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Numerical simulation based on the stochastic
Monte Carlo method is widely used to calculate the
intensity of scattered radiation in randomly inhomoge-
neous turbid media [1]. However, a special approach is
required to apply the method for simulating coherent
effects, which manifest themselves even in the presence
of strong multiple scattering and have attracted increas-
ing interest in recent years [2–8].

In this work, the stochastic Monte Carlo method is
compared with a theoretical approach based on the rep-
resentation of the Bethe–Salpeter equation in the form
of a multiple scattering series to show how this method
is generalized within the framework of a unified sto-
chastic approach for calculating time correlations of
intensity, coherent backscattering, and other coherent
effects.

The field correlation function in an inhomogeneous
dispersive medium with random space–time fluctua-
tions of the dielectric constant is described by the inte-
gral Bethe–Salpeter equation

(1)
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 is the photon mean free
path. For simplicity, we restrict ourselves only to the
case where the intrinsic absorption is absent and light
losses are caused only by elastic scattering. In this case,
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the scattering coefficient is 
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) is the product of a complex conjugate pair
of Green’s functions of the corresponding wave equa-
tion and describes the radiation propagation between
two scattering events. The function 

 

p

 

t

 

(

 

k

 

i

 

 – 

 

k

 

s

 

) is
expressed in terms of the Fourier transform of the pair
correlation function of dielectric constant fluctuations
and coincides at 
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= 0 with the scattering phase function
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Let a scattering medium occupy the half-space 

 

z

 

 > 0,
where 

 

z

 

 is the Cartesian coordinate normal to the
medium boundary. For the normal incidence and back-
scattering, the incoherent component of the time corre-
lation function is described by the ladder-diagram
series and has the form

(2)

For scattering angles 
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 close to 180
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, the interference
component caused by the cyclic [9, 10] or fan diagrams
is comparable with the ladder component:

(3)

The incident and scattered beams lie in the (
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) plane.
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At t = 0, Eq. (2) describes the backscattering inten-
sity. Correspondingly, Eq. (3) determines the peak in
the coherent backscattering.

By integrating the Bethe–Salpeter equation, one
arrives at a series that is usually illustrated by a series
of ladder diagrams.

Let us compare the analytic procedure of summing
ladder-diagram series with the Monte Carlo method.
The first term of the iterative series describes single
scattering, the second term describes two scattering
events, etc. Similarly, the Monte Carlo method
describes the radiation propagation as a stochastic pro-
cess consisting of 1, 2, …, N scattering events. The
addition of one ladder section Λ(Rn n + 1)p0(kn n + 1 –
kn + 1) in the theoretical description is realized in the
numerical experiment by modeling the photon paths
through a certain distance s to the next scattering event.
The main assumption in the stochastic Monte Carlo
method consists of postulating the distribution law
f(s) = µexp(–µs) for the photon mean free path as a ran-
dom variable s [11]. It follows from this distribution
that s = –µ–1lnξ, where ξ is the probability that the
mean free path is no less than s. In the Monte Carlo
method, the arbitrary ξ value is chosen in the [0, 1]
interval using a random number generator. The change
in the direction of motion of the photon package in each
elastic scattering event is determined by the scattering
phase function.

Physically, the series arising upon the iteration of
Eq. (1) is a series in scattering multiplicity. If the inte-
gration with respect to Ri is replaced by a random
choice Ri = s and the integration with respect to Ri is
realized by a random choice of angles with the statisti-
cal weight determined by the phase function, then the
solution of the Bethe–Salpeter equation is simulated by
the Monte Carlo scheme described above, making it
possible to use it for calculating coherent effects.

The majority of applications [12, 13] are devoted to
the diffusion mechanism of inhomogeneity time evolu-
tion, for which the time correlation function of intensity
fluctuations can be represented as the product of static
correlation function and exponential

(4)

where Ds is the self-diffusion coefficient. The only dif-
ference between the calculation of the time correlation
function and the calculation of intensity is that the

pt q( ) p0 q( ) Dsq
2
t–( ),exp≈

weight of the photon package is multiplied by the phase
function pt(kn – kn – 1) in each scattering event.

The number of incident photons varied in the range
105–107. The simulation of photon trajectory was termi-
nated when the number of scattering events exceeded
104. We also disregarded photons whose statistical
weights became less than 10–3. This neglect leads to an
error no higher than 10–5, because, according to our
estimates, the probability of detecting such a photon on
the surface is no higher than 10–2. The accuracy of cal-
culated parameters was tested by the stability of numer-
ical values upon increasing the sample size. For a num-
ber of 105, the intensity is stable with an accuracy of no
less than four decimal places.

The time correlation function of the field g1(t) was
calculated for media with various anisotropy factors

 = 0, 0.5, and 0.9. The Henyey–Greenstein phase

function was used in simulation. In terms of ,
where τ = 1/Dsk2 is the characteristic diffusion time of
a scattering particle through a distance on the order of
the wavelength, the time correlation function is virtu-
ally universal and is independent of the anisotropy of
single scattering, in agreement with experiments [12,
13] and theoretical solution in the P1 approximation
[14], while the specificity of the scattering system is
taken into account upon the transition to the description
in units of characteristic time τ. The dependence
obtained for the time correlation function is well

described by the formula g1(t) ∝  exp(–γ ) pro-
posed in [13].

The time correlation function was calculated for
layers of different thickness. The corresponding depen-

dence on the average cosine  of the single-scatter-
ing angle is weak enough for finite-thickness layers, as

is seen in the table, where l* = l(1 – )–1 is the
transport mean free path.

Figure 1 shows the results of simulation of the field
time correlation functions for finite-thickness layers

with  = 0.9. As is seen, the diffusion character of

light propagation with a linear dependence on 
reveals itself at increasingly large times with a decrease
in thickness. Good agreement with the experimental
data is noteworthy: Fig. 1 almost exactly reproduces
Fig. 2 from [13].

Figure 2 also shows the angular dependence of the

coherent backscattering peak calculated for  = 0,
0.5, and 0.9. It follows from Eq. (3) that, in the case of
normal incidence and small backscattering angles, the
difference from the expression for the intensity of the
incoherent component consists only in the presence of
the additional factor exp(iq⊥ (r1 – r2)), which can be
replaced by cos(q⊥ (r1 – r2)) because of the transla-
tional invariance about the transverse coordinates r.

θcos

t/τ

6t/τ

θcos

θcos

θcos

t/τ

θcos

Intensity of backscattered light as a function of the layer
thickness L for various anisotropy parameters

L = l* L = 2l* L = 5l* L = 10l* ∞

0 0.3481 0.5254 0.7507 0.8665 1

0.9 0.3214 0.5318 0.7784 0.9003 1

θcos
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Then, when calculating the intensity of the back-
scattering coherent component, one should, first, multi-
ply the total weight of photon packages arriving with
vector ks at distance ρ from the entry point at the inter-
face by the factor cos(q⊥ r) and, second, take the sum
over the entire surface.

Similarly to the time correlations, the angular
dependence of the coherent backscattering peak inten-
sity proves to be universal in the dimensionless variable

 = kl*sinθs and is well described by the formula
ICBS ∝  exp(–γkl*sinθs) with γ = 2. Note that the
obtained universal dependence ICBS ∝  exp(–γkl*sinθs)
with γ = 2 differs significantly from the dependence
[15]

predicted in the diffusion approximation for kl*sinθs �

1, where z* = 0.71(1 – )–1. This formula gives the

slope γ(diff) = 2.3 for  = 0 and γ(diff) = 0.71 for

  1.
Contrary to the diffusion approximation, which pre-

dicts that the linear slope of the coherent backscattering
peak decreases with an increase in anisotropy, the
dependence calculated by us indicates the universal
character of a decrease. If the phase function is strongly
anisotropic, the coherence effects can be quite pro-
nounced, despite the smallness of these parameters. In
particular, the decay of intensity time correlations is
governed by the parameter t/τ, which can be much

q̃

ICBS
diff 1 2

1 z*+( )2

1 2z*+
---------------------kl* θs,sin–∝

θcos

θcos

θcos

greater than the parameter (t/τ)(l/l*). It is precisely due
to this fact that the intensity correlation functions are
described by the multiple-scattering theory even if they
decrease by two orders of magnitude.

In this work, the coherent effects in multiple scatter-
ing have been simulated within the framework of a uni-
fied stochastic approach. Similar calculations can eas-
ily be carried out for suspensions that are usually
treated as a system of hard spheres [16]. The phase
function for this system is represented as the product of
the Mie form factor and the Percus–Yevick structure
factor.

The comparative analysis carried out in this work
enables one to considerably simplify the simulation of
radiation transport and coherent effects in randomly
inhomogeneous strongly scattering media, such as liq-
uid crystals, tissues, etc., and to extend the application
field of these methods.
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