
1

Chemosphere, Volume 73, Issue 4, September 2008, Pages 551-556

A sensitive and robust method for the determination of alkylphenol
polyethoxylates and their carboxylic acids and their transformation
in a trickling filter wastewater treatment plant

Yoong K.K. Koh1, Tze Y. Chiu2, Alan R. Boobis1, Elise Cartmell2, Simon Pollard2,

Mark D. Scrimshaw3* and John N. Lester2

1 Faculty of Medicine, Division of Experimental Medicine and Toxicology, Imperial

College London, Hammersmith Campus, London, W12 ONN, UK.
2 Centre for Water Science, School of Applied Sciences, Cranfield University,

Bedfordshire, MK43 0AL, UK.
3 Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH,

UK.

*Corresponding author: mark.scrimshaw@brunel.ac.uk, Tel.: +44(0)1895267299, Fax:

+44(0)1895269761.

Abstract

This paper presents a method for the determination of alkylphenol, alkylphenol

polyethoxylates (APEO) and alkylphenol ethoxycarboxylates (APEC) in the aqueous

and solid phase of wastewater samples. Quantification was by liquid chromatography

tandem mass spectrometry. Method detection limits for the analytes in the dissolved

phase were 1.2 to 9.6 ng l-1 for alkylphenol, short chain (n = 1–3) APEO and APEC,

and 0.1 – 4.1 ng l-1 for long chain alkylphenol polyethoxylates. The method detection

limit for adsorbed phase samples ranged from 6 to 60 ng g-1 for AP, short chain

APEO and APEC; and long chain APEO ranged from 0.5 – 20 ng g-1. The method

was utilised to evaluate the removal of these compounds over a trickling filter

wastewater treatment plant. The major biotransformation products of nonylphenol

polyethoxylate, nonylphenoxy acetic acid and nonylphenoxy monoethoxy acetic acid

were present in the final effluent at concentrations ranging from 35 – 1797 ng l-1.

Short chain APEO were present in higher proportions in the suspended solids , due to

their higher affinity to particulate matter compared to the long chain oligomers.
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1. Introduction

Alkylphenol polyethoxylates (APEO) are non-ionic surfactants widely used in

commercial and domestic applications with a worldwide production of approximately

500 kilotons (Petrovic and Barcelo, 2001a; Langford and Lester, 2002). Although a

voluntary ban on APEO use in household cleaning products was introduced in 1995 in

northern Europe (including the UK), followed by restrictions on industrial cleaning

applications in 2000 (Renner, 1997); these surfactants are still used in substantial

amounts in institutional and industrial applications. However, octylphenol ethoxylates

(OPEO) and nonylphenol ethoxylates (NPEO) remain two of the most common

surfactants in commercial use. APEO are continuously discharged into sewage

treatment works (STW) or directly released into the aquatic environment (Langford et

al., 2005).

Environmental concern in relation to these compounds results from their estrogenic

activity (Jobling and Sumpter, 1993; Jobling et al., 1996; Routledge and Sumpter,

1996; Sonnenschein and Soto, 1998; Petrovic and Barcelo, 2002). Biodegradation of

APEO during biological wastewater treatment can occur under both aerobic and

anaerobic conditions and results in the production of more persistent and estrogenic

metabolites; short chain APEO and alkylphenols (AP) including nonylphenol (NP),

octylphenol (OP) and AP mono- to triethoxylates (NP1EO, NP2EO and NP3EO)

(Giger et al., 1984). The biodegradation of APEO has been well documented (Ahel et

al., 1994a; Di Corcia et al., 1998; Di Corcia et al., 2000; Jonkers et al., 2001; Staples

et al., 2001; Petrovic and Barcelo, 2003; Langford et al., 2007). Information about the

concentrations and mass balances of APEO and their degradation metabolites in the

environment, especially STW, and sewage sludge treatment processes (Scrimshaw

and Lester, 2002), is essential in assessing the environmental impact of these

compounds.

Analysis of APEO and their metabolites is a complex process due to the ethoxylated

oligomers and alkyl-chain isomers which can be present (Langford et al., 2004;

Scrimshaw et al., 2004). Gas chromatography (GC) and liquid chromatography (LC),

are now commonly used for the determination of APEO. The direct use of GC for

analysis is limited to surfactants with lower numbers of ethoxy groups, while
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metabolic products and long chain ethoxylates require derivatization to increase

volatility. Traditionally, LC analysis with fluorescence (Kiewiet and De Voogt, 1996;

Bennie et al., 1997; Ahel et al., 2000; Marcomini et al., 2000) or ultraviolet (Ahel and

Giger, 1985a, b; Zhou et al., 1990) detection has been widely used for monitoring

APEO. However, these techniques often lack the sensitivity and specificity required at

low concentrations. Liquid chromatography coupled with tandem mass spectrometry

(MS/MS) is now increasingly being used to determine these alkylphenolic compounds

(Jonkers et al., 2001; Houde et al., 2002; Loyo-Rosales et al., 2003; Petrovic et al.,

2003; Schmitz-Afonso et al., 2003; Jahnke et al., 2004). Most studies describe

LC/MS/MS analysis of only a limited number of the analytes either NPEO and

NPECs (Jonkers et al., 2001; Houde et al., 2002; Petrovic et al., 2003), AP1-3EOs and

AP (Ferguson et al., 2001), or AP1-5EOs, AP and APEC (Loyo-Rosales et al., 2003;

Schmitz-Afonso et al., 2003; Jahnke et al., 2004; Loos et al., 2007).

This study aims to develop a highly sensitive and specific analytical method to detect

an increased number of alkylphenolic compounds (NP1-12EO, OP1-12EO, NP and OP),

including carboxylated metabolites in sewage matrices (in both dissolved and

adsorbed samples) and attempts to achieve lower detection limits. This method is

successfully applied to a trickling filter works (TF) over which a mass balance has

been attempted. The trickling filter work was chosen since many of the STWs in the

south eastern of U.K. still employ these processes and there are not many studies

reported in the literature on the fate and occurrence of APEO in such processes.

2. Experimental section

2.1. Reagents and chemicals

The technical 4-nonylphenol mixture of chain isomers and 4-tert-octylphenol were

obtained from Sigma-Aldrich (Gillingham, Dorset, UK). The long-chain OPEO and

NPEO were available in technical mixtures (Igepal CO210, CO520, CO720) and

(Igepal CA210, CA520, CA720) respectively containing a range of oligomers (Sigma-

Aldrich). Nonyl- and octyl-phenoxy acetic acid (NP1EC, OP1EC), 4-nonyl- and

octylphenolmono- and diethoxylate (NP1–2EO, OP1–2EO) were obtained from QMX

Laboratories (Thaxted, Essex, UK). Standards for NP2EC, NP3EC, OP2EC, OP3EC

were not available commercially. Due to the absence of commercially available

standards, NP2EC and NP3Ec were quantified with NP1EC standard, assuming similar

response factors. Similarly OP2EC and OP3EC were determined with OP1EC standard

assuming similar response factors.
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Acetone, ethylacetate (EtOAc), acetonitrile (ACN), methanol (MeOH) and

dichloromethane (DCM) were obtained from Rathburn (Walkerburn, Scotland, UK)

and acetic acid from Sigma-Aldrich. Single standard stock solutions were prepared in

acetonitrile. Reagent grade MilliQ water (18.2 MΩ) (Millipore, Watford, UK) was

used for spikes and preparation of solutions. The working standard solutions were

prepared by further diluting the stock standard solutions with acetonitrile/MilliQ-

water (50:50 v/v).

2.2. Analytical procedure

For determination of dissolved concentrations, settled sewage (100 ml) or final

effluent (250 ml) was filtered through a Whatman GF/C filter (0.45 – 1 µm)

(Whatman, Maidstone, UK.). The 100ml/250ml aqueous phase was then utilised for

solid phase extraction (SPE) as described below. Solid phase extraction was

performed using a syringe barrel tC18 (500 mg, 3cc) cartridge. The appropriate

volume of sample was loaded onto the cartridges which were preconditioned with 5ml

methanol followed by 5ml MilliQ water. The flow rate for sample extraction was kept

constant between 5-10 ml min-1 under vacuum using Waters Sep-Pak Vacuum

Manifold (Waters Ltd, Watford, UK.). When the sample had passed through, 4 ml of

reagent grade water was used to rinse the solid phase; the cartridge was then dried by

drawing air through it for half an hour. The analytes were eluted using 10 ml EtOAc,

10 ml DCM followed by 5 ml 0.1% acetic acid in methanol. A rotary evaporator

(Heidolph Instruments, Schwabach, Germany) was employed to concentrate the

extracts to 1 ml which was then evaporated to complete dryness under a gentle stream

of nitrogen. The extract was reconstituted with 0.25 ml ACN/MQ-H2O (50:50 v/v)

and transferred to an autosampler vial prior to analysis using LC/MS/MS.

The determination of alkylphenolic compounds in the adsorbed phase was also

performed in this study. In order to prevent biotransformation and possible thermal

decomposition of the long chain alkylphenolic compounds, samples were freeze-dried.

A solvent mixture 10ml MeOH/Acetone (1:1 v/v) was used to extract the

alkylphenolic compounds. A clean-up step involved using silica SPE cartridge and

elution of all analytes from the SPE using 10ml of 10% acetic acid in MeOH.

Subsequent to the elution of these compounds from the silica SPE, reconstituted with

0.25 ml ACN/MQ-H2O (50:50 v/v) and transferred to an autosampler vial prior to

analysis using LC/MS/MS,
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2.3. LC/MS/MS analysis

Analytes were determined using LC/ESI/MS/MS consisting of an HPLC (Waters

Alliance HPLC system 2695) coupled to a Waters Quattro Premier XE mass

spectrometer with a Z-Spray ESI source (Micromass, Manchester, UK.). The AP,

APEC and APEO were separated on a Gemini C18 column (3µm particle size,

100mm x 2mm i.d., Phenomenex, Macclesfield, UK.). The mass spectrometer was

operated in the negative electrospray ionisation (ESI–) (i.e. AP and APEC) or positive

electrospray mode (ESI+) (i.e. APEO) using multiple reaction monitoring (MRM).

Instrument control, data acquisition and evaluation were performed with MassLynx

software 4.1 (Waters Ltd, Hertfordshire, UK.). Nitrogen was used as the nebuliser gas

and argon as the collision gas. The conditions for detection by the mass spectrometer

were as follows, capillary voltage, 3.20kV in the positive mode and -2.3kV in the

negative mode, extractor lens at 3.0V, RF lens at 0.5 V in the positive mode and 1.0V

in the negative mode, multiplier voltage, 650V, desolvation gas flow, 1000 l h-1, cone

voltage as shown in Table 1, cone gas flow at 50 l h-1, desolvation temperature at

350°C and source temperature at 120°C.

Two separate chromatographic runs were used, one for the separation of AP1-12EO;

and the other for AP1-2EO, APEC and APs. In both cases, separation was achieved

using MQ water containing 20mM NH4OH (solvent A) and ACN containing 20mM

NH4OH (solvent B). The use of ammonia results in formation of the NH4
+ adduct ions

by the APEO, rather than more stable sodium adducts, which facilitates fragmentation

of parent ions in the collision cell of the MS/MS (Table 1). The gradient conditions

for AP1-12EO were; time zero, 45% solvent B (5 min) followed by a linear increased

in gradient to 80% solvent B which was maintained for 40 min. Following this the

gradient, the conditions were maintained at 90% solvent B for 5 min before the

column was re-equilibrated to starting conditions at 20% solvent B. The total run time

was 50 min and A sample volume of 10µl was injected at a flow rate of 0.2 ml min-1.

Conditions for the AP1-2EO, APEC and APs started with 20% solvent B increasing to

45% over 10 min. This was followed by a linear increased to 80% solvent B which

was maintained for 20 minutes. Following the increase gradient from 80 to 90%

solvent B, the conditions were maintained at 90% solvent B for 5 min before the
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column was re-equilibrated to starting conditions at 20% solvent B for 10 min prior to

next run. Similarly, the total run time for this analysis was 50 min with 10 µl sample

volume injected and flow rate was kept at 0.2 ml min-1.

3. Results

3.1 Optimization of LC and MS/MS conditions

The optimized LC/MS/MS conditions used for compound identification are presented

in Tables 2. Analysis was performed in the MRM mode, parent ions were [M – H]–

for AP, APEC, and [M + NH4]+ for APEO. The optimized characteristic MRM

precursor to product ion pairs monitored for the quantification of the compounds

together with cone voltage, collision energy and sensitivity of the MS/MS for the

compounds investigated is presented in Table 1. The compound-dependent instrument

detection limit (IDL) was calculated by a S/N ratio of 3 from the MRM

chromatograms for the standard mixture with an injection volume of 10 µl. The

sensitivity of the instrument for AP, short chain APEO and APEC ranged from 3 – 58

pg. The sensitivity for the NPEO ranged from 0.2 to 13.4 pg while OPEO ranged from

0.1 to 8.6 pg.

Please insert Table 1.

3.2 Evaluation of method performance

The recoveries and relative standard deviations were determined in experiments

where the analytes in the dissolved phase were in the concentration range of 0.1 µg l-1

(low spike) and 1 µg l-1 (high spike) using MQ water and wastewater samples (n = 3).

Filtration of the wastewater samples was undertaken prior to SPE to remove particles.

Recoveries in MQ water (low and high spikes) ranged from 71% to 98% for AP,

APEO and APEC. Generally, the relative standard deviations (RSDs) were in the

range of 2 to 7. Typically, recoveries for settled sewage (low and high spikes) ranged

from 62% to 98% for AP, APEO and APEC. Relative standard deviation obtained

were 2 to 8 for these alkylphenolic compounds. Recovery values and RSD were

similar for spiked (low and high) final effluent samples for all alkylphenolic

compounds.

The recoveries and relative standard deviations were also determined in experiments

of adsorbed samples where the analytes were in the concentration range of 0.125 µg g-

1 (low spike) and 1.25 µg g-1 (high spike) using suspended solids samples (n=3) and
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sludge samples (n=3). Recoveries for adsorbed phased ranged from 51% to 105% for

AP, APEO and APEC for low and high spikes and their corresponding RSDs were in

the range of 1 to 14. Recoveries in spiked sludge ranged from 51% to 104% for AP,

APEO and APEC and their RSDs ranged from 1 to 8. This methodology demonstrates

that consistent recovery values and low RSD could be obtained from different

matrices.

3.3 Fate and behaviour in a trickling filter works

The method was applied for the determination of nonyl- and octylphenol compounds

in settled sewage and final effluent at a trickling filter treatment plant. Sampling was

undertaken winter, with the sewage temperature at 10°C. The concentrations of the

nonylphenol ethoxylates and associated carboxylates are shown in Fig. 1,

demonstrating the change in distribution following the biological process and the

affinity of the parent nonylphenol for the solid phase. In the settled sewage, the higher

ethoxylates (NP4-12EO) accounted for 91% of the nonylphenol compound flux (3908

mg d-1) in the settled sewage, with a similar distribution observed for the octylphenol

oligomers, with the OP4-12EO accounting for 58% of the flux (218 mg d-1) in the

settled sewage (Table 2). Following the biological treatment stage, the distribution of

both nonyl- and octylphenol compounds was significantly altered, with carboxylated

metabolites with one to three ethoxy units dominating the distribution of nonylphenol

compounds (58%) and being significant for the octylphenols (OP1-3EC, 20%). Overall

mass balances for the compounds indicate that 64% of the nonylphenol compounds

and 86% of the octylphenols passed through treatment to the final effluent and that

there was a significant change in the distribution of oligomers due to cleavage of

ethoxy units and carboxylation through biological treatment.

Please insert Fig. 1.

Please insert Table 2.

4. Discussion

4.1. Optimization of the conditions for LC/MS/MS

The APEO exhibit a high affinity for alkali metal ions resulting in the formation of

sodium adducts [M + Na]+ rather than the protonated molecules in unmodified mobile

phases (Di Corcia et al., 2000; Jonkers et al., 2001; Petrovic and Barcelo, 2001b; Koh

et al., 2005). However, the sodium adducts tend to be stable and do not fragment in

the collision cell, and ammonium adducts have frequently been used (Takino et al.,
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2000; Cohen et al., 2001; Houde et al., 2002; Jonkers et al., 2003; Loos et al., 2007).

In this study, the use of ammonium adducts for MRM detection enhanced detection

limits due to high fragmentation in the collision cell.

Identification of the compounds was ensured by monitoring two characteristic

precursor-product ion transitions and obtaining an exact retention time match. For

quantification, the most sensitive transition was used. However, some compounds

produced only one sensitive product ion (refer to Table 1). The characterization and

quantification of APEO mixtures in environmental matrices is a challenge because of

the complexity of the mixtures available, there are no individual standards

commercially available. Quantitative results for individual APEO were interpreted

with caution because of the variations in the oligomer distributions. Peak integration

was performed automatically using MassLynx 4.1 (Micromass). Quantification using

external calibration with standard solution mixtures was used. Calibration standards

obtained through linear regression was r2 = 0.99 for AP, APEO and APEC. The

instrument variability of the LC/MS/MS is usually <5%.

4.2 Evaluation of method performance

Method detection limit (MDL) was determined by subjecting the entire analytical

extraction and detection procedure to the determination of spiked reagent water,

settled sewage and final effluent samples in both aqueous and adsorbed phases. The

MDL determined for the entire SPE/LC/MS/MS ranged from 1.2 to 9.6 ng l-1 for AP,

APEO and APEC (Table 1). The MDL ranged from 0.1 – 4 ng l-1 for long chain

APEO (Table 1). The comparison of MDL is restricted because of the different

sample matrices, the spectrum of analytes and the reported information on LODs and

how they were derived. In comparison to methods that allow the determination of

selected APEO, APEC and AP in aqueous samples, MDLs of the presented

LC/MS/MS method for individual analytes are mostly lower and in some cases in the

same range as in other studies (Table 3). Method detection limit (MDL) was also

determined for adsorbed phase samples in ~0.2 g TSS samples. The MDL determined

for the entire SPE/LC/MS/MS ranged from 6 to 60 ng g-1 for AP, short chain APEO

and APEC. The MDL ranged from 0.5 – 20 ng g-1 for long chain APEO.

Please insert Table 3.

4.3 Mass balance and removal of alkylphenolic compounds
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The difference in concentrations between the NPEC and OPEC observed in this study

is in agreement with previous studies in which NPnEC dominated at 64% of the total

in relation to the OPnEC (Ahel et al., 1994b). The major biotransformation product of

the NPEO, NP1-3EC, formed during the wastewater treatment, were present in the

final effluent at relatively high concentrations (35 – 1797 ng l-1) as a result of

biodegradation of higher-chain APEO. As demonstrated in this study progressive

shortening of the ethoxylate chain occurs during the biological stage of wastewater

treatment, although this is not efficient enough to remove all of the higher oligomers

(AP4-12EO) which were still observed in the final effluent. The presence of anaerobic

zones within the stratified layers of trickling filters, may also contribute to the

formation of parent alkylphenols. Under anaerobic conditions the alkylphenols are

thought to be the final degradation products (Montgomery-Brown and Reinhard, 2003)

and it is possible that the flux of these compounds, which may be adsorbed in the

humus sludge, could account for the mass balance at the works. The final effluent

concentration of nonylphenol found at this plant would meet the PNEC value set by

the UK Environment Agency (330 ng l–1), although it would fail for octylphenol (6 ng

l–1).

4.5 Comparison with other countries

Few studies have reported on the fate and behaviour of APEO during trickling filter

treatment. However, two studies indicated removal of APEO (68 – 77%) from a

domestic trickling filter works STW (Brown et al., 1987; Gerike, 1987). This efficient

removal capacity was attributed to its high removal of COD which was comparable to

that for an activated sludge process. This study corroborated with the findings of

Gerike, 1987 in that APEO do degrade, however, estrogenic carboxylated metabolites

are generated in the process. The concentrations of APEO and their degradation

products reported here are slightly lower or within the concentration ranges reported

for the same analytes in STW effluents of other countries (Ying et al., 2002).

5. Conclusions

An analytical method for alkylphenolic compounds has been developed, consisting of

a SPE extraction (dissolved phase); and solvent extraction with silica clean-up

(adsorbed phase) followed by LC/MS/MS detection. The use of a triple quadrupole

instrument in the MRM mode demonstrated high selectivity and sensitivity. The MDL

determined for the entire method ranged from 1.2 to 9.6 ng l-1 for AP, AP1-3EO and

APEC and 0.1 – 4.1 ng l-1 for AP4-12EO. The results demonstrate the importance of
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determining not only the alkylphenols and ethoxylates, but also the APEC

intermediates, as the highest concentrations found in the final effluent were for

NP1EC and NP2EC (476 and 1797 ng l-1 respectively). Concentrations of NP (28 ng l-1

in dissolved phase sample) were not found above the predicted no-effect

concentration (PNEC) of 0.33 µg l-1, although this study demonstrated that in

comparison to the activated sludge process, trickling filters are inefficient at removal

of these compounds.
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Table 1. Characteristic LC/MS/MS parameters and detection limits of alkylphenol polyethoxylates (NPEO and OPEO).

Compounds
m/z

precursor
[M + NH4]

+
Dwell time (msec) Cone

(V)
Product ions (Collision

potential)
Retention time

(min)
IDL
(pg) Recoveries MDL (ng l-1)

(RSD)
MDL (ng g-1)

(RSD)

NP3EO 370 100 40 a353(10), 226.5(20) 27.87 0.2 96(9) 0.1 (2) 0.5 (3)
NP4EO 414 90 30 a397(14), 270(20) 27.71 4.7 89(3) 1.5 (2) 7.5 (2)
NP5EO 458 90 30 a440(20), 315(25) 27.63 7.9 85(3) 2.1 (2) 10 (2)
NP6EO 502 90 30 a485(20), 359(30) 27.47 13.4 93(2) 2.7 (2) 13 (3)
NP7EO 546 90 30 a529(23), 403(25) 27.23 8.3 81(2) 0.8 (2) 4 (5)
NP8EO 590 90 30 a573(25), 447(27) 27.07 3.5 85(2) 0.7 (2) 4 (6)
NP9EO 634 90 30 a617(25), 335(30) 26.82 2.9 93(2) 2.2 (3) 11 (8)
NP10EO 678 90 30 a661(25), 132.5(40) 26.66 3.0 97(4) 2.1 (3) 10 (2)
NP11EO 722 90 30 a705(25), 291(40) 26.42 1.9 98(2) 0.9 (2) 4.5 (3)
NP12EO 766 90 30 a749(30), 291(35) 26.26 1.0 95(2) 1.1 (4) 5.5 (4)

OP3EO 356.5 100 20 a338.5(10), 227(10) 22.84 4.9 78(10) 1.8 (1) 9 (4)
OP4EO 400.5 100 20 a382.5(15), 270.5(15) 22.84 5.9 83(5) 4.1 (2) 20 (3)
OP5EO 444 100 20 a426.5(10),315(10) 22.76 0.2 85(7) 1.4 (3) 7 (2)
OP6EO 488 90 30 a471(15), 359(20) 22.68 6.0 87(5) 3.0 (2) 15 (4)
OP7EO 532 90 30 a515(20), 403(20) 22.60 8.6 87(3) 0.6 (2) 3 (5)
OP8EO 576 90 30 a559(20), 447(25) 22.43 7.9 92(2) 1.3 (3) 6.5 (6)
OP9EO 620 90 30 a603(20), 491(25) 22.27 5.5 85(2) 2.0 (5) 10 (2)
OP10EO 664 90 30 a647(20), 535(30) 22.11 3.0 86(2) 0.8 (3) 4 (2)
OP11EO 708 90 30 a690(20), 579(30) 22.03 0.1 93(2) 0.1 (2) 0.5 (3)
OP12EO 752 90 30 a735(20), 623(30) 21.87 0.1 86(3) 0.5 (1) 2.5 (2)

bNP1EO 282 120 25 a127(25), 265(25) 29.11 40 76(3) 1.2 (2) 6 (3)
bNP2EO 326 100 40 a183(40), 121(40) 28.88 7 76(3) 2.5 (2) 12 (2)
cNP1EC 263.5 100 20 a205(20), 106(30) 11.32 3 73(2) 2.5 (2) 12 (2)
cNP2EC 307 100 20 205(20) 11.32 NA - NA NA
cNP3EC 351 100 20 205(20) 11.32 NA - NA NA
bOP1EO 268 120 15 a113(10), 250(20) 25.92 58 69(3) 9.6 (2) 48 (4)
bOP2EO 312 100 20 a183(10), 295(10) 25.73 5 64(2) 5.1 (2) 25 (2)
cOP1EC 277.5 100 20 a219(18), 133(40) 10.87 3 77(3) 12 (6) 60 (3)
cOP2EC 321 100 20 219(18) 10.87 NA - NA NA
cOP3EC 365 100 20 219(18) 10.87 NA - NA NA
cNP 219 100 30 a132.5(30), 147(35) 29.43 5 73(2) 2.3 (2) 11 (5)
cOP 205.5 100 30 a134(25), 106(20) 26.32 4 53(3) 6.9 (3) 34 (4)
aMRM used for quantification; b[M + NH4]

+; c[M – H]–; IDL were calculated by a S/N of 3 from the MRM chromatograms of the standard solution mixture; MDL for the
SPE-LC/MS/MS procedure were determined from spiked MQ (0.1 µg l-1) in 250ml reagent water; NA: Not applicable; data for the adsorbed phase was based on spike at
0.125 μg g-1 (low spike) and 1.25 μg g-1 (high spike) in 0.2 g of sewage sludge. MDL for the SPE-LC/MS/MS procedure were determined from alkylphenolic compounds at
0.125 µg g-1 in 0.2 g sludge dwt; due to varying amounts of solids in the influent and effluent suspended solids (dry weight), a standardised weight of 0.2 g of suspended
solids/sludge were used to derive the MDL; similar MDLs were obtained for sludge and suspended solids.
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Table 2. Fluxes and change across the biological treatment stage at the trickling filter works.

Flux of nonylphenol compounds (mg d-1) Flux of octylphenol compounds (mg d-1)

Compounds
Settled
sewage

Final
effluent

Change
(mg d-1)

Change
(%) Compounds

Settled
sewage

Final
effluent

Change
(mg d-1)

Change
(%)

NP 65 57 -8 -12 OP 10 12 +2 +20

NP1EC 48 309 +261 +544 OP1EC 4 4 0 0

NP2EC 11 1168 +1157 +10518 OP2EC 4 33 +29 +725

NP3EC 2 23 +21 +1050 OP3EC 0 1 +1 +900

NP1EO 152 89 -63 -41 OP1EO 42 46 +4 +10

NP2EO 46 75 +29 +63 OP2EO 28 38 +10 +36

NP3EO 13 5 -8 -62 OP3EO 4 8 +4 +100

NP4EO 207 170 -37 -18 OP4EO 9 6 -3 -33

NP5EO 311 136 -175 -56 OP5EO 9 12 +3 33

NP6EO 674 165 -509 -76 OP6EO 21 6 -15 -71

NP7EO 638 118 -520 -82 OP7EO 34 8 -26 -76

NP8EO 533 88 -445 -83 OP8EO 22 6 -16 -73

NP9EO 457 70 -387 -85 OP9EO 16 3 -13 -81

NP10EO 375 42 -333 -89 OP10EO 9 2 -7 -78

NP11EO 240 37 -203 -85 OP11EO 3 1 -2 -67

NP12EO 134 20 -114 -85 OP12EO 3 1 -2 -67

Total flux 3906 2572 -1334 Total flux 218 187 31

Composition Composition
%NP1-3EO 5% 7% %OP1-3EO 34% 49%
%NP4-12EO 91% 33% %OP4-12EO 58% 24%
%NP1-3EC 2% 58% %OP1-3EC 4% 20%
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Table 3. Comparison of method detection limit with other publications.
Analyte MDL

(this
study)

MDL(Jahnke
et al., 2004)a

MDL(Petrovic
et al., 2002)b

MDL(Rudel et
al., 1998)c

MDL(Loos et
al., 2007)d

MDL(Houde
et al., 2002)e

MDL(Jonkers
et al., 2003)f

NP1EO 1.2 10 100 14.4 100 50 15
NP2EO 2.5 0.2 40 13 100 20 6
NP1EC 2.5 0.1 20 86.7 1 10 13
OP1EO 9.6 12 100 10 100 - -
OP2EO 5.1 0.1 40 3.3 100 - -
OP1EC 12 0.04 20 - 1 - -

NP 2.3 2.0 20 8.4 10 - 11
OP 6.9 4.0 20 6.1 5 - -

a, d, e[APEO + NH4]
+ adducts and [M – H]– ions (AP and APEC) monitored using LC/ESI/MS/MS.

b, f[APEO + NH4]
+ adducts and [M – H]– ions (AP and APEC) monitored using LC/ESI/MS.

cGC/MS after derivatization.
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Fig. 1. Concentrations of NP, NP1-3EC and NP1-12EO showing partitioning between
the dissolved and adsorbed fraction in settled sewage (A) and final effluent (B).


