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Abstract 

 

Antifungal activity against the pathogen, Botrytis cinerea, and a bioassay 

organism, Cladosporium cladosporioides, declined with advancing strawberry fruit 

maturity as shown by thin layer chromatography (TLC) bioassays.  Preformed 

antifungal activity was also present in flower tissue.  The fall in fruit antifungal 

compounds was correlated with a decline in natural disease resistance (NDR) against 

B. cinerea in-planta.  Crude extracts of green stage I fruit (7 days after anthesis) 

contained at least two preformed antifungal compounds (Rf = 0.44 and 0.37) that were 

not present in white and red stage fruit.  These compounds were shown with TLC 

reagent sprays to be neither phenolics nor alkaloids.  Positive reactions to Ehrlich’s 

reagent suggested that Rf = 0.37 was a terpene.  Most antifungal activity was found in 

the achenes of green stage I fruit.  However, antifungal activity was found in all tissue 

types (viz. pith, cortex, epidermis) of green stage I fruit.  TLC bioassays revealed that 

all fruit stages yielded antifungal activity at the origin (Rf = 0.00). The approximate 

area of fungal inhibition at the origin in green stage 1 fruit extracts was 1.87-fold and 

1.73-fold greater than in white and red stages, respectively.  TLC reagent sprays 

showed that the antifungal compound(s) at origin included phenolics.  This 
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observation is consistent with previous reports that phenolic compounds in strawberry 

fruit are inhibitory to B. cinerea.  

 

Keywords: Botrytis cinerea, grey mould, natural disease resistance, phytoanticipin, 

thin layer chromatography bioassay 

 

1.  Introduction 

 

Strawberry fruit (Fragaria ananassa Duch.) vary in their inherent 

susceptibility to Botrytis cinerea Pers. (Teleomorph: Botryotinia fuckeliana (de Bary) 

Whetzel) according to their physiological status (Gilles, 1959) and genotype 

(Daugaard et al., 1999; Hébert et al., 2002).  However, no strawberry cultivar is 

highly resistant to grey mould.  B. cinerea tends to infect inflorescences in the field, 

but extensive fruit decay is only usually seen following harvest after when the fruit 

has reached and passed full harvest maturity (Powelson, 1960; Bristow et al., 1986).  

Therefore, B. cinerea generally remains quiescent until either physiochemical 

defences and/or stimulation in the host fall or rise, respectively, to allow invasion to 

continue.  The inherent natural disease resistance (NDR) of strawberry fruit probably 

declines during fruit development and senescence, including during postharvest 

storage.  Between flowering and fruit senescence there is evidently a period of 

relatively high resistance when grey mould development is rare. 

Authors have attributed variation in NDR in strawberry fruit to skin strength 

(Gooding, 1976), fruit tissue firmness (Barritt, 1980) and flower susceptibility 

(Bristow et al., 1986).  As with many other fruit patho-systems, the lack of nutritional 

requirements for the pathogen, activation of fungal pathogenicity factors and the 

presence/decline of preformed or induced antifungal compounds during fruit 

development (Prusky, 1996) may also influence NDR in strawberry fruit.  However, 

relatively little work has been undertaken to characterise and identify preformed 

(phytoanticipin) and/or induced (phytoalexin) compounds with activity against 

pathogens (Table 1) or pests (Luczynski et al., 1990) of strawberry.  With a view to 

better characterising NDR in strawberry fruit, experiments were performed to 

elucidate NDR in strawberry flowers and fruit.  These involved determining the 

presence and partial identity of constitutive antifungal compounds during 
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development.  The presence of antifungals in different parts of the strawberry flower 

and fruit was also investigated.  

 

INSERT TABLE 1 

 

2. Materials and methods 

 

2.1. Plant material 

 

Cold-stored maiden-year A+ grade strawberry cv. Elsanta plants were supplied 

by KG Fruits Ltd. (Kent, UK).  The plants were grown in a glasshouse according to 

Terry and Joyce, 2000 in 1 litre capacity pots containing peat and expanded 

polystyrene (10 + 1 parts by volume).  Temperatures ranged from 20 to 40°C during 

the day and 5 to 20°C during the night in spring (March-May) 2000. 

 

2.2. Inoculum preparation 

 

Single-spored isolates of the pathogen, B. cinerea, and the bioassay organism, 

Cladosporium cladosporioides (Fres.) de Vries, were recovered from naturally 

infected strawberry cv. Elsanta fruit (Terry et al., 2003).  They were cultured in 9 cm 

diameter Petri plates on ½ strength PDA (potato dextrose agar; 19.5 g l-1 distilled 

water) (Oxoid Ltd., Berkshire, UK) at 22 ±1 and 20 ±1°C, respectively.  Streptomycin 

(1.0 mg ml-1) was added to the ½ PDA to inhibit potential growth of bacteria.  The 

cultures were subjected to diurnal (12 h d-1) UV-A lighting to induce sporulation.  

 

2.3. Fruit sampling, inoculation and disease assessment 

 

Twenty-two fruit each of green stage I (7 days after anthesis; DAA), white (21 

DAA) and red (28 DAA) stages of maturity (Culpepper et al., 1935) with no signs of 

fungal infection were harvested at random.  DAA was monitored following the 

tagging of flowers at anthesis.  Fruit were wound inoculated by application of a 15 µl 

drop of a 4 day-old B. cinerea conidial suspension (2 x 104 conidia ml-1) to the fruit 

shoulder (Adikaram et al., 2002).  Non-inoculated fruit were used as controls.  Fruit 
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were held in the dark at 5°C and 95 to 100% relative humidity (RH) in individual 

closed but vented polystyrene containers in a completely randomised design  (Terry 

and Joyce, 2000).  Disease severity resulting from inoculation or natural infection was 

assessed as the percentage area of each fruit covered by grey mould, and was recorded 

daily.  10% disease severity was defined as the first instance disease was visible on 

surface of fruit. 

 

2.4. Thin layer chromatography 

 
Glass-backed TLC plates (20 x 10 or 20 x 20 cm) coated with silica gel 60 or 

silica gel 60 F254 (Merck, Darmstadt, Germany) were used.  The plates were spotted 

using a 5 or 10 µl micro-pipette with 5-100 µl of resuspended crude or sequentially 

extracted strawberry fruit and flower extracts made at 0.2 ml g-1 fresh weight (FW) 

(Droby et al., 1986).  The protein synthesis inhibitor cycloheximide (0.5 mg ml-1) and 

extracting solvents (99% v/v) were used as positive and negative controls, 

respectively.  TLC plates were developed in either one or two dimensions  (1-D, 2-D) 

at approximately 22°C in a TLC tank (20 x 20 x 10 cm) lined with filter paper to 

create a solvent saturated atmosphere.  1-D TLCs were developed either in 100 ml of 

running solvents comprised of hexane: ethyl acetate: methanol (A = 60:40:1; B = 

60:40:10; C = 60:40:20; D = 60:40:30 v/v/v) (Terry et al., 2003) or in the organic 

phase of ethyl acetate: benzene: ethanol (4:1:1, v/v/v; Mussell and Staples, 1971).  2-

D TLCs (Wedge and Nagle, 2000) were developed in solvent system A (1-D) and 

then solvent system D (2-D).  Developed 1-D and 2-D chromatograms were air-dried 

and then either used for antifungal bioassays or sprayed with chemical reagents. 

 

2.5. TLC bioassay 

 
Developed chromatograms were sprayed with spore suspensions of either C. 

cladosporioides (2 x 107 spores ml-1) or B. cinerea (2 x 106 conidia ml-1) in Czapek 

Dox nutrient solution, respectively (Zainuri et al., 2001; Adikaram et al., 2002).  

Plates were incubated at 100% RH and 20°C for 3 to 6 days.  Zones of fungal 

inhibition, where mycelial growth was absent, indicated the presence of antifungal 

activity (Klarman and Stanford 1968).  Weak antifungal activity was defined as areas 
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with less dense lighter coloured mycelium from positive control (extracting solvent 

only). The retention factor (Rf) and areas of inhibition were measured and recorded. 

 

2.6. Antifungal identification 

 

Detection procedures for compounds on 1 and 2-D TLCs included inspection 

under visible and ultraviolet (254 and 336 nm) light before and during fuming with 

98% v/v ammonia.  After examination, ammonia was removed from plates by air 

drying for 1h.  Replicate plates were sprayed with 10% w/v phosphomolybdic acid 

(PMA) in ethanol, and heated to about 100°C for 2 min (Terry et al., 2003).  PMA is a 

general visualisation reagent for oxidizable compounds.  More chemical class specific 

visualisation reagents were used for detection of phenolics (Folin-Ciocalteu; 

diazotized sulfanilic acid), alkaloids (Dragendorff’s) (Waterman and Mole, 1994; 

Terry et al., 2003) and terpenes (Ehlrich’s; Vincent et al., 1999).   The Rf and colour 

of detected spots were recorded and compared to zones of fungal inhibition on 

duplicate bioassay chromatograms.  

 

2.7. Crude extraction of whole strawberry fruit at different development stages 

Whole green I, white and red stage strawberry fruit without calyxes (50 g FW) 

were randomly harvested, immediately snap frozen in liquid nitrogen and stored at -

18°C until use.  Each sample extract was prepared according to Terry et al. (2003).  

Briefly, fruit was ground in liquid nitrogen and added into 99% (v/v) ethanol at 3 ml 

g-1 FW.  The mixture was homogenised, filtered, and then concentrated in a rotary 

evaporator (Buchi Rotovapor, Büchi Labortechnik AG, Flawil, Switzerland) under 

vacuum of 0.6 kPa at 40°C to approximately one third of the original volume.  The 

concentrated extract was then partitioned twice with equal volumes of 99% (v/v) 

dichloromethane using a separating funnel.  The lower dichloromethane layers were 

pooled and dried by adding 6 g of anhydrous MgSO4.  This mixture was then filtered, 

evaporated to dryness and resuspended in 99% (v/v) ethanol at 0.2 ml g-1 FW (Droby 

et al., 1986).  The experiment was repeated twice to reduce possible variations in fruit 

chemistry. 
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2.8. Crude extraction of different tissues from whole strawberry fruit at different 

development stages 

Green stage I, white and red strawberry fruit were harvested and dissected into 

pith, corticular parenchyma, epidermal tissue without achenes and achenes.  Each 

tissue type (10 g FW) from each fruit stage and whole fruit were extracted as 

described above for whole fruit.  The experiment was repeated twice. 

 

2.9. Sequential extraction and column chromatography of green stage I tissues  

 

Green stage I achenes (35 g FW; 10.12 g DW), whole fruit without achenes 

(75 g FW; 8.12 g DW) and whole fruit with achenes (125 g FW; 15.92 g DW) were 

sequentially extracted with solvents of increasing polarity at 3 ml g-1 FW (hexane, 

ethyl acetate and ethanol (99% v/v)).  1-D TLCs run in solvent system B were 

performed on each extract (0.2 ml g-1 FW).  On the basis of similar/identical patterns 

on the TLC plate to treatment with PMA reagent, hexane and ethyl acetate fractions of 

achenes (50; 119 mg extract DW) and whole fruit with achenes (74; 83 mg extract 

DW) were each combined to increase the amount of material in preparation for 

purification.  . 

Hexane and ethyl acetate dry extracts were each chromatographed in a glass 

column of 7.5 cm length and 2 cm diameter packed with Silica gel 60 (Fluka, St. 

Louis, USA) using three solvent combinations of increasing polarity.  The extracts 

were first dissolved in the minimum volume of hexane: ethyl acetate (80: 20 v/v) and 

then layered on top of the column pre-equilibrated with the same solvent.  One 

thousand drop fractions of the column eluate were collected using a Pharmain LKB-

Redifrac (Amersham BioSciences, Bucks., UK).  The sequential solvent systems used 

for elution (40 ml) were hexane: ethyl acetate (60: 40 v/v), hexane: ethyl acetate: 

methanol 40:60:1 (v/v/v) and (20: 80: 1; v/v/v).  Eighteen and 43 fractions were 

obtained from hexane and ethyl acetate combined extracts, respectively.  These 

fractions were reduced to 3 and 7 fractions, respectively, by pooling on the basis of 

similar TLC behaviour to PMA run in solvent B.  1D-TLC bioassays were performed 

on pooled fractions run in solvent B.  

 

2.10. Sequential extraction of green stage I achenes 
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Green stage I fruit were randomly harvested and their achenes removed.  

Achenes (10 g FW; 2.89 g DW) were prepared and sequentially extracted in ethyl 

acetate and ethanol as described above and then used for TLC bioassays. 

 

2.11. Sequential extraction of different strawberry flower development stages 

 

Strawberry flowers at white bud, full bloom and post-anthesis development 

stages (Jarvis and Borecka, 1968) were randomly harvested and prepared  as 

previously described for fruit.  Besides whole flowers, receptacle tissue including 

pistils from each of the 3 flower stages were also selected and prepared as described 

above.  Each sample (10 g FW) was sequentially extracted in ethyl acetate and ethanol 

(99% v/v) as previously described and the extracts were used for TLC bioassays. 

 

2.12. Data analysis and presentation 

 

Disease severity data were analysed by using ANOVA using Genstat 5 

Version 4.1.  Where significant differences among treatments were obtained, mean 

separation was by LSD (P = 0.05). 

 

3. Results  

 

3.1. Disease severity 

 

Disease expression studies at 5°C suggested that the natural disease resistance 

of strawberry cv. Elsanta fruit declined during fruit development (Table 2).  The time 

to 10% disease severity for green stage I fruit was significantly (P < 0.001) longer 

than for white and red stages.  Control and inoculated green stage I fruit were 

approximately 1.5  and 3 times more resistant in terms of time to 10% disease severity 

to grey mould after harvest than red fruit.  In contrast to white and red stage fruit, B. 

cinerea conidia were never produced on green stage I fruit.  Rather a mass of white 

mycelium was observed.  Thus, normal development of the fungus was also inhibited 

on green stage I fruit.  Natural infection was always caused by B. cinerea.  Time to 

10% disease severity was significantly shorter (P < 0.001) for inoculated fruit than 
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control fruit.  There was no significant (P > 0.05) interaction between fruit stage and 

inoculation.  Thus, fruit development stage effects were similar for both ± inoculation 

treatments.  No difference was observed in the morphology of grey mould infections 

between inoculated and control fruit of the same development stage.   

 

INSERT TABLE 2 

 

3.2. Preformed antifungals in strawberry fruit tissue extracts of different 

developmental stages 

 

Crude ethanol extracts of green stage I, white and red stage strawberry cv. 

Elsanta fruit contain varying degrees of antifungal activity as shown by 1-D TLC 

bioassay (Plate 1).  Green stage I fruit extracts contained at least two colourless 

preformed antifungal compounds (Rf 0.44 and 0.37) that were not present in white and 

red stage fruit (Table 3).  Negative TLC plate reactions to UV-C, phenolic and 

Dragendorff’s reagent sprays suggest that these compounds were neither phenolics 

nor alkaloids, respectively (data not shown).  Low intensity to but positive reactions 

of Rf 0.37 to Ehrlich’s reagent suggested that it may be a terpene.   

 

INSERT PLATE 1 

INSERT TABLE 3 

 

Crude extracts of white and red fruit contained a yellow-coloured non-polar 

preformed antifungal compound (Rf 0.86) of weak intensity that was not found in 

green stage I fruit (Table 3). All fruit maturity stages showed antifungal activity at the 

origin of TLC bioassay (Plate 1).  The approximate area of fungal inhibition at the 

origin in green stage I fruit extracts (Rf 0.13-0.00) was 1.87 and 1.73-fold greater than 

in white and red fruit extracts, respectively (Plate 1; Table 3). Positive reactions to 

UV-C (dark), Folin Ciocalteu (dark blue) and sulfanilic acid (brown) reagent sprays 

suggest that origin compound(s) contain phenolics with antifungal properties against 

C. cladosporioides and B. cinerea (data not shown).  

 

3.3. Distribution of preformed antifungals in green stage I fruit tissue 
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TLC bioassays of extracts from various green stage I fruit tissues revealed that 

greatest antifungal activity was in the achenes (Table 4).  None-the-less, antifungal 

activity was found in all tissue types; the pith, cortex and epidermis of green stage I 

fruit.  The total area of fungal inhibition for green stage I achenes crude extracts was 

at least 1.4-fold greater than for other tissue types.  All tissues showed similar 

antifungal profiles to those seen in whole green I fruit crude extracts (Plate 1 and 

Table 3).  

 

INSERT TABLE 4 

 

B. cinerea and C. cladosporioides were both inhibited by antifungal 

compounds separated in all running solvent systems (data not shown).  Fungal growth 

inhibition by extracts from green stage I fruit achenes was evident for 20, 10 and 5 µl 

aliquots of crude extract (data not shown).  The water content of achenes is almost 

one third that of other green stage I strawberry fruit tissue.  However, on a dry weight 

basis achenes contained more antifungal compounds compared to whole fruit, pith, 

cortex and epidermis.  1 and 2-D C. cladosporioides TLC bioassays revealed that 

green stage I fruit achenes may contain at least eight preformed antifungal compounds 

(Table 5; data not shown) with two compounds at Rf 0.42 and 0.36 (Table 5) 

apparently corresponding to Rfs at 0.44 and 0.37 in whole green stage I extracts (Plate 

1 and Table 3).  Antifungal activity was observed at origin on TLC plates for white 

and red stage achene tissue (Table 5). However, when run in an organic phase of ethyl 

acetate: benzene: 50% (v/v) ethanol (4:1:1) (Mussell and Staples, 1971), antifungal 

activity against B. cinerea was observed at Rf 0.76-0.58 for green stage I achenes 

(Table 6).   

   

INSERT TABLE 5 

INSERT TABLE 6 

 

Green stage I fruit achenes sequentially extracted in ethyl acetate or ethanol 

displayed very different TLC behaviour to PMA reagent spray and bioassay.  

Sequential extraction and column chromatography of green stage I tissues confirmed 
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that antifungal activity was only in ethyl acetate (Table 7) and ethanol fractions.  The 

ethyl acetate fraction showed similar but much less intense antifungal activity at Rfs 

0.54, 0.48, 0.28, 0.19 and 0.10 to the previous achene extract bioassays run in solvent 

B (60:40:10; v/v/v) (Table 7) when applied at 30 µl (0.2 ml g-1 FW).  In contrast to 

previous TLC bioassay results with achene extracts (Table 5), strong inhibition was 

not seen at lower applications of 10 and 20 µl aliquots.  No antifungal activity in ethyl 

acetate fraction was observed at the origin.  However, more polar phenolic 

compounds extracted in ethanol fraction revealed antifungal activity at origin.   

 

INSERT TABLE 7 

 

3.4. Preformed antifungal compounds in strawberry flower tissue extracts at 

different developmental stages 

 

Flower stages sequentially extracted in ethyl acetate and ethanol showed 

similar TLC behaviour to both PMA reagent spray and in bioassays (data not shown) 

as seen in sequentially extracted green stage I fruit achenes (Table 7 and Table 8).  

Whole flowers at post-anthesis displayed greater antifungal activity at Rfs 0.38, 0.29, 

0.21, 0.10, 0.00 than white bud and full bloom stages (Table 8).  Whole flower ethyl 

acetate fractions had greater antifungal activity than pistils and receptacle tissue in all 

flower stages.  There was no difference in the antifungal activity (Rf 0.00) of ethanol 

fraction between whole flower stages and flower tissues (Table 8).   

 

INSERT TABLE 8 

 

4. Discussion 

 

4.1. Disease expression study 

 

Natural disease resistance declined during fruit development (Table 2). 

Enhanced symptom expression with increasing strawberry cv. Elsanta fruit maturity 

confirms similar findings by Gilles (1959) and Powelson (1960) for other cultivars.  

The differences in time to 10% disease severity score and in the growth habit of B. 
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cinerea between different fruit development stages may be due to resistance factors 

and/or availability of nutrients (Prusky, 1996). 

 

4.2. Preformed antifungals in strawberry fruit tissue extracts of different 

developmental stages 

 

Antifungal activity of strawberry cv. Elsanta crude and sequential extracts 

declined with increasing fruit development stage. Greater antifungal activity was 

shown in green stage I fruit (Rf 0.37, 0.44, 0.13-0.00)  as compared to white and red 

stage fruit extracts (Rf 0.00).  The antifungal zone at Rf 0.37 may correspond to one or 

more of the three triterpene wound-induced ‘phytoalexins’, euscaphic acid, tormentic 

acid and myrianthic acid (compounds 1-3), previously identified through NMR 

spectral analysis in green stage strawberry cv. Hokowase fruit (Hirai et al., 2000).  

However, it is unlikely that the observed antifungals in present study were induced as 

strawberry fruit were not subjected to biotic stress treatment after harvest.   

The compounds Rf 0.44 and/or Rf 0.37 may be similar to preformed antifungal 

compounds found at Rf 0.66 and 0.56 (hexane: ethyl acetate; 80: 20 v/v) in strawberry 

leaves (Vincent et al., 1999).  These compounds conferred resistance to C. fragariae, 

and were undetectable by UV or anisaldehyde spray reagent.  Anisaldehyde reacts 

with a variety of natural chemicals, including terpenes.  TLC bioassays revealed that 

the concentrations and presence of antifungal compounds varied between anthracnose 

resistant and susceptible cultivars (Vincent et al., 1999).  It was suggested that 

anthracnose resistance in strawberry leaves may depend upon the concentrations of 

these preformed antifungals at Rf 0.56 and 0.66 and also a third phytoalexin-like 

compound at Rf 0.32.  This third compound that was only induced in the resistant cv. 

Sweet Charlie.   

Mussell and Staples (1971) discovered two phytoalexin-like compounds (A, Rf 

0.52; B, Rf 0.39) in strawberry roots.  These compounds were induced by challenging 

cv. Surecrop plants that were resistant to red stele disease with Phytophthora 

fragariae.  Inoculation of susceptible cv. Blakemore did not result in appearance of 

these compounds.  However, another preformed antifungal compound (denoted C, Rf 

0.84) was found in extracts of both cultivars regardless of whether or not they were 

inoculated.  Using TLC bioassays, both phytoalexin-like compounds (A, B) and 

preformed compound C were inhibitory to Cladosporium cucumerinum.  Compounds 
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A and B extracted from TLC plates and introduced into cultures of P. fragariae 

proved to be inhibitory to mycelial growth.  Compound C was not inhibitory to P. 

fragariae.  Identities of these three compounds were not determined.   

Hirai et al. (2000) proposed from TLC analysis that inducible triterpenes 

found in green stage strawberry cv. Hokowase fruit which might confer resistance to 

Colletotrichum fragariae probably correspond to the phytoalexin-like compounds A 

and B found in strawberry cv. Surecrop roots (Mussell and Staples, 1971).  In 

addition, compounds A and B were apparently not derived from phenylpropanoid 

pathway as phenylalanine-ammonia lyase (PAL) activity remained constant even after 

infection.  This observation suggests that fruit may produce similar antifungal 

compounds to those in the roots.  In the present study, one or more of the compounds 

found may be similar to the preformed and/or phytoalexin-like antifungal compounds 

discovered in strawberry roots (Mussell and Staples, 1971), leaves (Vincent et al., 

1999) and fruit (Hirai et al., 2000).   

TLC reagent sprays and bioassays indicate that green stage I fruit contain 

more phenolic compounds with antifungal activity than white and red stage fruit. This 

observation is consistent with previous research showing that a decline in phenolics 

during strawberry fruit development (Table 1) or after harvest (Jiang et al., 2001) is 

correlated to decreased NDR to B. cinerea and other postharvest diseases. 

Jersch et al. (1989) found no evidence that green stage strawberry cv. Senga 

Sengana fruit contained preformed or inducible antifungal compounds when tested in 

agar or ELISA plate bioassays using B. cinerea or Cladosporium herbarum.  They 

suggested that a decline in proanthocyanin (PA) concentration during fruit 

development governs B. cinerea quiescence through removing inhibition of pathogen-

derived polygalacturonase (PG).  PA was shown in-vitro to inhibit PG produced by B. 

cinerea.  PG is one of the key enzymes involved in fungal pathogenicity (Labavitch et 

al., 1998).  Resistance of immature strawberry fruit to external infection was 

correlated with pronounced deposition of PA in the epidermal layer (Jersch et al., 

1989).  The overall PA content in immature fruits was negatively correlated with 

mycelial development on inoculated fruit.  PA concentration was higher in less 

susceptible strawberry cultivars.  Harris and Dennis (1982) demonstrated that PG 

produced by B. cinerea was rapidly inactivated by naturally occurring phenolics in 

infected strawberry cv. Cambridge Favourite fruit.  Extracts of more resistant green 
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stage strawberry fruit infected with B. cinerea showed approximately twice the endo-

PG activity of extracts of white and red stage fruit. 

Hébert et al. (2001) and Di Venere et al. (1998) confirmed that increased 

resistance to B. cinerea was positively correlated with PA concentration.  However, 

Hébert et al. (2001; 2002), using a similar bioassay methodology to Jersch et al. 

(1989), found that aqueous extracts of immature strawberry cv. Chandler fruit did 

have direct antifungal activity against B. cinerea conidial germination and mycelial 

growth.  Cultivars with higher concentrations of free and bound catechin, epicatechin 

and gallic acid were more resistant to B. cinerea.  A decline in NDR was correlated 

with a decrease in specific proanthocyanins with antifungal activity during fruit 

development.  Thus, the phenolic compounds at the origin on TLC bioassays of 

strawberry cv. Elsanta fruit extracts (Plate 1; Table 3) probably contain catechin, 

epicatechin and gallate.   

 

4.3. Distribution of preformed antifungals in green stage I fruit tissue 

 

Extracts of green stage I tissues revealed that greatest antifungal activity was 

in the achenes as compared to other tissue types.  El Ghaouth et al. (1991) reported 

that aqueous extracts of achenes from half-red cv. Chandler fruit inhibited radial 

growth of B. cinerea, but not Rhizopus stolonifer, in Petri plate bioassays.  However, 

aqueous extracts from receptacle tissue without achenes did not inhibit the growth of 

either fungus.  Achenes appeared to contain more constitutive and potentially 

antifungal glucanohydrolase enzyme activity than did receptacle tissue.  The increased 

susceptibility of ripe-stage strawberries to B. cinerea may be explained in part by 

reduced chitinase, β-1,3-glucanase and lysozyme enzyme activities in receptacle 

tissue.  Gilles (1959) showed that sterilised strawberry juice from ripe fruit markedly 

stimulated B. cinerea conidial germination.  It is not clear how the presence of 

antifungal compounds in the achenes of different fruit development stages may 

influence NDR of the fruit as their release may be hindered by the achene pericarp. 

 

4.4. Preformed antifungal compounds in strawberry flower tissue extracts at 

different developmental stages 
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Extracts of whole strawberry cv. Elsanta flowers at post-anthesis showed greater 

antifungal activity than white bud and full bloom stages (Table 8).  However, the 

susceptibility of flowers to B. cinerea increases with age to a maximum at petal-fall 

(Hennebert and Gilles, 1958).  It is possible that antifungal compounds in strawberry 

flowers may play a role in initiating B. cinerea quiescence, as B. cinerea tends to 

infect strawberries at flowering (Powelson, 1960).  However, more research is 

required to establish the exact role that these compounds may have in NDR during 

initial infection of strawberry flowers by B. cinerea. 

 

5. Conclusion 

 

Strawberry cv. Elsanta fruit and flowers contain preformed antifungal 

compounds which differ markedly in number and activity during flower and fruit 

development. The greatest antifungal activity was found in green stage I fruit extracts, 

especially in achenes.  These observations indicate that NDR against B. cinerea 

depends on the initial presence and subsequent decline in preformed antifungal 

compounds during flower and fruit development.  Full characterisation of preformed 

antifungal compounds in strawberry flower and fruit tissue and the elucidation of 

pathways involved in their biosynthesis is still required.  More detailed information 

will allow for precise definition of the role antifungal compounds play in strawberry 

fruit defence against B. cinerea, other fungal diseases, and also pests.  In turn, such 

knowledge may enable strategies to enhance the levels of these compounds in 

strawberry (Joyce and Johnson, 1999), through environmental manipulation, genetic 

transformation, conventional breeding and/or preharvest treatment with elicitors/plant 

activators (Terry and Joyce, 2000; Adikaram et al., 2002).  In addition, an increase in 

the concentration of these antifungal compounds, many of which are phenolics, may 

lead to increased health benefits for consumers (Törrönen and Määttä, 2002). 
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 1 

      Cultivar Tissue Chemical Preformed or

Inducible 

Pathogen Reference

Deutch Evern green fruit N.I. preformed Botrytis cinerea Gilles (1959) 

 

Surecrop 

 

 

Blackmore 

roots 

  

     

N.I. A

 

preformed and 

inducible 

 

preformed 

Phytophthora  fragaria; 

Cladosporium 

cucumerinum 

as above 

 

Mussell and Staples 

(1971) 

Howard and 

Surecrop type 

varieties (n = 18) 

 

roots quercetin preformed Phythium irregulare; 

Rhizoctonia solani; 

Alternaria alternata 

Nemec (1973; 1976) 

Senga Sengana green fruit proanthocyanins 

 (flavan-3-ol dimers 

and oligomers) 

 

preformed B. cinerea Jersch et al. (1989) 

Chandler half-red fruit

achenes 

N.I. preformed B. cinerea El Ghaouth et al. 

(1991) 
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Hybride    

  

    

leaves catechin induced Mycosphaerella 

fragariae 

 

Feucht et al. (1992) 

Clea and Pajaro various fruit 

development 

stages 

 

proanthocyanins and 

catechins 

preformed B. cinerea Di Venere et al. 

(1998) 

Chandler leaves

 

fragarin (316 Da) preformed Collectrichum 

actutatum; C. fragariae; 

C. gleosporioides 

 

Filippone et al. 

(1999) 

Chandler and Sweet 

Charlie 

 

leaves N.I. preformed and

inducible 

C. fragariae Vincent et al. (1999) 

Houkouwase 

(same as Hokowase; 

Hancock, 1999) 

 

green fruit 

 

triterpenes  

(euscaphic, tormentic 

and myrianthic acids) 

inducible Colletotrichum musaeB Hirai et al. (2000) 

Morioka-16 and leaves catechin preformed  A. alternata Yamamoto et al. 
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Hokowase 

 

(2000) 

Chandler, Seascape, 

Sweet Charlie and 

Annapolis 

 

various fruit 

development 

stages  

proanthocyanins 

(catechin, epicatechin, 

gallic acid) 

preformed B. cinerea Hébert et al. (2001; 

2002) 

Elsanta green fruit N.I preformed and 

induced 

B. cinerea; 

Cladosporium 

cladosporioides 

Adikaram et al. 

(2002) 

N.I. = not identified 2 
3 
4 

A = evidence that phytoalexins-like compounds were not derived from phenylpropanoid pathway (Mussell and Staples, 1971) 
B = used as bioassay instead of Colletotrichum fragariae 
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Table 2 5 

6  

Fruit Development stage Time to 10% disease severity (days) 

 + InoculationA ControlB

Green stage I 25.9 32.1 

White 19.6 27.4 

Red 8.7 19.5 

Column means 18.3 26.3 

AMean separation by LSD [P = 0.05] = 2.9 d 7 

8 BMean separation by LSD [P = 0.05] = 2.4 d 
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Table 3 9 

Rf value  Fruit Development Stage 

 green stage I white red 

0.86 ---A ~1.26B ~1.26 B

0.44  1.96 --- --- 

0.37  3.85 --- --- 

0.13-0.00C  13.27 1.26 (Rf 0.00) 3.85 (Rf 0.00) 

Total area 19.08 2.52 5.11 
A = no inhibition zone 10 

11 

12 

13 

14 

B = weak antifungal activity 
C = overlapped Rf
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Table 4 15 

16  

Green I tissue type Rf value 

 whole pith cortex epidermis achenes 

0.50 2.49 --- 3.39 --- 2.49 

0.42 3.39 1.73 1.73 --- 1.73 

0.37 ---A 2.49 1.73 4.42 4.99 

0.10 --- --- --- --- 0.62 

0.00 0.62 0.62 1.11 1.11 3.39 

Total area 6.50 4.84 7.96 5.53 13.22 

---A = no inhibition zone 17 

18  
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Table 5 19 

20  

Antifungal Rf Fruit Development Stage 

 green I white red 

0.57 0.34 ---A --- 

0.52 0.77 --- --- 

0.44 2.74 --- --- 

0.36 1.57 --- --- 

0.26 0.34 --- --- 

0.22 0.34 --- --- 

0.10 0.24 --- --- 

0.00 1.60 0.24 0.24 

Total area 7.94 0.24 0.24 

cycloheximide (0.5 mg ml-1), Rf = 0.05 (1.36); ethanol (99% v/v) = no Rf21 

22 ---A = no inhibition zone  
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Table 6 23 

24  

Green I tissue type Rf value 

whole pith cortex epidermis achenes 

0.70 1.65 1.06 1.06 1.06 7.98 

0.58 1.06 1.06 1.06 1.06 ---B

Total area 2.71 2.12 2.12 2.12 7.98 

---B = overlapped Rf25 
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Table 7 26 

27  

Rf values Pooled fractions Extract dry weight 

(mg) PMA Antifungal 

2,3B 71 0.81 ---A

7-9B 37 0.64 --- 

9-14C 18 0.70, 0.63 0.59, 0.49 

22-23C 3 0.30 0.28 

24-27C 16 0.30, 0.36 0.28 

28C 17 0.36, 0.30, 0.12, 0.09 0.28 

29-34C 30 0.12 0.28, 0.19 

36-39C 9 0.00 --- 

40-43C 98 0.00 --- 
A = no inhibition zone  28 

29 

30 

31 

32 

33 

Bcombined hexane extract (dry weight before and after purification = 124 and 116 mg) 
Ccombined ethyl acetate extract (dry weight before and after purification = 202 and 191 

mg) 
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Table 8 34 

35  

Ethyl acetate Ethanol 

Whole flower Pistils and 

receptacle 

Whole flower Pistils and 

receptacle 

WB FB PA WB FB PA WB FB PA WB FB PA 

0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 

0.70 0.70 0.70 0.70 0.70 0.70 0.68 0.68 0.68 0.68 0.68 0.68 

0.60 0.60 0.60 0.60 0.60 0.60 0.58 0.58 0.58 0.58 0.58 0.58 

0.49 0.49 0.49 --- A --- --- --- --- --- --- --- --- 

0.38B 0.38B 0.38B --- 0.38B --- --- --- --- --- --- --- 

0.29B 0.29B 0.29B 0.29 0.29 0.29 --- --- --- --- --- --- 

0.26 0.26 0.26 --- --- --- --- --- --- --- --- --- 

0.21B 0.21B 0.21B --- --- --- 0.18 0.18 0.18 0.18 0.18 0.18 

0.10B 0.10B 0.10B 0.10 0.10 0.10 --- --- --- --- --- --- 

0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 

0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B 0.00B

A = no zone 36 

37 

38 

B = compounds with antifungal activity 

 


	2. Materials and methods
	Thin layer chromatography

	Glass-backed TLC plates (20 x 10 or 20 x 20 cm) coated with silica gel 60 or silica gel 60 F254 (Merck, Darmstadt, Germany) were used.  The plates were spotted using a 5 or 10 (l m
	TLC bioassay


