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In this study, we have investigated an exciton confined in a single quantum well. For the first time, we 

have compared the different methods of approximating the effective two dimensional Coulomb potentials 

which had been previously reported in the literatures. The effect of different previously introduced trial 

wave functions on the exciton binding energy is also investigated. In order to have a consistent and stable 

calculation we have tried to find the true region of variations for free parameters of these trial wave func-

tions. Effects of the barrier thickness and doping fraction are also investigated. 
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1. INTRODUCTION 
 

A better understanding of the electrons and holes 

behavior in semiconductor materials leads to a deep 

insight into the physics of the problem. In the 

nanostructure systems these behaviors become more 

interesting and this is due to some special characteris-

tics like quantum confinement effect. For example, the 

effect of quantum confinement effect on exciton behav-

iors have been also studied vastly during last years [1-

2] and thus much experimental [3-4] and theoretical [5-

7] works have been devoted to the quantitative under-

standing of the physical properties of a single quantum 

well  structure especially in GaAs based ones. 

During last decades, different excitonic properties of 

the nanostructures such as optical properties [8], mag-

netic properties [9], and density of states [10], exciton 

generation rate [11], exciton recombination [12], and 

transport properties [13] have been extensively studied. 

The theoretical studies of confined exciton in quantum 

well structures are usually done with exact diagonali-

zation [14], self-consistent approach [15], Quantum 

Monte Carlo [16], and variational method [17-18]. 

Among these methods, variational technique is a pretty 

simple one which its computer implementation is not so 

difficult. 

In this study we have used a variational method 

with some trial wave functions. Then the binding ener-

gy of an exciton confined in a GaAs(1 – x)Alx / GaAs sin-

gle quantum well (0 < x < 0.35) is calculated. We have 

also compared different approximation types of the ef-

fective two dimensional Coulomb potential of a confined 

exciton. Finally we have investigated the effect of dif-

ferent existing trial wavefunctions on the exciton bind-

ing energy. To find a reliable approach, we have varied 

their free parameters in different regions of variation 

and find the exciton binding energy. By comparing our 

results with previously obtained ones we have tried to 

find the right free parameters. 

 

2. THEORY 
 

An exciton confined in a single quantum well struc-

ture obeys the Hamiltonian of the Senger et al. [19]. In 

the cylindrical coordinate we have, 
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 are the heavy hole effec-

tive mass along the z direction and in the plane per-

pendicular to it [20], ρ  ρe – ρh is the relative coordi-

nate and γ 1 and γ2 are the Kohn-Luttinger band pa-

rameters which are the same as those of used in work 

of Senger et al. These parameters are taken from Ref 

[21]. 

The variables corresponding to different degrees of 

freedom are not analytically separable thus direct solu-

tion of the equation (1) is not simple. Therefore differ-

ent approaches have been devised during last decades 

which include Fourier series expansion [22] and map-

ping onto an equation along a distinct direction. 

The first way for separation of variables is to take 

the averaged two dimensional Coulomb potential as 

[23-24]: 
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Then the equation 1 can be separated along ρ, ze 

and zh as: 
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Where fe,h(ze,h) are some envelop functions, Eb is the 

exciton binding energy and Ee,h are the subband ener-

gies of the electrons and holes. 

Introducing a form factor F() as follows is a second 

way to study the nature of an exciton confined in a 

quantum well [25]: 
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Where K0 is the modified Bessel function. Now we 

have two dimensional Coulomb potential as: 
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Third way for separation of variable is the mapping 

of the three dimensional Coulomb potential onto an 

effective two dimensional Coulomb interaction along 

the ρ direction by introducing of a variational parame-

ter η. In this approach the Coulomb potential term in 

equation (1) can be defined as [26]: 
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Then in the first order approximation η can be ob-

tained from [26]: 
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By having η the average of two dimensional Cou-

lomb potential can be determined. In the fourth way 

the Coulomb potential can be approximated by [27]: 
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Where 1
x
  is a measure of the well width. In order 

to find the value of x we have calculated the expecta-

tion value of the both sides of the equation (9): 
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Then we have changed the value of x until this 

equation is satisfied. 

This effective potential definition technique has 

been used previously for other excitonic systems like 

biexcitons in quantum wells [28]. This is because of 

some advantages, for example using equations (6), (7), 

or (9) instead of the real three dimensional Coulomb 

interaction given in equation (1) has the following bene-

fits. Firstly, it separates the Hamiltonian into some one 

dimensional Schrödinger equation and solution of one 

dimensional problems is less time consuming. Secondly, 

it leads to a more stable programming. Thirdly, a quali-

tative intuition of the two dimensional Coulomb inter-

action behavior related to an exciton confined in a 

quantum well will be revealed.  

There are different methods in order to extract the 

variational parameters of the trial wave functions or to 

find the E0 by using equation (16). Differentiation with 

respect to the variational parameters and equating to 

zero is a way for this purpose. Plotting the energy as a 

function of the variational parameters in a multidi-

mensional space [29] or using stochastic methods like 

Monte Carlo [30] and genetic algorithms [31] are other 

methods which may be used. In this work we have used 

Monte Carlo schema. 

 

3. VARIATIONAL METHOD 
 

Selecting an appropriate trial wave function with 

regard to the geometry and typical characteristics of 

the model system is the main step in the variational 

scheme. Although there are some attempts to compare 

different types of trial wave functions for a confined 

exciton in a quantum well [32-33] but there is not a 

comprehensive study in this area. In the literatures 

there are plenty of different types of these functions for 

a confined exciton in quantum wells. The most fre-

quently used trial wave function has been used by Sen-

ger et al. [19]: 
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where , a and b are the free parameters of this trial 

wave function and fi(zi = e,h) are the envelop functions 

which reads: 
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where e and h indicate the electron and hole. , a and b 

are the free parameters of this trial wave function. An-

other form of the trial wave function has the following 

form [34-35]: 
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e h e e h hr r f z f z       (14) 

 

The other form of the trial wave function reads [36-

37]: 
 

 0( ) e     (15) 

 

which contains no dependence on |ze – zh|. The varia-

tional parameter  gives the exciton radius when the 

system energy is minimized [38]. 

Then the ground state energy can be found by the 

minimization of: 
 

 0 , ,a bE Min H    (16) 

 

Some other shapes of this trial wave function may 

be found in the Refs [39-41]. 
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4. RESULTS AND DISCUSSION 
 

The exciton binding energy is written as 

Eb = Eg + Ee + Eh – Eex where Eg, Ee and Eh are energy 

gap and subband energies respectively. Eex is defined as 

the energy eigenvalue of the Hamiltonian in equation 

(1). The subband energies may found by numerical so-

lution of the equations (4) or by using these equations: 
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These equations can be solved by bisection method 

[42]. Another way to find Eb is to solve equation (3) di-

rectly. If a perturbation like an electric field (e.g. along 

the growth direction) also apply on the system we are 

not able to use equations (19) for calculating Ee and Eh. 

In this case we have to perform other numerical meth-

ods such as finite difference schema. Here we have 

used equation (19) in order to find Ee and Eh as a func-

tion of the well width. 

In order to include the effect of the effective mass 

mismatch in the well and barrier we have used the 

Ben-Daniel-Duke boundary condition [43]. The effective 

mass of the electron and hole in the well has also been 

obtained by the Vegard law [44]. 

We have used the material parameters as follows [45]. 

The total energy band gap difference ∆Eg(x) between GaAs 

and AlxGa1 – xAs is ∆Eg = 1.155x + 0.37x2(eV). If we show 

the conduction and valance band offsets as of 0
e   and 

0
h  respectively then we have 0

e  = AEg × C and 

0
h  = AEg × (1 – C) where C a positive value. 

Now we have used some trial wave functions and 

tried to find the exciton binding energy by means of the 

equation (3). We have firstly used the equations (7) and 

(8) in order to find η and then put it in the equation (3) 

to find the exciton binding energy. Variations of η and 

the exciton binding energy as a function of the well 

width have been shown in the Fig. 1 and 2 respectively. 

Fig. 1 shows a non-monotonic behavior for the two di-

mensional Coulomb interaction η. It reveals that the 

natures of the two dimensional Coulomb interaction 

along the  direction (2 = x2 + y2) is not the same as for 

three dimensional Coulomb interaction along the r di-

rection (r2 = x2 + y2 + z2). We have calculated the exci-

ton binding energy by using of the equations (12), (14), 

(15). The results have been shown in the fig (2). For 

comparison we have also plotted the exciton binding 

energy taken from the Ref [20-21]. As the figure shows 

if we use equation (15) or equation (14) as the trial 

wave function with 8[0,1] & [0,10 ]a    the consisten-

cy between our calculated exciton binding energy and 

the results of the other groups have shown in the Ref 

[20-21] is not good. When we apply equation (14) with 
4 4[0,10 ] & [0,10 ]a   or equation (12) with 

3, , [0,10 ]a b  there is better agreement with the Refs 

[20-21]. In this calculation we have used smaller upper 

bound for the free parameters a, b, . If we choose two 

or three of these parameters in a larger interval, e.g. 
8, , [0,10 ]a b  , this always leads to a zero trial wave 

function. In this case the probability of finding the elec-

tron and hole in all the space become zero. 
 

 
 

Fig. 1 – Variation of the Coulomb separation parameter  as a 

function of well width 
 

 
 

Fig. 2 – Variation of the exciton binding energy as a function 

of well width for different types of the trial wave functions, 

different intervals for the free parameters and the results of 

the Refs [20-21]. 
 

Magnetic field and effective mass dependence of η 

are also investigated previously [46-47] and here we 

have evaluated its variation versus the doping fraction 

x. the result is plotted in the Fig. 3. This plot shows 

that η has a monotonically increasing behavior. In or-

der to calculate the exciton binding energy by equation 

(9), firstly we have to find the parameter x . By using 

equation (10) we found this parameter. The result is 

presented in the Fig. 4. The same behavior was report-

ed by the Ref [48]. The numerical difference is due to 

the fact that they have applied a dimension less Hamil-

tonian but we have used the complete Hamiltonian.  

In order to compare the effect of the different meth-

ods of approximating the effective two dimensional 

Coulomb potential, the exciton binding energies ob-

tained by equations (1), (7), (9) and the ones taken from 

Refs [20-21] are showed in the Fig. 5. We do not calcu-

late exciton binding energy by the equation (6) because  
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Fig. 3 – Variation of the Coulomb separation parameter  as a 

function of the doping fraction x up to 35 % 
 

 
 

Fig. 4 – Variation of the trial wave functions free parameter 

(1 / x) used in the equations 9 as a function of the well width 
 

 
 

Fig. 5 – Variation of the exciton binding energy by means of 

the equations 1, 7, 9, and the results of the Ref [20-21] as a 

function of the well width 
 

F() plays the same role as  in the equation (7). But 

for comprehensiveness of the work we have presented 

its analytical form in the equation (6). As it can be seen 

the equation 7 is closer to the previously obtained re-

sults of Ref [20-21]. Although the difference of the three 

different methods of approximating the effective two 

dimensional Coulomb potential is not too large but the-

se methods of approximating have good advantages in 

the procedure of making the computational programs 

more efficient  and faster. 

In the Fig. 6 and 7 we have investigated the effect of 

the barrier thickness on the exciton binding energy and 

the parameter η respectively. In the Fig. 6 the effect of 

the barrier thickness on the exciton binding energy of a 

GaAs0.7Al0.3/GaAs quantum well is shown. This figure 

shows that when the barrier thickness increases the 

exciton binding energy decreases. Besides, the value of 

fluctuation (due to numerical inaccuracies) increases 

with increasing of the barrier thickness. This result is 

compared with the Ref [20-21). The effect of the barrier 

thickness on the separation Coulomb parameter η is 

also investigated. The result which is presented in the 

Fig. 7 shows that when η decreases the barrier thick-

ness increases and has a behavior approximately simi-

lar to exciton binding energy. 
 

 
 

Fig. 6 – Variation of the exciton binding energy as a function 

of the well width for different values of the barrier thickness, 

30 Å, 500 Å, 1000 Å, infinity, and the results of the Refs [20-21] 
 

 
 

Fig. 7 – Variation of the the Coulomb separation parameter  

as a function of the well width for different values of the barri-

er thickness, 30 Å, 500 Å, 1000 Å, 2000 Å and infinity 

 

5. CONCLUSION 
 

In this work, an exciton confined in a GaAs(1 – x) 

Alx / GaAs single quantum well was revisited. The ef-

fect of the different methods of approximating the effec-

tive two dimensional Coulomb potential on the exciton 
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binding energy is investigated. It revealed that the na-

tures of the two dimensional Coulomb interaction along 

the  direction (2 = x2 + y2) was not the same as for 

three dimensional Coulomb interaction along the r di-

rection (r2 = x2 + y2 + z2). Different shapes of the trial 

wave function, number of free parameters, and interval 

of variation of these free parameters in these calcula-

tions were comprehensively studied. When we applied 

equation (14) with 4 4[0,10 ] & [0,10 ]a   or equation 

(12) with 3, , [0,10 ]a b  there was better agreement 

with the Refs [20-21]. The effect of the barrier thick-

ness on the exciton binding energy and the parameter η 

were investigated. Since we have used the Monte Carlo 

integration, there were some fluctuations in our results 

which we tried to reduce them by means of 15 times 

averaging.  
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