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Abstract 

The design of axial compressors is dictated by the maximisation of flow efficiency at on design conditions whereas at part 
speed the requirement for operation stability prevails. Among other stability aids, compressor variable geometry is employed 
to rise the surge line for the provision of an adequate surge margin. The schedule of the variable vanes is in turn typically 
obtained from expensive and time consuming rig tests that go through a vast combination of possible settings. 

The present paper explores the suitability of stochastic approaches to derive the most flow efficient schedule of an axial 
compressor for a minimum variable user defined value of the surge margin. A genetic algorithm has been purposely 
developed and its satisfactory performance validated against four representative benchmark functions. The work carries on 
with the necessary thorough investigation of the impact of the different genetic operators employed on the ability of the 
algorithm to find the global extremities in an effective and efficient manner. This deems fundamental to guarantee that the 
algorithm is not trapped in local extremities.  

The algorithm is then coupled with a compressor performance prediction tool that evaluates each individual’s performance 
through a user defined fitness function. The most flow efficient schedule that conforms to a prescribed surge margin can be 
obtained thereby fast and inexpensively. Results are produced for a modern eight stage high bypass ratio compressor and 
compared with experimental data available to the research. The study concludes with the analysis of the existent relationship 
between surge margin and flow efficiency for the particular compressor under scrutiny. The study concludes with the analysis 
of the existent relationship between surge margin and flow efficiency for the particular compressor under scrutiny. 
  © 2010 Elsevier Science. All rights reserved 
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1. Compressor variable geometry operation 

Surge occurs when the pumping capability of the 
compressor is exhausted and the flow breaks away from the 
blade in an irretrievable manner. This causes an abrupt 
reversal of the airflow through the compressor.  To this 
regard, surge margin is a measure of how close an 
operating point is to surge. Safe operation of a jet engine at 
some conditions requires the value of surge margin to be 
greater than a minimum.  

It is a known fact that at part speed the reduction in the 
axial velocity  of the flow through an axial compressor 
overcomes the reduction in the spool speed, , and so 
pushes the early stages towards surge. There is a number of 
methods available to the designer to alleviate this undesired 
part speed compressor behaviour, usually known as “part 
speed crutches”, that include multi spooling, handling 
bleeds and variable geometry stator blade rows as the most 

common. In particular, handling bleeds achieve an 
increased mass flow through the early stages of the 
compressor – for an increased  and therefore a reduced 
incidence angle – by dumping overboard the excess of flow 
that would choke the rear stages otherwise. On the other 
hand, variable IGV’s and VSV’s redirect the air towards 
the respective downstream rotors so that the incidence 
angle to those rotors is kept well within an acceptable range 
away from the stalling incidence. The effect attained with 
both systems is however different (fig. 1); whereas the air 
bleed promotes a lower working line, by skewing the 
compressor variable blade rows the surge line is raised with 
a correspondent change in the compressor aerodynamic 
speed lines. It is generally accepted that a variable 
geometry stator row is required for each additional stage 
beyond 5[1]. To a first order, the working line position on 
the compressor map is regarded as unaffected by any re-
stagger of the blade rows, although strictly speaking it is a 
function of the compressor efficiency that indeed varies 
with changes in the blade row stagger angle. 

ELSEVIER 
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Figure 1: Effect on bleeds and variable geometry on the 

compressor map 
 

    At low speed the early stage variable geometry stators 
push the speed lines almost horizontally. At high spool 
speeds, however, their impact is subtler since stall is 
controlled by the rear stages and early stages migrate 
towards choke. At such speed, by further opening the 
variable vanes, the blade passage sectional area is increased 
and the compressor is able to swallow a larger mass flow – 
increased capacity - with a modest improvement in surge 
line. If the VSVs settings are rescheduled in such manner, 
the compressor is said to be upflowed.  
    In power generation applications the low pressure spool 
must run at a speed synchronised with the grid frequency, 
usually 50 or 60Hz. The variable vanes and the bleeds 
valves are operated jointly to accommodate changes in 
power demand; in other words, at the same firing 
temperature and spool speed the attainable pressure ratio 
and mass flow are modulated to meet the load 
requirements. In aero applications on the other hand, 
variable blade rows are optimised for flow efficiency at 
high speed, and for part-speed surge margin at low speeds. 
It is for this reason that the IGVs are generally devised as 
thin flat or little cambered profiles aligned with the flow – 
no swirl component is introduced in the oncoming flow- at 
nominal conditions for minimum pressure losses. To 
restrain the compressor from surge at off design conditions 
the flat plates are skewed in as much as the incidence to the 
first rotor is acceptable (fig. 2). The cost of doing this is a 
remarkable rise in pressure loss that emerges as the flow 
detaches from the plate.  

2. IGV/VSV Schedule eduction 

   The IGV/VSVs and bleed valves settings are usually 
mapped into the engine control unit scheduled versus the 
aerodynamic speed of the compressor so that the  

 
Figure 2: IGV operation fundamentals 

 
compressor geometry and bleeds are univocally defined for 
a given spool speed. During the engine design process the 
VIGVs and VSVs are devised and optimised for design 
point operation following the usual rules and numerical 
procedures. Conversely at off design conditions, the 
settings that constitute the IGV/VSV schedule are usually 
obtained from rig tests in which a large number of possible 
combinations of the variable stator settings is tested and 
compared. This trial and error process is carried out for the 
whole operating envelope of the compressor and, although 
effective, it is also lengthy and expensive. The aim of this 
work is to engineer a computational tool able to deliver the 
most flow efficient IGV/VSV schedule that at the same 
time conforms to a prescribed minimum surge margin. In 
so doing, not only the required experimental trials could be 
shortened and made cost effective but the rig resources 
could be employed in other tasks.  
    During the tests the variable stator rows are moved 
independently from each other by means of separate 
mechanical actuators that permit the blades to be 
restaggered at the controller’s will. Nevertheless, for 
simplicity, weight and cost reasons the engine is equipped 
with a single mechanical actuator that is connected with 
each variable row by a rod. Therefore, the movement of the 
VSVs rows obeys a fixed proportionality that depends on 
certain geometrical parameters of the gearing mechanism. 
The proportionality constant can be changed to fit a 
determined optimised schedule – in fact to obtain such 
constant is the object of the aforementioned rig trials- but 
once fixed it constrains the movement of the stator rows; 
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i.e. for a given turn of the VSV1, 1, the VSV2 is forced to 
rotate an angle 2, equal to  times 1. It is clear that a non 
linear response of the system is desirable from an 
aerodynamic point of view, but such benefits are offset by 
the mechanical simplicity of a single actuator system. As an 
example, figure 3 shows the datum schedule for the three 
variable rows of the eight stage axial compressor employed 
in the current study. 

The optimisation of the variable geometry schedule of a 
compressor in isolation provides spurious solutions. A 
point on the working line – defined by a determined value 
of the non dimensional mass flow and a given pressure 
ratio - can be achieved with different settings of the 
variable geometry rows. However, it is unlikely that for 
those different configurations the speed at which the 
compressor runs would be the same. Any change in spool 
speed will have an impact on the efficiency of its 
correspondent downstream turbine and although the 
compressor efficiency may be raised the turbine efficiency 
can plummet and the overall performance of the engine can 
turn out to be impaired. It is for this reason that the variable 
geometry schedule of a compressor should be derived in 
conjuction with its associated turbine. However and to a 
first order, it is not unreasonable to assume that the 
characteristic is flat for most of the power range for modern 
turbines. 

3. Variable geometry schedule optimiser 

3.1. General arrangement 

A genetic algorithm based optimiser has been chosen to 
obtain the most flow efficient variable geometry schedule 
with user specified surge margin criteria. The choice of 
such method is dictated by the properties of the problem to 
be optimised. Namely, the algorithm handles three degrees 
of freedom ( 0, 1, 2), and this fact gives rise to multiple 
local optima for a myriad of angle combinations. Moreover, 
loss and stall models used to calculate compressor 
aerodynamics are generated from empirical data and are 
usually expressions that fit the mentioned data or in some 
cases losses are given in tabular form from which any 
operating point is found by interpolation. Furthermore, the 
prediction of the compressor performance is a highly 
constrained problem – e.g. De Haller number and 
Lieblein’s equivalent diffusion factors, minimum 
acceptable surge margin, or the maximum acceptable spool 
speed variation are parameters that severely restrict the 
design space. It is for all these reasons that the problem is 
multimodal and highly constrained, and as such is suitably 
tackled with GAs and other heuristic techniques as 
demonstrated previously in the literature [2 to 15], in 
contrast with classical gradient based numerical approaches 
like those undertaken by Dennis and Schnabel [16], 
Fletcher [17] and Rao [18] that perform successfully for 
smooth functions where the shape of the objective function 

is known beforehand. On top of all, the problem is 
characterised by 

 
Figure 3: Datum compressor variable geometry schedule 

 
conflicting design options that make impossible a trial and 
error approach. In particular, surge margin is commonly 
ameliorated by design decisions that impair the compressor 
efficiency. Genetic algorithms have been successfully 
applied to virtually every aspect of the design of gas 
turbines: from models ideated to design combustors 
following a nodal network approach [2,3], to engine inlet 
design [4] or axial compressors aerodynamic design [5], 
engine components map generation techniques [6] and 
blade aerofoil design based on a parameterization of 
Beziers curves [7,8]. This type of optimiser has also been 
coupled with computational fluid dynamics techniques to 
narrow the design space and alleviate the time required to 
complete CFD based designs [9]. Wider scopes of 
application include intercooled recuperated turbofan design 
[10] or even jet engine controller design [11].The fact that 
there is no requirement for the fitness function to be 
defined analytically makes these codes particularly 
attractive to the design of axial compressors where most of 
the correlations employed are attempts to fit empirical data.  

In this work a genetic algorithm has been developed 
from scratch. The code has been programmed in Matlab 
and has been coupled with a Fortran 1D mean line analysis 
code to predict the performance of the compressor. The 
interface between both codes is accomplished by means of 
txt data files. The GA generates the txt data files that 
encode the compressor geometry and characteristics 
required by the Fortran code as an input. In turn, the 
prediction code assesses the fitness of the created 
chromosome and delivers a new txt data file that contains 
the predicted compressor performance to be read by the 
GA. The program structure is sketched in fig. 4. 

One of the results provided by the mean line analysis 
code is the mass flow that the compressor is passing at a 
given aerodynamic speed. By skewing the variable 
geometry of the compressor the aerodynamic speed at 
which a determined mass flow passes through the 
compressor changes. To a first order, for the engine to 
operate at the same point that it does with the original 
variable geometry schedule it is the value of the non  
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dimensional mass flow and pressure ratio that must be kept 
constant, rather than the aerodynamic speed of the 
compressor that varies when the variable geometry of the 
compressor is skewed. Prior to the application of any 
genetic operator, this effect is accounted for in the 
algorithm by means of a loop that finds the spool speed at 
which the mass flow and pressure ratio are within an error 
of 10-3 of their datum values. 

3.2. Genetic algorithm structure 

    The genetic algorithm had its breakthrough with the 
work undertaken by Holland [19] and Goldberg [20] and 
belongs to a group of heuristic optimisation techniques like 
the simulated annealing [21], the particle swarm 
optimisation [22] or the Tabu search [23 to 25]. The 
premise onto which the genetic algorithm is founded is to 
mimic the natural selection in which only the strongest 
individuals make it to survival while less fit individuals die 
away. The main advantage of the GA is its robustness and 
its ability to avoid getting trapped in local maxima once the 
algorithms parameters are tuned by means of a sensitivity 
analysis. This is guaranteed by the algorithm’s mechanisms 
that produce diversity in the population, particularly the 
number of chromosomes per generation and the rate of 
mutation.  
The code operates by generating a random population of 
compressors where the IGV’s / VSV’s schedule is 
represented by a string of zeros and ones so that it can be 
easily handled mathematically. The program then translates 
such strings to input files that are read by the prediction 
program to evaluate the performance of each individual of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the population. The fitness subroutine assigns to every 
compressor a fitness value that corresponds to the adiabatic 
efficiency of such compressor. The proximity of the 
working line to the surge line can be accounted for in the 
calculations implicitly in the fitness function by penalising 
those solutions with a small surge margin or by rejecting 
any individuals that violate a given surge margin constraint. 
Once the fitness of every individual has been obtained they 
are subjected to the genetic operators. First the 
chromosomes are selected randomly in pairs and forced to 
compete so that the fittest of the two replaces the less fit in 
the original population in what it is known as a 
“tournament selection”. The resultant individuals are 
randomly selected to mate and generate an offspring 
population. The children are generated in a so called 
multipoint crossover strategy in which each bit of the 
offspring is randomly chosen as the correspondent bit from 
either of the parents. Lastly, following natural genetics, the 
population is subjected to a degree of mutation that 
transmutes a prescribed percentage of bits in the population 
to its opposite value. In order to assure that the fittest 
individuals are not discarded from the population and hence 
accelerate the convergence of the code to the solution, after 
the competition the ensuing chromosomes with the highest 
fitness value are separated from the lot and set aside in an 
“elite” group that is exempted from undergoing any further 
transformation during that generation. To conclude the 
calculations the program runs mutation free for a number of 
generations in what is called a damping process to let the 
program converge to a solution. The algorithm stops when 
the average fitness of the population equals the fitness of 

Figure 4: Genetic algorithm general arrangement 
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the fittest individual; that is, when all the individuals in the 
population have become the fittest. 

3.2.1. Validation – Benchmark functions 
To investigate the capabilities of the algorithm to 

accurately predict the location of global maxima and assess 
the sensitivity of the code to the different algorithm control 
parameters the program has been subjected to trial by 
several benchmark functions with multiple local maxima, 
given by the following expressions (functions A to D; all 
for   0 x 20 and 0 y 10): 

 z = 20 sin 0.1 + (x 4)2 + (y 4)20.1 + (x 4)2 + (y 4)2   
 = 1 ( sin(4 ) + 1.1 sin(2 ))    
 = 1 ( sin(4 ) + 1.1 sin(2 ))   
 = (cos2( ) cos2( ))22 + 2    

    > 0.75+ < 15  

 
The results provided by the code are grouped in table 1, 

and are found to agree closely with the maxima found 
analytically by the method of Lagrange multipliers. The 
runs are carried out for 100 chromosomes per generation, 
during 100 generations. The number of competitions per 
generation is 120 after which the resultant chromosomes 
are crossed 100 times. The mutation rate is 10%, 5 
elements are kept within the elite and the algorithm ends 
with 30 damping generations. The calculations are 
completed in 10 seconds.  
Figure 5 plots the evolution of the fitness value (for this 
simple case the fitness value is the value of the function z 
that needs to be maximised) of the best specimen and the 
average of the population for the function D as the 
calculations progress. The results show that within the first 
40 generations the algorithm is able to capture at least one 
chromosome with a fitness value of 0.37 whilst for the 
remainder of the generations the program explores other 
regions of the design space. The average fitness of the 
population rises gently over 90 generations (continuous 
trend line) while the population is subjected to mutation. 
For the last generations the absence of mutation allows the 
code to rapidly converge to the final solution. 

3.2.2. GA’s input parameters sensitivity analysis 
The performance of the GA is heavily dependent on the 

right choice of input parameters, and care must be put to 
assure that the program has not been trapped in any local 
maxima. On the other hand, an excessively conservative 
approach would eventually find the right solution to the 

 

Table 1: Benchmark functions optimiser results. 

 
Figure 5: Maximum fitness value evolution – Function D  

problem but at the cost of a dramatic increase in 
computational time. Therefore, it is of the utmost 
importance to carry out a sensitivity analysis to tune the 
algorithm. The effect of the input parameters on the 
algorithm’s behaviour in outline is: 

 
 A number of competitions greater than the numbers of 

chromosomes (around 20%) improves the 
convergence. 

 A small percentage of mutation (1-5%) may hinder 
the algorithm from finding the solution and the code is 
trapped on local maxima. Conversely, if the mutation 
is excessive (20%) the program eventually finds the 
global maximum but it behaves as a random search 
technique. 

 The number of elements in the elite group should not 
represent a large percentage of the population as this 
delays unnecessarily the convergence to the solution. 
There is a threshold of generations and chromosomes 
below which there is no guarantee that the global 
maximum is found. This is demonstrated by the 
erratic behaviour of the algorithm for runs with less 
than 100 chromosomes and a small number of 
generations. Figure 6 and 7 illustrate this behaviour, 
and are an indicator of the repetitiveness of the 
algorithm. Particularly figure 7 groups the results of 
the maximum deviation from an average of 5 identical 
runs for the same operating point. The 30% deviation 
that appears for 50 chromosomes shows that the 
algorithm fails to reach the global maximum 
unequivocally. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120
Fi

tn
es

s v
al

ue
Number of generations

Fittest
Average



 Aerospace Science and Technology 

 

6 

 
Figure 6: Ave. fitness value evolution – Function D 

 
Figure 7: Max. dev. from final average value – Function D 

  
The sensitivity of the algorithm to the number of 

generations and the percentage of mutation is investigated 
by three different sets of runs. In the baseline case the 
number of competitions is increased 70% from the baseline 
case (300 generations, 120 competitions, 100 individuals, 
10% mutation) whereas in cases B and C the percentage of 
mutation is modified to 20% and 2% respectively. 
Increasing the number of competitions results in a less 
effective coverage of the design space compared to the 
baseline as illustrated in figs. 8 and 9 where each 
chromosome is plotted as a dot. This is reasonable since the 
number of different individuals that make it through the 
competition operator and are allowed to mate is sternly 
reduced by increasing the competitions. 

Other effects associated to the increase in the number of 
competitions are: 
 The number of generations required to damp the 

solution (no mutation) and converge to the fittest 
individual is generally reduced. 

 The number of generations required to find the location 
of the global maximum is normally greater. This is a 
consequence of the previous – greater number of 
generations without mutation results in a worse 
coverage of the design space.  

 The average fitness value reached during the 
fluctuation period is also higher. 

 Overall, the final solution value is slightly improved 
and the deviation minimised when compared to the 
same percentage reduction in mutation rate. 
 

It is found that an increase in the mutation rate has the 
opposite effect to any increments in the number of 
competitions. As an example, figure 10 shows the evolution 
of the calculations for the baseline (10% mutation) and the 
high and low mutation scenarios (20% and 2% mutation). It 
can be observed that the average fitness of the population in 
the initial phase is slightly higher for moderate values of 
the mutation rate and increases sharply for the low 
mutation case. Thereafter the mutation operator is switched 
off and the algorithm is allowed to converge to the final 
solution, and it does so in a reasonably quick manner (less 
than 20 additional generations). On the other hand, for high 
 

 
Figure 8: Design space coverage – Baseline case 

 

 
Figure 9: Design space coverage – case A 
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Figure 10: Ave. fitness value – Baseline and B and C cases 

 
Figure 11: Design space coverage – case C 

 
values of mutation the algorithm performs poorly in that 
after a lower average initial phase, it behaves erratically for 
almost 100 generations until it is eventually able to pick 
and bring the fittest individual out of the crowd. On the 
other hand, although the reduction in mutation rate rises the 
average of the fitness of the population, the coverage of the 
search space is less efficient and the code is more likely to 
get trapped in local extremities (fig. 11). 

3.3. Compressor performance prediction program 

The code employed to evaluate the fitness function for 
each compressor is a Fortran computer program used to 
obtain the preliminary off design performance of axial flow 
compressors. It is an industry proprietary 1-D mean line 
multi stage analysis that uses the correlations published and 
validated by Wright and Miller [26] to calculate the loss, 
flow turning and annulus wall blockage growth across the 
blades. These correlations are based on the diffusion factor 
as ideated by Lieblein [27] and modified by Swan [28]. 
Besides, the stall incidence is calculated with the help of 
the expressions developed by Miller, and the interested 

reader is encouraged to confer [26] and its associated 
references for further details. Due to the strong flow 
separation present across variable vane rows at off design 
conditions Lieblein’s based approaches to predict blade 
losses are flawed and hence the loss models employed were 
upgraded by Gallar et al [29] .  

The program requires some input data including number 
of stages, annulus geometry, blade geometry, variable 
geometry schedule and bleed data. It obtains the 
compressor performance via an iterative process. First of 
all, the mean line velocity triangles are obtained solving 1D 
Euler and mass flow continuity equations. The annulus wall 
blockage, rotor and stator loss coefficients can be derived 
applying blade loss and blockage empirical correlations. 
From those coefficients and the stage pressure ratio the 
stage temperature rise can be obtained and the velocity 
triangles are calculated again. The process is repeated 
iteratively until consistent values of mean-line velocity 
triangles, blade row losses and annulus wall blockage are 
found. Once the program has converged, the remainder 
blade angles are then derived from correlations of incidence 
and deviation. For validation purposes, the code has been 
applied to two different state-of-the-art eight stage axial 
compressors, A and B. Results are shown in figures 12 and 
13 and it can be observed that the computational results 
follow closely the rig data. 

4. Results 

To illustrate its capabilities the program has been applied to 
a state of the art compressor of a modern high by pass ratio 
turbofan that features a VIGV row and two rows of VSVs, 
for a defined value of the minimum surge margin 
admissible (SM1). The population size of the algorithm is 
100 individuals that run over 300 generations with a 10% 
mutation rate. The design parameters that can be changed 
in the program are three: IGV, VSV1 and VSV2 settings  
 

 
Figure 12: Compr. A – Performance prediction validation 
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Figure 13: Compr. B – Performance prediction validation 

are allowed to vary ±10 degrees around the datum. The 
fitness function is the flow efficiency of the compressor. 
Solutions with a surge margin smaller than a user defined 
value are assigned a fitness value of zero and die away in 
the subsequent generation. 

The progression of the algorithm for this real-world 
optimisation problem is depicted in figure 14. The 
algorithm starts with a fittest individual with an efficiency 
of 0.45 and rises to an average of 0.65 after 5 generations. 
During 295 generations it explores the design space and as 
a result the efficiency of the fittest individual rises slowly 
up to 0.8243 after 95 generations. During the remaining 
200 generations the algorithm does not find a fitter 
individual. After the mutation is switched off, it takes 4 
generations for the GA to converge to the solution. 

The resultant schedule is plotted in figures 15 and 16 for 
the IGV and VSV1 and 2 respectively. The optimised 
solution exhibits a clear trend towards a more opened 
position of the IGV row with respect to the datum. The first 
row of variable geometry is more opened at high speeds 
and gets progressively closer to the nominal down to 
85%NRT; then it matches the original schedule until the 
solution departs again slightly from the nominal for the 
lower region of the speed range. The second row of 
variable vanes on the other hand, is more open at the top 
end of the speed range and more closed for the remaining 
of the speed range.  
Figure 17 reflects the benefits of the proposed new 
methodology when applied to the compressor under study 
compared with experimental data obtained for the datum 
schedule on a compressor rig. As expected, at high speed 
the gain in compressor efficiency obtained is minimal as 
the compressor blading is optimised for flow efficiency at 
design conditions. Results show that a marked rise in 
compressor efficiency can be attained with respect to the 
nominal schedule utilising the new methodology, in 
particular at partial speed operation, for different values of 
the minimum surge margin required for engine operation. 
The line labelled SM1 refers to the maximum adiabatic that 

can be attained with the same surge margin prescribed for 
the datum schedule throughout the operating speed range. 
The SM2 line shows the maximum flow efficiency that can 
be obtained for the nominal surge margin increased by 5%. 
It is noticeable that for both scenarios the compressor 
efficiency is still higher than the datum, despite the increase 

 

 
Figure 14: VSV optimisation – GA progression 

 
Figure 15: IGV optimised schedule 

 
Figure 16: VSV1 and VSV2 optimised schedule 
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Figure 17: Optimised schedule efficiency 

 
Figure 18: Optimised schedule aerodynamic speed 

 
in surge margin required from the machine in the SM2 
case.  

Moreover, the subtle change in efficiency trend that is 
present at 85%NRT for all three scenarios is caused by the 
operation of the bleed valves at such speed. The opening of 
the valves allows the compressor to reach slightly higher 
efficiencies since the required surge margin for engine 
operation is provided by dumping the air overboard through 
the bleed valves rather than giving up adiabatic efficiency. 

The mentioned efficiency gain is obtained with a 
considerably reduction in aerodynamic speed (around 5%) 
for the slower segment of the operating envelope with 
respect to the datum, for the same mass flow and pressure 
ratio (fig. 18). On the other hand, the careful scrutiny of the 
results suggests that the mass flow for this particular 
compressor is chiefly controlled by the stagger of the inlet 
guide vanes.  Those results are then justified by the fact that 
the marked opening of the IGVs promotes a reduction in 
compressor losses by reducing the flow incidence onto the 
vanes. To assure that the compressor supplies the same 
mass flow and pressure ratio – same operating point – the 
increase in capacity caused by the IGVs reschedule is offset 
by the mentioned decay in aerodynamic speed.  

For each operating point the program reaches a 
converged solution in around 3 hours, using dll libraries. 
This avoids calling the compressor performance code as an 
external executable saving a considerable amount of time. 

5. Conclusions 

The aim of the present paper is to divulge the discussed 
methodology rather than comment on the results obtained 
since these will undoubtedly depend on the particular 
compressor under study. Stochastic optimisation methods 
and in particular genetic algorithms have been found as a 
powerful and adequate methodology suited to derive the 
most flow efficient schedule of the variable geometry of an 
axial compressor or at least delimit the search range and 
hence minimise the need for expensive and time consuming 
engine tests in a quick manner. 

A genetic algorithm has been developed and coupled 
with a compressor performance prediction tool to find the 
geometry schedule that maximises the adiabatic efficiency 
for a user defined value of the surge margin. Satisfactory 
results have been obtained using a 1D mean line code to 
predict the compressor efficiency. Besides, the modular 
character of the tool enables the researcher to substitute the 
compressor evaluation tool with 2D or 3D models for an 
enhanced accuracy of the results Furthermore, the tool 
enables the user to assess the impact of some design 
decisions at part speed operation during the design phase of 
the engine and in so doing promotes a better understanding 
of the expected performance of the compressor at part 
speed. This state of the art tool is suited to be upgraded to 
include the effect of bleeds and power of takes in the 
calculations for a greater applicability of the tool.  

Results for a modern high bypass ratio engine eight 
stage axial compressor are shown as an example of the 
methodology employed and compared with experimental 
data obtained for the datum schedule from the compressor 
rig. 
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Nomenclature 

Abbreviations 
GA Genetic algorithm 
IGV Inlet guide vane 
RL Running line 
SM Surge margin 
VIGV Variable inlet guide vane 
VSV Variable stator vane 
 
Greek symbols 

 Adiabatic efficiency 
 Angle of rotation – IGV and VSV settings 
 Constant of proportionality 
 Pressure ratio 

 
Subscripts 
0,1,2 IGV, first or second row of VSV’s respectively 
* Design conditions 
Latin symbols 

 Axial 
N Spool speed 
NRT Compressor aerodynamic speed  
P Total pressure 
T Total temperature 
U Blade speed 
V Flow absolute velocity  
W Mass flow / Flow relative velocity 
 
 


