.49

(0.51)
0.40

(0.60)

 
Wind Speed 
in (m/s) 

50 0.13
(0.87)

0.16 
(0.84) 

0.12
(0.88)

0.11
(0.89)

0.11
(0.89)

1 0.82
(0.18)

0.70 
(0.30) 

0.59
(0.41)

0.49
(0.51)

0.40
(0.60)

10 0.82
(0.18)

0.70 
(0.30) 

0.59
(0.41)

0.49
(0.51)

0.40
(0.60)

 
 
Relative Humidity in 
(%) 

100 0.82
(0.18)

0.70 
(0.30) 

0.59
(0.41)

0.49
(0.51)

0.40
(0.60)

0.5 0.82
(0.18)

0.66 
(0.34) 

0.56
(0.44)

0.46
(0.54)

0.37
(0.63)

5 0.82
(0.18)

0.70 
(0.30) 

0.59
(0.41)

0.49
(0.51)

0.40
(0.60)

Point 

Surface Temperature 
in (oC) 

50 0.97
(0.03)

1.34 
(0.34) 

1.20
(0.20)

1.00
(0.00)

0.92
(0.08)
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 Sampling Day 1 

ADMS Parameter/Sampling 
Location 

On compost 
windrow 
wind tunnel 1 

On compost 
windrow 
wind tunnel 2 

On compost 
windrow 
wind tunnel 3 

On compost 
windrow average  
wind tunnel 

Site Surface Roughness (m) 0.2 0.2 0.2 0.2 
Site Latitude (0) 
 52 52 52 52 

Source type Area Area Area Area 
Pollutant emission rate for 
actinomycetes  
 

6385.2 cfu/m2/s 4594 cfu/m2/s 4339.5 cfu/m2/s 5236 cfu/m2/s 

Pollutant type  Gas Gas Gas Gas 

Source height (m) 3 3 3 3 

Source exit velocity (m/s) 
 0.8 0.7 0.9 0.8 

Source exit temperature (0C) 24.7 20.2 19 21.3 

Source specific heat capacity-Cp 
(J/kg/0C)  1012 1012 1012 1012 

Source molecular weight (g/mol) 28.966 28.966 28.966 28.966 

Efflux  Volumetric flow rate Volumetric flow rate 
 Volumetric flow rate Volumetric flow rate 

Stability class D D 
 D D 
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 Sampling Day 2 

ADMS Parameter/Sampling 
Location 

On compost 
windrow 
wind tunnel 1 

On compost 
windrow 
wind tunnel 2 

On compost 
windrow 
wind tunnel 3 

On compost 
windrow average  
wind tunnel 

Site Surface Roughness (m) 0.2 0.2 0.2 0.2 
Site Latitude (0) 
 52 52 52 52 

Source type Area Area Area Area 
Pollutant emission rate for 
actinomycetes  
 

 321.4cfu/m2/s 259 cfu/m2/s 657 cfu/m2/s 419 cfu/m2/s 

Pollutant type  Gas Gas Gas Gas 

Source height (m) 3 3 3 3 

Source exit velocity (m/s) 
 0.8 0.9 0.9 0.9 

Source exit temperature (0C) 22 18.9 21.8 20.9 

Source specific heat capacity-Cp 
(J/kg/0C)  1012 1012 1012 1012 

Source molecular weight (g/mol) 28.966 28.966 28.966 28.966 

Efflux  Volumetric flow rate Volumetric flow rate Volumetric flow rate 
 Volumetric flow rate 

Stability class D D D 
 D 
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 Sampling Day 3 

ADMS Parameter/Sampling 
Location 

On compost 
windrow 
wind tunnel 1 

On compost 
windrow 
wind tunnel 2 

On compost 
windrow 
wind tunnel 3 

On compost 
windrow average 
wind tunnel 

Agitation  
source temp= 
ambient temp 

Agitation  
source temp= 
55degC 

Site Surface Roughness (m) 0.2 0.2 0.2 0.2 0.2 0.2 
Site Latitude (0) 
 52 52 52 52 52 52 

Source type Area Area Area Area Point Point 
Pollutant emission rate for 
actinomycetes  
 

406 cfu/m2/s 321 cfu/m2/s 890 cfu/m2/s 256 cfu/m2/s 57,700,000 
cfu/s 

81,000,000 
cfu/s 

Pollutant type  Gas Gas Gas Gas Gas Gas 

Source height (m) 3 3 3 3 3 3 

Source diameter (m) 
N/A N/A N/A 

N/A 3 3 

Source exit velocity (m/s) 1.5 1.7 0.5 1.2 1.1 1.1 
 

Source exit temperature (0C) 22.5 28.5 25.9 25.6 19.7 55 

Source specific heat capacity-Cp 
(J/kg/0C)  1012 1012 1012 1012 1012 1012 

Source molecular weight (g/mol) 28.966 28.966 28.966 28.966 28.966 28.966 

Efflux  Volumetric flow rate 
 

Volumetric flow 
rate Volumetric flow rate Volumetric flow rate Volumetric flow 

rate 
Volumetric flow 
rate 

Stability class D 
 D D D D D 
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The values in brackets indicate the numerical deviation of ratio from 1.00. Higher values indicate parameters which  
have the most effect on the model output compared to the base model output. 
 
Table 1 - Effect of Emission Rates on Downwind Comnentrations (Actinomycetes Concentration Ratio of Adjusted Model to Base Model) 
Experiment 
Number 

Adjusted 
Parameter 

Adjusted 
Parameter 
Value 

Change  
Factor  

Actinomycetes Concentration Ratio of Adjusted Model/Base Model 
at Various Downwind Distances 

Agitation emission rate (A): 
5.77x107 cfu/s 
Wind tunnel emission rate (W): 
5.24x103 cfu/m2/s 

1 m 10 m 100 m 250 m 500 m  

A: 1.15x108 

W: 1.05x104 
 
2 1.99 

(0.99) 
1.99

(0.99)
1.99

(0.99)
1.99

(0.99)
1.99

(0.99)
A: 2.89x108 

W: 2.62x104 
 
5 

5.01 
(4.01) 

5.01
(4.01)

5.01
(4.01)

5.01
(4.01)

5.01
(4.01)

A: 2.89x107 

W: 2.62x103 
 
0.5 

0.50 
(0.50) 

0.50
(0.50)

0.50
(0.50)

0.50
(0.50)

0.50
(0.50)

1 Emission 
Rate 

A: 1.15x107 

W: 1.05x103 
 
0.2 

0.20 
(0.80) 

0.20
(0.80)

0.20
(0.80)

0.20
(0.80)

0.20
(0.80)

Agitation emission rate (A): 
5.77x107 cfu/s 
Wind tunnel emission rate (W): 
4.19x102 cfu/m2/s 

     

A: 1.15x108 

W: 8.38x102 
 
2 

1.99 
(0.99) 

1.99
(0.99)

1.99
(0.99)

1.99
(0.99)

1.99
(0.99)

A: 2.89x108 

W: 2.1x103 
 
5 

5.01 
(4.01) 

5.01
(4.01)

5.01
(4.01)

5.01
(4.01)

5.01
(4.01)

A: 2.89x107 

W: 2.1x102 
 
0.5 

0.50 
(0.50) 

0.50
(0.50)

0.50
(0.50)

0.50
(0.50)

0.50
(0.50)

A: 1.15x107 

W: 8.38x101 
 
0.2 

0.20 
(0.80) 

0.20
(0.80)

0.20
(0.80)

0.20
(0.80)

0.20
(0.80)

A: 5.77x106 
W: 4.19x101 

 
0.1 

0.10 
(0.90) 

0.10
(0.90)

0.10
(0.90)

0.10
(0.90)

0.10
(0.90)

2 Emission 
Rate 

A: 1.92x106 

W: 1.40x101 
 
0.03 

0.03 
(0.97) 

0.03
(0.97)

0.03
(0.97)

0.03
(0.97)

0.03
(0.97)
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Agitation emission rate (A): 
5.77x107 cfu/s 
Wind tunnel emission rate (W): 
2.56x102 cfu/m2/s 

     

A: 1.15x108 

W: 5.12x102 
 
2 

1.99 
(0.99) 

1.99
(0.99)

1.99
(0.99)

1.99
(0.99)

1.99
(0.99)

A: 2.89x108 

W: 1.28x103 
 
5 

5.01 
(4.01) 

5.01
(4.01)

5.01
(4.01)

5.01
(4.01)

5.01
(4.01)

A: 2.89x107 

W: 1.28x102 
 
0.5 

0.50 
(0.50) 

0.50
(0.50)

0.50
(0.50)

0.50
(0.50)

0.50
(0.50)

3 Emission 
Rate 

A: 1.15x107 

W: 5.12x101 
 
0.2 

0.20 
(0.80) 

0.20
(0.80)

0.20
(0.80)

0.20
(0.80)

0.20
(0.80)

* these extra values also investigated to match the concentrations measured on site 

 
 

 

 


