
CRANFIELD UNIVERSITY

SCHOOL OF APPLIED SCIENCES

MSC BY RESEARCH THESIS

Academic Year 2009—2010

ILJA ORLOVS

Micro–Electro–Mechanical System design synthesis and
optimisation by the means of Genetic Algorithms

Supervisors: Dr Ashutosh Tiwari and Dr Elhadj Benkhelifa

October 2010

This thesis is submitted in partial fulfilment of the requirements

for the degree of Master of Science by Research.

© Cranfield University 2011. All rights reserved. No part of this publication

may be reproduced without the written permission of the copyright owner.

Abstract

Micro–Electro–Mechanical Systems (MEMSs) are microscopic (1 to 100 µm

in size) electro–mechanical systems that are widely used in a variety of com-

mercial applications owing to their small size, energy consumption and, in

some cases, high precision. The conventional approaches to design optimisa-

tion of MEMS is complex, time consuming and requires a multidisciplinary

team with considerable expertise. Hence, exploring the utility of other un-

conventional paradigms becomes desirable. This thesis focuses on the MEMS

design synthesis and optimisation by means of evolutionary algorithms.

As the creation of a MEMS design by conventional means is a complex

process that takes substantial amount of time and requires attention of multi-

tude of experts, design optimisation of MEMS through multiobjective Evolu-

tionary approaches has the potential to shorten the design time by providing

the designer with sets of automatically generated alternative designs to se-

lect from. This approach can handle ill–defined problems without a priori

knowledge which minimises the need for expert engineers. It has potential

to uncover radically new designs that are beyond the human capabilities.

Research in this area is still in its infancy and limited only to a handful of

researchers around the globe. Although the relevant literature has already

reported results which demonstrate the potentials of the approach, there is

still a significant amount of research to be done for this field to reach matu-

rity. One thing that will always remain questionable in such applications is

‘how to increase the efficiency and quality of MEMS designs?’. This thesis

proposes a number of enhancements towards faster and human competitive

MEMS designs.

Proposed enhancements introduce several enhancements to the process of

automated MEMS design synthesis. First enhancement increases efficiency

of Genetic Algorithm (GA) by lowering number of required evaluations while

allowing for an algorithm to collect information on dependability of various

MEMS elements by the means of linkage learning. Second enhancement in-

troduces automated collection and re–usage of MEMS components, a process

that opens way for fully automatic MEMS design synthesis, valuable layout

feature discovery and re–usage of discovered features in successive syntheses

of designs. And the last third enhancement introduces tolerance towards

errors of production sequence for arbitrary MEMS designs.

1. A circular chromosome, a novel data structure is used in the GA. Given

data structure possesses the linkage learning capabilities, incorporates

redundancy and shows increased performance of the GA when com-

pared with previously published state–of–the–art results.

2. Based on the linkage–learning capabilities of circular chromosome, a

component–based GA implementation is presented and explored, show-

ing noticeable increase in the GA performance when compared with

results of traditional MEMS design synthesis by the means of GA.

3. A process–induced error tolerant MEMS layout synthesis is proposed.

Because currently deployed micromachining processes have low relative

precision, it is desirable to introduce automated synthesis method that

is able to evolve MEMS designs with less sensitivity towards produc-

tion errors. The approach for evolutionary synthesis of such MEMS

designs while exclusively using numerical simulation is proposed and is

displayed to yield error–tolerant MEMS designs when compared to the

results of classic non–tolerant optimisation.

2

Contents

List of Acronyms 10

1 Introduction 12

1.1 Aim and objectives . 16

1.2 Methodology . 18

1.3 Thesis structure . 19

1.4 Contributions . 19

2 A Review of Literature: MEMS design optimisation 22

2.1 Introduction . 22

2.1.1 Current and future applications of MEMS 23

2.1.2 Designing a MEMS device 25

2.2 Conventional optimisation of MEMS design 26

2.2.1 Computer–aided modelling 27

2.2.2 Automated MEMS design optimisation 31

2.3 Analysis of conventional approach 33

2.4 MEMS design synthesis by the means of EC 35

2.4.1 Structure of Genetic Algorithms 38

2.4.2 Elements of Genetic Algorithms 44

2.4.3 MEMS design optimisation 50

2.5 Work related to circular chromosome 53

2.6 Work related to component–based MEMS synthesis 56

2.7 Work related to process–induced error tolerant layout synthesis 57

2.8 Research gap . 60

2.9 Summary . 61

3

CONTENTS

3 Circular chromosome 63

3.1 Introduction . 63

3.2 Proposed enhancements . 65

3.3 Description of proposed approach 69

3.4 Motivation . 74

3.5 Experimental setup . 76

3.5.1 Meandering resonator 76

3.5.2 Flexure resonator . 78

3.6 Discussion of results . 81

3.6.1 Linkage learning . 82

3.6.2 Redundancy . 85

3.7 Summary . 88

4 Component–based MEMS synthesis 89

4.1 Introduction . 89

4.2 Description of the proposed approach 90

4.2.1 Comparison methods 94

4.3 Motivation . 96

4.4 Experimental setup . 101

4.4.1 Reference NSGA–II evolution 102

4.4.2 Changing base angle 102

4.4.3 Changing base angle and scaling of whole leg 102

4.4.4 Per–beam scaling and changing the base angle 102

4.4.5 Per–beam scaling and changing all angles 106

4.4.6 Changing all angles between nodes 106

4.4.7 Replacing all angles between nodes 106

4.4.8 Collation . 106

4.5 Discussion of results . 111

5 Process–induced error tolerant layout synthesis 113

5.1 Introduction . 113

5.2 Description of the proposed method 114

5.3 Motivation . 117

4

CONTENTS

5.4 Experimental setup . 117

5.5 Modifications to initial approach 127

5.5.1 Response–dependent error tolerance 127

5.5.2 Error tolerance as a separate objective 128

5.6 Discussion of results . 139

6 Conclusions and Future Research 142

6.1 Summary . 142

6.2 Research limitations . 144

6.3 Conclusions . 145

6.4 Future Research . 147

6.4.1 Circular chromosome 147

6.4.2 Component–based MEMS synthesis 148

6.4.3 Process–induced error tolerant layout synthesis 149

A Automated Component–based MEMS synthesis 164

A.1 ModeFrontier workflows . 164

B Error–tolerant design synthesis 172

C Miscellaneous simulation settings 177

C.1 Material properties . 177

C.2 I–shaped mass . 179

5

List of Figures

2.1 Components of a Micro–Electro–Mechanical System (MEMS)

(Hsu 2001) . 24

2.2 Place of EC and GA in Computer Science 36

2.3 Genetic Algorithm (GA) chromosome encoding examples . . . 40

2.4 Example of mapping of a chromosome to objective function . . 41

2.5 Pareto front example . 43

2.6 Generic GA flow . 45

2.7 Crossover operations used in GA 48

2.8 Preservation of an average value during binary crossover . . . 49

2.9 Histograms of the natural frequencies of designs of crab–leg

resonator acquired by (Fan, Wang, Wen, Goodman & Rosenberg

2007) . 59

3.1 Example of mutation resulting in distant collision 65

3.2 Proposed chromosome structure 66

3.3 EPE–2 chromosome structure 69

3.4 Meandering resonator GA representation according to (Zhou,

Agogino & Pister 2002) . 70

3.5 Triangular mass resonator . 71

3.6 Objective MEMS structure UML representation according to

(Zhang 2006) . 71

3.7 Component design for resonator example (Zhang 2006, pages

49—50) . 73

3.8 Meandering flexure by (Zhang 2006, page 20) 74

3.9 Example of linked genes in MEMS 83

6

LIST OF FIGURES

3.10 Chromosome crossover process 84

3.11 Chromosome length effect on levels of objective error 87

4.1 Process of generation of first version of CBR DB 93

4.2 ModeFrontier(ESTECO s.r.l 2009)–based CBR–assisted evo-

lution prototype workflow . 98

4.3 Example of a sequence of encoded values and expressed MEMS

structure . 99

5.1 Under– and over–etch of a MEMS structure 115

5.2 Etching error representation in used encoding 115

5.3 Degeneration of histogram due to extreme values 120

5.4 GA objectives inspired by robust optimisation: full population

results . 121

5.5 Designs for frequency of GA objectives inspired by robust op-

timisation within 20% of target 124

5.6 Designs for frequency of GA objectives inspired by robust op-

timisation within 4% of target 124

5.7 Designs for frequency of GA objectives inspired by robust op-

timisation within 1% of target 124

5.8 Designs for stiffness by X of GA objectives inspired by robust

optimisation within 20% of target 125

5.9 Designs for stiffness by X of GA objectives inspired by robust

optimisation within 4% of target 125

5.10 Designs for stiffness by X of GA objectives inspired by robust

optimisation within 1% of target 125

5.11 Designs for stiffness by Y of GA objectives inspired by robust

optimisation within 20% of target 126

5.12 Designs for stiffness by Y of GA objectives inspired by robust

optimisation within 4% of target 126

5.13 Designs for stiffness by Y of GA objectives inspired by robust

optimisation within 1% of target 126

5.14 Response–relative error tolerance: full population results . . . 129

7

LIST OF FIGURES

5.15 Designs for frequency of Response–relative error tolerance within

20% of target . 130

5.16 Designs for frequency of Response–relative error tolerance within

4% of target . 130

5.17 Designs for frequency of Response–relative error tolerance within

1% of target . 130

5.18 Designs for stiffness by X of Response–relative error tolerance

within 20% of target . 131

5.19 Designs for stiffness by X of Response–relative error tolerance

within 4% of target . 131

5.20 Designs for stiffness by X of Response–relative error tolerance

within 1% of target . 131

5.21 Designs for stiffness by Y of Response–relative error tolerance

within 20% of target . 132

5.22 Designs for stiffness by Y of Response–relative error tolerance

within 4% of target . 132

5.23 Designs for stiffness by Y of Response–relative error tolerance

within 1% of target . 132

5.24 Error tolerance in separate objective: full population results . 135

5.25 Designs for frequency of Error tolerance in separate objective

within 20% of target . 136

5.26 Designs for frequency of Error tolerance in separate objective

within 4% of target . 136

5.27 Designs for frequency of Error tolerance in separate objective

within 1% of target . 136

5.28 Designs for stiffness by X of Error tolerance in separate objec-

tive within 20% of target . 137

5.29 Designs for stiffness by X of Error tolerance in separate objec-

tive within 4% of target . 137

5.30 Designs for stiffness by X of Error tolerance in separate objec-

tive within 1% of target . 137

5.31 Designs for stiffness by Y of Error tolerance in separate objec-

tive within 20% of target . 138

8

LIST OF FIGURES

5.32 Designs for stiffness by Y of Error tolerance in separate objec-

tive within 4% of target . 138

5.33 Designs for stiffness by Y of Error tolerance in separate objec-

tive within 1% of target . 138

A.1 Reference NSGA–II evolution 165

A.2 Changing base angle . 166

A.3 Changing base angle and scaling of whole leg 167

A.4 Per–beam scaling and changing the base angle 168

A.5 Per–beam scaling and changing all angles 169

A.6 Changing all angles between nodes 170

A.7 Replacing all angles between nodes 171

C.1 I–shaped mass dimensions . 179

9

List of Acronyms

AI Artificial Intelligence

AMS Analog & Mixed–Signal

BB Building Block

BEM Boundary–Element Methods

CAD Computer–Aided Design

CBR Case–Based Reasoning

DB Database

DNA Deoxyribonucleic Acid

DOE Design of Experiment

EA Evolutionary Algorithm

EC Evolutionary Computation

EHD Energy Harvesting Devices

EO Evolutionary Optimisation

EPE–2 Extended Probabilistic Expression 2

FEA Finite Element Analysis

FEM Finite Element Method

10

LIST OF ACRONYMS

FE Finite Element

GA Genetic Algorithm

GPS Global Positioning System

HDL Hardware Description Language

IC Integrated Circuit

IHC Interactive Hybrid Computation

IT Information Technology

LLGA Linkage learning Genetic Algorithm

MEMS Micro–Electro–Mechanical System

MOGA Multi–objective genetic algorithm

NSGA–II Non–dominated Sorting Genetic Algorithm II

PDE Partial Differential Equation

PE Probabilistic Expression

R/W Read/Write

R&D Research and Development

SA Simulated Annealing

SOC System–On–a–Chip

UML Unified Modelling Language

11

Chapter 1

Introduction

Micro–Electro–Mechanical System (MEMS) is a microscopic mechanical sys-

tem that often has an embedded electrical circuit and is designed for a specific

function. MEMS tend to incorporate elements of various physical domains –

electronics, fluidics, biological et al. In the light of multi–domain nature of

MEMS it is not uncommon to see active interaction and experience exchange

between various disciplines of Science on given field. While being active field

of research for the last few decades, MEMS design and production has grown

to multi–billion industry with its production being actively deployed in the

long list of industries and wide array of day–to–day items(Liu 2006).

As for now MEMS production process is based on fabrication processes

originally developed for semiconductor–based Integrated Circuit (IC) indus-

try with attempts of expanding IC production technology with MEMS–

specific functionality are constantly being made.

When ‘MEMS’ term was created, it was considered that MEMS machines

incorporate only mechanical and electrical elements as is reflected in its name,

but in present time they commonly include magnetic, optical, chemical, ther-

mal, and biological elements as well(Bao & Wang 1996). As MEMS devices

are intrinsically smaller than their macroscopic analogues, they tend to have

smaller mass and faster response time. While exploiting material properties

found on microscopic level can lead to noticeable increase in precision and

sensitivity of a MEMS device comparing to its macroscopic analogues.

12

CHAPTER 1. INTRODUCTION

It is widely accepted point of view that micro engineering holds a promise

of enabling major advances in almost all aspects of automotive, transporta-

tion, medicine, biomedicine, pharmaceutics, health, telecommunication, en-

ergy, Information Technology (IT), security, informatics and environmental

monitoring – just to mention few. In (Gilleo 2005), author asserts that

“MEMS is the ultimate enabling technology for the integration of almost

any physical, chemical and biological phenomena that include motion, light,

sound, chemistry, biochemistry, radio waves and computation, but all on a

single chip”. Hence, as range of applications of given technology grows, the

importance of research and development of given branch of technology is

increasing.

Yet another fields actively deploying and greatly benefiting of MEMS is

biomedicine and medicine. With MEMS deployed in these field being named

as BioMEMS(Grayson, Shawgo, Johnson, Flynn, Li, CIMA & Langer 2005).

While much work is underway, advances in BioMEMS are remarkable, given

a short time. BioMEMS can be categorised into two types of devices –

sensing and action devices. This BioMEMS classification correlates with

general MEMS classification that commonly distinguishes two major classes

of MEMS – sensors and actuators and one additional actively researched

class with no noticeable commercial applications yet – an energy generator,

namely an Energy Harvesting Devices (EHD) technology.

As BioMEMS, sensor MEMS can be used to measure pressure (e.g. blood

or spinal), temperature, glucose, force (e.g. tissue tension or muscular) and

electrical impulse (e.g. nerve, brain or heart).

It is possible to deploy MEMS sensors for detection of various chemical

substances(Bedair & Fedder 2005), for instance, for oxygen detection or to

develop sensors for monitoring purposes, for example gas flow monitoring.

As for the actuation class, BioMEMS applications include creation of a

micro–fluidic pump for drug delivery and DNA separators used for DNA

analysis. Another medicine field that is actively deploy array of MEMS

devices is surgery(Rebello 2005). Amongst non–biological applications of

MEMS here are actuators that are used in bomb triggers, as one example,

microswitches and micro–resonators.

13

CHAPTER 1. INTRODUCTION

As MEMS field is actively expanding and is deployed in number of in-

dustries, a number of computer–aided tools for MEMS design exists to help

designers to cope with increasing demand for new MEMS designs. As for

now, the major focus of given computer–aided tools is analysis of design

requirements and specifications at various levels of granularity of model. Al-

though highly advanced and useful in the process of designing and evaluation

of novel devices due to advanced visualisation and analysis techniques, its ca-

pabilities of automated design optimisation are currently quite rudimental.

As for now, the great share of optimisation is done manually by a slow

process of model design, model evaluation and number of successive design

tweaks and re–evaluation loops that often incorporate a number of software

tools.

The number and complexity of tools used in MEMS design process is

dictated by the fact that MEMS is an interdisciplinary field that combines

elements of electronics, mechanical and electrical engineering, chemistry, op-

tics, and fluid mechanics. The multi–domain nature of MEMS is another

reason MEMS technology enables a vast variety of applications.

As the MEMS industry is still of a relatively young age and as it involves

large amount of disciplines of Science, there is no integral ‘Science of MEMS’

yet developed as well as the there is still no ‘Engineering of MEMS design’

with error–free approach for creation of MEMS designs(Clark, Bindel, Kao,

Zhu, Kuo, Zhou, Nie, Demmel, Bai, Govindjee et al. 2002).

Establishing set of methodologies for the design of a MEMS is one of big

objectives of current MEMS research. Development of whole loop of MEMS

design beginning with specification of the desired function and resulting with

a design optimised for fabrication would greatly benefit industry.(Silva, Gi-

asolli, Cunningham & DeRoo 2002) As current design process flow device

layout synthesis and all other elements of MEMS device development purely

on MEMS experience of experts and their prior experience in MEMS design

and knowledge of similar devices is commonly perceived to have room for

improvement. In general, the process of MEMS design is complex and chal-

lenging task as the structure of MEMS commonly is coupled, heterogeneous

and intrinsically three–dimensional.

14

CHAPTER 1. INTRODUCTION

The common MEMS design workflow deployed in the industry is based

on trial–and–error approach. With given approach requiring several itera-

tions and number of prototypes built and tested to destruction before design

requirements are matched. It is believed by experts that this methodology

has room for improvement as it requires noticeable financial investments for

the production of prototypes as well as it accounts of certain time share of

products’ life span(Fan, Wang, Achiche, Goodman & Rosenberg 2008).

Although precision of computer–aided simulation has increased by a great

degree during last years, the process is still limited. For example, currently

existing tools face noticeable difficulties emulating multi–domain external

environment.

Common optimisation methods (such as Newton’s method and gradient

descent) are suitable for problems of low dimensionality, but have their per-

formance limited in case of high–dimensional problems and as in the field of

MEMS design most problems require high–dimensional optimisation process

to cope with growing number of design specifications and variables.

Yet another downside of using traditional methods is that commonly used

methods like Newton’s method or gradient descent are meant for finding local

optima by ‘rolling down the hill’ from the starting point given to optimisa-

tion method. As traditional methods are deterministic in their nature, they

yield deterministic results that are dependant on the choice of start point.

This means that such a method would be unable to explore completely new

MEMS designs by remaining restricted to the local solution space. This

downside makes traditional methods unsuitable for the aim of the MEMS

design synthesis.

Although MEMS optimisation process is currently dominated by tradi-

tional methods, an alternative route exists, looking to overcome some of the

difficulties faced by normal optimisation methods.

The alternative approaches are usually based on stochastic algorithms

belonging to the Evolutionary Optimisation (EO) that is subdomain of Evo-

lutionary Algorithm (EA). All EO methods are stochastic algorithms based

on the principles of Darwinian evolution, where potential solutions undergo

evolution process inspired by Nature: selection, reproduction and mutation.

15

CHAPTER 1. INTRODUCTION

One of the most popular EO algorithm classes used for MEMS design

synthesis and optimisation are GA, that have been shown to perform well

on a variety of the device optimisation applications including MEMS design

optimisation.

GA is class of stochastic algorithms inspired by natural evolution used

for black box optimisation. Just as natural evolution, GA uses mutation,

crossover, selection and inheritance to find optimal solution set. With so-

lutions closer to optimum being considered to be of higher fitness and are

given higher chances of transmitting their genes to successive generations.

Due to multi–domain nature and complexity of MEMS, the performance

of GAs is still limited.

The designs of MEMS devices usually have complex topology, and the

GAs are commonly developed using more simple theoretical problems, thus

their potential performance remains partially unexplored because developed

sub–elements of given algorithms and data structures were built and evalu-

ated on the much simpler kind of problems with predictable and controlled

set of constraints.

1.1 Aim and objectives

During the literature review a variety of problems of MEMS automated de-

sign synthesis by the means of GA process were highlighted:

1. large number of objective function evaluations

2. high computational complexity of each function evaluation

3. inefficient MEMS structure representation in GA

4. GA inability to reuse past MEMS designs and learn from past experi-

ence

5. inability of GA to automatically learn and preserve good MEMS design

elements

6. lack of classification of MEMS devices and their design elements

16

CHAPTER 1. INTRODUCTION

7. problem of synthesis of MEMS designs that are tolerant towards pro-

duction errors

8. relatively low precision of response prediction for current MEMS soft-

ware evaluation packages

9. low precision of MEMS production

It would be impossible to address all of problems listed above, so a subset

of problems was chosen for current research.

It was decided to address further aims:

1. large number of objective function evaluations

2. inefficient MEMS structure representation in GA

3. GA inability to re–use past MEMS designs and learn from past expe-

rience

4. inability of GA to automatically learn and preserve good MEMS design

elements

5. automated synthesis of production error tolerant MEMS designs by the

means of GA

The aim of this research is to develop new Genetic Algorithm based ap-

proaches for the optimisation of MEMS designs. To achieve this aim, a

number of research objectives were identified:

1. To propose circular chromosome with linkage learning capabilities to

address the issues associated with large number of objective function

evaluations and inefficient MEMS structure representation in GA.

2. To develop automatic Building Block (BB) detection and re-use ap-

proach to address the inability of GA in automatically re–using past

MEMS designs and learning and preserving good MEMS design ele-

ments.

17

CHAPTER 1. INTRODUCTION

3. To propose error–tolerant MEMS layout synthesis to enable automated

synthesis of production error tolerant MEMS designs by the means of

GA.

1.2 Methodology

For current research, the inductive approach is assumed to be the most suit-

able, as MEMS is a relatively recently–established field of research, which

restricts amount of MEMS–specific theoretical knowledge available on sys-

tem design.

As the inductive approach dictates, the first thing done is an accumulation

of observations made by fellow researchers and available in the literature.

Some general patterns are spotted for which a hypothesis is formed and

tested for feasibility and the theoretical basis for acquired results is drawn.

To address large number of objective function evaluations and inefficient

MEMS structure representation in GA, the structure of circular chromosome

was proposed amongst with adaptation of novel mutation operator that was

originally developed and used for other types of optimisation problems. Re-

sulting algorithm was used to performs number of experiments and the results

of given experiments were compared with results of previous state–of–the–art

research.

To address inefficient MEMS structure representation in GA, GA inability

to re–use past MEMS designs and learn from past experience and inability

of GA to automatically learn and preserve good MEMS design elements, the

approach for automatic Building Block (BB) detection and re–usage based on

linkage learning capabilities of circular chromosome was proposed. As given

approach was implemented, the several modifications of general approach

were tested and compared against results of common GA evolution.

To address automated synthesis of production error tolerant MEMS de-

signs by the means of GA, the literature on nature and statistical properties of

MEMS production errors was reviewed, proposing approach for simulation of

given production errors in the virtual environment and the adaptation of pre-

viously described MEMS robust layout synthesis to the domain of numerical

18

CHAPTER 1. INTRODUCTION

simulation was done. As the first attempt of adaptation displayed inability

to evolve MEMS layouts with tolerance in case of multiple response evolu-

tion (as opposed to single response case previously addressed in literature), a

number of algorithm modifications were tested addressing found inconstan-

cies. Results acquired from various algorithms were compared against each

other and basis for observed performance of each modification was drawn.

1.3 Thesis structure

The thesis consists of an introduction chapter, followed by the literature re-

view chapter describing the global state of MEMS research and development

direction with critical discussion.

The latter chapters contain research done – the initial observation, hy-

pothesis made, experiments conducted and the theoretical basis given for

obtained results with critical discussion of viability of previously given hy-

pothesis in the light of obtained results.

In the last chapter, conclusions are aggregated and summarised, research

limitations are exposed and direction for future research is drawn.

1.4 Contributions

Attempting to help for GA to address the complexity of the MEMS design,

a new chromosome representation was proposed, named ‘circular chromo-

some’. The main advantage of circular chromosome in comparison to the

commonly used plain chromosome is that it introduces linkage learning and

redundancy(Chi & Lin 2008, Harik 1997) to the process of MEMS design

optimisation.

The redundancy is expected to allow for GA to ‘remember’ parts of good

designs(Levenick 1991) even if they currently aren’t very beneficial. The

memorisation would be expected to happen when mutation in GA causes for

the sequence of the genes in chromosome to become disabled, unexpressed in

the actual device design. And the process of re-introduction of such disabled

19

CHAPTER 1. INTRODUCTION

genes would require for GA to trigger an opposite mutation – a mutation

that would enable sequence of disabled genes to be expressed to the MEMS

device design(Wineberg & Oppacher 1996).

The circular chromosome was compared with results with the state–of–

the–art GA proposed by a variety of researches and it was shown that circular

chromosome–enabled GA is able to find better solutions with fewer function

evaluations (section 3.5).

Next problem addressed in this thesis in chapter 4 is inability of GA

to re–use experience from previous runs, leaving it to perform ‘cold start’

by generating a number of random MEMS designs each time optimisation

process is initiated. This might be undesirable, as it is a computationally

demanding task to generate enough random combinations of genes to ac-

cumulate needed number of feasible MEMS designs to emerge. It is also

unknown what the distribution of solutions in objective space will be.

To address this problem, the component–based GA was introduced. The

given component incorporated noticeable number of MEMS components in

the database and with ability to re–use the given components in the GA

evolution.

To increase efficiency of MEMS layout synthesis, GA decision space needs

to be reduced. In case of component–based MEMS layout synthesis this is

done by dividing set of variables describing each GA component to a two

subsets – the first set where GA is allowed to change values and second set

that contains bound variables, forbidden to be changed by GA in the process

of optimisation.

The various combinations of the variables for the component–based GA

were tested and it was demonstrated that some of combinations of variables

result in superior solutions when comparing with the reference state–of–the–

are GA.

The component–based MEMS design optimisation has demonstrated its

vitality and ability to generate better Pareto front than other state–of–the–

art GA.

Third problem researched in current thesis is automatic generation of

MEMS designs having tolerance towards geometrical errors introduced by

20

CHAPTER 1. INTRODUCTION

production process.

To address this problem, a robust optimisation–inspired approach was

proposed and undertaken. A number of enhancements of initial approach

were proposed and tested. The ability of GA to evolve error–tolerant designs

of MEMS devices of arbitrary topology exclusively by the means of numerical

simulation was demonstrated. Please refer to chapter 5 for detailed research

undertaken.

21

Chapter 2

A Review of Literature:

MEMS design optimisation

2.1 Introduction

Field of MEMS is an multi–disciplinary field incorporating elements of var-

ious areas of science and engineering. Being actively researched for the last

few decades, this field greatly enhanced and became much more mature

throughout these years. The MEMS has successively emerged into commer-

cial technology with total market volume measured in billions and a wide

array of commercial applications. The potential of MEMS was known long

before the advance in science and technology actually enabled it – as an

example, Richard Feynman’s 1959 lecture “There’s Plenty of Room at the

Bottom”(Feynman 1999) has anticipated possibility of creation of a micro–

scale machines.

As one particular technology that enabled creation of MEMS one can

name construction of transistor in 1947 at Bell Labs(Bardeen & Brattain

1948). This moment can be viewed as the start of the long race for miniatur-

isation we’re observing nowadays, as it has initiated a fast paced IC indus-

try. The IC technology enabled a variety of methods that were later adapted

for production of MEMS. Continuous attempts of development of MEMS–

specific production precesses that would meet all needs of given industry are

22

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

attempted.

According to (Hsu 2001), for device to be considered a MEMS device,

it must incorporate two types of systems – Mechanical and Electrical (Fig-

ure 2.1). This claim was illustrated by author using the example of vehicle

airbag, as in the case of accident, the airbag detects acceleration using em-

bedded micro–sensor and inflates.

The principal structure of micro–system can be seen in Figure 2.1.

However contrary to its original meaning the term MEMS is now includes

variety of other types of elements – magnetic, optical, chemical, thermal and

biological. Antennas can be included to MEMS as well. In this context, the

integrated circuits are the components encoding the behaviour of the MEMS.

MEMS can be designed to integrate some or even all of micro structures

required for any particular task or function to acquire ability to register and

process information acquired from physical stimuli of any domain and act

according to designed program – output an electrical or digital signal, emit

optical signal or perform any other possible action in compliance with their

design and available functionality (Lyshevski 2002).

It is possible to deploy multiple combinations of the components from

various domains – electrical, mechanical as sensors for a variety of envi-

ronmental parameters – velocity, pressure, temperature, effectively making

MEMS of an unprecedented devices for compound systems such as the micro–

heat–engines, robots, System–On–a–Chip (SOC) and heat pumps (Gad-el-

Hak 2006).

2.1.1 Current and future applications of MEMS

According to market review published by Nexus(Tischulena 2004) and judg-

ing by the fact that volume of research done in field of MEMS is steadily

increasing (according to (Google Inc. 2010), the amount of publications on

the MEMS field during period of 1990—1995 years and period of 2005—2010

are 17400 and 18200 respectively), the micro–systems industry is currently

booming and has potential to revolutionise our current lifestyles as much as

the computer has.

23

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Microsystem

Power supply

Signal
transduction and
processing unit

Sensor Actuator

Figure 2.1: Components of a MEMS (Hsu 2001)

However, the aim of this section is not to discuss process of advancement

of MEMS design or any particular state–of–the art design, but rather to dis-

play the desirability of Research and Development (R&D) of MEMS and the

research that one might expect to happen in a way that is similar to one that

computer industry has undergone – the majority of research and advancement

in technology being made not because of governmental needs but because of

commercial investments to the R&D. This point of view is supported by

the Nexus’s third technology market analysis report (Tischulena 2004) as it

promises for MEMS market to double from $12 billion in 2004 to $25 billion

in 2009.

According to data published by Nexus(Tischulena 2004), the IT sector is

responsible for the biggest share of used MEMS and such state is expected to

remain unchanged in the near future even as the MEMS market is constantly

expanding and shares of other industries are starting to increase. The IT

industry consumes the majority of MEMS technology as a variety of IT–

related machinery incorporates MEMS elements, for example inkjet printer

heads and Read/Write (R/W) heads in most of tape drives.

As for the consumer market, the variety of peripherals, digital cameras,

24

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

personal navigation Global Positioning System (GPS)–enabled devices all

usually incorporate elements produced by the MEMS technology.

MEMS products have also fount variety of applications in medicine and

biomedicine fields1 (Gilleo 2005, Maluf, Gee, Petersen & Kovacs 1995). While

much issues remain to be solved, advancement done by BioMEMS is remark-

able, especially taking into account the relatively small age of given technol-

ogy.

2.1.2 Designing a MEMS device

As the number and sophistication of MEMS designs increases with time,

there is an increasing interest in standardisation of MEMS design practices.

Although nominal strategy and general outline for MEMS device design

process is invented, no standard methodologies for achieving any particular

desired design specifications are developed(Antonsson, Cavallaro, Mahade-

van, Maher & Maseeh 1997). A design flow, that is similar with the design

flow defined for devices of electronics domain, commonly followed during

MEMS design process was identified and developed by Fedder (Fedder, Iyer

& Mukherjee 1997).

As one might expect, the MEMS design process starts on the level of

highest abstraction, where overall system specification (or in other words

functional requirements) is defined. The second step, according to that design

flow, is creation of a high–level description of the future MEMS (or ‘system

description’, as it is called in the related literature). As defined by Fedder

in (Vudathu & Laur 2007) in the MEMS design flow, during MEMS design

process designs of two abstract representation of MEMS are manipulated:

micro–mechanical and physical device layout. And as the final stage in the

MEMS design process, the ‘fabrication and testing’ phase is defined. Usually

the micro–mechanical components of the system are fabricated using micro–

machining computable processes (the most widespread process is etching –

a process of removal of desired elements of silicon wafer leaving structure of

desired design) that forms MEMS devices, but the electronic components in

1This class of applications is known as BioMEMS

25

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

MEMS are usually fabricated by same process that is used for production of

process of IC. The MEMS design flow similar to one that was reported by

Fedder, was also defined by Antonsson in (Antonsson et al. 1997).

2.2 Conventional optimisation of MEMS de-

sign

For any particular separate MEMS device (not system of MEMS devices),

the computer aided modelling process can be represented as the three–stage

process: creation of the computer model of the device, simulation of computer

model of a device to obtain estimate of its physical behaviour and properties

and the actual analysis of simulation.

In (Senturia 2001), Senturia proposed a hierarchy that is comparable with

previously discussed MEMS design flow according to which the MEMS design

synthesis consists of four design levels:

1. ‘System’ level – level describing integration of the device or devices

with electronic components used for Input/Output of data

2. ‘Device’ level – level where a function model of device is defined

3. ‘Physical’ level – level where a physical model of device is created, for

example by using techniques of Finite Element (FE) modelling

4. ‘Process’ level – level where device fabrication defined e.g. by defining

process information and mask layout

The Levels are listed in order of reduction of order of abstraction (with ‘Sys-

tem’ level being most abstract and the ‘Process’ level being least abstract).

The conventional MEMS optimisation is usually manual trial–and–error

process that is ether performed using ‘build and break’ process (process of

building a MEMS prototype and testing it to destruction) or using Computer–

Aided Design (CAD) tools for building the model of MEMS and running

simulation upon it to gain estimates of the devices’ properties.

26

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

The precision of CAD tools have increased by a great degree during the

last few years as did the amount of available computational powers. But it

is still largely considered impossible to produce a working MEMS without

building at least few prototypes(Markus 2002, Schr\öpfer, King, Kennedy &

McNie 2005).

Conventional optimisation workflow is heavily dependant on tools avail-

able. Hence, deployment of CAD tools in the design process makes MEMS

designers to rely on their CAD tools in their day–to–day lives, and as focus

of this work does not include the processes of MEMS production, it makes

sense to discuss computer–aided simulation techniques available up to current

time.

Development of software that could be used for MEMS design and sim-

ulation began in the 80’s. There is a wide variety of tools available and a

huge amount of accumulated information. Current work covers only major

and most noticeable moments in research on MEMS simulation. For the

brief timeline of the development of MEMS simulation software please refer

to Table 2.1.

Several approaches for simulating a behaviour of a MEMS device are

currently known:

1. Finite Element Method (FEM)

2. Analytical modelling

3. Macro–modelling

4. Nodal modelling

5. Reduced Order Modelling

2.2.1 Computer–aided modelling

Finite Element Method is the most widespread MEMS modeling tech-

nique, it is a numerical modelling that is able to find approximate solutions

with one of boundary element, finite element or finite difference method for

the Partial Differential Equations (PDEs).

27

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Date Contributors Methods Description

1973 L., Nagel (Quarles,
Pederson, Newton,
Sangiovanni-
Vincentelli &
Wayne 2010)

‘SPICE’
Behavioural
Simulator

SPICE is a integrated circuit simulation
package that can be used for simulating
various MEMS devices

1982 Lee, K. W., and
Wise, K. D., (Lee &
Wise 1982)

Simulation
Analysis,
Finite Differ-
ence method

Simulation tool for calculating the out-
put response of piezoresistive or capaci-
tive pressure sensors. Coined ‘SENSIM’

1984 Verilog–AMS
(Verilog-
AMS 2010)

Hardware
Description
Language
(HDL) Sim-
ulator

Verilog–AMS is a hardware description
language tool.

1987 Bin, T. Y., and
Huang, R. S.

Analytical A Simulation tool for pressure sen-
sor analysis and geometrical design.
Coined ‘CAPSS’

1989 Puers, B., et al.,
(Puers, Peeters &
Sansen 1989)

FEA Device level modelling and analysis
package ‘CAPSIM’

1989 Koppelman, G, K.,
(Koppelman 1989)

Process
Modeller,
Solid Mod-
elling,
Process
Description
Language

A process and fabrication simulator
based on integrated circuit fabrication
techniques. Also solid modelling is
present. Coined ‘OYSTER’

1990,
1991

Crary, S., and
Zhang, Y.,
(Crary &
Zhang 1990, Crary,
Juma &
Zhang 1991)

Process
Modeller,
FEM/ FEA

Combining process modelling, mesh
creation and finite element analysis
into a CAD environment coined ‘CAE-
MEMS’.

1992 Senturia, et al.,
(Senturia, Harris,
Johnson, Kim,
Nabors, Shulman
& White 1992)

Process
Modeller,
FEM, BEM
and hybrid
FEM–BEM
analysis.

A package combining process modelling
and simulation along with simulation
and analysis tools. Included electro-
static analysis. Coined ‘MEMCAD’

1997 Vandemeer, J., et
al., (Vandemeer,
Kranz &
Fedder 1997)

Behavioural
Simulator

A behavioural simulator that com-
bines lower element building block be-
haviours into higher ordered structures
for a system level analysis.

1998 Zhou, et al.,
(Zhou, Clark &
Pister 1998)

Behavioural
Simulator

An approach for higher level modelling
by abstracting behaviour of elements
for the construction of planar devices.
Coined ‘SUGAR’

Table from (Benkhelifa, Farnsworth, Tiwari, Bandi & Zhu 2010, Tables 1–4)

Table 2.1: A chronological review of major cornerstones in R&D of MEMS
field

28

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

The Finite Element approach in solid modelling is implemented by dis-

cretising the structure of modelled device to a set of discrete atomic elements

described by finite number of formulas (such as PDE)(Gyimesi, Avdeev &

Ostergaard 2004, Hung, Yang & Senturia 2002).

Estimated responses of a whole model are calculated using information

obtained from simulation of set of all descrete elements that are given model

consists of, taking into account each elements’ properties such as stiffness,

electrical conductivity, mass and others. To aid design synthesis of MEMS on

a ‘Physical’ (level where a physical model of device is created) and ‘Device’

(level where a function model of device is defined) levels, a number of FE

applications have been developed to incorporate physical layout creation for

example, (L-Edit n.d.).

Analytical modelling is an approach to describing the behaviour of a

MEMS device using set of mathematical formulas.

MEMS device model can be developed for describing the behaviour of

a whole device by using differential equations. Analytical models allow for

designer to get insight on device performance just by computing set of equa-

tions. Analytical models usually have few inputs – the most common is to

have only device geometric parameters and material properties as inputs. As

analytical models are simple and computationally effective when compared

with FE modelling process, as FE modelling process can take for several days

to complete. The analytical models can contribute to increase designers in-

sight to a device and its behaviour that he or she is building(Senturia 2001).

However, construction of analytical model usually is extremely time con-

suming and complex task. Also, it is usually impossible to use analytical

model of a simpler device that is being part of a supermodel, e.g. using ana-

lytical model of a MEMS resonator to create a multi–stage MEMS resonator

that consists of multitude of resonators (Mukherjee, Fedder, Ramaswamy &

White 2000).

Given limitations make the field of application of analytical models very

ad–hoc and not as popular as one might want or expect them to be.

29

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Macro–modelling is a combination of an analytical modelling and a nu-

merical method for analysing device behaviour. Usually given models are

effectively defined as low–order differential equation or in the form of circuit

(Crary & Zhang 1990, White 2004).

The extraction of lumped elements by coupling of numerical simulations

can help in overcoming fragility that analytical methods may have but usage

of given methods can be costly.

The weak spot of macro–modelling is the process of creation of macro–

models as creation of such models requires vast amounts of time investments

and large number of personnel, as creation of these models require attention

of MEMS experts.

Nodal modelling is an approach that is based on the idea that a system

can be decomposed into a set of N–terminal devices each being represented by

an ordinary differential equation. N–terminal devices can be interconnected

with the coupled differential equations being solved by nodal analysis.

It is common for nodal modelling software to provide basic system build-

ing blocks, such as beams, gaps and anchors that can be assembled into a

multitude of different planar electro–mechanical structures that can be com-

pared and analysed using nodal behavioural analysis. The hierarchical struc-

tures maintain a connection between physical implementation of the device

and its behaviour.

The validity of results obtained using nodal modelling is usually done by

comparing against traditional finite element analysis techniques by (Clark,

Zhou & Pister 1998, Zienkiewicz & Taylor 2006) and by measuring responses

of actually built MEMS devices. It was demonstrated that nodal modelling

approach is feasible and less computationally expensive than FEM.

Reduced order modelling is a technique of creation of MEMS models

namely ‘reduced order models’ that require less computational power and are

dependant on smaller amount of variables by using a number of approaches

such as quadratic techniques (Bechtold, Rudnyi & Korvink 2003, Yang &

Yu 2004, Chaturantabut & Sorensen 2010) or an Arnoldi algorithm (Bai

30

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

2002, Freund 2004) or the Karhunen-Loeve/Galerkin method.

As most reduced model have fixed device layout and face difficulties when

simulating nonlinear systems that is MEMS, the application of Reduced or-

der modelling to the domain of MEMS remains limited. Due to fixed device

layout, reduced order modelling yield little insight on effect of various ele-

ments of MEMS design on its performance, but their deployment is beneficial

for an iterative design synthesis approach on ‘system’ and ‘device’ levels.

2.2.2 Automated MEMS design optimisation

The multi–domain nature of MEMS makes it likely that MEMS optimisation

process will require knowledge of several fields such as electrostatic, fluidic

and electronic and therefore it is likely that a number of experts in a variety

of fields will be required for a task of designing single MEMS device.

Because multitude of software for MEMS design and simulation lately

became available and precision of simulation results started to reach a level

when it could partially replace old ‘build and break’ process of designing

MEMS, it was just a matter of time until research on the optimisation of a

simulated MEMS device is undertaken.

The automated optimisation usually uses computer simulation for evalua-

tion of MEMS performance, the real–world success of it is limited by precision

of design parameter estimates provided by software and the limitations of a

MEMS production process.

Conventional automated optimisation techniques are tightened to look

for nearest optimum point (also referred to as ‘local optima’); therefore they

require an input MEMS model that needs to be optimised. This means

that conventional optimisation still relies on a MEMS expert (or experts) to

develop the model that needs to be optimised.

Because of that, the common aim of conventional optimisation is to op-

timise a design that is worth of being optimised, saving valuable time of

MEMS experts without requiring them to evaluate multitude of slightly dif-

ferent designs.

Usually, the conventional optimisation process requires two parameters

31

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

to be configured. The first parameter is the so–called ‘cost function’ – an

integral function used to compare one design of device to another (with design

that is having lesser ‘cost’ to be considered superior). The second parameter

is an actual model of a MEMS, that can be simulated using software of

choice. After defining these two sets of parameters, the only thing left to do

is an invocation of optimisation algorithm, an algorithm that will find such

combination of input parameters with respect to constraints that minimise

cost function.

The most common approach is making an optimisation algorithm that

simply loops through all possible and allowed combinations of parameters and

finds the combination of parameters that results in minimal cost function.

The obvious downside of this is that such an approach requires extreme

amounts of computational power, especially if different design parameters

have different levels of impact to the cost function.

Yet another problem of such an approach is that the cost function might

not be continuous (according to (Brenner, Lang, Li, Qiu & Slocum 2002)) and

any optimisation undertaken (to make search faster by not evaluating every

combination of parameters) might lead to lost solutions. To address this

issue, the model reduction technique is usually applied to the MEMS design.

As the creation of reduced model requires a lot of FE simulations of original

MEMS design, the process of reduction itself can become troublesome.

Another well–known and widely used approach is gradient–based search

or alternatively, ‘gradient descent’, that does not perform check of all possi-

ble parameter combinations, it rather ‘slides down’ the hill of cost function

down to the local minima. The usage of such a method expects that the

problem that is being optimised does not contain areas where cost function

is undefined; so gradient–based search cannot be applied to any MEMS op-

timisation problem, but rather to a subset of given problems that possess

required properties.

Because computational complexity of gradient–based search increases with

increase in dimensionality of search space (that is, with increase in number

of input parameters to find combination of the given MEMS design prob-

lem), the application of gradient–based search to the design optimisation of

32

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

complex MEMS designs becomes a burden for an optimising system. This

problem was addressed by (Brenner et al. 2002, Abdalla, Reddy, Faris &

G\ürdal 2005) where researchers attempted to invent a gradient search in-

sensitive to the number of parameters.

The list of algorithms used for conventional MEMS design optimisation of

MEMS is not limited to the brute force optimisation and the gradient–based

search.

Amongst methods used for MEMS optimisation there is a well–known

algorithm called ‘Simulated Annealing’(Ongkodjojo & Tay 2002, Engesser,

Franke, Maute, Meisel & Korvink 2010) and hybrid methods such as ‘Sim-

ulated annealing–Gradient search’ or ‘Simulated annealing–Generalized Re-

duced Gradient (GRG)’(Parkinson, Jensen & Roach 2000, Parkinson & Wilson

1988).

2.3 Analysis of conventional approach

Although there is a remarkable progress in development of MEMS modelling

and simulation tools with steady increase of precision in simulated responses,

usability of MEMS designing software, range of simulated environments and

domains, analysis and MEMS design visualisation techniques, the research

volume on automated MEMS design remains limited. Therefore, most com-

mercial MEMS built up to today are usually undergoing slow and high in cost

hybrid CAD–assisted initial design phase and ‘build and break’ evaluation

and re–evaluation.

Since MEMS is a relatively young branch of technology and because

MEMS use multi–domain devices that incorporate elements of mechanics,

electronics, optics, chemistry and other domains, there is no global approach

developed for designing a MEMS device. As there is no such approach, there

are no design methodologies on how to develop a MEMS that matches partic-

ular design objective, leaving the whole process to the personal experience of

the experts performing the actual design of the fabricated MEMS(Achiche,

Fan & Bolognini 2007, Xin, Guangyi, Liang & Guizhang 2006).

The multi–domain nature of MEMS often requires for experts to build

33

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

multiple representations modelling various parts of MEMS for various do-

mains. That leads to wasted effort and the unnecessary burden and com-

plexity in assembling resulting device design. Therefore, there is a need for

unified cross–domain representation of MEMS designs, for MEMS experts to

be able to share various parts of designs between simulation environments

and simulation abstraction levels (currently, transferring a device design to a

different simulation level usually requires creation of new design representing

given MEMS on this level).

According to Zha and Du (Zha & Du 2003) and as confirmed by a variety

of other researchers (Calis & Desmulliez 2006, Fan et al. 2008), the MEMS

design process up to date is generally performed by trial–and–error, what re-

quires multiple design iterations before the design requirements for designed

system are fulfilled. This is considered an inefficient, slow and costly de-

sign methodology. Also, as MEMS production techniques have relatively low

precision (when comparing with the actual size of devices produced), their

actual design process ofter requires insight to the fabrication process to be

used and because of limitations of a production process, the functional de-

sign of a MEMS system is often influenced by the restrictions of fabrication

process. Also, according to Calis et al. (Calis & Desmulliez 2006), there is

a lack of design ‘weak spot’2 detection in currently available software tools

and the lack of ability for current simulation environments to predict the

outcome of complex internal or external influence.

The widely used conventional optimisation techniques (such as exhaustive

search3, gradient descent or Newton’s method) have proven to be applica-

ble to the field of MEMS design optimisation but all of them have certain

downsides.

The exhaustive search requires enormous computational effort, as it eval-

uates all possible design modifications and number of such designs grows

exponentially with parameter state increase and parametrically as number

of states increases, as number of design combinations is
∏k pk where k is

number of design variables and pk is number of states the kth design variable

2detection of spots that are likely to cause problems during exploitation of actual device
3Also named as ‘brute force search’

34

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

can be in.

The computational complexity of gradient and Newton’s methods greatly

increases with growth of number of design variables to be searched. Another

weakness of these methods is that they find local optima. Therefore they

require a good starting point (an initial MEMS design created by expert to

be optimised) and that their performance is dependant on this starting point

and the result is deterministic, meaning that these methods will not be able

to ‘climb out’ of local optima and return another, better solution.

Another downside of using conventional optimisation techniques is that

for design to be optimised, the designer needs to define an objective func-

tion(s) that need to be optimised, the functions to obtain response estimates

from simulation environment, and mapping of given responses to the ob-

jective functions. Plus, a set of constraints usually needs to be defined for

optimisation not to produce invalid or irrelevant solutions (i.e. designs that

cannot be produced with selected production technique). All of this requires

in–depth knowledge of simulation environment, the MEMS production pro-

cess and the multitude of other ad–hoc features that cannot be easily stan-

dardised. Plus, all given things need to be re–done when the initial design

to be optimised is altered; this increases work burden on MEMS designers

and removes them from their primary duties – namely, designing a MEMS

devices.

2.4 MEMS design synthesis by the means of

EC

The Evolutionary Computation (EC) is a subfield of Artificial Intelligence

field of Computer Science (for more detailed position of EC in the taxonomy

of Computer Science please refer to Figure 2.2).

The EC uses darwinian principles for finding solutions – a growth or

development in a population–based random guided search.

The field of EC consists of four major branches:

1. Genetic Algorithms (GA) (Holland 1992, Goldberg 1989)

35

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Computer
science

General
Literature

Hardware

Computer
Systems

Organization

Software
Data

Theory
of

Computation

Mathematics of
Computing

Information
Systems

Computing
Methodologies

Computer
Applications

Computing
Milieux

General

Symbolic and
Algebraic

manipulation

Artificial
Intelligence

Computer
Graphics

Image
processing

and
Computer

vision

Pattern
Recognition

Simulation and
Modelling

Document and
text processing

miscellaneous

General

Applications
and Expert
Systems

Automatic
Programming

Deduction and
Theorem
proving

Knowledge
representation
formalisms and

methods

Programming
languages and

Software

Learning

Natural
Language
Processing

Problem
solving, Control
methods, and

Search

Robotics

Vision and
Scene

understanding

Distributed
Artificial

Intelligence

miscellaneous

Adaptive
hypermedia

Computational
Neuroscience

Evolutionary
computing

and
Genetic

Algorithms

Wearable AI

Figure 2.2: Place of EC and GA in Computer Science

according to ACM taxonomy(ACM n.d.)

36

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

2. Evolutionary Strategies (ES) (Rechenberg 1994)

3. Evolutionary Programming (EP) (Fogel 1999)

4. Genetic Programming (GP) (Koza 1992)

This thesis concentrates on the usage of GA for the MEMS design syn-

thesis as it is one of the mostly adopted on the field for the MEMS design

optimisation by the means of EC. Another reason for picking the GA is that

Genetic Algorithms were successfully applied to a variety of device optimi-

sation problems(Weile, Michielssen & Goldberg 1996, Lu & Kota 2003).

The GA is search heuristic that is inspired by the process of natural

evolution. This heuristic is routinely used to generate good solutions to

optimisation and search problems.

The word ‘synthesis’ is defined as “the combination of components or

elements to form a connected whole”(Oxford Dictionaries 2010). Therefore,

the term ‘design synthesis’ would be a process of finding such combination

of design elements that would meet all design requirements and maximise

desired objectives such as power output, sensitivity or energy conversion

efficiency.

The process of MEMS automated design optimisation and synthesis would

be a process that takes specifications of the desired MEMS device – such as

volume requirements and resonance frequency and would output the MEMS

device design that will match given requirements when produced.

The implementation of system possessing such MEMS design synthesis

capabilities would allow greatly enhance speed of production of MEMS de-

vices, and shorten MEMS time to market that will benefit the whole industry

of MEMS. Also, such a system can change current process of designing a

MEMS as it currently heavily relies on knowledge and experience of a de-

signer and such a system would relieve precious human resources from the

drag of designing every element of a MEMS system to a more abstract level

of design.

The stochastic EC methods and in particular GA with its ability to per-

form optimisation of multi–dimensional problems and variety of developed

37

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

metrics for measuring performance and methods for applying constraints to

the search space makes GAs a very strong candidate for performing MEMS

design optimisation and synthesis. The desirability of EC (and especially

GA) application to MEMS design optimisation and synthesis problem is sup-

ported by the fact that GAs have been proven to be robust and reliable in

other device optimisation problems(Weile et al. 1996, Lu & Kota 2003).

Since in GA each solution is represented with genotype and actual eval-

uation is performed on the phenotype (in case of MEMS, the phenotype is

actual model of a device and the genotype is data structure (chromosome),

in the GA that describes the building algorithm for this particular model),

the way of representing MEMS design holds the uttermost importance – a

good design should meet two objectives:

1. Minimise the decision space4 dimensionality.

2. Maximise the search space5 dimensionality.

For the correct understanding of the research done in current work, un-

derstanding of GA is required; the major aspects of GA are discussed further.

2.4.1 Structure of Genetic Algorithms

The core concept of the GA is a concept of population. Population can

be represented as a set of strings which encode alternative solutions (also

commonly named ‘individuals’ or ‘phenotypes’) to an optimised problem.

In the GA, population is evolved towards better individuals where bet-

ter individuals are the individuals that represent solutions that have more

optimal properties with the passage of time. The time is represented as a

sequence of discrete steps with each step having distinct and separate pop-

ulation (that is set of solutions). As the sequence of populations is one–

dimensional and ordered by time, the populations can be referred to by the

4Decision space is space in which GA undertakes decisions. Usually decisions are rep-
resented by mutation and/or crossover of particular phenotypes.

5The search space is space in which GA tries to find set of Pareto optimal solutions

38

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

number of moment of time they belong to and such case they are called gen-

erations. So, saying ‘ith generation’ is the shortcut for saying ‘the population

of solutions existing at the ith moment of time’.

As every solution in GA usually has two properties – its genotype and its

phenotype, there are two distinct spaces GA exists in. A decision space is a

space where solutions’ genotype exists, a space where GA is able to undertake

decisions on how to change genotype, what genotype to prefer over another,

etc. The second important space GA exists in is an objective space, a space

where solutions’ phenotype exists. The importance of objective space is based

on the fact that its parameters are actually evaluated and measured and the

direct optimisation process exists in objective space rather than in decision

space. GA is commonly expected not to have any knowledge of the structure

of decision space or any knowledge of how objective space maps to decision

space and the only way for GA to interact with objective space usually is

solution evaluation process (a process of expressing phenotype from genotype,

also commonly referred to as ‘objective function evaluation’, or when context

is obvious, ‘functional evaluation’ and the distance of an individual from the

point of optimum is called ‘fitness’).

In general, the only knowledge on objective space GA possesses is the

current generation of solutions, so the amount of solutions in current gen-

eration (namely ‘population size’) defines the amount of information on the

optimised problem available to GA at the any moment of time.

To generate the next generation from previous generation, GA evaluates

fitness of all individuals and stochastically selects a subset of them for the

purpose of reproduction. The reproduction process commonly includes the

recombination of the genes (also referred to as ‘crossover’) and the random

mutation of genotypes of some individuals. The set of new individuals gen-

erated by the crossover and mutation is later used for the construction of the

next generation (another common source of solutions for the next generation

is elitism – a process of copying good individual from the previous gener-

ation to the next generation without introduction of changes of any kind,

first application of the elitist strategy to the field of GA dates back to the

year 1986 as in (Grefenstette 1986) and the process of injection of newly cre-

39

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

1 01 0 0 0 01 1 1 1 1

(a) Binary encoding

0.42 0.40 0.5 0.33 0.24 0.20.4 1 0.99 0.57 0.73

(b) Real value encoding

Figure 2.3: GA chromosome encoding examples

ated random solutions namely random immigrants (introduced by (Forrest

& States. 1993)).

Usually GA terminates on two occasions – ether maximum generation

count is reached or the solution with the satisfactory fitness level is found.

If termination of the algorithm is caused by the limit on the number of

generations, it is not sure if a satisfactory solution is found.

To find problems’ optimum, a GA requires:

1. way to represent (encode) solution

2. way to evaluate solution

Solution encoding

The encoding is a problem–specific part of any GA, but as usual, there are

several most widespread GA encodings that are widely used. The first one

is binary encoding (Figure 2.3(a)) and the second is real value encoding

(Figure 2.3(b)).

In case of binary encoding, the chromosome is represented by an array

(as in computer terminology, or in mathematical terminology, a vector) of

bits – data elements where each element can take one of two possible states

– 1 (one, on) or 0 (zero, off).

Most common usage for bit–encoded values is conversion of fixed code

(i.e. mapping first X bits to first arguments’ value, the successive Y bits to

second arguments’ value, etc.) that is later evaluated in objective function.

As an example of fixed code, one may refer to Figure 2.4 as example of

40

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

1 01 0 0 0 01 1 1 1 1

x1 = 1100002 = 4810 x2 = 1011112 = 4710

W = x1
H

 = x2

h = x2 / 3
w = x1 / 3

S = W * h + H * w = x1*(x2/3) + x2*(x1/3) - (x1/3)*(x2/3) S = 1253.3

Figure 2.4: Example of mapping of a chromosome to objective function

binary–encoded chromosome mapping to the dimensions of the sofa with the

objective function of sofas’ area.

Other encodings are also possible – for example, an integer value encoding.

The major weakness of using binary encoding for such mapping is the

so–called ‘Huffman peak problem’, namely there are some bit combinations

that are extremely hard to rollover. For example, if GA changes chromosome

value only by flipping every bit with probability of 20%, chances of number

1510 = 0011112 mutating to 1610 = 0100002 are 80% ∗ 20%5 = 0.0256%

as there are 5 bits that need to be simultaneously flipped and one bit that

needs to be preserved. While the chances of 210 = 0000102 being changed

to 310 = 0000112 are 80%5 ∗ 20% = 6.55%, so in each case the actual eval-

uated parameter difference equals to 1, but the chances of 2–to–3 mutation

happening over 15–to–16 differ 6.55%
0.0256%

= 256 times.

Also the binary chromosome is often used for encoding of combinatorial

tasks – e.g. when element on position N is 1, then the object #N is present

in the evaluated set, if Nth bit is 0 then the object is absent in the evaluated

set.

An alternative widespread approach is to have sequence of real values

as chromosome (see Figure 2.3(b)), but this kind of chromosome requires

41

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

a development of a special crossover operator, as the common one–point

or more general many–point crossovers perform suboptimally when used on

real–value chromosome(Agrawal & Deb 1994, Deep & Thakur 2007).

Solution evaluation

The process of solution evaluation is a process of mapping solutions’ geno-

type to the values of objective functions. This process can be simple, as

computation of an area of sofa (see Figure 2.4) or extremly complex such as

performing FE simulation of an airplane or a MEMS device. In some cases

when no simulation software is available or the precision of softwares’ output

is insufficient, the actual physical prototype can be built and evaluated.

The outcome of solution evaluation is a vector of so–called ‘objective

functions’ – the functions that are important for GA as they are ones driving

optimisation process. The vector of objective functions is generated by GA

by mapping the required solution properties (such as area, stiffness or the

power output level) to the function of the evaluation environment – usually

simulation software, but sometimes it can be responses of actually built and

tested prototypes.

Pareto front and Pareto optimum

One of the cornerstone concepts of multiobjective GA is the concept of Pareto

dominance, Pareto front and Pareto optimum6. The concepts of Pareto front

and Pareto optimum are defined for minimisation problem.

Pareto dominance is a major concept that Pareto front and Pareto opti-

mum concepts are based on. It was introduced by Vilfredo Federico Damaso Pareto.

The vector of values ~a = (a1, . . . , aN) is said to dominate vector ~b =

(b1, . . . , bN) if and only if ~a is partially less than ~b, i.e.

(∀i ∈ 1, . . . , N : ai ≤ bi) ∧ (∃j ∈ 1, . . . , N : ai < bi)

6Pareto optimum sometimes is referred as ‘Edgeworth–Pareto optimum’, but usage of
the ‘Pareto front’ term is much more widespread and is adopted in the further parts of
given work.

42

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

As the shorthand, the ‘~b is Pareto dominated by ~a’ or ‘~b is more Pareto

efficient than ~a’ is also denoted as ~a � ~b.

Pareto set In the set of vectors <, the pareto front is a subset of nondom-

inated vectors <∗ such that

∀~a ∈ <∗ : @~b ∈ < : ~b � ~a

The Pareto set is an important concept for GA, as GA usually computes

set of solutions for the current generations and it is common for GA to give

highest chances for offspring generation (via crossover and mutation) for

solutions belonging to a given set or to attempt to preserve such solutions

by making such solutions an elitist solutions and copying them to the next

generation without any modification at all.

Pareto front Pareto front is the plot of the nondominated set of vectors

<∗; for an example of two–dimensional Pareto front please refer to Figure 2.5.

In Figure 2.5, solutions belonging to nondominated set <∗ are depicted

with green diamonds and those dominated are depicted as white diamonds.

For each nondominated solution, the area it dominates (for GA that would

be objective space) is depicted with black semi–transparent rectangle.

Pareto optimum The Pareto optimal vector (also referred to as ‘nondom-

inated vector’ or ‘Pareto front’ as well) is such a vector that is not Pareto

dominated by any other vector, in the other words, the pareto optimal vector

~o for the universal set of objective vector values < is such that

∀~x ∈ < : ~o � ~x

It is common for multiply vectors to satisfy given condition, and the set

of such vectors that satisfy ~o condition is referred to as ‘Pareto optimal set’.

Usually, the Pareto optimum is known only for the artificial problems,

a problem that was created by researchers for the measurement of the GA

43

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

f1

f20

Pareto front

Figure 2.5: Pareto front example

performance. In case of real–world problems (such as MEMS design optimi-

sation and synthesis), the Pareto optimum is not known.

It is easy to see that in case of one–dimensional problems the Pareto

dominance concept degenerates into plain ‘less than’ relation.

2.4.2 Elements of Genetic Algorithms

As one might see from general GA flowchart (Figure 2.6), the GA execution

consists of a number of stages:

1. Initial population generation

2. Check for termination criteria

3. Computation of fitness for solutions in generation

4. Selection

5. Crossover

6. Mutation

44

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Start

Generate initial
(random) population

$generation = 0

Termination criteria
satisfied?

Are evolution objectives met?

Is generation limit reached?

$generation += 1

Perform selection
individuals

Compute fitness of
individuals

Perform crossover
on selected
individuals

Perform mutation of
children produced by

crossover

Construct next
generations'
population

no

Output last
population

Finish

yes

Figure 2.6: Generic GA flow

45

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

A number of simple of stages (computation of fitness, initial population

generation and termination criteria check) were discussed previously. The

later stages were omitted from previous overview discussion as they require

the understanding of general GA techniques.

Selection

In GA, ‘selection’ is an operator that chooses the solution from current gen-

eration for further reproduction (that is usually done by performing crossover

on the subset of the set of selected solutions and applying mutation to the

result of crossover).

Usually selection operators favour solutions that belong to current Pareto

front (although there is rarely a ‘random’ selection operator that just selects

solutions with uniform probability and does not depend on the fitness of a

solution).

The most popular selection operators are:

• Roulette wheel selection

• Tournament selection

• Top percent selection

• Pareto front selection

Roulette wheel selection is a selection algorithm that selects solutions

with probability promotional to its fitness (or rank of the given solution in

the current generation when ordered by the count of solutions it is Pareto

dominated by).

The commonsense analogy for the roulette wheel selection would be spin-

ning a roulette wheel with the length of an arc assigned for each solution

proportional to its fitness.

Tournament selection is a selection algorithm to select one solution. It

constructs subset of the solutions (usually using roulette wheel selection) and

then selects best solution in the constructed subset.

46

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

When compared to roulette wheel selection, this method has an additional

selection pressure as the solutions with lower fitness have smaller probability

to get selected for reproduction.

Top percent selection is a selection algorithm that randomly choses so-

lution from the top N percent of generation (as generation is ordered by

solution rank or fitness).

Pareto front selection is a selection algorithm that randomly choses so-

lution from the current pareto front.

Crossover

In GA, crossover is a genetic operator that combines two solutions (also

referred as ‘parents’) to produce new solutions (referred as ‘offspring’). The

crossover is inspired by role of reproduction in course of natural evolution.

Crossover is supposed to spread the good traits of previous generation

of solutions to the next generation. In the ideal case, crossover should pro-

duce offspring solution with predictable solution (as the random decision and

objective space shuffling is performed by mutation operator), dependent on

parents position in decision space.

Usually crossover has a user–defined probability of happening. This

means that when parents (there are usually two of them) are passed to the

crossover operator, there is N% probability of crossover operator returning

generated offsprings and 1−N% probability of crossover operator returning

parent solutions unchanged. The ability of crossover to return unchanged

parents provides semi–elitism (as this is not elitism in its original form –

returned parents are still subject to mutation and the selection of preserved

parents has stochastic elements).

Amongst variety of possible crossover algorithms, three algorithms are

most popular:

• One–point crossover

• Two–point crossover

47

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

(a) One–point crossover (b) Two–point crossover

Figure 2.7: Crossover operations used in GA

• Simulated Binary crossover

One–point crossover is a crossover algorithm that selects a single crossover

point on both parents’ chromosomes and swaps the data beyond that point

between chromosomes. For graphical illustration please refer to Figure 2.7(a).

Two–point crossover is a crossover algorithm that selects two crossover

points on both parents’ chromosomes and swaps the chromosome data be-

tween given points. For graphical illustration please refer to Figure 2.7(b).

SBX crossover or the ‘Simulated Binary Crossover’ in full was introduced

by Kalyanmoy Deb et al. in (Agrawal & Deb 1994). It is a crossover algo-

rithm created especially for real–encoded values to preserve important trait

of one–point crossover executed on the binary chromosome that encoded an

integer (please refer to Figure 2.8 for graphical explanation).

In SBX crossover there is a so–called ‘spread factor’ (denoted as β in

formulas) that is either controlled by user (by passing a constant parameter

to the GA) or is computed from other properties of the current generation.

48

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

1 0 0 1

0 1 1 0

1 0

0 10 1

1 0

10012=910

01102=610

10102=1010

01012=510

Average = 7.5

Average = 7.5

Figure 2.8: Preservation of an average value during binary crossover

The values for each children chromosome (there are two parent solutions

participating in SBX crossover process and two children solutions are gener-

ated using given parent solutions) are defined as equation 2.1.

c1 = x̄− 1

2
β(p2 − p1)c2 = x̄+

1

2
β(p2 − p1) (2.1)

Where

— x̄ = p2+p1
2

— p1 and p2 are the genes of parent chromosomes

— c1 and c2 are the genes of offspring chromosomes

As can be easily seen, the SBX crossover preserves average value (x̄) of

appropriate genes of every pair of parent and offsprings.

Similar to the case of mutation, the β coefficient is a function using variety

of current generations’ parameters.

49

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Mutation

Just as in the natural world, mutation is a random error found in genetic

code. In GA mutation, an operator stochastically changes one or more gene

(gene is one chromosome element) from its initial state to some new, random

state. This operation ensures that GA always explores new parts of objective

space (as the decision space gets randomly disturbed).

As the mutation disturbs decision space of the GA, it helps GA not to

get stuck in local optima. The probability of mutation is usually set by user

and is usually set for a low value, like 7%, as the higher levels of mutation

would alter solution chromosomes too much making GA to lose information

provided by solution parents making GA nothing more than random search.

The list of available mutation operators depend on the encoding used in

the GA. For example, when bit encoding is used, the mutation operator is

usually either bit inversion operator (replacing value of bit to the opposite

one with defined probability) or the bit replacement operator (replacing the

bit with new randomly generated one – can be either different from original

value or equal to original value).

As for the real value and integer encodings, the most common mutation

operator is a uniform mutation that replaces the mutated value with new

a random uniformly distributed value in allowed boundaries. A variety of

non–uniform mutation operators are used as well. In case of non–uniform

mutation, the random value is distributed not uniformly in given bounds,

but rather with some more sophisticated probability distribution such as

Gaussian or normal distribution.

Some mutation operators do not use constant mutation probability and

attempt to define mutation probability as some function dependent on gener-

ation number, average fitness of generation or the average distance between

solutions in objective space (to increase mutation when solutions are starting

to crowd in some small area of objective space).

50

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

2.4.3 MEMS design optimisation

As was previously discussed, conventional design optimisation tools (such

as gradient–based search) are really meant to find a local optima, meaning

that such tools are not powerful enough to perform a full-featured automated

MEMS design. The success of evolutionary approaches (and especially GA)

in other device optimisation(Weile et al. 1996, Lu & Kota 2003) lead to the

decision to apply GA techniques to the field of MEMS design synthesis.

Although the application of EC to MEMS design problem is relatively

young field of research and there still are a lot of problems to solve, it is

seen that judging by publicised results in EC for MEMS (Zhang, Kamalian,

Agogino & Séquin 2005, Zhang 2006) the overall approach holds a big poten-

tial as EC algorithms have demonstrated an ability to outperform traditional

methods of optimisation.

As most of MEMS naturally have multiple optimisation objectives – for

example, in case of meandering resonator, a resonant frequency, per–axis

stiffness and the minimisation of surface area, the multi–objective GAs (Ge-

netic Algorithms that are using Pareto front approach, as opposed to the

other class of single–objective algorithms) naturally fit the requirements for

automoted MEMS optimisation algorithms.

This point of view is further supported by the fact that even the old-

est multi–objective genetic algorithm known (‘Multi-Objective Genetic Al-

gorithm’ (MOGA)(Goldberg 1989)) is able to outperform one of the conven-

tional optimisation methods, such as Simulated Annealing (SA), proving that

MEMS design optimisation is truly a multi–objective problem that is best

solved using multi–objective optimisation algorithms, according to Kamalian

et al. (Kamalian, Zhou & Agogino 2002).

As the usage of GA is computationally expensive and since every act of

solution evaluation in GA during MEMS design optimisation process actually

results in simulation run, additional constraints should be defined. Introduc-

tion of constraints will reduce the freedom for GA to choose combination of

particular variables, what will lead to faster convergence(Kamalian, Agogino

& Takagi 2004).

51

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Having GA converging faster has the danger of less of an objective space to

be probed, therefore reducing chances of finding good solutions. But taking

into account reduced computational time and effort, adding constraints to

GA process might be worth the risk.

The most common constraints in MEMS design optimisation are defining

partial (x–axis or y–axis) or full device symmetry. Also constraining the

MEMS device to manhattan geometry is quite common7. Introduction of

constraints while preserving the number of evaluations used in the GA run

can also be performed to make GA to probe bigger volume of a search space,

constraining it from concentrating on one cluster of similar phenotypes.

It is common to accomplish GA run with usage of some classical local

optimisation technique, such as gradient method. This is done because, the

result of GA is likely to be not an optimum, but rather some approximation of

optimum. In a way, these two algorithms (GA and conventional optimisation

method such as gradient optimisation) are supplementary of each other, as

GA is able to probe a wide space of possible designs, but can face difficulties

performing precise local optimisation and the conventional local optimisation

is unable to find a good starting point for itself, but it is able to find fine

local optima.

There are two widely adopted approaches for initial population generation

for MEMS design optimisation by the means of GA – a fully random genera-

tion or initial population set by the designer (usually from designs collected

by scanning through appropriate publications). An interesting alternative

approach was proposed in (Cobb, Zhang & Agogino 2007a) of making initial

population by reusing results of previous simulations, which would speed up

the actual algorithm and potentially increase quality of GA outcome. In a

nutshell, this approach proposes usage of a special database for storage of

good MEMS designs and their retrieval when needed. With database be-

ing enriched by new designs, every time GA simulation run ends, the last

7It has been noted that human designers tend to design MEMS with manhattan topol-
ogy, assuming that such designs are more robust and/or easier in terms of production.

However, this is not true in case of MEMS, as most of the production processes do not
depend on the complexity or uniformity of angles used and the precision of production is
not usually dependant on the device design.

52

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Pareto front is saved back. This approach also has elements of Case–Based

Reasoning (CBR), as designs that satisfy certain set of conditions such as

resonance frequency (in case of evolving the MEMS resonator) are chosen

from database.

2.5 Work related to circular chromosome

According to (Senturia 2001), the arbitrary MEMS–enabled system can be

usually described at different abstraction layers: ‘system’, ‘device’, ‘physical’

and ‘process’ with each higher level increasing level of abstraction from actual

physical device.

This research concentrates on ‘physical’ abstraction level – level that is

one step higher in the abstraction than ‘process’ level (one that describes

actual ways of production of MEMS devices such as etching process).

The ‘physical’ abstraction level is not taking into account problems of

integration of a MEMS device to a MEMS–enabled system (given problem is

reviewed on ‘system’ and ‘device’ abstraction levels), although it seems to be

possible to apply EC to every level of MEMS synthesis(Li & Antonsson 1998).

Due to the development and availability of a wide variety of tools for

MEMS device simulation and evaluation using virtual environment (that is

without building the actual device design), the automated design techniques

such as EC have obtained means for performing design evaluation in fully au-

tomated experimental environment rather than execution of experiments by

the means of using human–assisted development and response measurement

cycle.

Naturally, EC techniques can be applied to any level of MEMS design

problem as only requirement for implementation of fully automated EC opti-

misation is presence of virtual evaluation environment for layer of abstraction

that design is optimised in.

Since a number of simulation software by any level of abstraction of

MEMS system are currently created and being developed, it can be assumed

that it is possible to perform design optimisation at any level of abstraction

(‘system’, ‘device’, ‘physical’ or ‘process’). As it was previously stated, only

53

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

‘device’ level optimisation will be explored in current work.

First attempts of automated MEMS design were undertaken using tra-

ditional methods of optimisation (e.g. gradient–based optimisation) with

the help of tools embedded into MEMS simulation packages(Haronian 1995,

Brenner et al. 2002, Ye & Mukherjee 1998, Mukherjee, Iyer & Fedder 1998,

Fedder et al. 1997). Although GA–assisted design optimisation has demon-

strated to routinely yield better results than traditional methods, an im-

pact that can be attributed to discontinuity of and multi–objective nature of

MEMS design optimisation problem and GA being able to cope better with

such problems than traditional methods.

The problem of MEMS design optimisation has attracted attention of

various researchers (Achiche et al. 2007, Lohn, Kraus & Hornby 2008, Zhang

2006, Kamalian 2004). An effect not that surprising if one takes into account

importance of MEMS development and size of MEMS industry.

The earliest paper available to author that directly relates to automated

design of MEMS at a ‘device’ level is by Ningning Zhou(Zhou 2002), ad-

dressing the most basic conceptual problems such as principles of encoding

of a MEMS device to GA chromosome, initial population generation and GA

operators (mutation and crossover).

One of the influential innovations described in previously mentioned paper(Zhou

2002), one, that strongly influenced majority of papers related to same area

of interest, is an approach of encoding a MEMS device as rooted acyclic tree

of nodes i.e. the graph–like structure of interconnected nodes with one node

chosen as reference node.

This paper has introduced an idea of matrix encoding for one–dimensional

structure of MEMS– an encoding that was later deployed by majority of

researchers.

An alternative approach to encoding of a MEMS device was introduced

in (Lohn et al. 2008). As the original Zhou’s encoding was basically one–

dimensional sequence of nodes (with each node having three properties –

length, width and angle), the Lohn’s paper (Lohn et al. 2008) introduced an

alternative encoding scheme with ability of representation of tree of nodes as

sequence of commands similar to ‘turtle graphics’ approach with commands:

54

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

‘go straight’, ‘set pen width’, ‘turn left’, ‘turn right’ and introducing branch-

ing (via ‘branch start’ and ‘branch end’ commands) and loop structures (‘loop

start’ and ‘loop end’ commands). But because no intersection detection was

used during the evaluation of given algorithm, most MEMS designs created

by it are unfeasible. Disregarding unfeasible designs, the author states that

‘turtle graphics’ approach (Lohn et al. 2008) allowed to reduce amount of

computations (both by reducing population size and generations) required

to reach design with responses faster than state–of–the–art results published

in (Kamalian 2004). But given results can be criticised, as topology of ob-

jective space and decision space might have been altered due to allowance of

collisions in designs.

Nevertheless, encoding scheme proposed in (Lohn et al. 2008) was success-

fully put to stricter test in (Hornby, Kraus & Lohn 2008) showing that ‘turtle

graphics’ encoding scheme does indeed lead to increased speed of finding the

optimum.

But there are some problems left unsolved by all of known publications:

• Initial population generation

mentioned in (Zhou 2002), implicitly mentioned in (Lohn et al. 2008)

(by assigning custom probabilities to each command during genera-

tion).

• Mutation

the standard mutation operators seems to be not as effective as one

would like them to be – even when mutations do now suffer from Huff-

man peak problems (as in (Lohn et al. 2008)), plain mutations seem to

be rather ineffective in GA application to the problem of MEMS design

synthesis.

Execution of experiments with same settings and algorithms as ones pub-

lished by (Zhou 2002) have highlighted yet another problem in applying GA

techniques to the MEMS design problem: the premature convergence of de-

vice phenotypes – as each good design in the last population of GA seemed to

be present multiple times in all performed experiment runs, which is actually

55

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

a bad thing as each design copy is stored and evaluated independently, thus

wasting computational resources and reducing decision space explored since

population size in GA is constant.

2.6 Work related to component–based MEMS

synthesis

Generally, the idea of BB usage is so widespread that the whole MEMS design

industry seems to be related to it. The MEMS design and simulation software

packages like SUGAR, IntelliSense(IntelliSense Corp 2010), NODAS(NODAS

2010) and others are shipped with pre–compiled libraries of MEMS elements,

or in other words, Building Blocks.

In the Research environment most widely deployed BB simulation pack-

age is SUGAR, an open–source software package that runs in MATLAB (a

numerical computing environment and fourth–generation programming lan-

guage). Its development is done by Berkley Sensor and Actuator Center.

The features of SUGAR to which can be attributed its popularity are: a

flexible and compact SPICE–like ‘netlist’ language for defining MEMS de-

sign, high simulation speed, powerful visualisation capabilities, extensible

architecture and possibilities for integration to wide scope of third–party

MATLAB modules.

SUGAR inherits its name and philosophy from SPICE. A MEMS designer

can describe a device in a compact netlist format, and very quickly simulate

the devices behavior. Using simple simulations in SUGAR, a designer can

quickly find problems in a design or try out new ideas. Later in the design

process, a designer might run more detailed simulations to check for subtle

second-order effects; early in the design, a quick approximate solution is key.

SUGAR provides that quick solution.

In software packages, the BBs are included for the convenience of the

designer, so that the designer does not need to use design primitives (such

as nodes) to re–create all elements of MEMS design from scratch.

Another reason for inclusion of BBs to the software package, (basing on

56

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

the analysis of source codes of SUGAR done by author) is the increase in

the precision of simulated response values, as there might be more precise

behaviour models created for particular MEMS elements than results yielded

by the simulation of a set of interconnected atomic elements as nodes in case

of SUGAR.

Also, a variety of researchers such as Zhang et al.(Zhang et al. 2005,

Zhang 2006), Raffi Roupi Kamalian (Kamalian 2004) and Zhou (Zhou et al.

2002, Zhou 2002) have used MEMS encoding that incorporated the ability

to handle BBs (or ‘clusters’, according to the terminology used by these

researchers).

The usage of BB was taken even further by Cobb et al.(Cobb et al. 2007a,

Cobb, Zhang, Agogino & Mangold 2008a, Cobb, Zhang & Agogino 2007b)

when they introduced the hierarchical classification system for MEMS and

their components.

The widespread usage of BBs in the domain of MEMS design illustrates

the desirability of the creation of MEMS BB libraries (this was mentioned

throughout automated MEMS design synthesis literature as well). And lack

of the diversity of BBs used in the research on MEMS automated design

synthesis highlights the need for exploration of automated BB database cre-

ation.

2.7 Work related to process–induced error tol-

erant layout synthesis

The major share of research on MEMS error tolerance is performed using the

analytical models of MEMS.

A variety of techniques were applied and developed by a multitude of re-

searchers addressing the given problem with optimisation of analytical mod-

els – topology optimisation (Maute & Frangopol 2003), and robust design

synthesis by conventional approaches (Sedivec 2002, Liu, Paden & Turner

2002, Ma & Antonsson 2001), Simulated Annealing (SA) (Hwang, Lee, Park,

Lee, Cho & Lee 2003) and GA (Fan et al. 2007, Fan, Liu, Sorensen &

57

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Wang 2009).

As this work focuses on MEMS evolutionary synthesis by means of GA, it

would be of interest to review the error–tolerant MEMS layout synthesis and

the state–of–the–art research on robust optimisation performed by Zhun Fan

et al. (Fan et al. 2007, Fan et al. 2009).

The proposed approach is based on the technique of designing error–

tolerant MEMS by the means of robust optimisation as described for the

first time by Peter Josef Sedivec in (Sedivec 2002).

In these works, actual MEMS design is denoted as ~x, production error

vector is denoted as ~δ and the overall (including disturbance introduced by
~δ) designs’ response estimate is denoted as f(~x, ~δ).

As dictated by robust optimisation approach, the f(~x, ~δ) is approximated

by first–order Taylor series expansion (equation 2.2).

f(~x, ~δ) ∼= f(~x, 0) +∇δf(~x, 0)δ (2.2)

With ∇δf(~x, 0) being gradient of f(~x, ~δ) with respect to δ.

Further mathematical operations that were initially introduced and can

be seen in (Sedivec 2002) lead to composite robustness–enabled function that

was later used as GA objective in (Fan et al. 2007):

min
x

(N(~x) +D(~x,Ω)) (2.3)

Where N(~x) and D(~x,Ω)) are defined as

N(~x) ≡

(
f(~x, 0)− ~f

~f

)2

(2.4)

D(~x,Ω) ≡ 1

~f 2
(∇δf(~x, 0)Ω∇T

δ f(~x, 0)) (2.5)

With f(~x, 0) being designs’ ~x response with zero error vector, or, as it is

denoted in current work, an ‘ideal design’ response.

It can be seen that equation 2.3 is defined as conjunction of two func-

tions – N(~x) and D(~x,Ω)) (where Ω is a pre–defined matrix of production

errors applied to ‘ideal design’ ~x). With N(~x) function is the measure of the

58

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Image from (Fan et al. 2007, p. 530)

µ = 199.9kHz
σ = 11.3kHz

(a) Non–robust design

Image from (Fan et al. 2007, p. 531)

µ = 199.7kHz
σ = 1.95kHz

(b) Robust design

Figure 2.9: Histograms of the natural frequencies of designs of crab–leg res-
onator acquired by (Fan et al. 2007)

designs’ performance towards target response ~f and D(~x,Ω) is the measure

of ~x tolerance towards production errors.

As displayed in (Fan et al. 2007), the robust optimisation approach by

the means of GA has indeed increased the robustness of the resulting MEMS

designs while preserving the mean value of target response (please refer to

Figure 2.9 for exact values of results).

2.8 Research gap

In given thesis a number of research gaps was identified and addressed.

First research gap identified is inefficient representation of MEMS in

chromosomal structures deployed for MEMS layout synthesis, big evalua-

tion count and inability for GA to remember and reuse desirable features of

designs throughout single design synthesis run.

This problem is addressed in chapter 3 of this thesis by introduction

of circular chromosome. Its probabilistic expression properties and linkage

learning capabilities allows for GA to preserve elements of MEMS designs

that were previously used but rejected allowing for evolutionary optimisation

to have more freedom while synthesising MEMS layout design.

59

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Second research gap is inability for GA to automatically collect and

reuse desirable MEMS design elements is some form of global memory bank.

Although desirability of having such good design memory bank is demon-

strated in the literature (Cobb & Agogino 2006, Cobb et al. 2007a, Cobb

et al. 2007b, Cobb et al. 2008a, Cobb, Zhang, Agogino & Mangold 2008b),

all of previous research have manually collected data for populating such

memory bank. To unlock full potential of automated MEMS design synthe-

sis process of acquiring knowledge by GA should be automated just as all

other steps of automated design synthesis are.

Linkage learning capabilities of circular chromosome provide good start-

ing point for implementing automated design element collection, extraction

and re–usage techniques. Problem left unaddressed by deployment of circu-

lar chromosome is process of automated conversion of good design elements

into design elements that can be reused in future GA runs. This problem

was addressed in chapter 4.

Third and last problem addressed is instability of properties of automati-

cally generated MEMS designs when subject to process of MEMS production

and its errors. Previous research on given topic is done only in case of one

objective design synthesis using analytical models for acquiring estimated

MEMS responses (Fan et al. 2007, Sedivec 2002). The multi–domain nature

of MEMS and general lack of analytical models limits usability of developed

techniques.

In the chapter 5 given problem was addressed by attempting to adapt

previously published techniques to the domain of multiobjective production

error tolerance have yielded suboptimal results, several enhancements were

proposed, tested and and having their performance compared. The justifica-

tion for performance of each approach was proposed.

2.9 Summary

The application of EC techniques to the field of MEMS currently yields

promising results. Optimisation still has a lot of limitations and behaviour

of evolutionary optimisation technique in the field of MEMS design synthesis

60

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

Date Contributors Methods Description

1998 H Li and E. K. Antonsson
(Li & Antonsson 1998)

GA Showing that MOGA can be used to
synthesise mask for production

1999 H. Li and E. K. Antonsson
(Li & Antonsson 1999)

MOGA Simple mask shapes framework for the
mask synthesis process

2001 L. Ma, E. K. Antonsson
(Ma & Antonsson 2001)

MOGA +
noise

Simple mask shapes noise to phenotype
to create robust design

2001 N. Zhou, B. Zhu,
A. M. Agogino and
K. Pister (Zhou, Zhu,
Agogino & Pister 2001)

MOGA Meandering springs MOGA is able to
do the device level design optimisation

2002 N. Zhou, A. M. Agogino
and K. S. Pister (Zhou
et al. 2002)

MOGA Introduction of CBR

2004 R. H. Kamalian,
A. M. Agogino and
H. Takagi (Kamalian
et al. 2004)

MOGA +
constraints

Constraints can increase search speed
and thus give better results

2005 Y. Zhang, R. Kamalian,
A. M. Agogino and C. Se-
quin (Zhang et al. 2005)

MOGA +
gradient-
descent
optimisation

Local optimisation can increase result
quality, but needs MOGA to find the
global one

2005 Z. Fan, J. Wang, and
E. D. Goodman (Fan et al.
2007)

MOGA Robustness can be introduced to the
MOGA process

2006 C. Cobb, Y. Zhang and
A. M. Agogino (Cobb
et al. 2007a)

MOGA +
CBR

MEMS resonator CBR can eliminate
need for starting designs

2008 G. S. Hornby, W. F. Kraus
and J. D. Lohn (Hornby
et al. 2008)

GP + noise Location noise and pre–stress can en-
sure robustness

Table from (Benkhelifa et al. 2010, page 37)

Table 2.2: Major points in research of MEMS design synthesis by GA

remains largely unexplored. As is evident from Table 2.2, the techniques of

evolutionary optimisation of the MEMS devices are progressing fast, but as

given field is still in its infancy, there are a lot of problems that remain to be

addressed and resolved.

For instance, the GA is currently allowed to act only on the set of atomic

building blocks provided by designer without having any possibility to change

them or to create any new building blocks, which might handicap perfor-

mance of the GA, as designers might dismiss some building block variants

just basing on their personal perception.

Another unexplored way of enhancing the MEMS design synthesis might

61

CHAPTER 2. A REVIEW OF LITERATURE: MEMS DESIGN
OPTIMISATION

lie in the domain of enhancing the GA itself by introduction of more in-

telligent GA operators, such operators that would behave more intelligently

allowing for GA to behave more intelligently. Therefore, reducing the needed

evaluation count.

62

Chapter 3

Circular chromosome

3.1 Introduction

The problem of automated design synthesis by the means of GA always

faces two conflicting targets – to evolve more sophisticated designs matching

desired set of properties more precisely and to evolve good designs in shorter

time by performing less functional evaluations.

As design time constraints become more strict and non–forgiving with

each successive problem, every effort in optimisation has to be made. As

choosing appropriate encoding is one of the problems that lies at the heart of

the GA, it strongly affects performance of the GA for particular application.

Commonly, GAs incorporate various stochastic elements such as selection,

mutation and crossover operators1 (not necessarily all of them have to be

stochastic, but at least one of them has to as stochastic behaviour is found

in nature and GA are considered a biologically–inspired algorithm).

The problem of encoding used by GA to solve particular problem is com-

monly perceived to be an important decision that has to be made. It is

commonly perceived that perfect GA encoding would not be inter–linked,

meaning that each piece of information (bits in case of boolean values, real

number in case of real–coded values, etc.) control only one aspect of phe-

notype and therefore, changing one gene in the chromosome would ideally

1Common GA algorithm flow can be seen in Figure 2.6

63

CHAPTER 3. CIRCULAR CHROMOSOME

result in change of only one aspect of phenotype properties and not impact

other properties that are supposedly controlled by other genes.

As a matter of fact, all current GA encodings deployed to date for MEMS

design optimisation problem have inter–linked genes. And there is little

chance for encoding without linked genes, as MEMS usually have complex

topology, that can only be described by multiple inter–connected compo-

nents. As GA–assisted design process requires some level of abstraction to

be able to represent as big as possible number of MEMS designs in desired

format (i.e. 3D models, nodal representation as in SUGAR input files or

even at higher abstraction level such as component–based designs used by

a number of previous researchers) to be reflected in the data stored in the

genes of each solution.

The actual MEMS design is whole and indivisible in terms of its measured

or simulated responses (such as resonance frequency). Since each element of

a MEMS design influences integral device responses and thus design perfor-

mance and variety of other properties, such as design correctness – as in case

of working with SUGAR(a MEMS simulation package) nodal representation,

changing angle of a junction of one node pair might result in collision is some

other, distant, set of nodes (as can be seen in Figure 3.1).

The task of developing near–ideal universal encoding for MEMS device

design is a problem extremely hard to solve. And as all GA encodings applied

to problem of MEMS device synthesis seem to suffer from design element in-

terconnection problem (the problem of one element influencing properties

of nearby elements or of a whole design). This problem cannot be referred

to as imperfection in particular GA encoding, but rather is a natural effect

of MEMS design synthesis. To address the problem of single MEMS ele-

ment influencing global MEMS responses, an introduction of GA algorithm

with linkage learning capabilities for the MEMS design optimisation problem

seems to be desirable.

64

CHAPTER 3. CIRCULAR CHROMOSOME

+7o
Collision

Figure 3.1: Example of mutation resulting in distant collision

3.2 Proposed enhancements

Two major problems of MEMS design optimisation by the means of GA were

left without proper attention – the effects of mutation on the performance of

GA and the problem of generation of initial population. The logical question

to ask would be if the proper GA flavour was chosen for the MEMS design

optimisation problem at all, as the non–locality of effects of mutation might

limit performance of GA–enabled MEMS optimisation process.

The inter–dependance of MEMS components and hence the non–locality

of mutation has led to the decision to introduce Linkage learning Genetic

Algorithm (LLGA)–like algorithm to the MEMS design optimisation problem

with ability to detect linkage between nodes of the MEMS device and to be

able to perform better than common GA used by the previous researchers.

Just as most of scientific progress during last decades was inspired by

nature, the data structure proposed was inspired by structure of the bacte-

rial Deoxyribonucleic Acid (DNA). A ‘circular chromosome’ was proposed in

attempt to introduce linage learning behaviour to the MEMS design optimis-

ing GAs. The proposed chromosome structure introduces introns (noncoding

gene sequences) to the GA for allowing the algorithm to preserve bits of de-

65

CHAPTER 3. CIRCULAR CHROMOSOME

Start of inactive interpretation position

Interpretation direction

(d1)

(start1, probability: 2%)

(d2)

(d3)

(end1, probability: 60%)
(d4)

(start2, probability: 50%)

(d5)

(end2, probability: 5%)

Figure 3.2: Proposed chromosome structure

signs even if given design parts were ‘thrown away’ by the current generation

of solutions.

As can be easily concluded from schematic depiction of the circular chro-

mosome in Figure 3.2, the major difference between ‘plain’ chromosome com-

monly used in GA and proposed ‘circular’ chromosome is that circular chro-

mosome has no distinctive begin or end. But since actual MEMS design

building process needs to start somewhere and to end somewhere as well,

used encoding scheme (that is not restricted to any particular scheme, but in

current work the encoding used by Zhou(Zhou et al. 2001, Zhou et al. 2002)

and other Berkley researchers(Zhou et al. 2002, Clark et al. 1998, Kamalian

2004, Zhang 2006) is used) is extended with two additional genes – one ‘start’

gene and one ‘end’ gene, so the sequence of chromosome genes actually ex-

pressed would be one that starts with ‘start’ and ends with ‘end’ genes.

To address diversity issue spotted previously during the runs of experi-

ments with same settings as described by (Zhou 2002), probabilities of evalu-

ation to the ‘start’ and ‘end’ commands are used by allowing multiple ‘start’

and ‘end’ commands in single chromosome.

The common process of expressing genotype to phenotype would be the

start of interpretation process on the random position of the circular chro-

mosome, and initially all read genes are not expressed while the interpreta-

tion position is moved according to the direction of interpretation until the

66

CHAPTER 3. CIRCULAR CHROMOSOME

‘start’ gene is not met. When ‘start’ gene is faced, the interpretation pro-

cess switches to the active phase with probability that is equal to the value

of parameter assigned to given gene. If interpretation process switches to

active phase, then all data genes faced during the successive interpretation

process are expressed to the phenotype until the stop gene is faced. When

the given gene is faced, the interpretation stops with probability of argu-

ment value that is attached to the given stop gene. Since it is possible for

one stop gene in the gene to exist and that ‘stop’ gene can have execution

probability smaller than 100%, the active phase of interpretation process has

infinite mathematical expectation. This potential problem was addressed by

introduction of artificial limit for length of expressed genotype2. The actual

implementation selecting start position is different from theoretical one due

to performance reasons. In the implemented realisation, start position was

chosen from all available start positions where probability of starting in any

given start position n was equal to Pn = pn∑i
∀n pi

, where px is probability of

starting in position x.

For example, with initial state of interpretation process as depicted in

Figure 3.2, there are two possible start positions – start1 and start2 with

probabilities of 2 and 50 percent, respectively. The actual probability for

starting interpretation on the start1 is 0.02
0.02+0.5

= 0.02
0.52
≈ 3.85% and for the

start2 it is 0.5
0.02+0.5

= 0.5
0.52
≈ 96.16%.

In case start1 got lucky and interpretation started from that position,

the gene sequence, that will be used for the generation of phenotype will be

[d1,

Ntimes︷ ︸︸ ︷
d5, d4, d3, d2, d1︸ ︷︷ ︸
length ≤1000

] (where dn is nth gene in the chromosome) whereN ∈ N in

case if interpretation ends with end2. Or alternatively, in case if it ends with

end1, the output sequence will be [d1, d5, d4,

N times︷ ︸︸ ︷
d3, d2, d1, d5, d4︸ ︷︷ ︸

length ≤1000

] where N ∈ N

(in given example the maximum interpretation length is set to 1000).

Adaptation of given probabilistic expression technique is also desirable

2In the setup of experiments done during given research, the maximum interpretation
length was set to 1000.

67

CHAPTER 3. CIRCULAR CHROMOSOME

in the sense that MEMS device design cannot be easily broken down to the

positionally–independent BB. Given a GA way to explore same sequences

of genes in various neighbourhoods (as the prefix and postfix gene sequences

change because of stochastic properties of gene expression algorithm), prop-

erty that might be desirable if one attempts to tackle the automated BB

generation from phenotypes. This approach is backed up by the fact that it

has been shown in (Chen & Goldberg 2002), that the introduction of start

expression gene increases ability of LLGA to identify and separate BB in

comparison with ‘classical’ approach where interpretation of gene starts on

the static position of chromosome.

Interestingly, the Extended Probabilistic Expression 2 (EPE–2) chromo-

some was proposed by Georges Raif Harik in (Harik 1997), a structure that

was developed for solving combinatorial problems and has special gene struc-

ture for that particular purpose – in it each gene (a chromosome element)

is composed of two sub–elements – position and data (as displayed in Fig-

ure 3.3). When chromosome is interpreted, for any given position only data

thaw read last has effect on actual phenotype (e.g. in Figure 3.3 example,

the d2 is effective data for position 0 and d3 is effective data for position 1,

whereas any previous genes containing data are overridden during process

of interpretation). The EPE–2 chromosomal structure is similar to circular

chromosome proposed in this work, as it was created for different purpose

and its emergence was dictated by Georges Raif Harik as linkage–learning

crossover operator.

68

CHAPTER 3. CIRCULAR CHROMOSOME

Start interpretation position

Interpretation direction

(1, d1)

(0, d2)

(1, d3)

(0, d4)

(0, d5)

Figure 3.3: EPE–2 chromosome structure

3.3 Description of proposed approach

The MEMS design synthesis by the means of GA was actively researched

in Berkley and the earliest most influential publication by the Berkley re-

searchers in given field is (Zhou et al. 2002).

In (Zhou et al. 2002), the authors have introduced the decomposition

of MEMS devices to a set of building blocks – e.g. in case of SUGAR (a

MEMS numerical simulation program developed in Berkley), each device is

represented as a set of interconnected nodes, but since GA usually requires

tradeoff between search space exploration and performance. The bigger space

it is searching, the more variables and variable configurations it needs to

check, the more function evaluations it needs to perform, creating some pre–

built groups of nodes, called ‘blocks’ is desired, as it allows introduction of

complex components (for example, serpentine string) without introducing

too many new variables.

In case of meandering resonator, the device would be decomposed to a

set of two kinds of blocks – a block that represents central mass and four

blocks that represent design of each of four legs of meandering resonator.

The mass was described by two parameters – length and width of beams

(given mass is composed of four beams with given length and width arranged

a square pattern). Then, each of four corners of resulting mass would be

69

CHAPTER 3. CIRCULAR CHROMOSOME

Type Connected to Design parameters
mass [1 2 3 4] [L W]

block #1 [1] [(l1 w1 θ1) (l2 w2 θ2) (l3 w3 θ3) . . .]
block #2 [2] [(l1 w1 θ1) (l2 w2 θ2) (l3 w3 θ3) . . .]
block #3 [3] [(l1 w1 θ1) (l2 w2 θ2) (l3 w3 θ3) . . .]
block #4 [4] [(l1 w1 θ1) (l2 w2 θ2) (l3 w3 θ3) . . .]

Figure 3.4: Meandering resonator GA representation according to (Zhou
et al. 2002)

attached to the legs that were described as sequence of three-element tuples,

where each tuple represents single node and each element in appropriate tuple

describes one of three encoded (and thus, variable) parameters of given node

– width, length or angle.

The structure used for device syntheses in (Zhou et al. 2002) is depicted

in Table 3.4 and it can be seen that the main limitation of it is that there is

no proper coding for structures that contain branches and it can only encode

sequence of blocks without cycles. As there is no possibility to evolve cycles

during GA run, any element containing cycles of nodes needs to be hard-

coded into phenotype–to–genotype expression algorithm as separate block

type, therefore limiting GA and possibly leaving good solutions unexplored

(for example using proposed coding, there is no possibility of exploring res-

onator design with triangular mass and three legs similar to one depicted in

Figure 3.5).

Given representation of MEMS was further extended in (Zhang 2006).

The approach proposed in this work is similar to encapsulation principle in

computer science – there is primitive object (a node – the rectangle with arbi-

trary length, width and angle) and there are various objects that can contain

other objects. For visual Unified Modelling Language (UML) representation

of approach taken in (Zhang 2006), see Figure 3.6.

For example, the MEMS resonator depicted in Figure 3.7(a) according to

(Zhang 2006) is represented as Figure 3.7(c) (with subcomponents as defined

in figures 3.7(e) and 3.7(f)) when using component expression of Table 3.7(b).

But not all of components used in this figure are resolved directly to sequence

of nodes. Some of them (such as I–shaped centre mass or polyline spring)

70

CHAPTER 3. CIRCULAR CHROMOSOME

Figure 3.5: Triangular mass resonator

+connectsTo: list
Component

Node can
connect two
components

at most

+width: real
+length: real
+angle: real

Node
+contains: list
Encapsulating component

0..1

1..*

0..*

Figure 3.6: Objective MEMS structure UML representation according to
(Zhang 2006)

71

CHAPTER 3. CIRCULAR CHROMOSOME

are composite. These elements are assigned some high–level properties (e.g.

width, length and others – as can be seen in Figure 3.7(d) with incapsulated

data structure displayed in Figure 3.7(e)) which are subject to GA influence.

These high-level elements are later resolved to lower-level elements, that have

representation in actual MEMS schematics, are assembled to SUGAR pack-

age and are sent for simulation.

This attempted encapsulation has disadvantage of being restrictive to the

possible phenotypes of the device – once design element is defined by human,

it can change only in a certain way and nothing can change phenotype in

a way that is not intended by human. For example, for the component for

meandering flexure (see Figure 3.8) there is no way for GA to add or delete

a node or change one of flexures’ internal angles. Also, there is no way

for GA to inject one component inside other component (in example with

meandering flexures that would be adding one flexure with start somewhere

in the middle of other, already existing, flexure).

Although the GA representation used by Zhang does allow to mimic pre-

viously described flexure injection if there happen to be two flexures initially

created by GA. For GA it would be possible to add one extra component

to the end of first flexure before second flexure, so a component seems to

be inside of given composite flexure3. But this scenario has extremely small

chance of happening.

3Here, the ‘composite flexure’ means that a single visible flexure on the phenotype
is actually two separate flexures in the genotype, that happen to be arranged in such a
manner.

72

CHAPTER 3. CIRCULAR CHROMOSOME

(a) Resonator

Gene type MEMS design component

10 I-shaped center mass
9 Polyline spring
7 Beam for I-shaped center mass
5 Comb drive
4 Mass plate
1 anchor
0 beam

(b) Resonator component table

10

5

1

5

1

9

9

1

1

9

9

1

1

(c) Complete res-
onator design

(d) I–shaped centre
mass schematics

4
7

7

7

7

(e) Type 10
(I–shaped centre
mass) subtree

000

(f) Type 9 (Poly-
line spring) sub-
tree

Figure 3.7: Component design for resonator example (Zhang 2006, pages
49—50)

73

CHAPTER 3. CIRCULAR CHROMOSOME

Figure 3.8: Meandering flexure by (Zhang 2006, page 20)

3.4 Motivation

The work of (Zhang 2006, Kamalian 2004) on Interactive Hybrid Computation

(IHC) has demonstrated that there are such phenotype elements that might

be non–beneficial for current design, but may lead to far better results when

given properties are preserved over generations and allowed to evolve.

The problem of currently non-beneficial (or less beneficial than some of

current combinations of properties) mutations with good potential when

search space is big and solution population is small (and this is the case

with MEMS automated design as well) was tackled and resulted in showing

that introduction of introns4(Levenick 1991) is beneficial for such problems.

The MEMS automated design has been implicitly shown to be struggling

with the problem of linked genes as both of (Zhang 2006, Kamalian 2004) pro-

posed the MEMS design automation program with database of pre-computed

good MEMS building blocks.

In the context of biological genetics, genetic linkage is a tendency for

certain genes to be passed from parents to children together5, whereas in

GA context learning linkage means learning what genes should be inher-

ited together, similar to biological systems. This type of linkage was closely

inspected in (Harik 1997). (Harik & Goldberg 1997) introduced two mech-

anisms that any LLGA should implement – linkage skew and linkage shift.

Linkage skew is mechanism that ensures increased probability of linked chro-

mosome element survival during crossover process and linkage shift is a ten-

dency of LLGA to form so–called deceptive building blocks – building blocks

4An intron is a gene element that does not express itself into phenotype
5In the case of biological systems this is done by placing genes physically close together,

so crossover would have low probability of separating given genes.

74

CHAPTER 3. CIRCULAR CHROMOSOME

that encode locally optimal phenotype instead of building blocks that encode

globally optimal phenotype.

The case with building block–oriented GA chromosome representation

is a clear demonstration of linkage implemented by designer (as opposed

to learning by GA itself) – defining a set of linked components. In simple

case, this includes a sequence of linked nodes that describes some MEMS

component, as every component has the definition of variables that GA is

allowed to change in optimisation process and number of fixed variables that

GA is not allowed to change, e.g. in case of (Zhang 2006, Kamalian 2004), for

all building blocks with the exception of resonator legs, the GA is not allowed

to delete, add or otherwise modify the single nodes that given blocks contain.

The resulting dimensionality of decision space is greatly reduced with no

proof given to justify which particular decision leads to the development of

a particular BB.

The Probabilistic Expression (PE) introduced in (Harik 1997) and EPE

(Extended PE) introduced later in (Harik & Goldberg 2000) by same au-

thor have been widely used in linkage–learning GAs and have shown to be

beneficial in linkage–learning GAs.

Since MEMS automated design seems to benefit from the exchange of

MEMS elements between solutions (in case of (Zhang 2006, Kamalian 2004)

via database of MEMS elements, or as in the case of linkage–learning GAs by

crossover), the circular chromosome structure with linkage–learning genetic

operators should be beneficial for MEMS automated design process.

Because EPE–2 chromosome structure has been shown to be good in

linkage learning GAs, the introns incorporated in given chromosome structure

could address promising mutation propagation (as described in (Levenick

1991)) addressing the problem (Zhang 2006, Kamalian 2004) addressed by

using IHC.

75

CHAPTER 3. CIRCULAR CHROMOSOME

3.5 Experimental setup

3.5.1 Meandering resonator

For the first set of experiments, the EC design synthesis of meandering res-

onator was chosen as the meandering resonator is the simplest and well

known device to be simulated in SUGAR package. The settings used in

(Zhou et al. 2002) (see Table 3.1) were taken as base with only necessary

changes applied – the population size reduced to highlight the performance

gain because of deployment of circular chromosome and defining terms spe-

cific to circular chromosome, such as maximum interpretation length and the

chromosome size constraint (as in case of circular chromosome, the size of

chromosome is not equal to the size of data read and parsed into phenotype).

The settings, that were changed or added to original settings by Zhou,

for circular chromosome can be seen in Table 3.2.

As can be seen, from data provided by (Zhou et al. 2002) (Table 3.3), the

average error in resonance frequency is 1424.16 rad · s−1, the average error

in stiffness by X axis (Kx) is 0.065 N/m and average error in stiffness by Y

axis (Ky) is 0.02 N/m.

In case of circular chromosome, by the end of 50th generation, there were

49 solutions, or 4.9 solutions per experiment with resonance frequency error

strictly smaller than 1424.16 rad · s−1 and minimum error of 4.723 rad · s−1

on the pareto front of 50th generation, 6 solutions with strictly smaller error

in stiffness by X axis (with minimum error of 0.014 N/m on the pareto front

of 50th generation) and no solutions with smaller error in stiffness by Y axis

(the minimum error by the end of 50th generation was 0.137 N/m and global

minimum 0.04 N/m).

By the end of 50th generation, there were 15.9 solutions on the pareto

front with 14.9 solutions being on Pareto front in average during whole his-

tory of GA optimisation; one might conclude that given population is far

6Originally in (Zhou et al. 2002), it reads “Resonant frequency (Hz)”, but according
to (Lohn et al. 2008) this is a misprint and should be read as “rad · s−1”. This is also
supported by the fact that in same paper Zhou states that target resonant frequency is
93723 rad · s−1(Zhou et al. 2002, page 5).

76

CHAPTER 3. CIRCULAR CHROMOSOME

Meandering resonator design experiment settings
Algorithm settings

Algorithm MOGA
Elitism rate 5%
Population 400

Generation count 30
Crossover probability 0.7
Mutation probability 0.1

Selection operator Roulette wheel
Resonator design parameters

Central mass
Four 100x20x2 µm beams
laid out in a square.

Node width
min 2µm
max 20µm

Node length
min –
max 400µm

Node count
min –
max 6

Objectives

Lowest natural frequency 14.916 kHz (93723 rad · s−1)
X stiffness 1.90 N/m
Y stiffness 0.56 N/m

Table 3.1: Meandering resonator experiment settings according to (Zhou
et al. 2002)

Circular chromosome settings
Maximum interpretation length 1000

Population 200
Experiment count 10

Chromosome length
min 3
max 16

Table 3.2: Settings for experiments with circular chromosome

77

CHAPTER 3. CIRCULAR CHROMOSOME

Resonant frequency (rad · s−1)6 Kx (N/m) Ky (N/m)

93746 1.80 0.567
93859 1.82 0.602
92632 2.00 0.559
93350 1.95 0.557
94290 1.84 0.59
87368 1.90 0.52

Table 3.3: Resulting design parameter examples according to (Zhou et al.
2002, figure 7)

from converging to the local minima.

3.5.2 Flexure resonator

The flexure resonator experiments were performed by Ying Zhang and Raffi Roupen Ka-

malian, each of whom have performed separate set of experiments with same

GA settings (settings used by these researchers can be seen in Table 3.4). In

circular chromosome experiments, these settings were used with the changes

seen in Table 3.2.

The stiffness ratio constraint was introduced in (Kamalian 2004) to force

GA to producing designs that would oscillate only in one axis, as flexure

resonator incorporates two comb drives, that would restrict movement in one

axis, thus, rendering any results obtained without such constraint infeasible.

Both there researchers performed set of experiments for various device

constraint cases. The constraint cases are defined as following.

1. Unconstrained leg angles, asymmetric legs

2. Unconstrained leg angles, vertically symmetric legs

3. Unconstrained leg angles, symmetric legs

4. Manhattan angles, symmetric legs

In both cases, only the pareto front solutions with resonant frequency

within 5% of target frequency were analysed.

78

CHAPTER 3. CIRCULAR CHROMOSOME

Flexure resonator design experiment settings
Algorithm settings

Run count 25
Population 400

Generations 50
Other settings Same as in Section 3.5.1

Resonator design parameters

Central mass

100x100µm plate with 4
30x50µmbeams attached.
Plus mass of the comb
drives (11 fingers, 50µm
long by 4µm thick with
3µm gap, plus a 4µm thick
spine)

Node length
min 10µm
max 100µm

Node width
min 2µm
max 10µm

Node count
min 1
max 7

Stiffness stiffnessx
stiffnessy

> 10

Objectives

Device resonance frequency 10 kHz
Device area 0 (minimize)

Table 3.4: Flexure resonator evolution settings according to (Kamalian 2004)

79

CHAPTER 3. CIRCULAR CHROMOSOME

Source Resonant frequency (Hz) Area m2

Raffi Roupen Kamalian – –
Ying Zhang 10440 1.633× 10−7

Circular chromosome 10002 2.484× 10−8

Table 3.5: Constraint case 1: Best solutions after 50 generations

Source Resonant frequency (Hz) Area m2

Raffi Roupen Kamalian 10325 1.711× 10−7

Ying Zhang 10388 1.625× 10−7

Circular chromosome 10004 7.158× 10−8

Table 3.6: Constraint case 2: Best solutions after 50 generations

Constraint case 1

Comparison of best results yielded by circular chromosome to previous re-

searchers can be seen in Table 3.5. With the circular chromosome approach,

the algorithm was able to generate 6.96 unique pareto front solutions and

8.6 non–pareto front unique strictly better 7 solutions per single experiment

than solutions provided by Ying Zhang.

Constraint case 2

Comparison of best results yielded by circular chromosome to previous re-

searchers can be seen in Table 3.6. With the circular chromosome approach,

the algorithm was able to generate 8.52 unique pareto front solutions and

10.4 non–pareto front unique solutions strictly better than both Ying Zhang

and Raffi Roupen Kamalian simultaneously, per single experiment.

Constraint case 3

Comparison of best results yielded by circular chromosome to previous re-

searchers can be seen in Table 3.7. With the circular chromosome approach,

the algorithm was able to generate 3.12 unique pareto front solutions and

3.88 non–pareto front unique solutions, strictly better than both Ying Zhang

and Raffi Roupen Kamalian simultaneously, per single experiment.

7strictly smaller area and strictly smaller frequency error

80

CHAPTER 3. CIRCULAR CHROMOSOME

Source Resonant frequency (Hz) Area m2

Raffi Roupen Kamalian 10463 1.55× 10−7

Ying Zhang 10344 1.463× 10−7

Circular chromosome 10016 5.964× 10−8

Table 3.7: Constraint case 3: Best solutions after 50 generations

Source Resonant frequency (Hz) Area m2

Raffi Roupen Kamalian 10380 1.703× 10−7

Ying Zhang 10493 1.599× 10−7

Circular chromosome 10036 5.779× 10−8

Table 3.8: Constraint case 4: Best solutions after 50 generations

Constraint case 4

Comparison of best results yielded by circular chromosome to previous re-

searchers can be seen in Table 3.8. With the circular chromosome approach,

the algorithm was able to generate 2.2 unique pareto front solutions and 3.28

non–pareto front unique solutions strictly better than both Ying Zhang and

Raffi Roupen Kamalian simultaneously, per single experiment.

3.6 Discussion of results

As can be seen, the circular chromosome performed better in most of the

experiments requiring two times less function evaluations due to reduction

of population size from 400 to 200 solutions with same generation count.

The performance gain in case of circular chromosome usage can be at-

tributed to two properties introduced by circular chromosome approach to

MEMS synthesis process:

1. redundancy

2. linkage learning

As the performance gain is attributed to these two properties of circular

chromosome, it makes sense to discuss them in detail.

81

CHAPTER 3. CIRCULAR CHROMOSOME

3.6.1 Linkage learning

The importance of the correct choice of BB and importance of choosing

correct encoding for genetic algorithms was regarded as critical for GA’s

performance and was widely addressed by a number of researchers, whereas

linkage learning properties of GAs were overlooked until beginning of last

decade, according to (Thierens & Goldberg 1993).

In GA, linked building blocks (in most of the cases, the BB can be declared

same thing as a gene in chromosome of single GA solution) is such a BB,

presence of which, under certain circumstances (e.g. the right block sequence

and properties) results in enhanced solution fitness when compared to other

possible BB setups.

For example, in the case of meandering resonator modelled in SUGAR,

the genes describing resonators’ leg are actually linked, since changing one

node in leg by rotating it by some angle with high probability changes optimal

properties for all successive leg nodes.

Another evidence highlighting importance of linkage learning is that the

concept of BB is related to linkage learning. The ‘Building Blocks’ proposed

by (Zhou et al. 2002) and later adapted by a variety of other researchers, such

as Raffi Roupen Kamalian (Kamalian 2004) and Ying Zhang (Zhang 2006)

are nothing more that manual realisation of hand–picked linked genes for

the MEMS design synthesis. For an example please refer to Figure 3.9 in

which an example of handpicked linked genes provided by MEMS designer is

demonstrated. As can be seen, same building blocks are reused throughout

multitude of designs by multitude of researchers. Given building blocks are

a way of defining linked genes by MEMS designers.

As can be demonstrated on the example of MEMS flexures (Figure 3.8),

the flexure models are restricted to have alternating pattern of angles between

beams using which the flexure is constructed. In an ideal world, MEMS

optimisation process would be able to automatically extract such flexure as

building block through detection of linked genes in it.

The, current approaches are unlikely to succeed in such a task as the

appearance of flexure–like structure of noticeable length by the means of

82

CHAPTER 3. CIRCULAR CHROMOSOME

Image from (Cobb et al. 2007b, page2)

Image from (Cobb et al. 2008b, page 471)

Image from (Cobb et al. 2008b, page 471) Image from (Zhang 2006, page 91)

Figure 3.9: Example of linked genes in MEMS

random evolution in the GA is unlikely, but this is a kind of problem to

be addressed in future. And, as the author sees it, not only MEMS design

process will benefit from advancements in research on linkage learning GAs,

but also any design process will benefit that incorporates creation of models

with complex design topologies.

There are two logical approaches to linked BB management – one is to

create such chromosome encoding that linked properties would be obeyed

and preserved and the alternative way of development of such a GA would

be to automatically detect linked blocks and preserve them.

In the groundbreaking publication (Thierens & Goldberg 1993) it was

shown that linkage learning is essential for GAs that attempt to solve complex

problems.

Both options have their weak and strong sides. The first option (BB–

83

CHAPTER 3. CIRCULAR CHROMOSOME

Image from (Harik 1997, page 39)
(a) GA crossover operator

Image from (Chen 1996, page 194)
(b) Bacterial chromosome crossover process

Figure 3.10: Chromosome crossover process

preserving GA encoding developed by designer) does not require any ex-

tra computational power from GA, does not require any noticeable changes

in generic GA, but what it does require is manual labour and deep un-

derstanding and analysis of optimised problem, which might be extremely

time–consuming.

It can be expected for the automatic BB linkage detecting GA approach

to require more computational power, since designer is making computer to

do one extra thing to all other computations performed during GA run, but

because the development of such a GA would require less human time, as

deep analysis of the optimised problem will be no longer be required.

Since the problem of MEMS EC synthesis is multi–dimensional, the de-

velopment of universal MEMS encoding seems to be an extremely complex

task to address. This point of view is supported by the results obtained

in Section 3.5 – the application of simple linkage–learning GA algorithm to

the problem that was addressed by the whole research group yielded better

results while using half of function evaluations.

In the experiment performed in Section 3.5, the linkage learning was

introduced by using crossover operator that was introduced in (Harik 1997)

resulting from theoretical research.

Interestingly, as can be seen in Figure 3.10 crossover operator introduced

by this publication matches the chromosome crossover mechanism used in

biological entities.

The success of this approach shows that developed encoding by previous

84

CHAPTER 3. CIRCULAR CHROMOSOME

researchers is suboptimal as linkage–learning GAs that are in relatively early

stages of development yielded better results than previous state–of–the–art

research shows that better encodings with higher effectiveness for MEMS

devices might be developed.

The sub–optimality of MEMS encoding proposed by Zhou (Zhou et al.

2002) and later used in majority of research on MEMS design synthesis is

demonstrated by the fact that designs with similar responses were synthesised

by other researchers such as (Lohn et al. 2008) using a completely different

encoding scheme.

3.6.2 Redundancy

Redundancy is an ability of chromosome structure to contain non–coding

segments (that are also often referred to as introns by the name of their

biological analogs).

The non–coding segment in the context of GA stands for such GA chro-

mosome subsequence that is not affecting properties of evaluated solution

(also referred to as phenotype) in any way. The non-coding DNA segments

are found in biological entities as well. In fact, it is estimated that 95% of

human DNA are actually non–coding sequences(Fedorova & Fedorov 2005).

The intron–incorporating GA was first introduced in (Levenick 1991) and

later was applied to a variety of problems showing an improvement in algo-

rithm efficiency and results obtained (Langdon 2000, Miller & Smith 2006,

Wineberg & Oppacher 1994).

The linkage–learning GA introduced by (Harik 1997) incorporates introns

as well, and according to (Harik 1997) it seems that removing introns form

EPE–2 chromosome does reduce overall performance of GA (Goldberg, Lobo,

Deb, Harik & Wang 1998).

For the given MEMS problem, redundancy was introduced by allowing

chromosome to contain more data that was actually expressed in the device

design (e.g. allowing circular chromosome 16 element in length, with idea

that at least two elements must be used for ‘start’ and ‘stop’ commands

and allowing for beam coding data to take up to two times allowed to be

85

CHAPTER 3. CIRCULAR CHROMOSOME

expressed in the actual device). Having chromosome length greater than

maximum design size is desirable.

To illustrate desirability of introduction of non–coding genes to the MEMS

design problem, a set of experiments was performed. Each group of experi-

ments was performed with same GA configuration as experiments executed

for testing of circular chromosome with flexure resonator (please refer to

subsection 3.5.2 for further description).

For each chromosome length, a set of ten experiments with same chro-

mosome length was performed. Chromosome length varied from eight genes

in length (six genes for encoding of phenotype plus two genes for ‘start’ and

‘stop’ commands, so taking into account that maximum allowed node count

per resonator leg is six there is very low chance of introns to emerge) to 21

genes. With maximum node count equal to six (per leg), there are at least

13 introns per chromosome (or 61.9% of the chromosome length).

Only solutions with less than 20% error in resonance frequency were

evaluated. This was done because the frequency objective is of uttermost

importance for MEMS resonator, as the resonator with incorrect resonance

frequency is unusable disregarding any achievements in other objectives. The

±20% boundary was chosen based on the fact that SUGAR simulation envi-

ronment usually demonstrates 80—95% precision in MEMS device response

estimation (according to (Cobb & Agogino 2006)). The average error was

later calculated for each objective using the set of remaining solutions.

As can be seen from the figures 3.11(a), 3.11(b), 3.11(c) and 3.11(d), the

increase of redundancy is indeed likely to decrease the error ratios for all of

the objectives as the chromosome length increases. Of course, given results

contain noticeable levels of noise, as only ten GA runs were performed for

each chromosome length, but it is clearly visible, especially on the graphs

3.11(b) and 3.11(c) that as chromosome length increases the average error

decreases, what can attributed to the redundancy as other research (e.g.

(Chi, Hsu & Lin 2007, Yilmaz & Wu 2005, Raich & Ghaboussi 1997)) has

detected similar effect of redundancy on the performance of the GA.

86

CHAPTER 3. CIRCULAR CHROMOSOME

8 10 12 14 16 18 20 22

2,000

2,500

3,000

3,500

Chromosome length

E
rr

or

(a) Frequency error

10 15 20
0

500

1,000

1,500

Chromosome length

E
rr

or

(b) Stiffness by X error

10 15 20
0

200

400

600

800

Chromosome length

E
rr

or

(c) Stiffness by Y error

Chromosome Frequency Stiffness X Stiffness Y
length error error error

8 2591.9195 39.6431 34.8655
9 2972.4787 1565.1098 241.5263
10 1891.3068 328.6591 829.5640
11 2967.1109 43.8768 145.8523
12 3517.5517 67.4779 150.7930
13 2363.4413 263.0008 68.1478
14 2177.3233 351.8587 838.2706
15 2730.0140 237.9620 345.9123
16 2785.9940 145.4572 148.8646
17 2331.7949 30.3855 47.3555
18 2409.1924 25.7031 40.4451
19 2618.9051 172.1261 120.9453
20 2271.2403 280.8241 130.8893
21 2713.7015 254.0002 97.1498
22 3555.7765 41.9543 56.2688
23 3718.4291 51.9638 23.3950

(d) Tabular results

Figure 3.11: Chromosome length effect on levels of objective error

87

CHAPTER 3. CIRCULAR CHROMOSOME

3.7 Summary

The only downside of this approach seems to be the inability to evolve so-

lutions with extremely low error ratio, just as in the case of reaching Y

stiffness objective in case of meandering resonator. It is speculated by the

author that the inability to surpass the results provided by Multi–objective

genetic algorithm (MOGA) with classic chromosome can be attributed to the

probabilistic properties of evolution of phenotypes (in this particular case,

designs of Meandering resonator), and thus, inability of population encoded

by circular chromosome, to converge and perform local search for local min-

ima.

The inability of circular chromosome to perform local search could be

addressed by the introduction of a process similar to positive reinforcement

loop, for example, by manual increase of probabilities for start/stop inter-

pretation commands, that were used to produce given MEMS designs, in the

solutions belonging to the Pareto front.

Alternatively, the conventional means of optimisation, such as the gradient–

based method could be used to find solutions belonging to local optima. This

approach is more desirable from the strategical point of view, as making GA

to converge by reduction of probabilities would limit the size of search space,

and that is not desirable, while optimising output designs with local optimi-

sation technique will allow for GA to be less precise in exchange for being

more explorative.

The effects of redundancy and linkage introduced by the deployment of

circular chromosome need more exploration and research, as the currently

introduced technique seems to improve the GA performance. The deployed

data structure and crossover operator were developed to act on simple one–

dimensional looped chromosome, while de–facto used chromosome has more

complex structure as each gene in it contains three values – length, width

and angle of the encoded node. As GAs are applied to increasingly complex

tasks, it would be desirable to invest into research of the crossover operators

for complex chromosomal structure.

88

Chapter 4

Component–based MEMS

synthesis

4.1 Introduction

Due to the success of circular chromosome described in previous chapter, it

was decided to exploit one of the most important properties introduced by

circular chromosome – linkage–learning for Building Block (BB) identifica-

tion.

In case of MEMS, the BB identification would enable automated extrac-

tion of good MEMS designs or sub–elements of good designs such as flexures

to be stored in MEMS design repository for later re–usage by GA in future

in MEMS design synthesis processes.

The automated extraction of BBs is desirable as it would allow a future

designer to re–use good design elements without having to re–invent all de-

sign elements from scratch. The desirability of usage of BBs in MEMS is

further supported by the fact that many MEMS design packages such as

IntelliSense(IntelliSense Corp 2010) and SUGAR are already shipped with

various common design elements such as comb drives and flexures included

to their libraries.

MEMS encoding introduced by Zhou (Zhou et al. 2002) and adopted in

many successive works including current one incorporates BB ideology. The

89

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

importance of BB approach was highlighted by Cobb et al. in (Cobb et al.

2008a, Cobb & Agogino 2006, Cobb et al. 2008b, Cobb et al. 2007b) where the

biologically–inspired hierarchy for both MEMS and MEMS elements (BBs)

was proposed.

However, the process of creation of database of BBs for GA to work with

is purely manual to the moment, using human designer to introduce the BB

to the GA. This is hard and troublesome process that limits amount of BBs

available to the GA.

The alternative route of collecting the BBs is by implementing some sort

of automated system to find the good bits of MEMS designs and add them

to design library.

4.2 Description of the proposed approach

As there are two major problems that are needed to be resolved for the

implementation of automated creation of BB database: BB identification

and extraction and BB creation, as when a desirable sequence of nodes is

actually found, it is nothing more than a set of interconnected nodes. And

the set of interconnected nodes contains large number of variables that are

controlled by GA most of which must be kept linked with other BB variables

to preserve the actual existence of BB.

In the case of making decision on what BB variables should be exposed

to the GA and what should remain bound inside of a BB thereby preserving

its existence, there is no particular hint to take from human designers, as

they tend to perform algorithmic compression of the BB along with decid-

ing the exposed variables. For example, a spring might have ‘a number of

crenulations’ (Kamalian 2004, page 98) that would regulate the length of

synthesised spring. A technique of performing the collection of BB samples,

their matching, extrapolation of design traits and building an algorithm to

be able to perform synthesis of similar BBs sharing same traits is currently

unavailable.

As the simplest approach is often the best, it was decided to take an

alternative approach to the problem of the creation of BB (from the set of

90

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

nodes considered to be a BB). The alternative approach is to export a static

list of variables from the given set, incapsulating any other variable inside

the BB. Therefore, there is a need to define such a set of variables that could

be extracted from any sequence of nodes. As will be discussed later, several

possible approaches were identified and tested.

The problem of BB identification is quite complex, as it might invoke

a variety of techniques used to find similarities in data. As this research

has already stepped into the field of unknown by attempting to define a

universal BB extraction procedure, it was decided not to introduce additional

uncertainty in results and to take the simplest possible approach. Thus, it

was decided to split the MEMS device models used as examples for current

experiments to a number of static parts that later can be recombined as a

new design of MEMS.

As the simulation software of choice for this work was SUGAR, is was

natural to use already built and tested flexure resonator for the GA runs that

were used to populate the BB database. The reason to prefer flexure res-

onator over simpler meandering resonator is that evolving flexure resonator

is a more complex task as it contains comb drives and, hence, a restriction

on oscillation direction. The motivation to use BBs is that they ease the

creation of MEMS designs. One might also expect added constraints to add

validity to the results obtained.

To accumulate enough designs for the population of BB database, 38 runs

of the circular chromosome–enabled GA design synthesis were performed

with same evolution settings and constraints as in circular chromosome ex-

periments (for detailed description of settings please refer to Table 4.1).

As the simplest possible approach to BB extraction from resonator designs

would be to allow for GA to reconstruct flexure resonator designs with similar

properties. It was decided to extract all four legs from each resonator to be

saved to the database as BBs.

Because resonator designs were evolved without symmetry constraint, it

was decided to preserve information regarding which corner of the central

mass given leg was attached to. Due to the expectation for legs to evolve

with respect to the stiffness ratio constraint, the maximum stiffness ratio

91

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Flexure resonator design experiment settings
Algorithm settings

Run count 38
Population 200

Generations 50
Algorithm NSGA–II

Other settings Same as in Section 3.4
Resonator design parameters

Central mass

100x100µm plate with 4
30x50µm beams attached.
Plus mass of the comb
drives (11 fingers, 50µm
long by 4µm thick with 3µm
gap, plus a 4µm thick spine)

Node length
min 10µm
max 100µm

Node width
min 2µm
max 10µm

Node count
min 1
max 6

Stiffness stiffnessx
stiffnessy

> 10

Objectives

Lowest natural frequency 14.916 kHz (93723 rad · s−1)
X stiffness 1.90 N/m
Y stiffness 0.56 N/m

Table 4.1: Flexure resonator evolution settings used for CBR database ini-
tialisation

92

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Pareto front

Device #0

Extract data

Id : int
frequency: float
sfiffness X: float
stiffness Y: float
...
legs: [leg #0, leg #1, leg#2, leg#3]

Device parameters

Leg records

source design db: string
design id: int
source leg number: int
frequency: float
stiffness X: float
stiffness Y: float
leg data: [(l, w, a), (l, w, a), ...]

Leg

CBR database

Device #1

...

Device #N-1

Device #N

Figure 4.1: Process of generation of first version of CBR DB

for any leg was oriented with respect to defined constraints and the relative

position of the resonators’ central mass. Therefore, it could be beneficial to

preserve the position of the leg in relation to its connection to the central

mass.

The whole process of populating the BB database, as can be seen in

Figure 4.1, was implemented in a straight–forward manner: as GA simulation

ended, solutions of the Pareto front of final generation were acquired and their

properties extracted – legs, important design parameters (such as frequency

and per axis stiffness) as well as some miscellaneous information – name

of the database (as all experiment runs produced separate SQLite database

containing full list of designs produced by the GA run) that given solution

was extracted from, the leg positional information – namely the identifier

93

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

denoting which part of the resonators’ mass given leg was attached to –

upper left, upper right, lower left or lower right.

The positional information was meant to be re–used during GA run as

GA was allowed to chose only appropriate legs for each position.

4.2.1 Comparison methods

To compare the BB–enabled GA to the original GA, the metrics to be used

needed to be defined. As the Pareto optimum is not known for a MEMS de-

sign synthesis problem, the metrics commonly used for GA comparison (such

as distance of last Pareto front from Pareto optimum) are not applicable. It

was decided that GAs must be compared by actual results they produce –

by their Pareto fronts on the last generation. As the GAs can be compared

by:

• optimisation targets

• diversity

• function evaluation count

• number of pareto solutions

A number of metrics to measure these parameters needed to be defined.

Comparison by optimisation targets is not a straight–forward task

because output of multi–objective GA is not one solution, but rather a Pareto

front of solutions. It was decided to use hypervolume metrics introduced in

(Fleischer & Fleischer 2003) applied to the Pareto front design responses

from desired values of objectives.

A hypervolume metric shows overall “size of the space covered” (as was

denoted in (Zitzler & Thiele 1999, Zitzler & Thiele 1998)) from the zeroth

point (point with all coordinates equal to 0). A lower hypervolume value

means that Pareto front is closer to that point, and the values of objective

errors are used as coordinates for points of hull whose hypervolume is mea-

sured. A lower hypervolume value means lower error and therefore a pareto

front that is closer to the desired objectives.

94

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

The Diversity of solutions is a measurement of response variation between

solutions belonging to the same Pareto front.

In this work, the GAs that are having high value of spacing metric (that

will be defined later) are considered diverse, as the spacing metric is an aver-

age deviation of distances of solutions from average of the distance between

solutions. For more information, please refer to the subsection ‘spacing met-

ric’ below.

Function evaluation count is a simple metric that equals to the number

of solutions per generation multiplied by the number of generations.

Number of pareto solutions is defined as the average number of solu-

tions on the pareto front.

Spacing metric

Spacing metric (alternative depiction ∆′) has been introduced by Schott in

(Schott 1995). The purpose of this metric is to gauge haw evenly the points

in the approximation set are distributed in the objective space. This metric

is given by:

∆′ =

√
1

n− 1

∑
i+1

n(d− di)2 (4.1)

where

di = min
j

(|f i1(~x)− f j1 (~x)|+ |f i2(~x)− f j2 (~x)|) (4.2)

where

i, j = 1, 2, . . . , n (4.3)

d is the mean of all di and n is the size of the known Pareto front. If

this metric is used in conjunction with other metrics it may provide infor-

mation about the distribution of vectors obtained. It has low computational

95

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

overhead. The metric can be generalised to more than two dimensions by

extending the definition of distance di to cover more objectives.

It can be replaced with

di = min
j

(
k∑
d=1

|f id(~x)− f jd(~x)|) (4.4)

Where k is number of objective vectors.

In case of multiple experiments, the average of each experiments’ metrics

will be used.

A lower metric value means that the solutions are evenly spaced.

4.3 Motivation

For the BB–enabled experiments, the ModeFrontier(ESTECO s.r.l 2009) vi-

sual programming environment was chosen, as it provided simple and error–

proof way of defining experimental programs’ workflow. This property of

ModeFrontier(ESTECO s.r.l 2009) is perceived important as a variety of dif-

ferent approaches to the variables exported from BB were considered.

As the ModeFrontier(ESTECO s.r.l 2009) currently allows only the sub-

set of known GAs to be used, the choice had to be made. It was opted to use

NSGA–II as an industry standard in world of Genetic Algorithms (GAs) de-

ploying settings displayed in Table 4.2. Although most parameters are set to

their default values for current version of ModeFrontier(ESTECO s.r.l 2009),

it was decided that explicitly listing them could benefit future researchers to

be able to precisely repeat performed experiments if needed.

The only non–default parameters set in Non–dominated Sorting Genetic

Algorithm II (NSGA–II) settings (Table 4.2) are the ‘Number of generations’

and ‘Crossover probability’. In case of ‘number of generations’, the actual

number was chosen taking into account the total amount of time devoted to

an experiment and the fact that in previous experiments, the better solution

occurrence significantly slowed down after 25—30 generations, thus the fifty

generation limit should be enough for monitoring algorithms’ performance.

96

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

ModeFrontier(ESTECO s.r.l 2009)NSGA–II settings
Algorithm settings

Experiment count 25
Scheduler properties1

Parameters
Number of generations 50

Crossover probability 0.9
Mutation probability for real–coded vectors 1.02

Mutation probability for binary strings 1.02

Advanced parameters

Distribution index for real–coded crossover 20.02

Distribution index for real–coded mutation 20.02

Crossover type for binary–coded variables Simple2

Random generator seed 12

Category parameters

Categorise generations Off2

Table 4.2: ModeFrontier(ESTECO s.r.l 2009) GA settings
Notes

1 ‘Scheduler’ is a component in ModeFrontier(ESTECO s.r.l 2009)responsible for setting
of global GA options.

2 Default value

For the ‘Crossover probability’ parameter, the value that was chosen, was set

rather high (0.9 or 90%) to promote genetic code mixing, thus, to make the

behaviour of genetic algorithm to be more explorative.

Since randomly generated designs are much likely to be self–intersecting

than not, ModeFrontier(ESTECO s.r.l 2009) tools for generation of initial

population were insufficient for the generation of collision–free initial popu-

lation of MEMS, as randomly generated population of two hundred designs

is likely to have only about a handful of non–intersecting designs. To address

this problem, a helper program was implemented that generated initial pop-

ulation to be later loaded as ModeFrontier(ESTECO s.r.l 2009) user Design

of Experiment (DOE) sequence.

To reduce measurement noise and uncertainty in GA performance and its

results, the GA targets (such as resonance frequency, per axis stiffness and

constraints) were kept same as targets used in GA runs that provided cases

97

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Generate initial
population

Start

Upload initial
population to
ModeFrontier

ModeFrontier
evolution run

Case
database

ModeFrontier data
to SUGAR input

mapper

Resonator design
constructor

Does design contain
collisions?

SUGAR
simulation

Yes

N
o

Error message

Simulation
results

Collection of
experiment

statistics

Evolution
finished

Stop

Figure 4.2: ModeFrontier(ESTECO s.r.l 2009)–based CBR–assisted evolu-
tion prototype workflow

for case Database (DB) used in given experiments.

The overall ModeFrontier(ESTECO s.r.l 2009)–based CBR process infor-

mation workflow is depicted on Figure 4.2.

Also ModeFrontier(ESTECO s.r.l 2009) has two other properties that

are important for obtaining correct perspective on the results produced by

it: it does not re–generate or attempts to fix in any way invalid designs1

and the designs that have broken constraints (such as stiffness ratio in given

experiments).

As is was decided to perceive BBs as indivisible entities with a list of

exported variables. The definition of particular variable to be exported as

1e.g. designs containing intersections

98

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

[. . . , (length1, width1, angle1)︸ ︷︷ ︸
beam1

, (length2, width2, angle2)︸ ︷︷ ︸
beam2

, (length3, width3, angle3)︸ ︷︷ ︸
beam3

]

(a) Encoded

outer world

no
de

 1len
gth

 1

wi
dth

 1

node 2

length 2

width 2

node 3

length 3

w
idth 3

angle 3

angle 2

angle 1

length

w
id

th

(b) Expressed

Figure 4.3: Example of a sequence of encoded values and expressed MEMS
structure

static universal relation without any reference to the number of components

in the BB, number of nodes or the relative positions of the nodes.

To understand the motivation of choosing one algorithm over another,

one needs to consider the actual properties that are possessed by every set

of interconnected nodes.

Due to deployed encoding, an encoding that was introduced by Zhou

(Zhou et al. 2002), the sequence of nodes is represented as one–dimensional

vector of triples with each triple describing one node and sequence of given

triples describing the sequence of nodes where each successive node is con-

nected to one preceding it.

For example, a sequence of beams encodes a node configuration as dis-

played in Figure 4.3.

As can be seen, every sequence of nodes, where each node has three prop-

erties (for list of properties assigned to an a beam please refer to equation 4.5)

99

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

has an outer angle, that is used for connecting given sequence of nodes to

the outer world, and a total length and width.

(length, width, angle)︸ ︷︷ ︸
beam

(4.5)

The first and simplest export from BB variable configuration is one vari-

able, that is connection angle. Hence, the first BB–assisted GA configuration

is ‘changing base angle’ GA modification. ‘Changing’ means that GA evolves

not a completely new angle1 (in the context of Figure 4.3), but a δ1 that is

used to produce a new angle′1 using the formulae angle′1 = angle1 + δ1.

As the legs (that are used as simple BBs in current experiment) were

evolved in the environment requiring stiffness constraint, it is probably un-

desirable to attempt to scale the BB without respect to the aspect ratio it

has evolved. Therefore, a BB should be linearly scaled preserving relation

between its total width and height. Also, as the base angle modification is

desirable, it can help the GA to ‘fix’ a leg’s vector of maximum stiffness,

that should be needed as each leg has evolved in a neighbourhood of other

three resonator legs. Therefore it is reasonable to consider that its direction

of maximum stiffness has evolved with respect to the direction of maximum

stiffness of other legs in the same resonator. As the combination of legs as-

sembled by GA to the new resonator will most probably be different, one

should allow the GA to tune the legs’ base angle. Hence, the second GA

configuration to check is ‘Changing base angle and scaling of whole leg’.

Preserving aspect ratio while scaling a BB has ben justified, and yet

another approach could be undertaken is preserving scaling of not all GA,

but rather scaling of each separate node while preserving its aspect ratio.

This could allow the GA to tune a particular beam of the node, if needed.

Therefore, third configuration of GA is ‘per–beam scaling and changing the

base angle’.

As one might attempt to evolve the wholly new layout of BB while pre-

serving the original node scales, the most impact on the stiffness of a leg

(and hence a resonance frequency of a resonator) is expected to be done by

the angles between nodes. Hence it might be beneficial to evolve angles to

100

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

match stiffness of a leg to its new neighbours. Hence, a ‘per–beam scaling

and changing all angles’ GA configuration is tested.

To reduce the amount of GA variables, while preserving the aspect ratio

of beams, a ‘changing all angles between nodes’ experiment configuration is

performed.

And to check if the changing angles by evolving δ’s is any better than

completely replacing them, a ‘replacing all angles between nodes’ GA con-

figuration ought to be checked.

4.4 Experimental setup

For each experiment a separate ModeFrontier(ESTECO s.r.l 2009)workflow

was constructed and ten initial populations generated using a separate pro-

gram. When using the random initial population generation, the percentage

of designs having node intersections (and hence, are invalid) is so great that

for randomly generated population of 300 solutions, there are only 1–3 so-

lutions that have no intersections. This was considered inappropriate as

starting from valid and diverse solution set is vital to the success of the GA.

As the actual node count in each BB is not known, but it is known from

the parameters used to initialise the database (please refer to Table 4.1 for full

list of parameters) that legs are 1 to 6 nodes in size, the maximum allowed

number of variables was evolved, in appropriate configurations. Later, a

custom software performed the actual configuration evaluation, and ignored

extra variables, when the actual node count became known as leg (BB) was

fetched from the database.

101

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

4.4.1 Reference NSGA–II evolution

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.1 (page 165).

As the ModeFrontier(ESTECO s.r.l 2009) does not provide variable length

chromosome data structure, an alternative approach mimicking variable chro-

mosome length needed to be implemented. This problem was solved by the

creation of a matrix capable of holding maximum number of nodes per leg

(that equals to six in this particular group experiments) and adding one

additional variable that denotes actual number of nodes expressed in the

device design with minimum value of 1 and maximum value of 6. As can

seen on ModeFrontier(ESTECO s.r.l 2009) workflow, this functionality was

implemented by the creation of 18 node–related variables for each leg (since

each node had three properties – length, width and angle) and one additional

variable denoting number of expressed phenotype nodes.

For the results of reference NSGA–II evolution please see Table 4.3.

4.4.2 Changing base angle

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.2 (page 166).

For the results of changing base angle experiment please see Table 4.4.

4.4.3 Changing base angle and scaling of whole leg

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.3 (page 167).

For the results of changing base angle and scaling of whole leg experiment

please see Table 4.5.

4.4.4 Per–beam scaling and changing the base angle

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.4 (page 168).

102

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous design share 12%
Pareto solution share 33%

Dominated solution share 55%
Number of pareto solutions 24.71
Function evaluation count 2500

∆′ (Spacing) metric 20509.1900
S–metrics 25754402011.5224

Properties of last Pareto front

Frequency objective

Maximum 89404.8277
75th percentile 69516.7967

Median 21327.0495
25th percentile 1891.2296

Minimum 7.5869
Standard deviation 31503.5383

Mean 32793.1934
Stiffness by X axis objective

Maximum 358.9156
75th percentile 7.5652

Median 0.8130
25th percentile 0.3579

Minimum 0.0001
Standard deviation 48.1937

Mean 12.7553
Stiffness by Y axis objective

Maximum 5982.6567
75th percentile 126.7689

Median 31.4900
25th percentile 19.0250

Minimum 6.1656
Standard deviation 829.3495

Mean 259.1829

Table 4.3: Results for reference NSGA–II evolution

103

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous design share 42%
Pareto solution share 23%

Dominated solution share 35%
Number of pareto solutions 13.43
Function evaluation count 2500

∆′ (Spacing) metric 48900.5307
S–metrics 221913492613.5949

Properties of last Pareto front

Frequency objective

Maximum 292324.2877
75th percentile 64372.6903

Median 34804.1916
25th percentile 19356.2376

Minimum 63.7388
Standard deviation 37557.2804

Mean 42085.2297
Stiffness by X axis objective

Maximum 103.9512
75th percentile 1.2359

Median 0.7538
25th percentile 0.3100

Minimum 0.0042
Standard deviation 20.8013

Mean 5.4242
Stiffness by Y axis objective

Maximum 65893.0955
75th percentile 26.6954

Median 15.8811
25th percentile 10.7588

Minimum 2.7049
Standard deviation 6790.5703

Mean 924.4585

Table 4.4: Results for changing base angle experiment

104

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous design share 35%
Pareto solution share 23%

Dominated solution share 42%
Number of pareto solutions 16.14
Function evaluation count 2500

∆′ (Spacing) metric 29962.6939
S–metrics 121742909109.1729

Properties of last Pareto front

Frequency objective

Maximum 472255.7898
75th percentile 53693.5440

Median 25474.2262
25th percentile 3375.1942

Minimum 4.6142
Standard deviation 69515.0623

Mean 40377.9230
Stiffness by X axis objective

Maximum 107.7024
75th percentile 1.1292

Median 0.3939
25th percentile 0.1484

Minimum 0.0002
Standard deviation 16.2722

Mean 3.8545
Stiffness by Y axis objective

Maximum 77345.6031
75th percentile 28.4096

Median 18.1246
25th percentile 12.7518

Minimum 3.9310
Standard deviation 9090.1152

Mean 1541.6474

Table 4.5: Results for changing base angle and scaling of whole leg experiment

105

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

For the results of per–beam scaling and changing the base angle experi-

ment please see Table 4.6.

4.4.5 Per–beam scaling and changing all angles

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.5 (page 169).

For the results of per–beam scaling and changing the all angles experiment

please see Table 4.7.

4.4.6 Changing all angles between nodes

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.6 (page 170).

For the results of changing all angles between nodes experiment please

see Table 4.8.

4.4.7 Replacing all angles between nodes

For the actual ModeFrontier(ESTECO s.r.l 2009)workflow, please refer to

the appendix for Figure A.7 (page 171).

For the results of replacing all angles between nodes please see Table 4.9.

4.4.8 Collation

The major metrics are collated in Table 4.10 for convenience of discussion.

As evaluation count is equal to 2500 in all experiments, it is omitted from

table.

106

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous design share 32%
Pareto solution share 33%

Dominated solution share 34%
Number of pareto solutions 21.50
Function evaluation count 2500

∆′ (Spacing) metric 52451.1533
S–metrics 167366859420.9907

Properties of last Pareto front

Frequency objective

Maximum 333087.7145
75th percentile 68467.6854

Median 37509.5645
25th percentile 16259.1300

Minimum 70.4444
Standard deviation 46206.7352

Mean 47087.2797
Stiffness by X axis objective

Maximum 472.5060
75th percentile 1.0875

Median 0.5587
25th percentile 0.1962

Minimum 0.0001
Standard deviation 56.3200

Mean 8.6054
Stiffness by Y axis objective

Maximum 10085.2629
75th percentile 26.4832

Median 18.9527
25th percentile 13.1819

Minimum 0.5513
Standard deviation 1010.8805

Mean 195.7774

Table 4.6: Results for per–beam scaling and changing the base angle exper-
iment

107

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous design share 38%
Pareto solution share 30%

Dominated solution share 32%
Number of pareto solutions 19.90
Function evaluation count 2500

∆′ (Spacing) metric 25973.1162
S–metrics 107114474449.4576

Properties of last Pareto front

Frequency objective

Maximum 279767.4906
75th percentile 49049.3383

Median 20678.1663
25th percentile 1941.0241

Minimum 0.4572
Standard deviation 32504.2043

Mean 30138.6653
Stiffness by X axis objective

Maximum 296.1763
75th percentile 5.6520

Median 0.5964
25th percentile 0.1562

Minimum 0.0002
Standard deviation 39.3460

Mean 11.4884
Stiffness by Y axis objective

Maximum 40590.4449
75th percentile 106.8100

Median 30.8180
25th percentile 22.0883

Minimum 5.0460
Standard deviation 3646.9945

Mean 595.5632

Table 4.7: Results for per–beam scaling and changing the all angles experi-
ment

108

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous design share 32%
Pareto solution share 33%

Dominated solution share 35%
Number of pareto solutions 26.71
Function evaluation count 2500

∆′ (Spacing) metric 19449.3947
S–metrics 4631204309.7647

Properties of last Pareto front

Frequency objective

Maximum 158669.7808
75th percentile 48637.4469

Median 24097.9087
25th percentile 3546.2850

Minimum 5.7304
Standard deviation 32488.0002

Mean 30767.7679
Stiffness by X axis objective

Maximum 53.6428
75th percentile 1.3273

Median 0.8002
25th percentile 0.2535

Minimum 0.0002
Standard deviation 7.0756

Mean 2.8132
Stiffness by Y axis objective

Maximum 8389.2718
75th percentile 80.2388

Median 21.3252
25th percentile 15.8814

Minimum 8.2203
Standard deviation 619.6769

Mean 118.4929

Table 4.8: Results for changing all angles between nodes experiment

109

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Run results
Population stats

Errorous solution share 21%
Pareto solution share 37%

Dominated solution share 43%
Number of pareto solutions 23.71
Function evaluation count 2500

∆′ (Spacing) metric 30366.9812
S–metrics 624565898.0879

Properties of last Pareto front

Frequency objective

Maximum 645635.5937
75th percentile 50122.2591

Median 35252.8632
25th percentile 13180.6523

Minimum 12.4803
Standard deviation 104341.8431

Mean 53671.2827
Stiffness by X axis objective

Maximum 23.1937
75th percentile 1.2207

Median 0.6638
25th percentile 0.3081

Minimum 0.0007
Standard deviation 3.1016

Mean 1.3454
Stiffness by Y axis objective

Maximum 1262.6997
75th percentile 22.3718

Median 15.9082
25th percentile 11.4927

Minimum 3.9166
Standard deviation 119.5638

Mean 41.6398

Table 4.9: Results for replacing all angles between nodes experiment

110

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

Experiment name N
u

m
b

er
of

p
ar

et
o

so
lu

ti
on

s

∆
′

(S
p

ac
in

g)
m

et
ri

c

S–metrics
Reference NSGA–II evolution 24.71 20509.1900 25754402011.5224
Changing base angle 13.43 48900.5307 221913492613.5949
Changing base angle and scaling of whole leg 16.14 29962.6939 121742909109.1729
Per–beam scaling and changing the base angle 21.50 52451.1533 167366859420.9907
Per–beam scaling and changing all angles 19.90 25973.1162 107114474449.4576
Changing all angles between nodes 26.71 19449.3947 4631204309.7647
Replacing all angles between nodes 23.71 30366.9812 624565898.0879

Table 4.10: Collated table of metrics

4.5 Discussion of results

Based on to the values of chosen metrics, the two BB approaches have per-

formed better than reference NSGA–II runs. The leaders are ‘changing all

angles between nodes’ and ‘replacing all angles between nodes’ GA configu-

rations.

In the case of ‘changing all angles between nodes’, the average number of

solutions belonging to Pareto front is 8% greater than number of solutions

belonging to the Pareto front of the reference run, the ∆′ metric is 5.4%

lower than ∆′ metric of reference population and the S–metric is 5.56 times

smaller than reference population, meaning that Pareto front of ‘changing

all angles between nodes’ was five times as close to finding ideal solution – a

solution with objective error of zero.

In the case of ‘replacing all angles between nodes’ GA configuration, the

average number of pareto solutions was smaller by 1.04% than reference GA,

the ∆′ metric has shown 1.48–times increase compared with the reference

and the S–metric is 41.24 times lower when compared with the reference

GA.

In both cases, a noticeable decrease in the hypervolume metric is visible,

meaning that these approaches generate better Pareto fronts than standard

111

CHAPTER 4. COMPONENT–BASED MEMS SYNTHESIS

NSGA–II GA.

Therefore, one might assume that it is undesirable to implement scaling

functionality to the GA that uses automatically generated BBs, as all results

yielded by algorithms that incorporate scaling are worse. This is probably

because scaling result has unforeseen effects on the designs. Such as, the

mutation that performs scaling changes stiffness constraint because the beam

geometric parameters were changed, but the angles between beams were left

unchanged.

Also, according to metric ‘changing base angle’, the GA flavour is un-

desirable. This is likely because as each leg in the database has evolved

with respect to other three legs in design, changing of just one base angle is

insufficient to make leg to ‘adapt’ to a new neighbouring leg.

The improvement made by ‘changing/replacing all angles between nodes’

demonstrated the need for each leg to ‘tune’ to its surroundings, in the other

words, to tune for a different combination of neighbouring legs (as this is the

only thing that changes because central mass is kept static through out all

experiments). And, as the ‘replacing all angles between nodes’ experiments’

S–metric is 7.41 times lower than the ‘changing all angles between nodes’,

it can be assumed that preserving an old BB information is not always as

desirable as one might expect.

The results of current experiments display that automated BB generation

is a not an easy task to address and that this research direction would greatly

benefit from additional attention by researchers. The results show that in

the case of automated BB generation, the amount of information preserved

in the BB needs to be considered along with of the amount of information

that GA is allowed to override.

112

Chapter 5

Process–induced error tolerant

layout synthesis

5.1 Introduction

The emergence and fast growth of MEMS technology can be contributed to

the semiconductor industry, as MEMS production is commonly performed

by fabrication techniques borrowed from that industry.

While production imperfection and outcome uncertainty is present in all

known production techniques, it is an inherent concern in the case of MEMS,

as the production errors directly influence the performance of built MEMS,

making notable share of production to be rejected decreasing outcome yield.

With the MEMS production precision in order of the tenths of microns (µm)

and the minimum feature size of 2 µm, it is widely accepted that the relative

production uncertainty can reach 5% or even 10% as reported by (Hong, Lee

& Kim 2000).

In this work, the automated creation of MEMS designs that are tolerant

towards production errors, or as shorthand ‘error–tolerant MEMS’ will be

researched as it is receiving only a little attention in spite of likely impact

error–tolerant MEMS designs would have on the yield of MEMS production

due to the decrease in the share of defects.

The multi–domain nature of MEMS introduces certain problems for achiev-

113

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

ing error tolerance for MEMS designs, as it is expected for the designs to be

stable in their responses in all of its properties each of which can belong to a

separate domain, hence possibly requiring a special simulation environment.

5.2 Description of the proposed method

All previous research has focused on the creation of designs using analytical

models that are tolerant to the errors induced by manufacture process in

one of its responses. But as MEMS are complex multi–domain machines,

the error tolerance in one of the systems’ responses is not enough, as for

example in the case of MEMS resonator, the frequency objective is indeed

important, as the resonator whose resonance frequency does not match the

specification is useless. But the stiffness objectives have to be considered, as

the resonators’ movement is commonly sensed using electrostatic effect on

the comb drives that are attached to resonators’ body and incorrect stiffness

in one of the axes is likely to cause a foul in given comb drives and therefore

premature breakdown of all of the MEMS–enabled system.

The most noticeable results in error–tolerant MEMS design synthesis were

achieved by Fan et al. in (Fan et al. 2007, Fan et al. 2009). It was chosen to

project the results of single–objective robust optimisation approach used in

(Fan et al. 2007) to the problem of multiobjective optimisation of numerical

MEMS design creating a new methodology for the synthesis of multiobjec-

tive error–tolerant arbitrary MEMS designs without the requirement of the

presence of analytical MEMS model.

In this work, it is assumed that the errors are introduced by MEMS

etching fabrication process. Because etching is a chemical process of removal

of extra material from the surface of a wafer, the small imperfections in the

environmental conditions can cause either too much or too little of material

to be removed from the wafer therefore causing ether overetch or underetch

as illustrated in Figure 5.1.

The Monte–Carlo simulation was performed to mimic etching errors, as

it is considered as a natural instrument for simulation of such dimensional

variations. The simulation was performed by the creation of a certain num-

114

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

Image from (Fan et al. 2007, page 522)

Figure 5.1: Under– and over–etch of a MEMS structure

node

length

widthwidth - error width + error

length - error

length + error

Figure 5.2: Etching error representation in used encoding

ber of designs ~x∗ from an ideal design ~x by introducing random number of

perturbations of appropriate scale into random number of variables of ~x.

The MEMS design encoding developed by Zhou et al. in (Zhou et al. 2002)

was deployed in the given experiment, as it naturally allows the simulation

of under– and over–etch through changing of the widths and heights the

SUGAR nodes.

Because every node is represented as triple (length, width, angle) and

given random variable δerr ∈ [−max(overetch error),max(underetch error)],

production errors can be modelled by mapping original beam description to

(length+ δerr, width+ δerr, angle) with expected result that is illustrated in

Figure 5.2.

The objective functions were designed by the inspiration taken from equa-

tions that emerged from robust design theory, equations 2.3—2.5 as defined

115

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

in (Fan et al. 2007). The objective function1 deployed in current work is

Objective(r, ~d) ≡ T (r, ~d) + E(~d) (5.1)

T (r, ~d) ≡ |r −Response(~d)| (5.2)

E(~d) ≡ 〈i ∈ N : Response(Errprod(~d))−Response(~d)〉 (5.3)

Errprod({d1, d2, . . . , dK}) ≡ (d1 + ξ, d2 + ξ, . . . , dK + ξ) (5.4)

Where r is desired response value, ~d is evaluated design, N is number

of design simulations with applied production error and ξ is a random vari-

able with uniform distribution whose boundaries match production errors

for chosen MEMS production process (this is considered to be etching in this

work).

It can be seen, both equations 5.2 and 5.3 are sharing response measure-

ment units (that are undefined for general function, as units are objective–

dependent). This allows them to be summed in equation 5.1.

Because this work is exploring the viability of design synthesis of MEMS

that are tolerant to the production–induced errors in multitude of responses,

as opposed to only one response that was previously researched in literature,

the list of responses to be made error–tolerant must be defined.

It was decided to do proof of concept experiment with the simplest MEMS

topology possible, hence Meandering resonator was chosen. To be consistent

with previous research, it was opted to use same objectives as in previous ex-

periments in both this work (Table 3.1) and previous MEMS research (Zhou

et al. (Zhou et al. 2002)).

For comparison, a control group using same experiment configuration

was run without robustness objective component for GA objectives, effi-

ciently making control group to evolve MEMS resonators matching certain

responses.

1It is assumed that GA is minimising objective functions.

116

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

5.3 Motivation

Because calculation of gradient∇δf(~x, 0) is possible only for analytical model

of MEMS, its application to the real–world problems is limited, hence limiting

the area of application of robust design methodology for MEMS designs.

Also, the multi–domain nature of MEMS requires for designs to be robust

towards multitude of objectives rather than one single objective, as demon-

strated by Fan et al. in (Fan et al. 2007, Fan et al. 2009).

To address these two limitations, the robust optimisation approach, as

described by the set of equations 2.3—2.5, is projected to the domain of

numerical MEMS models resulting in a GA with objectives inspired by ro-

bust design approach and extended to the multiobjective MEMS synthesis

problem.

5.4 Experimental setup

To research the possibility of multi–tolerant MEMS design synthesis inspired

by robust optimisation approach, the design synthesis of multi–tolerant me-

andering resonator was performed. For gaining statistical feasibility in the

light of stochastic nature of GA, the given experiment was repeated ten times

as also the control experiment for the evolution of non–tolerant meandering

resonator. The GA settings for both experiments can be found in Table 5.2

and Table 5.3.

As it can be seen, the global settings for current set of experiments (Ta-

ble 5.1) are heavily based on settings used in chapter 3 (Table 3.1), the

settings that were previously used by Zhou in (Zhou et al. 2002).

After the experiments were completed, the Pareto fronts of the last popu-

lation of solutions (where each ‘solution’ is one possible MEMS design) were

extracted for each experiment run and the evaluation of every design was

performed for both the ‘ideal design’ (design without any errors introduced)

plus two hundred evaluations of the errorous designs generated from ‘ideal

design’ by introduction of random errors in (0µm, 1µm) bounds.

To illustrate the result, a number of histograms were generated with

117

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

Error–tolerant meandering resonator design synthesis
Algorithm settings

Algorithm NSGA–II
Population 2001

Generation count 2001

Crossover probability 0.9
Mutation probability 0.1

Selection operator Roulette wheel
Resonator design parameters

Central mass
Four 100x20x2 µm beams
laid out in a square.

Resonator constraints Unconstrained asymmetric

Node width
min 2µm
max 20µm

Node length
min 10µm
max 400µm

Node count 4
Target values

Lowest natural frequency 14.916 kHz (93723 rad · s−1)
X stiffness 1.90 N/m
Y stiffness 0.56 N/m

Notes
1 The population size and number of generations were set to match ones used in (Fan

et al. 2007)

Table 5.1: Global settings used for all experiments on error tolerance

118

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

Error–tolerant meandering resonator design synthesis1

Resonator design parameters

Simulated layouts with errors per design 10

Error boundaries
min 0 µm
max 1 µm

Objectives

Frequency Objective T1(93723, ~d) + E1(~d)

X stiffness objective T2(1.90, ~d) + E2(~d)

Y stiffness objective T3(0.56, ~d) + E3(~d)

Notes
1 These settings are extension to the GA settings defined in Table 5.1

Table 5.2: Settings for design synthesis of multi–tolerant meandering res-
onator

Non error–tolerant meandering resonator design synthesis1

Objectives

Frequency Objective T1(93723, ~d)

X stiffness objective T2(1.90, ~d)

Y stiffness objective T3(0.56, ~d)

Notes
1 These settings are extension to the GA settings defined in Table 5.1

Table 5.3: Settings for design synthesis of non–tolerant meandering resonator

119

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

0 500 1000 1500

0

1

2

·105

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–filtered data

Non–tolerant designs Tolerant designs

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

·104

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Filtered data (0.5% of extreme solutions removed)

Non–tolerant designs Tolerant designs

Figure 5.3: Degeneration of histogram due to extreme values

99.5% of the design responses mapped to each of the histogram. Removal of

0.5% of farthest from the target response objective was performed because

mapping of single farthest responses moved histograms’ boundaries so much

that the part of the maximum response density degenerated to one column

in some cases (as can be seen in Figure 5.3).

As can be seen in plots of the cumulative population responses (Fig-

ure 5.4), the proposed approach to multiobjective tolerance has yielded some

interesting results, as the error–enabled design response estimates for the

stiffness by X axis (Figure 5.4(d)) and by Y axis (Figure 5.4(f)) resemble a

normal distribution with a normal probability density function (as in equa-

tion 5.5) (just as stated in (Fan et al. 2007)), while the distribution of reso-

nance frequency for designs with introduced production errors (Figure 5.4(b))

display no such visible resemblance.

y =
1

σ
√

2π
e
−(x−µ)2

2σ2 (5.5)

This can be explained by the fact that each ‘ideal’ design, with re-

sponse value on the left column histograms (Figure 5.4(a), Figure 5.4(c)

and Figure 5.4(e)), is actually expected to have its own distribution of error–

introduced modifications that are distributed according to normal probability

120

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

4 6 8 10 12 14 16

0

50

100

150

200

frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

4 6 8 10 12 14 16 18

0

2,000

4,000

6,000

8,000

frequency (kHz)
R

es
p

on
se

co
u

n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

1 1.5 2 2.5 3 3.5

0

200

400

stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(c) Responses for ‘ideal’ designs

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

·104

stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(d) Responses for designs with errors introduced

0.5 0.6 0.7 0.8 0.9 1 1.1

0

100

200

300

stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(e) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1 1.2

0

1,000

2,000

3,000

4,000

stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(f) Responses for designs with errors introduced

Figure 5.4: GA objectives inspired by robust optimisation: full population
results

121

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

distribution (equation 5.5). And multitude of ‘ideal’ designs scattered by the

large area of responses (as in Figure 5.4(b)) would cause an interference be-

tween distributions of the responses of error–introduced designs. This point

of view is further supported by the fact that (as can be seen in Figure 5.4(f))

the distribution of the error–enabled responses for the stiffness by Y is ex-

tended to the y 7→ ∞ side with the ‘ideal’ design distribution having similar

trail of designs towards the same side.

The hypothesis of each ‘ideal’ design ~d with response value Response(~d)

having responses for the error-enabled versions ~d∗ distributed according to

normal distribution (equation 5.5) with the µ ≈ Response(~d) is further sup-

ported by the fact that in cases of Figure 5.4(a) and Figure 5.4(e) it looks like

the error–introduced non–tolerant designs seem to match the objective with

higher probability. But if the given hypothesis is correct, this effect can be

attributed to the definition of the tolerant design GA objective (depicted in

equation 5.1) as the minimised composite objective is composed of two sub–

objectives: T (r, ~d) (equation 5.2), that drives GA towards target response

value, therefore shifting the µ of the probability distribution of the error-

enabled designs and second sub–objective E(~d) (equation 5.3) that drives

GA towards designs having smaller response variance (that is represented by

σ2 in equation 5.5) when subject to process–introduced errors.

One might expect that the proposed approach works well when it is easy

to minimise T (r, ~d) sub–objective, as then GA will concentrate on minimi-

sation of E(~d,X) sub–objective. Therefore, the resulting design would have

high probability of T (r, ~d) ≈ 0 making µ ≈ r and, as r has been reached, the

major cause for GA to prefer one solution over another is for that solution

to have smaller E(~d), therefore minimising σ2 for current µ2.

But when T (r, ~d) sub–objective is hard to minimise, the major cause for

GA to prefer one solution over another would be the minimisation of E(~d)

sub–objective that would cause the designs to have smaller variance (σ2)

when subject to errors. But mean (µ) is far from target response value,

2It seems that ‘stiffness by X’ is easy to reach objective as the distribution of responses
for ‘ideal’ designs (Figure 5.4(c)) for the tolerant and non–tolerant designs is similar,
while tolerant designs have much smaller distribution in case of error–introduced designs
(Figure 5.4(d)).

122

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

causing the design to be further from target with smaller variance. In this

case, the definition of minimisation objective (equation 5.2) would reduce the

pressure for GA to reach desired response target in favour of having more

error–tolerant solutions (a behaviour exhibited in the case of ‘frequency’ and

‘stiffness by Y’ objectives).

In case the given hypothesis is correct, it would be expected for error–

tolerant designs with ‘ideal’ response being close to the target response value

to have smaller variance of responses for error–introduced designs. This can

be tested by plotting the histograms for designs with ‘ideal’ responses within

certain bounds of target response. The bounds of 20%, 4% and 1% were

chosen to check this hypothesis.

As clearly illustrated by the sequence of figures for the objectives that

previously exhibited no clear natural distribution of error–introduced design

responses (that is ‘frequency’ (Figures 5.5, 5.6 and 5.7) and limited ‘stiff-

ness by Y’ (Figures 5.11, 5.12 and 5.13) while ‘stiffness by X’ (Figures 5.8,

5.9 and 5.10) exhibit no such behaviour), the more evenly the ‘ideal’ de-

signs are distributed around target, the more natural distribution–like error–

introduced design response histogram appears, which can be accounted for

the µ ≈ Response(~d) hypothesis. Also, the error–introduced response his-

tograms exhibit smaller variance for the error–tolerant designs when com-

pared to non–tolerant designs.

Based on the results, it was decided that the practice of merging variance

minimisation sub–objective T (r, ~d) and the objective approach sub–objective

E(~d) should not be expected to perform well in multi–dimensional complex

problems, as it allows for GA to trade objective approach for variance min-

imisation, therefore allowing creation of designs that are far from objective

target but have small variance.

123

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

12 13 14 15 16

0

50

100

150

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

12 13 14 15 16 17

0

1,000

2,000

3,000

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.5: Designs for frequency of GA objectives inspired by robust opti-
misation within 20% of target

14.4 14.6 14.8 15 15.2 15.4

0

20

40

60

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

13 13.5 14 14.5 15 15.5 16 16.5

0

500

1,000

1,500

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.6: Designs for frequency of GA objectives inspired by robust opti-
misation within 4% of target

14.75 14.8 14.85 14.9 14.95 15 15.05

0

10

20

30

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

13.5 14 14.5 15 15.5 16 16.5

0

500

1,000

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.7: Designs for frequency of GA objectives inspired by robust opti-
misation within 1% of target

124

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

1.6 1.8 2 2.2

0

100

200

300

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

·104

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.8: Designs for stiffness by X of GA objectives inspired by robust
optimisation within 20% of target

1.85 1.9 1.95

0

50

100

150

200

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 2 4 6

0

2,000

4,000

6,000

8,000

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.9: Designs for stiffness by X of GA objectives inspired by robust
optimisation within 4% of target

1.88 1.89 1.9 1.91 1.92

0

20

40

60

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 2 4 6 8

0

1,000

2,000

3,000

4,000

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.10: Designs for stiffness by X of GA objectives inspired by robust
optimisation within 1% of target

125

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

0.520.540.560.58 0.6 0.620.640.660.68

0

50

100

150

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1 1.2

0

1,000

2,000

3,000

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.11: Designs for stiffness by Y of GA objectives inspired by robust
optimisation within 20% of target

0.54 0.55 0.56 0.57 0.58

0

10

20

30

40

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1

0

500

1,000

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.12: Designs for stiffness by Y of GA objectives inspired by robust
optimisation within 4% of target

0.55 0.56 0.56 0.56 0.56 0.56 0.57

0

5

10

15

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1

0

200

400

600

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.13: Designs for stiffness by Y of GA objectives inspired by robust
optimisation within 1% of target

126

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

5.5 Modifications to initial approach

Simple application of GA objective inspired by robust optimisation has shown

its inability to evolve multiobjective error–tolerant MEMS designs as it al-

lows the GA to exchange the approach towards desired response with the

robustness of design.

To address this issue two alternative modifications to the original ap-

proach of evolution of error–tolerant MEMS designs were proposed.

1. Making error tolerance metric target response–dependent

It was identified that the initial robust optimisation–inspired metric is

ineffective in the case of evolving multiobjective error tolerant designs

because of GA exchanging sub–objective of approaching towards target

for sub–objective of evolving error tolerant design.

If only designs that are within certain neighbourhood of target response

are allowed to evolve error tolerance, this should allow the GA to ap-

proach target response at first (hence achieving reasonable µ for error

design response distribution) and later, when design response is within

reasonable proximity of target, to concentrate on evolving as error tol-

erant design.

2. Separating error tolerance metric to a separate dimension

This approach should allow the GA to perform evolution of error tol-

erant designs within separate objective space dimension, hence not al-

lowing compromises in dimensions meant for achieving target response

value.

5.5.1 Response–dependent error tolerance

It was identified that the initial robust optimisation–inspired metric is in-

effective in the case of evolving multiobjective error tolerant designs be-

cause of GA exchanging sub–objective of approaching towards target for

sub–objective of evolving error tolerant design.

127

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

If only designs that are within certain neighbourhood of target response

are allowed to evolve error tolerance, this should allow the GA to approach

target response at first (hence achieving reasonable µ for error design response

distribution) and later, when design response is within reasonable proximity

of target, to concentrate on evolving an error tolerant design.

To achieve this target, the original error tolerance objective (equation 5.3)

was modified as denoted in equation 5.6 (where r is the desired design’s

response value).

Eobj(~d, r) ≡ 〈i ∈ N : Response(Errprod(~d))− r〉 (5.6)

This change will make the objective to evolve smaller error tolerance

relative to the desired response value r rather than its current ‘ideal response’

value Response(~d) (µ of distribution of devices’ responses when ‘ideal design‘

is subject to product errors).

To verify the proposed objective function (equation 5.6), a set of experi-

ments were performed with same settings as previously attempted evolution

of error tolerant MEMS designs inspired by robust design theory (please refer

to Table 5.2 for detailed description). For the sake of clarity, the GA config-

uration for response–dependent error tolerant designs is listed in Table 5.4.

As shown by acquired results (Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19,

5.20, 5.21, 5.22 and 5.23), the response–dependent error tolerance exhibited

expected properties of error tolerance while bringing the overall population

closer to target response.

5.5.2 Error tolerance as a separate objective

Another possible approach is to bring error tolerance objective as a separate

GA objective dimension, therefore not allowing compromises in dimensions

meant for achieving target response value. Because the extension of GA

search space with multitude of error tolerance objectives (one objective for

each GA response target) is undesirable due to the exponential increase in

search space, it was considered that the creation of unified dimensionless

error tolerance is more practical.

128

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

4 6 8 10 12 14 16

0

50

100

150

frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

4 6 8 10 12 14 16 18

0

2,000

4,000

6,000

8,000

frequency (kHz)
R

es
p

on
se

co
u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

1 1.5 2 2.5 3

0

200

400

600

stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(c) Responses for ‘ideal’ designs

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

·104

stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(d) Responses for designs with errors introduced

0.5 0.6 0.7 0.8 0.9 1 1.1

0

100

200

300

stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(e) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1 1.2 1.4

0

1,000

2,000

3,000

4,000

stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(f) Responses for designs with errors introduced

Figure 5.14: Response–relative error tolerance: full population results

129

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

12 13 14 15 16

0

20

40

60

80

100

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

12 13 14 15 16 17

0

1,000

2,000

3,000

4,000

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.15: Designs for frequency of Response–relative error tolerance within
20% of target

14.4 14.6 14.8 15 15.2 15.4 15.6

0

20

40

60

80

100

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

13 14 15 16

0

500

1,000

1,500

2,000

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.16: Designs for frequency of Response–relative error tolerance within
4% of target

14.75 14.8 14.85 14.9 14.95 15 15.05

0

10

20

30

40

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

13.5 14 14.5 15 15.5 16 16.5

0

500

1,000

1,500

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.17: Designs for frequency of Response–relative error tolerance within
1% of target

130

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

1.6 1.8 2 2.2

0

100

200

300

400

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

·104

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.18: Designs for stiffness by X of Response–relative error tolerance
within 20% of target

1.85 1.9 1.95

0

50

100

150

200

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 2 4 6

0

2,000

4,000

6,000

8,000

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.19: Designs for stiffness by X of Response–relative error tolerance
within 4% of target

1.88 1.89 1.9 1.91 1.92

0

20

40

60

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 2 4 6 8

0

1,000

2,000

3,000

4,000

5,000

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.20: Designs for stiffness by X of Response–relative error tolerance
within 1% of target

131

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

0.55 0.6 0.65

0

50

100

150

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1 1.2

0

1,000

2,000

3,000

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.21: Designs for stiffness by Y of Response–relative error tolerance
within 20% of target

0.54 0.55 0.56 0.57 0.58

0

20

40

60

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1

0

500

1,000

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.22: Designs for stiffness by Y of Response–relative error tolerance
within 4% of target

0.55 0.56 0.56 0.56 0.56 0.56 0.57

0

5

10

15

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1

0

200

400

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.23: Designs for stiffness by Y of Response–relative error tolerance
within 1% of target

132

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

Meandering resonator design synthesis with error tolerance
towards objective value1

Resonator design parameters

Simulated layouts with errors per design 10

Error boundaries
min 0 µm
max 1 µm

Objectives

Frequency Objective T1(93723, ~d) + Eobj1(
~d, 93723)

X stiffness objective T2(1.90, ~d) + Eobj2(
~d, 1.90)

Y stiffness objective T3(0.56, ~d) + Eobj3(
~d, 0.56)

Notes
1 These settings are extension to GA settings defined in Table 5.1

Table 5.4: Settings for design synthesis of multi–tolerant meandering res-
onator

The introduced objective is based on normalised E(~d) modification as

defined in equation 5.7, that can be extended as equation 5.8.

Enorm(~d) ≡
E(
~d)

Response(~d)
(5.7)

Enorm(~d) ≡ 〈i ∈ N : Response(Errprod(~d))−Response(~d)〉
Response(~d)

(5.8)

As self–evident, the Enorm(~d) is dimensionless and therefore Errornorm(~d)

for responses of various domains can be summed. This is exploited when cu-

mulative error tolerance objective is defined as shown in equation 5.9 (where

B is the set of all response dimensions. For the meandering resonator prob-

lem, this would contain responses ‘frequency’, ‘stiffness by X’ and ‘stiffness

by Y’).

V ariance(~d) ≡ 〈∀b ∈ B : Errorbnorm(~d)〉 (5.9)

Therefore, an alternative approach to defining objectives for error–tolerant

GA is defined in equation 5.10 (it is implied that GA is minimising ob-

jecitves).

133

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

Error–tolerant meandering resonator design synthesis with
error 1

Resonator design parameters

Simulated layouts with errors per design 10

Error boundaries
min 0 µm
max 1 µm

Objectives

Frequency Objective T1(93723, ~d)

X stiffness objective T2(1.90, ~d)

Y stiffness objective T3(0.56, ~d)

Error tolerance objective
∑i=1

3 Enormi(
~d)

Notes
1 These settings are extension to GA settings defined in Table 5.1

Table 5.5: Settings for design synthesis of multi–tolerant meandering res-
onator

objectives =


T0(r0, ~d)

T1(r1, ~d)

. . .

TN(rN , ~d)

V ariance(~d)

 (5.10)

To verify the proposed objective function (equation 5.10), a set of exper-

iments were performed with same settings as previously attempted evolution

of error tolerant MEMS designs inspired by robust design theory (please refer

to Table 5.5 for detailed description).

As can be seen from the displayed graphs of full populations (Figure 5.24),

the distribution of designs is more uniform when using given GA configura-

tion. This is because of extra dimension making more designs to be located on

Pareto front, therefore limiting the overall movement of population towards

desired responses in objective functions (that is frequency and per–axis stiff-

ness).

The downside of this effect is that the means of distributions of MEMS

designs are likely to be located further from target values (this idea is sup-

134

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

4 6 8 10 12 14 16

0

50

100

150

200

250

frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

·104

frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

0.5 1 1.5 2 2.5 3 3.5 4

0

100

200

300

400

500

stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(c) Responses for ‘ideal’ designs

0 1 2 3 4 5 6

0

2,000

4,000

6,000

stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(d) Responses for designs with errors introduced

0.6 0.8 1

0

50

100

150

stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(e) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

1,000

2,000

3,000

stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(f) Responses for designs with errors introduced

Figure 5.24: Error tolerance in separate objective: full population results

135

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

12 13 14 15 16

0

20

40

60

80

100

120

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

12 13 14 15 16 17

0

1,000

2,000

3,000

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.25: Designs for frequency of Error tolerance in separate objective
within 20% of target

14.4 14.6 14.8 15 15.2 15.4

0

20

40

60

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

13 13.5 14 14.5 15 15.5 16 16.5

0

500

1,000

1,500

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.26: Designs for frequency of Error tolerance in separate objective
within 4% of target

14.75 14.8 14.85 14.9 14.95 15 15.05

0

5

10

15

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

13.5 14 14.5 15 15.5 16 16.5

0

200

400

600

800

1,000

1,200

Frequency (kHz)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.27: Designs for frequency of Error tolerance in separate objective
within 1% of target

136

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

1.6 1.8 2 2.2

0

50

100

150

200

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 1 2 3 4 5 6

0

2,000

4,000

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.28: Designs for stiffness by X of Error tolerance in separate objective
within 20% of target

1.85 1.9 1.95

0

20

40

60

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 2 4 6

0

1,000

2,000

3,000

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.29: Designs for stiffness by X of Error tolerance in separate objective
within 4% of target

1.88 1.89 1.9 1.91 1.92

0

5

10

15

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0 2 4 6 8

0

200

400

600

800

1,000

1,200

Stiffness by X (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.30: Designs for stiffness by X of Error tolerance in separate objective
within 1% of target

137

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

0.5 0.55 0.6 0.65

0

20

40

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1 1.2

0

500

1,000

1,500

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.31: Designs for stiffness by Y of Error tolerance in separate objective
within 20% of target

0.54 0.55 0.56 0.57 0.58

0

5

10

15

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1

0

200

400

600

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.32: Designs for stiffness by Y of Error tolerance in separate objective
within 4% of target

0.55 0.56 0.56 0.56 0.56 0.56 0.57

0

2

4

6

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(a) Responses for ‘ideal’ designs

0.2 0.4 0.6 0.8 1

0

100

200

300

Stiffness by Y (N/m)

R
es

p
on

se
co

u
n
t

Non–tolerant designs Tolerant designs Target

(b) Responses for designs with errors introduced

Figure 5.33: Designs for stiffness by Y of Error tolerance in separate objective
within 1% of target

138

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

ported by the plots of ‘ideal’ designs in full population graphs – Figure 5.24

and by distribution of ‘ideal’ designs in subsets of population in Figures 5.25,

5.26, 5.27, 5.28, 5.29, 5.30, 5.31, 5.32 and 5.33). Judging by the graphs, it

seems that the proposed approach towards the evolution of error tolerance is

undesirable, but overall conclusions will be drawn later, during comparative

analysis of results yielded by all tested GA configurations.

5.6 Discussion of results

Because the performance of GA should be measured by the ability of GA to

achieve desired outcome, a set of designs needs to be selected to represent the

achievements of each of the three modifications of GApresented in sections

5.4, 5.5.1 and 5.5.2 plus the control non–tolerant designs evolved with settings

described in Table 5.3.

The selection of best performing designs is made by ordering a unified set

of all elements found on all pareto fronts of all runs for each configuration.

The ordering of elements in given set is carried out based on metric MΣ.

MΣ ≡

√√√√n=1∑
3

(
1− Responsen(~x)

rn

)2

(5.11)

With rn is target value for nth response parameter, and Responsen(~x) is

evaluation of nth response parameter of a design ~x GA performs the evolution

of MEMS meandering resonator with the aim of evolving designs having three

particular responses (frequency, stiffness by X and stiffness by Y). It is evident

that MΣ is normalised euclidian distance for point of target responses.

After the elements were ordered, 21 designs with smallestMΣ metrics were

chosen for detailed performance evaluation. This evaluation was made by the

creation of 10,000 MEMS simulations with production errors introduced for

each of the 21 chosen designs.

The resulting 10,000 values for each response were fitted to normal distri-

bution with Matlab ‘normfit’ function and output pair of (µ, σ) saved with

respect to ‘ideal’ MEMS design that produced it. The resulting 21 pairs of

139

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

Frequency (Hz) Stiffness by X (N/m) Stiffness by Y (N/m)
µ σ µ σ µ σ

Control (non–tolerant) designs
14605 521.35 2.0509 0.5771 0.6098 0.1784
Error dependency based on robust optimisation theorem
14203 366.24 1.9824 0.4072 0.602 0.1195
Response–dependent error tolerance
14174 451.68 1.9442 0.3689 0.5916 0.1071
Error tolerance in separate objective
11249 214.48 1.6941 0.3485 0.6683 0.1342

Table 5.6: Generalised average parameters of best results

Frequency Stiffness by X Stiffness by Y∣∣1− µ
14916

∣∣ σ
14916

∣∣1− µ
1.90

∣∣ σ
1.90

∣∣1− µ
0.56

∣∣ σ
0.56

Control (non–tolerant) designs
0.02085 0.03495 0.07942 0.30374 0.08893 0.31857

Error dependency based on robust optimisation theorem
0.0478 0.02455 0.04337 0.21432 0.075 0.21339

Response–dependent error tolerance
0.04975 0.03028 0.02326 0.19416 0.05643 0.19125

Error tolerance in separate objective
0.24584 0.01438 0.10837 0.18342 0.19339 0.23964

Table 5.7: Generalised relative average parameters of best results

(µ, σ) for each setup of an experiment are available in appendix B.

As can be seen from Table 5.6 and from appendix B, the MΣ metric

selects designs only based on their relative performance without respect to

the relative importance of objectives (i.e. frequency objective in current set

of results is more important than stiffness–related objectives). But this is

not of concern at the current stage of research as the overall behaviour of the

proposed algorithm is more important.

For better demonstration of relative performance, Table 5.7 is created to

illustrate the actual relative errors in means
∣∣∣1− µ

rn

∣∣∣ and relative standard

deviation σ
rn

of resulting designs.

As the MΣ metric is not making any distinction between different objec-

tives and is based on designs’ relative performance, it makes sense to discuss

140

CHAPTER 5. PROCESS–INDUCED ERROR TOLERANT LAYOUT
SYNTHESIS

〈∀n :
∣∣∣1− µn

rn

∣∣∣〉 〈∀n : σn
rn
〉

Control (non–tolerant) designs
0.0631 0.2191

Error dependency based on robust optimisation theorem
0.0554 0.1508

Response–dependent error tolerance
0.0432 0.13856

Error tolerance in separate objective
0.1825 0.14581

Table 5.8: Average design performance

average designs’ performance in all objective dimensions. For better visual

perception, the average for all response means (µ) in all objective dimensions

(〈∀n :
∣∣∣1− µ

rn

∣∣∣〉) and average for all response dispersions (σ) (〈∀n : σ
rn
〉) were

calculated for all sets of experiments and are displayed in Table 5.8.

It can be seen that the worst performance is demonstrated by ‘error tol-

erance as separate objective’ approach, as it failed to evolve designs with

average relative mean response rate within 18% of targets and as high as

24.6% for frequency objective (see Table 5.7), which is higher than SUGAR’s

commonly expected response prediction precision (that is 20%). This makes

‘error tolerance in separate objective’ algorithm to be an outlier as it is effec-

tively failing to achieve desired response parameters. This illustrates that the

idea of adding one extra dimension is not viable, as with the increase in the

dimensionality of objective space the overall performance of GA noticeably

decreases.

By comparing results for three other experiment configurations (control,

robust optimisation–inspired approach and response–dependent error toler-

ances), it is easy to see that the best results in both average approach of

means of responses (µ) and error–caused dispersions of errors (σ). The best

results are shown by ‘response–dependent error tolerance’ experiment con-

figuration, that shows 0.0631
0.0432

= 68.5% more precise results in terms of average

of response distribution means and 0.2191
0.13856

= 158% smaller average error dis-

persion than non–tolerant designs.

141

Chapter 6

Conclusions and Future

Research

6.1 Summary

MEMS designs are generally created by build–and–break process, a process

that takes long time to complete – starting with half a year and more.

To address the problem of extremely long design phase for MEMS design

synthesis, a number of computational tools for MEMS computer–assisted

design evaluation such as ANSYS(ANSYS Inc. 2009) of SUGAR were intro-

duced. This will allow the designers to build and evaluate virtual models,

reducing the amount of required build–and–break cycles for the development

of MEMS designs.

But as the MEMS market is steadily increasing due to steady increase in

MEMS deployment in medicine, consumer electronics, automative and other

markets, the need for automated MEMS layout design synthesis methodology

is arising. The deployment of black–box optimisation Artificial Intelligence

(AI) techniques such as GA allows for human designers to shorten the initial

phase of layout synthesis, as GA is capable of performing black–box optimi-

sation for problems with a size of search space that would be un–processable

using conventional optimisation techniques such as exhaustive search.

MEMS models come in two classes – (i) analytical, that is basically a

142

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

set of formulas describing the behaviour of particular topologies of MEMS

designs (ii) and numerical – a model that is using FE simulation toolboxes

such as ANSYS(ANSYS Inc. 2009) or SUGAR for estimation of MEMS de-

sign parameter responses. The decision of MEMS design class to be opti-

mised therefore needs to be done. Due to the limitations and general lack of

analytical models coupled with noticeable difficulties in the creation of new

analytical models, the choice was made in favour of numerical models with

SUGAR MEMS simulation environment.

The ability of multiobjective GA to return a set of alternative solutions

without making sacrifices to one MEMS response over another was considered

valuable in the case of MEMS layout design synthesis, as the multi–domain

nature of MEMS makes it extremely hard to prioritise one design’s response

over another (which possibly belongs to a completely different domain of

physics).

In this thesis, a new efficient GA circular chromosomal structure was

introduced. It was demonstrated that the proposed chromosome reduces

time and number of evaluations required to perform MEMS design synthesis

by the means of GA. In previous work, which addressed different areas of GA,

a special crossover operator was developed. This operator was incorporated

to the workflow of GA. It was illustrated by the previous research that such

a circular chromosomal structure has redundancy and is expected to possess

linkage learning functionality – an effect that could be beneficial for MEMS

evolutionary synthesis. It was demonstrated that this has a positive influence

on MEMS evolutionary synthesis performance.

The promising results from the successful introduction of circular chro-

mosome to the problem of MEMS evolutionary synthesis with its linkage–

learning functionality led to the research on automated Building Block (BB)

generation for the problem of MEMS design synthesis. Several approaches

for automated BB handling were explored. Several promising realisations

were identified and the basis for successful realisations to exhibit observed

performance was proposed.

Yet another big and complex problem faced by the MEMS industry was

addressed in successive chapter. This chapter focused on the creation of

143

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

MEMS designs that are tolerant to production errors as the production er-

rors are of concern when designing MEMS devices due to the relatively low

precision of etching technology commonly used. With the introduction of

error tolerance–evolving GA objectives that were inspired by the robust op-

timisation approach found in literature, the attempts to introduce several

enhancements to the initial approach were successful. An approach was in-

troduced for the evolution of error–tolerant MEMS designs with no analytical

models, only with numerical simulation.

Although volume of case studies used in each chapter for obtaining results

is somehow limited, as the attempted approaches are not tuned for particular

problems, it is reasonable to expect that results presented in this work are

applicable to much more general set of problems than they were tested on in

current work.

The MEMS resonator problem, although simple, possesses properties im-

portant and common for major part of MEMS design problems – the design

itself is sensitive to small changes in devices’ layout, the volume of incorrect

layouts (such as self–intersecting designs) is much greater than volume of

producible designs and optimisation problem is multiobjective in its nature,

just as it is in general case of creating MEMS designs.

6.2 Research limitations

More research should be done on the influence of linkage and redundancy

on MEMS layout synthesis optimisation. The general motivation for GA to

preserve the good design elements in the redundant parts of genes seem to

be supported by experimental results. But more research on the behaviour

of linkage–learning capabilities of circular chromosome in the case of MEMS

layout design synthesis is required. The effects and statistical evidence of the

re–usage of design elements by GA is desirable, but not researched in current

thesis due to the time constraints.

Regarding the automated MEMS BB synthesis, a major research limi-

tation is the simplicity of chosen approach, as the application of proposed

component–based MEMS design synthesis for meandering resonator is an

144

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

application of potentially complex decision support system to a greatly sim-

plified problem. The proposed layout synthesis approach using automatically

generated BBs should be applied to a more complex problem, a problem that

can have actual building blocks (subsets of nodes) evolved and extracted

rather than the usage of a big design element such as the whole leg of a

meandering resonator.

The research on error–tolerant layout synthesis was greatly limited due to

the time constraints. Because of this, no research on the effect of the number

of evaluations of error–introduced designs on the level of error tolerance of

resulting designs was made. This limitation of research is both desirable and

relatively simple to overcome.

6.3 Conclusions

It was demonstrated that the circular chromosome that was proposed in

chapter 3 outperforms currently published state–of–the–art algorithms when

compared using yielded results. It is considered worthwhile to continue re-

search on this topic in the future.

In the case of research on component–based MEMS synthesis (Chapter 4),

it was demonstrated that automated component generation is possible, but

considerable difficulties can emerge when choosing particular approach to-

wards extraction and re–usage of Building Blocks (BBs). The introduction

of automatically generated BBs in to the process of automated MEMS layout

synthesis is highly desirable and successful implementation of given approach

would allow for GA to use the libraries of automatically generated MEMS

components. The future research in given direction is considered important

and desirable.

The design of error–tolerant MEMS layouts researched in Chapter 5

demonstrated the ability of GA to evolve error–tolerant MEMS designs using

numerical simulation rather than using analytical models of MEMS designs.

A number of research objectives were listed in section 1.1. Results and

outcomes of pursuing these objectives are given below.

145

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

1. To propose circular chromosome with linkage learning capabilities to

address the issues associated with large number of objective function

evaluations and inefficient MEMS structure representation in GA.

In Chapter 3, the novel circular chromosome data structure was intro-

duced to the field of MEMS design layout synthesis and optimisation.

This chromosome allowed to synthesise MEMS layout designs that are

superior to ones provided by previous state–of–the-art research using

only half of functional evaluations when compared to previous research.

2. To develop automatic BB detection and re-use approach to address

the inability of GA in automatically re–using past MEMS designs and

learning and preserving good MEMS design elements.

In Chapter 4, the automated BB construction, storage and re–usage

approach was proposed and explored. As the BB were generated us-

ing MEMS designs produced by circular chromosome algorithm, the

linkage learning capabilities of this chromosome were deployed in given

procedure.

Compared to classic GA, the attempted approach was demonstrated

its ability to produce MEMS layout designs that with responses closer

to desired values.

3. To propose error–tolerant MEMS layout synthesis to enable automated

synthesis of production error tolerant MEMS designs by the means of

GA.

In Chapter 5, the problem of automated MEMS error–tolerant layout

synthesis was addressed using several approaches inspired by robust

optimisation methodology.

Results yielded by attempted approaches demonstrated ability for GA

to evolve MEMS error–tolerant layouts with tolerance in various re-

sponses by using numerical simulation.

This thesis has contributed to the field of MEMS design synthesis and

optimisation by the means of GA in several ways.

146

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

The introduction of circular chromosome has proposed a way for increas-

ing efficiency of MEMS design layout synthesis. Furthermore, circular chro-

mosome has introduced linkage learning to the MEMS design layout synthe-

sis, and as the linkage learning might allow for GA to build, identify and

re–use blocks of linked genes as a BB in the future, this contribution might

have noticeable impact on the performance and efficiency of the automated

MEMS layout synthesis.

The idea of creation MEMS BB library for the automated design synthesis

methods to deploy knowledge previously gathered is widely discussed in the

literature, but general lack of interest contributing to such library amongst

with big volume of BB needed to be gathered, does not allow for this library

to be brought to reality. The introduction of fully automated BB acquire,

storage and re–usage cycle pursued in Chapter 4 allows to explore alternative

path for construction of such library. Rather than filling it with human–

generated designs, current approach allows for library to be automatically

populated using BB generated by automatic methods. This could allow to

enhance performance and to gather new designs produced by automated

MEMS layout synthesis with no human contribution.

Problem of instability of MEMS responses when subject to production

errors was tackled in Chapter 5. The ability of GA to synthesise error–

tolerant designs was demonstrated, potentially increasing yield of MEMS

production by lowering defect ratio.

6.4 Future Research

6.4.1 Circular chromosome

The results of the experiments showed that the representation of genetic

information as circular chromosome increases GA efficiency in finding the

good MEMS designs in global decision space. But it is inefficient when it

comes to fine–tuning of designs found.

The future research in this direction might concentrate on this problem

and there are a few approaches that seem promising.

147

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

1. Introduction of a process similar to the positive reinforcement loop, for

example, the manual increase of probabilities for start/stop interpreta-

tion commands, which were used to produce given MEMS designs in

the solutions belonging to the Pareto front.

2. Introduction of the conventional means of optimisation, such as the

gradient–based method, to find solutions belonging to local optima.

As the circular chromosome had introduced linkage learning and redun-

dancy to the MEMS evolutionary synthesis process, furtherer research on

the benefits and possibilities of these properties of GA chromosome for the

domain of MEMS design synthesis is desirable.

The development of novel crossover operator for MEMS should be of ben-

efit for the problem of MEMS synthesis, as the MEMS encodings commonly

expect for each gene in the chromosome to encode several parameters at once

(such as node length, width and angle), making each gene to be constructed

of several independent values. The common GA crossover operators act on

a chromosome as if it is a vector of primitive values.

According to currently deployed concept of crossover of the circular chro-

mosome, the linkage learning happens purely stochastically, while it might be

possible to introduce some kind of artificial intelligence to learn and extract

the actual building blocks from device phenotypes.

6.4.2 Component–based MEMS synthesis

One might attempt addressing the problem of automated BB recognition and

automative recognition of properties needed to be preserved in certain BB

types. This could be a good place for application of a variety of techniques

from the domain of image recognition, as the process of creation of image

recognition algorithms is somehow similar – an algorithm is given a number

of particular images containing and not containing certain object and the

algorithm needs to distill the traits of the presence of the desired object.

The set of the resulting traits could be considered as an ‘abstract model’ of

the searched model. Similar techniques could be used for the extraction of

148

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

an ‘abstract element’ of the MEMS design with such, as abstract element to

be used as BB later.

6.4.3 Process–induced error tolerant layout synthesis

Research on the influence of the count of errorous evaluations on

error tolerance

The Current set of experiments was performed with GA doing ten evaluations

of error–introduced designs for every generation’s design (or, as these designs

are sometimes called in this chapter ‘ideal designs’).

The increase in the count of simulations of error–introduced designs might

influence the overall level of error tolerance, as Fan et al. in (Fan et al. 2007)

presented results σrobust = 1.95kHz and σnon robust = 11.3kHz for crab–

leg (or as it referred in to given paper – ‘meandering’ resonator). Since

this publication displays 11.3
1.95

= 579.5% decrease in robust designs’ standard

deviation, it is likely that there is a room for improvement of best result

achieved in this work (by ‘response–dependent error tolerance’ approach) by

158% and it is probable that the given improvement can be achieved through

more excessive probing of error tolerance of designs during their evolution.

Development of specialised metrics

The MΣ metric used in current work is a simple method for selection of

‘best’ (or most representative) designs from resulting Pareto front. More so-

phisticated approaches with better relevance towards reality (i.e. ones that

addresses that frequency objective is more important than stiffness objec-

tives) probably could and certainly should be developed.

Yet another metrics whose development should be researched is one that

the dynamic properties of MEMS designs and helps to select error–tolerant

designs.

149

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

Research on the influence of error tolerance towards the speed of

matching objectives

It is probable that the solutions with higher error tolerance (ones with smaller

σ) evolve towards desired responses slower than non–tolerant solutions, as

the error tolerance is a measurement of how stable designs’ response is when

designs are subject to errors. Since GA is evolving designs with crossover and

mutation and the mutation is a process of introducing random errors into

designs, the designs that are more tolerant to the errors could have weaker

reaction when subject to mutation.

In case this issue is confirmed, the research on ‘triggered error tolerance’

evolution could be done. With this approach, designs should be subject to

optimisation for error tolerance only when certain condition are met, i.e.

when design is within certain neighbourhood of target response.

150

References

Abdalla, M. M., Reddy, C. K., Faris, W. F. & G\ürdal, Z. (2005). Optimal

design of an electrostatically actuated microbeam for maximum pull-in

voltage, Computers & Structures 83(15-16): 1320–1329.

Achiche, S., Fan, Z. & Bolognini, F. (2007). Review of automated design and

optimization of MEMS, IEEE International Symposium on Industrial

Electronics, pp. 2150–2155.

ACM (n.d.). Acm taxonomy.

URL: http://www.computer.org/portal/web/publications/acmtaxonomy

Agrawal, R. B. & Deb, K. (1994). Simulated binary crossover for continuous

search space.

ANSYS Inc. (2009). ANSYS.

URL: http://www.ansys.com/

Antonsson, E. K., Cavallaro, J., Mahadevan, R., Maher, M. & Maseeh, F.

(1997). Structured design methods for MEMS final report.

Bai, Z. (2002). Krylov subspace techniques for reduced-order modeling of

large-scale dynamical systems, Applied Numerical Mathematics 43(1-

2): 9–44.

Bao, M. & Wang, W. (1996). Future of microelectromechanical systems

(MEMS), Sensors and Actuators A: Physical 56(1-2): 135–141.

Bardeen, J. & Brattain, W. (1948). The transistor, a Semi-Conductor triode,

Physical Review 74(2): 230–231.

151

REFERENCES

Bechtold, T., Rudnyi, E. B. & Korvink, J. G. (2003). Automatic generation

of compact Electro-Thermal models for semiconductor devices, Ieice

Transactions on Electronics 86: 459–465.

Bedair, S. S. & Fedder, G. K. (2005). CMOS MEMS oscillator for gas chem-

ical detection, Sensors, 2004. Proceedings of IEEE, Vol. 2, pp. 955–958.

Benkhelifa, E., Farnsworth, M., Tiwari, A., Bandi, G. & Zhu, M. (2010).

Design and optimisation of microelectromechanical systems: a review

of the state–of–the–art, International Journal of Design Engineering

3(1): 41 – 76.

Brenner, M., Lang, J., Li, J., Qiu, J. & Slocum, A. (2002). Optimum design

of a MEMS switch, 2002 International Conference on Modeling and

Simulation of Microsystems - MSM 2002, pp. 214–217.

Calis, M. & Desmulliez, M. (2006). Haptic technologies for MEMS design,

Journal of Physics: Conference Series 34: 72–75.

Chaturantabut, S. & Sorensen, D. C. (2010). Nonlinear model reduction via

discrete empirical interpolation, SIAM Journal on Scientific Computing

32: 2737.

Chen, C. W. (1996). Complications and implications of linear bacterial chro-

mosomes, Trends in Genetics 12(5): 192–196.

Chen, Y.-p. & Goldberg, D. E. (2002). Introducing start expression genes

to the linkage learning genetic algorithm, Parallel problem solving from

Nature, 7 , 351–360. pp. 351—360.

Chi, T., Hsu, F. & Lin, C. (2007). The effect of GA redundancy on the design

of reverse logistics network, Third International Conference on Natural

Computation, Vol. 5, ICNC, IEEE Computer Society, pp. 504–510.

Chi, T. & Lin, C. (2008). The characteristic of logistics network specific

coding in genetic algorithms, Technical Report 186.

152

REFERENCES

Clark, J. V., Bindel, D., Kao, W., Zhu, E., Kuo, A., Zhou, N., Nie, J.,

Demmel, J., Bai, Z., Govindjee, S. et al. (2002). Addressing the needs

of complex MEMS design, Micro Electro Mechanical Systems, 2002. The

Fifteenth IEEE International Conference on, pp. 204–209.

Clark, J. V., Zhou, N. & Pister, K. (1998). MEMS Simulation Using Sugar

v0.5.

Cobb, C. & Agogino, A. (2006). Case-based reasoning for the design of micro-

electro-mechanical systems, Proceedings of the ASME Design Engineer-

ing Technical Conference, Vol. 2006.

Cobb, C., Zhang, Y. & Agogino, A. (2007a). An integrated MEMS design

synthesis architecture using Case-Based reasoning and Multi-Objective

genetic algorithms, Smart structures, devices, and systems III 11-13

December 2006, Adelaire, Australia, Vol. 6414, SPIE, Bellingham, Wash.

Cobb, C., Zhang, Y. & Agogino, A. (2007b). MEMS design synthesis: In-

tegrating case-based reasoning and multi-objective genetic algorithms,

Proceedings of SPIE - The International Society for Optical Engineering,

Vol. 6414.

Cobb, C., Zhang, Y., Agogino, A. & Mangold, J. (2008a). Case-based rea-

soning and object-oriented data structures exploit biological analogs to

generate virtual evolutionary linkages, 2007 IEEE Congress on Evolu-

tionary Computation, CEC 2007, pp. 334–341.

Cobb, C., Zhang, Y., Agogino, A. & Mangold, J. (2008b). Knowledge-based

evolutionary linkage in MEMS design synthesis, Vol. 157.

Crary, S., Juma, O. & Zhang, Y. (1991). Software tools for designers of

sensor and actuator CAE systems, Transducers ’91: 1991 International

Conference on Solid-State Sensors and Actuators. Digest of Technical

Papers, San Francisco, CA, USA, pp. 498–501.

Crary, S. & Zhang, Y. (1990). CAEMEMS: an integrated computer-aided

engineering workbench for micro-electro-mechanical systems, IEEE Pro-

153

REFERENCES

ceedings on Micro Electro Mechanical Systems, An Investigation of Mi-

cro Structures, Sensors, Actuators, Machines and Robots., Napa Valley,

CA, USA, pp. 113–114.

Deep, K. & Thakur, M. (2007). A new crossover operator for real coded

genetic algorithms, Applied Mathematics and Computation 188(1): 895–

911.

Engesser, M., Franke, A. R., Maute, M., Meisel, D. C. & Korvink, J. G.

(2010). A robust and flexible optimization technique for efficient shrink-

ing of MEMS accelerometers, Microsystem Technologies 16(4): 647–654.

ESTECO s.r.l (2009). modeFRONTIER.

URL: http://www.esteco.com/products.jsp

Fan, Z., Liu, J., Sorensen, T. & Wang, P. (2009). Improved differential evo-

lution based on stochastic ranking for robust layout synthesis of MEMS

components, IEEE Transactions on Industrial Electronics 56(4): 937.

Fan, Z., Wang, J., Achiche, S., Goodman, E. & Rosenberg, R. (2008). Struc-

tured synthesis of MEMS using evolutionary approaches, Applied Soft

Computing 8(1): 579–589.

Fan, Z., Wang, J., Wen, M., Goodman, E. & Rosenberg, R. (2007). An evo-

lutionary approach for robust layout synthesis of MEMS, Evolutionary

Computation in Dynamic and Uncertain Environments pp. 519–542.

Fedder, G. K., Iyer, S. & Mukherjee, T. (1997). Automated optimal synthesis

of microresonators, International Conference on Solid-State Sensors and

Actuators, Proceedings, Vol. 2, pp. 1109–1112.

Fedorova, L. . & Fedorov, A. . (2005). Puzzles of the human genome: Why

do we need our introns?, Current Genomics 6: 589–595.

Feynman, R. P. (1999). There’s plenty of room at the bottom, Feynman and

computation: exploring the limits of computers, Perseus Books, pp. 63–

76.

154

REFERENCES

Fleischer, M. & Fleischer, M. (2003). The measure of pareto optima. appli-

cations to multi–objective metaheuristics, Evolutionary multi-criterion

optimization. Second international conference, EMO 2003 2632: 519—

533.

Fogel, D. B. (1999). Evolutionary Computation: Toward a New Philosophy

of Machine Intelligence, 2 edn, Wiley-IEEE Press.

Forrest, S. & States., U. (1993). Proceedings of the Fifth International

Conference on Genetic Algorithms : University of Illinois at Urbana-

Champaign, July 17-21, 1993, Morgan Kaufmann Publishers, San Ma-

teo Calif.

Freund, R. W. (2004). SPRIM: structure-preserving reduced-order intercon-

nect macromodeling, iccad, pp. 80–87.

Gad-el-Hak, M. (2006). MEMS : introduction and fundamentals, 2nd ed.

edn, CRC/Taylor & Francis, Boca Raton.

Gilleo, K. (2005). MEMS in medicine, Circuits Assembly 16(8): 32–33.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and

Machine Learning, 1 edn, Addison-Wesley Professional.

Goldberg, D. E., Lobo, F. G., Deb, K., Harik, G. R. & Wang, L. (1998).

Compressed introns in a linkage learning genetic algorithm, Genetc pro-

gramming: proceedings of the third annual conference pp. 551—558.

Google Inc. (2010). Google scholar.

URL: http://scholar.google.com

Grayson, A. C., Shawgo, R. S., Johnson, A. M., Flynn, N. T., Li, Y., CIMA,

M. J. & Langer, R. (2005). A BioMEMS review: MEMS technology for

physiologically integrated devices, Proceedings of the IEEE 92(1): 6–21.

Grefenstette, J. (1986). Optimization of control parameters for genetic algo-

rithms, IEEE Trans. Syst. Man Cybern. 16(1): 122–128.

155

REFERENCES

Gyimesi, M., Avdeev, I. & Ostergaard, D. (2004). Finite-element simu-

lation of micro-electromechanical systems (MEMS) by strongly cou-

pled electromechanical transducers, Magnetics, IEEE Transactions on

40(2): 557–560.

Harik, G. R. (1997). Learning Gene Linkage to Efficiently Solve Problems of

Bounded Difficulty Using Genetic Algorithms, PhD thesis, The Univer-

sity of Michigan.

Harik, G. R. & Goldberg, D. E. (1997). Learning linkage, Foundations of

Genetic Algorithms 4, Morgan Kaufmann, pp. 247—262.

Harik, G. R. & Goldberg, D. E. (2000). Linkage learning through probabilistic

expression, Computer Methods in Applied Mechanics and Engineering

186(2-4): 295–310.

Haronian, D. (1995). Maximizing microelectromechanical sensor and ac-

tuator sensitivity by optimizing geometry, Sensors and Actuators: A.

Physical 50(3): 223–236.

Holland, J. (1992). Adaptation in natural and artificial systems : an in-

troductory analysis with applications to biology, control, and artificial

intelligence, 1st MIT press ed. edn, MIT Press.

Hong, Y. S., Lee, J. H. & Kim, S. H. (2000). A laterally driven symmetric

micro-resonator for gyroscopic applications, Journal of micromechanics

and microengineering 10: 452.

Hornby, G., Kraus, W. & Lohn, J. (2008). Evolving MEMS resonator designs

for fabrication, Vol. 5216 LNCS of Lecture Notes in Computer Science,

Springer Berlin / Heidelberg.

Hsu, T. (2001). MEMS and Microsystems: Design and Manufacture, 1 edn,

McGraw-Hill Science/Engineering/Math.

Hung, E. S., Yang, Y. J. & Senturia, S. D. (2002). Low-order models for fast

dynamical simulation of MEMS microstructures, Solid State Sensors

156

REFERENCES

and Actuators, 1997. TRANSDUCERS’97 Chicago., 1997 International

Conference on, Vol. 2, pp. 1101–1104.

Hwang, K., Lee, K., Park, G., Lee, B., Cho, Y. & Lee, S. (2003). Robust

design of a vibratory gyroscope with an unbalanced inner torsion gimbal

using axiomatic design, Journal of Micromechanics and Microengineer-

ing 13(1): 8–17.

IntelliSense Corp (2010). IntelliSuite.

URL: http://www.intellisensesoftware.com/

Kamalian, R., Agogino, A. M. & Takagi, H. (2004). The role of constraints

and human interaction in evolving MEMS designs: Microresonator case

study, ASME Conference Proceedings 2004(46946): 875–883.

Kamalian, R. R. (2004). Evolutionary Synthesis of MEMS, PhD thesis, Uni-

versity of California, Berkeley.

Kamalian, R. R., Zhou, N. & Agogino, M. (2002). A comparison of MEMS

synthesis techniques, Xiamen, China, pp. 239–242.

Koppelman, G. M. (1989). OYSTER, a three-dimensional structural sim-

ulator for microelectromechanical design, Sensors and Actuators 20(1-

2): 179–185.

Koza, J. (1992). Genetic programming : on the programming of computers

by means of natural selection, MIT Press, Cambridge Mass.

L-Edit (n.d.). Tanner research.

URL: http://www.tanner.com/Labs/mems/

Langdon, W. B. (2000). Quadratic bloat in genetic programming, Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-

2000), Morgan Kaufmann, Las Vegas, pp. 451—458.

Lee, K. & Wise, K. (1982). SENSIM: a simulation program for solid-state

pressure sensors, IEEE Transactions on Electron Devices 29(1): 34–41.

157

REFERENCES

Levenick, J. R. (1991). Inserting introns improves genetic algorithm success

rate: Taking a cue from biology., Proceedings of the Fourth International

Conference on Genetic Algorithms, Morgan Kaufmann, pp. 123—127.

Li, H. & Antonsson, E. K. (1998). Evolutionary techniques in mems synthesis.

Li, H. & Antonsson, E. K. (1999). Mask-layout synthesis through an evolu-

tionary algorithm, MSM’99, Modeling and Simulation of Microsystems,

Semiconductors, Sensors and Actuators .

Liu, C. (2006). Foundations of MEMS, Pearson/Prentice Hall.

Liu, R., Paden, B. & Turner, K. (2002). MEMS resonators that are robust

to process-induced feature width variations, Microelectromechanical Sys-

tems, Journal of 11(5): 505–511.

Lohn, J., Kraus, W. & Hornby, G. (2008). Automated design of a MEMS res-

onator, 2007 IEEE Congress on Evolutionary Computation, CEC 2007,

pp. 3486–3491.

Lu, K. & Kota, S. (2003). Design of compliant mechanisms for morphing

structural shapes, Journal of Intelligent Materials Systems and Struc-

tures 14(6): 379–391.

Lyshevski, S. (2002). MEMS and NEMS : systems, devices, and structures,

CRC Press, Boca Raton Fla.

Ma, L. & Antonsson, E. K. (2001). Robust mask-layout synthesis for MEMS,

Technical Proceedings of the 2001 International Conference on Modeling

and Simulation of Microsystems, pp. 128–131.

Maluf, N., Gee, D., Petersen, K. & Kovacs, G. (1995). Medical applications of

MEMS, Proceedings of WESCON’95, San Francisco, CA, USA, p. 300.

Markus, K. W. (2002). Developing infrastructure to mass-produce MEMS,

Computational Science & Engineering, IEEE 4(1): 49–54.

158

REFERENCES

Maute, K. & Frangopol, D. M. (2003). Reliability-based design of MEMS

mechanisms by topology optimization, Computers & Structures 81(8-

11): 813–824.

Miller, J. & Smith, S. (2006). Redundancy and computational efficiency

in cartesian genetic programming, Evolutionary Computation, IEEE

Transactions on 10(2).

Mukherjee, T., Fedder, G., Ramaswamy, D. & White, J. (2000). Emerg-

ing simulation approaches for micromachined devices, IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems

19(12): 1572–1589.

Mukherjee, T., Iyer, S. & Fedder, G. (1998). Optimization-based synthesis of

microresonators, Sensors and Actuators, A: Physical 70(1-2): 118–127.

NODAS (2010).

URL: http://goo.gl/6a0z

Ongkodjojo, A. & Tay, F. (2002). Global optimization and design for micro-

electromechanical systems devices based on simulated annealing, Jour-

nal of Micromechanics and Microengineering 12(6): 878–897.

Oxford Dictionaries (2010). ”synthesis”. oxford dictionaries. april 2010,

http://oxforddictionaries.com/view/entry/m en gb0838860.

URL: http://goo.gl/PKJn

Parkinson, A. & Wilson, M. (1988). Development of hybrid GRG-SQP al-

gorithm for constrained nonlinear programming, Journal of Mechanics,

Transmissions and Automation in Design 110: 308.

Parkinson, M. B., Jensen, B. D. & Roach, G. M. (2000). Optimization-

based design of a fully-compliant bistable micromechanism, Proceedings

of DETC 00 ASME 2000 Design Engineering Technical Conferences

and Computers and Information in Engineering Conference Baltimore,

pp. 1–7.

159

REFERENCES

Puers, B., Peeters, E. & Sansen, W. (1989). CAD tools in mechanical sensor

design, Sensors and Actuators 17(3-4): 423–429.

Quarles, T., Pederson, D., Newton, R., Sangiovanni-Vincentelli, A. & Wayne,

C. (2010). SPICE.

URL: http://goo.gl/3rwp

Raich, A. M. & Ghaboussi, J. (1997). Implicit representation in genetic

algorithms using redundancy, Evol. Comput. 5(3): 277–302.

Rebello, K. J. (2005). Applications of MEMS in surgery, Proceedings of the

IEEE 92(1): 43–55.

Rechenberg, I. (1994). Evolution strategy, Computational Intelligence: Imi-

tating Life pp. 147–159.

Schott, J. R. (1995). Fault tolerant design using single and multicriteria ge-

netic algorithm optimization, Thesis, Massachusetts Institute of Tech-

nology. Department of Aeronautics and Astronautics.

Schr\öpfer, G., King, D., Kennedy, C. & McNie, M. (2005). Advanced pro-

cess emulation and circuit simulation for co-design of MEMS and CMOS

devices, Proceedings symposium on design, test, integration and packag-

ing of MEMS/MOEMS (DTIP), Montreux, Switzerland.

Sedivec, P. J. (2002). Robust optimization: Design in MEMS, PhD thesis,

Citeseer.

Senturia, S. (2001). Microsystem design, Kluwer Academic Publishers,

Boston.

Senturia, S., Harris, R., Johnson, B., Kim, S., Nabors, K., Shulman, M.

& White, J. (1992). A computer-aided design system for microelec-

tromechanical systems (MEMCAD), Journal of Microelectromechanical

Systems 1(1): 3–13.

Silva, M. G. D., Giasolli, R., Cunningham, S. & DeRoo, D. (2002). MEMS

design for manufacturability (DFM), Sensors Expo, Boston (USA) .

160

REFERENCES

Thierens, D. & Goldberg, D. E. (1993). Mixing in genetic algorithms, Pro-

ceedings of the 5th International Conference on Genetic Algorithms,

Morgan Kaufmann Publishers Inc., pp. 38–47.

Tischulena, G. (2004). Market analysis for MEMS and microsystems III,

2005-2009, Technical report, Nexus Third Report.

van Rossum, G. (2010). Python.

URL: http://www.python.org

Vandemeer, J. E., Kranz, M. S. & Fedder, G. (1997). Nodal simulation

of suspended MEMS with multiple degrees of freedom, ASME Winter

Annual Conference.

Verilog-AMS (2010).

URL: http://www.eda.org/verilog-ams/

Vudathu, S. P. & Laur, R. (2007). A design methodology for the yield en-

hancement of MEMS designs with respect to process induced variations,

2007 Proceedings 57th Electronic Components and Technology Confer-

ence, Sparks, NV, USA, pp. 1947–1952.

Weile, D., Michielssen, E. & Goldberg, D. (1996). Genetic algorithm design

of pareto optimal broadband microwave absorbers, IEEE Transactions

on Electromagnetic Compatibility 38(3): 518–525.

White, J. (2004). CAD challenges in BioMEMS design, Proceedings of the

41st annual Design Automation Conference, p. 632.

Wineberg, M. & Oppacher, F. (1994). A representation scheme to per-

form program induction in a canonical genetic algorithm, Proceedings of

the International Conference on Evolutionary Computation., The Third

Conference on Parallel Problem Solving from Nature: Parallel Problem

Solving from Nature, Springer-Verlag, pp. 292–301.

Wineberg, M. & Oppacher, F. (1996). The benefits of computing with in-

trons, Proceedings of the First Annual Conference on Genetic Program-

ming, MIT Press, Stanford, California, pp. 410–415.

161

REFERENCES

Xin, Z., Guangyi, S., Liang, R. & Guizhang, L. (2006). On MEMS de-

sign automation, 2007 Chinese Control Conference, Zhangjiajie, China,

pp. 774–778.

Yang, Y. & Yu, C. (2004). Extraction of heat-transfer macromodels

for MEMS devices, Journal of Micromechanics and Microengineering

14(4): 587–596.

Ye, W. & Mukherjee, S. (1998). Optimal shape design of three dimensional

MEMS with applications to electrostatic comb drives, American Society

of Mechanical Engineers, Applied Mechanics Division, AMD 228: 23–

30.

Yilmaz, A. S. & Wu, A. S. (2005). Preservation of genetic redundancy in the

existence of developmental error and fitness assignment error, Proceed-

ings of the 2005 conference on Genetic and evolutionary computation,

ACM, Washington DC, USA, pp. 1317–1324.

Zha, X. F. & Du, H. (2003). Manufacturing process and material selection in

concurrent collaborative design of MEMS devices, Journal of Microme-

chanics and Microengineering 13(5): 509–522.

Zhang, Y. (2006). MEMS Design Synthesis Based on Hybrid Evolutionary

Computation, PhD thesis, University of California, Berkeley.

Zhang, Y., Kamalian, R., Agogino, A. M. & Séquin, C. H. (2005). Hier-

archical MEMS synthesis and optimization, SPIE conference on smart

structures and materials, San Diego California, pp. 7–10.

Zhou, N. (2002). Simulation and synthesis of MicroElectroMechanical Sys-

tems, PhD thesis, University of California, Berkley.

Zhou, N., Agogino, A. & Pister, K. (2002). Automated design synthesis for

Micro-Electro-Mechanical systems (MEMS), Proceedings of the ASME

Design Engineering Technical Conference, Vol. 2, pp. 267–273.

Zhou, N., Clark, J. V. & Pister, K. S. J. (1998). Nodal analysis for MEMS

design using SUGARv0.5, Santa Clara CA April pp. 6–8.

162

REFERENCES

Zhou, N., Zhu, B., Agogino, A. M. & Pister, K. S. J. (2001). Evolutionary

synthesis of MEMS MicroElectronicMechanical systems design, Intel-

ligent Engineering System through Artificial Neural Networks, Vol. 11

of Proceedings of the Artificial Neural Networks in Engineering (AN-

NIE2001), pp. 197–202.

Zienkiewicz, O. C. & Taylor, R. L. (2006). The finite element method for

solid and structural mechanics, Elsevier Butterworth-Heinemann.

Zitzler, E. & Thiele, L. (1998). Multiobjective optimization using evolution-

ary algorithms—A comparative case study, Parallel Problem Solving

from Nature—PPSN V, pp. 292–301.

Zitzler, E. & Thiele, L. (1999). Multiobjective evolutionary algorithms: A

comparative case study and the strength pareto approach, IEEE trans-

actions on Evolutionary Computation 3(4): 257.

163

Appendix A

Automated Component–based

MEMS synthesis

A.1 ModeFrontier workflows

This part of abstract contains the ModeFrontier(ESTECO s.r.l 2009) work-

flows used in the research described in chapter 4 that amongst other things

contains settings of the GA itself – mutation rate, crossover probability, etc.

The actual design evaluation and simulation is done by custom Python

(van Rossum 2010) software that accessed the component database, con-

structed the actual MEMS design, evaluated it in SUGAR and returned the

SUGARs response estimates to the ModeFrontier(ESTECO s.r.l 2009).

The ‘poke prowl’ batch script does not implement anything usable in

terms of GA it rather sends notification meaning that GA is still running.

If watchdog program isn’t receiving such notification for certain amount of

time (that is equal to five minutes), it sends message using ‘Prowl’ service

to the researcher stating that current GA experiment has finished and next

successive experiment run can be started.

For the workflows used for the experiments described in chapter 4 please

refer to the figures A.1, A.2, A.3, A.4, A.5, A.6 and A.7.

164

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

(a) Top–level workflow

(b) Variables for one resonators’ leg

Figure A.1: Reference NSGA–II evolution

165

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

Figure A.2: Changing base angle

166

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

Figure A.3: Changing base angle and scaling of whole leg

167

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

Figure A.4: Per–beam scaling and changing the base angle

168

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

Figure A.5: Per–beam scaling and changing all angles

169

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

Figure A.6: Changing all angles between nodes

170

APPENDIX A. AUTOMATED COMPONENT–BASED MEMS
SYNTHESIS

Figure A.7: Replacing all angles between nodes

171

Appendix B

Error–tolerant design synthesis

This appendix contains results for error–tolerant MEMS layout synthesis

experiments that are described in Chapter 5.

Please refer to the tables B.1, B.2, B.3 and B.4 for per–experiment results

for each of attempted experiments.

172

APPENDIX B. ERROR–TOLERANT DESIGN SYNTHESIS

Id
Frequency (Hz) Stiffness by X (N/m) Stiffness by Y (N/m)

Ideal µ σ Ideal µ σ Ideal µ σ

0 14827 14583 518.57 1.9008 2.0584 0.5886 0.5625 0.6125 0.1822
1 14897 14648 531.42 1.9019 2.0595 0.5922 0.5617 0.6116 0.1829
2 14903 14649 539.69 1.9028 2.064 0.5955 0.562 0.6131 0.1838
3 14830 14700 489.85 1.9012 2.0631 0.586 0.5607 0.6115 0.1801
4 14839 14563 535.98 1.8982 2.0508 0.5828 0.5616 0.6098 0.18
5 14827 14582 523.66 1.9008 2.0572 0.5889 0.5625 0.6121 0.1823
6 14843 14591 521.1 1.9019 2.0521 0.586 0.5615 0.6092 0.181
7 14865 14636 502.64 1.9005 2.0435 0.5858 0.5635 0.6091 0.1817
8 14859 14631 501.8 1.9003 2.0533 0.5892 0.5635 0.6123 0.1827
9 14817 14554 522.43 1.9005 2.0441 0.5826 0.562 0.6077 0.18
10 14812 14548 532.48 1.8999 2.0644 0.5885 0.5615 0.6137 0.182
11 14877 14600 542.89 1.8928 2.0466 0.5787 0.5603 0.6091 0.1793
12 14858 14663 496.34 1.9016 2.0605 0.5835 0.5622 0.6125 0.1803
13 14908 14611 562.07 1.8976 2.0579 0.5898 0.5628 0.6137 0.1827
14 14853 14613 522.5 1.9016 2.0578 0.5937 0.5622 0.6118 0.1835
15 14827 14539 544.76 1.8986 2.0453 0.5799 0.5605 0.6071 0.179
16 14827 14548 539.37 1.8974 2.046 0.583 0.5604 0.6075 0.18
17 14812 14547 530.74 1.8999 2.0569 0.5873 0.5615 0.6113 0.1816
18 14883 14614 536.87 1.8951 2.055 0.5831 0.5607 0.6113 0.1804
19 14877 14596 547.46 1.8928 2.052 0.5876 0.5603 0.6108 0.182
20 14835 14681 405.65 1.9017 1.9809 0.3853 0.5622 0.5888 0.1183

Avg. 14851 14605 521.35 1.8994 2.0509 0.5771 0.5617 0.6098 0.1784

Table B.1: Non–tolerant designs

173

APPENDIX B. ERROR–TOLERANT DESIGN SYNTHESIS

Id
Frequency (Hz) Stiffness by X (N/m) Stiffness by Y (N/m)

Ideal µ σ Ideal µ σ Ideal µ σ

0 14010 13842 427.92 1.8398 1.865 0.3179 0.5984 0.616 0.1171
1 14010 13852 435.47 1.8398 1.868 0.3156 0.5984 0.618 0.1168
2 14415 14304 348.06 1.9052 2.0067 0.4388 0.5963 0.6156 0.1138
3 14439 14325 345.95 1.9133 2.0141 0.4374 0.5923 0.6106 0.1129
4 13774 13671 312.05 1.9678 2.0383 0.4122 0.56 0.5714 0.1005
5 14537 14425 355.33 1.9722 2.0993 0.5061 0.5952 0.6152 0.115
6 13849 13741 347.39 1.933 1.9893 0.4356 0.5588 0.5707 0.1036
7 14796 14686 358.89 1.974 2.0976 0.4666 0.6 0.6213 0.1148
8 14209 14104 330.68 1.8489 1.8592 0.3623 0.5731 0.5893 0.1127
9 14636 14520 340.84 1.8224 1.8944 0.41 0.5807 0.594 0.1071
10 13495 13361 326.79 1.8998 1.9027 0.4281 0.5613 0.5659 0.1043
11 14289 14183 333.73 1.9584 2.0229 0.4074 0.6052 0.6188 0.1095
12 14739 14623 358.38 2.027 2.1611 0.5216 0.5859 0.6077 0.1162
13 14739 14628 360.91 2.027 2.1643 0.5212 0.5859 0.6106 0.1168
14 14812 14667 420.63 1.9503 2.033 0.4036 0.6105 0.6248 0.1405
15 14456 14322 384.02 1.8621 1.9321 0.3663 0.6062 0.619 0.1414
16 14345 14207 391.84 1.8791 1.9546 0.3635 0.5857 0.6016 0.133
17 14311 14184 385.33 1.8645 1.9336 0.347 0.5826 0.5982 0.1305
18 14577 14438 383.67 1.889 1.9267 0.366 0.5538 0.5669 0.1348
19 13993 13860 362.48 1.8785 1.9388 0.3595 0.5747 0.586 0.1289
20 14456 14318 380.6 1.8621 1.9291 0.364 0.6062 0.6192 0.1399

Avg. 14328 14203 366.24 1.9102 1.9824 0.4072 0.5862 0.602 0.1195

Table B.2: Robust optimisation–inspired error tolerance

174

APPENDIX B. ERROR–TOLERANT DESIGN SYNTHESIS

Id
Frequency (Hz) Stiffness by X (N/m) Stiffness by Y (N/m)

Ideal µ σ Ideal µ σ Ideal µ σ

0 14724 14583 471.74 1.8939 1.9233 0.3506 0.5986 0.605 0.1061
1 14167 14032 476.44 1.9686 2.0262 0.3805 0.5787 0.5908 0.1043
2 14433 14295 461.4 1.8635 1.8966 0.3486 0.5919 0.5992 0.1058
3 14467 14323 458.32 1.9702 1.9869 0.3371 0.5758 0.5786 0.0975
4 14224 14086 447.2 1.9093 1.9436 0.3502 0.5909 0.5979 0.1036
5 14713 14567 483.44 1.8656 1.906 0.3516 0.5904 0.5997 0.1071
6 14323 14188 463.34 1.8988 1.9375 0.344 0.5868 0.5956 0.1019
7 14589 14456 486.57 1.8725 1.9246 0.3496 0.5925 0.6059 0.1071
8 13899 13769 451.23 1.9437 1.98 0.3362 0.5596 0.5676 0.0947
9 14378 14237 458.61 1.8997 1.9363 0.3513 0.5825 0.5907 0.1033
10 14175 14041 449.72 1.859 1.8875 0.3284 0.5727 0.5793 0.0986
11 13969 13846 436.65 1.886 1.9259 0.3345 0.5625 0.5723 0.0978
12 14378 14244 458.11 1.8904 1.9313 0.3541 0.579 0.5886 0.1043
13 14467 14324 463.4 1.9702 1.9903 0.3387 0.5758 0.5797 0.098
14 14253 14087 370.27 1.8638 1.9623 0.4995 0.5898 0.607 0.1271
15 14253 14081 371.7 1.8638 1.9713 0.5279 0.5898 0.6042 0.1282
16 14168 14010 465.34 1.8775 1.9332 0.3755 0.5773 0.586 0.1111
17 14210 14052 444.08 1.8713 1.9197 0.3694 0.5885 0.5951 0.1119
18 14141 13989 464.89 1.8763 1.9325 0.3766 0.5771 0.5867 0.112
19 14168 14011 464.55 1.8775 1.9319 0.3756 0.5773 0.5866 0.1117
20 14597 14441 438.24 1.9185 1.981 0.3674 0.5942 0.6079 0.1164

Avg. 14319 14174 451.68 1.8971 1.9442 0.3689 0.5825 0.5916 0.1071

Table B.3: Response–dependant error tolerance

175

APPENDIX B. ERROR–TOLERANT DESIGN SYNTHESIS

Id
Frequency (Hz) Stiffness by X (N/m) Stiffness by Y (N/m)

Ideal µ σ Ideal µ σ Ideal µ σ

0 11986 11906 231.21 1.4311 1.5127 0.3461 0.635 0.6712 0.1485
1 11196 11127 198.2 1.5487 1.6281 0.3376 0.596 0.6273 0.1267
2 11373 11293 223.63 1.4823 1.5546 0.3434 0.6326 0.6644 0.1408
3 11354 11286 198.3 1.6123 1.7097 0.3811 0.6681 0.7101 0.1575
4 11910 11841 199.58 1.5327 1.6028 0.3239 0.6696 0.6998 0.1338
5 10894 10822 207.15 1.5095 1.5832 0.3293 0.5889 0.6181 0.1242
6 11484 11405 227.99 1.4223 1.508 0.3436 0.6071 0.6434 0.1409
7 11410 11331 217.56 1.4795 1.5581 0.3411 0.6177 0.6493 0.1343
8 10830 10766 192.78 1.8524 1.9413 0.362 0.5709 0.5995 0.1103
9 11424 11352 222.94 1.7081 1.8037 0.3715 0.6626 0.6989 0.1374
10 11511 11441 202.63 1.6096 1.7032 0.3845 0.6889 0.7309 0.1652
11 11529 11444 239.42 1.4181 1.4989 0.3522 0.62 0.655 0.1492
12 10409 10344 169.76 1.8704 1.9051 0.264 0.6443 0.6561 0.0915
13 10993 10917 227.96 1.5619 1.6503 0.3511 0.6062 0.6405 0.1324
14 10481 10418 182.05 1.7627 1.839 0.3441 0.6499 0.6779 0.1227
15 11749 11669 244.81 1.8282 1.9148 0.3865 0.6851 0.7175 0.1372
16 12013 11931 246.76 1.6854 1.7657 0.3495 0.6793 0.7132 0.1393
17 11228 11159 214.79 1.5883 1.6827 0.3472 0.6235 0.6604 0.1318
18 10437 10375 189.66 1.7586 1.8416 0.35 0.6005 0.6292 0.1168
19 11582 11498 234.59 1.5386 1.6204 0.3545 0.628 0.6612 0.1386
20 11978 11898 232.28 1.6671 1.7531 0.3551 0.6753 0.7104 0.1385

Avg. 11323 11249 214.48 1.6128 1.6941 0.3485 0.6357 0.6683 0.1342

Table B.4: Error tolerance in separate objective

176

Appendix C

Miscellaneous simulation

settings

C.1 Material properties

The numerical simulation require definition of properties of material that is

used for particular MEMS design. As the material strongly influences the

estimated responses, it was decided to prepare a list used settings in this

appendix for results to be easily reproduced. Please refer to the Table C.1

for the physical environment definitions and to the listing C.1 for the SUGAR

code used to define given environment properties in performed experiments.

Listing C.1: Definition of material ‘p1’ used for experiments in SUGAR

syntax

1 poly = mate r i a l {
Poisson = 0 . 3 ,

3 thermcond = 2 .33 ,

v i s c o s i t y = 1.78 e−5,

5 f l u i d = 2e−6,

dens i ty = 2300 ,

7 Youngsmodulus = 165 e9 ,

p e r m i t t i v i t y = 8.854 e−12,

9 s h e e t r e s i s t a n c e = 20 ,

177

APPENDIX C. MISCELLANEOUS SIMULATION SETTINGS

Physical properties of material (MUMPS) used for MEMS
Ambient temperature 30◦C

Poisson’s Ratio 0.3
Air viscosity 1.78× 10−5 kg/m · s

Gap between the device and the substrate 2 µm
Layer thickness 1.78 µm

Material density 2.3× 103 kg/m3

Permittivity 8.854× 10−12 C2/µN · µm2

Sheet resistance 20 Ω/�
Thermal conductivity 2.33 10−6/C

Thermal expansion 2.3 10−6/C
Young’s modulus 1.65× 1011 N/m2

Table C.1: Physical environement properties used in experiments

s t r e s s = 0 ,

11 s t r a i n g r a d i e n t = 0 ,

thermalexpans ion = 2 .3 e−6,

13 ambienttemperature = 30

}
15

p1 = mate r i a l {
17 parent = poly ,

h = 1.78 e−6,

19 Poisson = 0 . 3 ,

thermcond = 2 .33 ,

21 v i s c o s i t y = 1.78 e−5,

f l u i d = 2e−6,

23 dens i ty = 2300 ,

Youngsmodulus = 165 e9 ,

25 p e r m i t t i v i t y = 8.854 e−12,

s h e e t r e s i s t a n c e = 20 ,

27 s t r e s s = 0 ,

s t r a i n g r a d i e n t = 0 ,

29 thermalexpans ion = 2 .3 e−6,

ambienttemperature = 30

31 }

178

APPENDIX C. MISCELLANEOUS SIMULATION SETTINGS

C.2 I–shaped mass

As SUGAR source code for I–shaped mass that is used for flexure resonator

is not easily accessible, it is listed (listing C.2) here for convenience of future

researchers. The dimensions l1, l2, w1, w2 define the dimensions of given mass

as denoted on Figure C.1.

Image from (Zhang 2006, page 49)

Figure C.1: I–shaped mass dimensions

Listing C.2: Definition of I–shaped mass in SUGAR syntax

1 −− comb{1 ,2} are comb connect ion po in t s

−− l {1 ,2} and w{1 ,2} are mass dimensions as de f ined in

3 subnet i shaped mass (

leg1 , leg2 , leg3 , leg4 ,

5 comb1 , comb2 , mater ia l ,

l1 , l2 , w1 , w2 , oz

7)

local parent = mate r i a l

9

cur rnodes [” l e g1 ”] = l eg1

11 cur rnodes [” l e g2 ”] = l eg2

cur rnodes [” l e g3 ”] = l eg3

13 cur rnodes [” l e g4 ”] = l eg4

15 cur rnodes [” g r i l l 1 ”] = comb1

cur rnodes [” g r i l l 2 ”] = comb2

17

l e g ba s e w id th = (w1 − w2) / 2

179

APPENDIX C. MISCELLANEOUS SIMULATION SETTINGS

19 −− l e n g t h i s two t imes b i g g e r because nodes are

connected in cen ter

l e g b a s e l e n g t h = (l 1 − l 2)

21

myOz = oz or 0

23

mfbeam3d {
25 n (” g r i l l 1 ”) , n (” t o p g r i l l t o m a s s ”) ;

mate r i a l=parent ,

27 l=l eg ba s e w id th /2 ,

w=l2 , oz=myOz

29 }
mfbeam3d {

31 n (” t o p g r i l l t o m a s s ”) , n (” l e g1 ”) ;

mate r i a l=parent ,

33 l=l e g b a s e l e n g t h ,

w=leg base width , oz=myOz + deg (90)

35 }
mfbeam3d {

37 n (” t o p g r i l l t o m a s s ”) , n (” l e g2 ”) ;

mate r i a l=parent ,

39 l=l e g b a s e l e n g t h ,

w=leg base width , oz=myOz − deg (90)

41 }
mfbeam3d {

43 n (” t o p g r i l l t o m a s s ”) ,

n (” b o t t o m g r i l l t o m a s s ”) ;

45

mate r i a l=parent ,

47 l=w2 + leg base width ,

w=l2 , oz=myOz

49 }
mfbeam3d {

51 n (” b o t t o m g r i l l t o m a s s ”) , n (” l eg3 ”) ;

mate r i a l=parent ,

180

APPENDIX C. MISCELLANEOUS SIMULATION SETTINGS

53 l=l e g b a s e l e n g t h ,

w=leg base width , oz=myOz + deg (90)

55 }
mfbeam3d {

57 n (” b o t t o m g r i l l t o m a s s ”) , n (” l eg4 ”) ;

mate r i a l=parent ,

59 l=l e g b a s e l e n g t h ,

w=leg base width , oz=myOz − deg (90)

61 }
mfbeam3d {

63 n (” b o t t o m g r i l l t o m a s s ”) , n (” g r i l l 2 ”) ;

mate r i a l=parent ,

65 l=l eg ba s e w id th /2 ,

w=l2 , oz=myOz

67 }
end

181

