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The optical transmission properties of a structure consisting of N identical pairs of left- and right-

materials are investigated theoretically and numerically. Maxwell's equations are used to determine the 

electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary 

conditions are imposed at each layer interface to calculate Fresnel coefficients. Expressions for reflectance 

and transmittance of the structure are given in terms of these coefficients. In the numerical results the 

transmittance of the structure is computed and illustrated as a function of frequency under different val-

ues of N. Minimum transmittance is achieved by using high and low opposite refractive indices of left and 

right materials of each pair of the structure. The frequency band of this transmittance is reduced by de-

creasing N. Maximum transmittance is demonstrated by using two slabs of the same width and opposite 

refractive indices placed between two dielectric media of the same kind. The effect of frequency and angle 

of incidence is very weak in these structures as compared to their all-dielectric counterparts. Moreover the 

obtained results are in agreement with the law of conservation of energy. 
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1. INTRODUCTION 
 

Metamaterials (sometimes termed left-handed (LH) 

materials) are materials whose permittivity  and per-

meability  are both negative and consequently have 

negative index of refraction. These materials are artifi-

cial and theoretically discussed first by Veselago [1] over 

40 years ago. The first realization of such materials, con-

sisting of split-ring resonators (SRRs) and continuous 

wires, was first introduced by Pendry [2, 3]. Regular ma-

terials are materials whose  and  are both positive and 

termed right handed (RH) materials. R.A. Shelby et al. 

[4] have studied negative refraction in LH materials. 

Kong [5] has provided a general formulation for the 

electromagnetic wave interaction with stratified met-

amaterial structures. M.F. Ubeid et al. [6] have pre-

sented a numerical study of a structure containing left-

handed material waveguide. R.W. Ziolkowski et al. [7] 

haves studied wave propagation in media having nega-

tive permittivity and permeability. N. Enghheta et al. 

[8] have shown some interesting applications of LH 

material. C. Sabah [9] has investigated the effects of 

loss factor on plane wave propagation through a left-

handed material slab. H. Oraiz et al. [10] have formu-

lated a theory for zero reflection of electromagnetic 

waves from multilayered metamaterial structures. 

P. Pereyra et al. [11] have studied the effect of complex 

and negative indices in the transmission of electromag-

netic waves through superlattices. C. Sabah et al. [12] 

have obtained theoretically high reflection coating with 

negative and positive refractive indices. H. Cory et al. 

[13] have analyzed the reflection and transmission 

characteristics of a multilayered structure consisting of 

left-handed materials and dielectric slabs. 

This paper is interested in the transmission proper-

ties of a structure consisting of N identical pairs of left- 

and right-handed media (LH-RH media). Maximum 

and minimum transmittance of the structure are 

demonstrated on the rule that, LH material has nega-

tive index of refraction while RH material has positive 

index of refraction. Minimum transmittance is obtained 

by using high ratio of refractive indices and different 

thicknesses of LH and RH media constituted each pair 

of the structure. The total thickness of each pair is 

quarter wavelength of the incident waves at the opera-

tion frequency. The frequency band of minimum 

transmittance is affected by the number of LH-RH me-

dia pairs. Maximum transmittance is formed by two 

slabs of the same thickness and opposite refractive in-

dices, one is LH and the other is RH material. The 

slabs are situated between two media of the same kind 

like vacuum. It is observed that the frequency and an-

gle of incidence are much less dominant in these con-

figurations than in their all-dielectric media. In addi-

tion the transmittance-frequency curves show no rip-

ples and a monotonous quasi symmetric rise to the left 

and to the right of the central frequency. In the theory 

the electric and magnetic fields of the incident waves 

are calculated at each layer using Maxwell's equations. 

The boundary conditions are imposed at each interface 

and Snell's law is used to obtain the reflection and 

transmission coefficients in terms of Fresnel coeffi-

cients. The overall reflectance and transmittance of the 

structure are formulated in terms of these coefficients. 

A recursive method is applied on the computations un-

der the mentioned conditions to show the variation of 
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transmittance  with  frequency.  To  check  the  results  of  
the analysis, it is found that the conservation of energy 
is satisfied for all computations. 

 
2. THEORY 

 
Consider a pair of LH (– 2, – 0) and RH ( 3, 0) ma-

terials is situated between two semi-finite dielectric 
media. A perpendicular polarized plane wave in region 
1 is incident on the plane z  0 at some angle  relative 
to the normal to the boundary (see Fig. 1). 

The electric field in each region is [14, 15]: 
 

 ( ) ˆz z xik z ik z i k x tE A e B e e y  (1) 
 

To find the corresponding magnetic field H , we 

start with Maxwell's equation BE
t

, substitut-

ing B H  and solving for H  yield: 
 

 ( )ˆ( )1
ˆ( )

z z

x

z z

ik z ik z
x x i k x t

ik z ik z
z z

A k e B k e z
H e

A k e B k e x
 (2) 

 

 
 

Fig. 1 – Wave propagation through a structure consisting of a 
pair of dielectric and metamaterial embedded between two 
dielectric semi-infinite media 

 
Where Al and Bl are  the  amplitude of  forward and 

backward travelling waves (l  1, 2, 3, 4), kl  nl /c is 
the wave vector inside the material and nl is the refrac-
tive index of it. 

Matching the boundary conditions for E  and H  
fields at each layer interface, that is at z  0, E1y  E2y 
and H1y  H2y and so on. This yields six equations with 
six unknown parameters [14, 16, 17]: 

 
 A1 + B1  A2 + B2  (3) 
 

 1 2
1 1 2 2

1 2
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 3 2 3 3 2 3 4 2 33 4
3 3 4

3 4

z z zik d d ik d d ik d dz zk kA e B e A e  (8) 

 

Where 1 2 3 4x x x xk k k k  Snell's law and: 
 

 2 2 2
1 sinzk n n

c
 (9) 

 
Fresnel coefficients (interface reflection and trans-

mission coefficients r, t respectively) for perpendicular 
polarized light are given by [18]: 

 

 j iz i jz
ij

j iz i jz

k k
r

k k
 (10) 

 

 
2 j iz

ij
j iz i jz

k
t

k k
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Where i, j correspond to any two adjacent media, 

, z zk k  for LH medium and , 

z zk k  for RH medium (l  i, j) [1, 14, 18]. 
The reflection and transmission coefficients R and T 

respectively of the structure are five by [5]: 
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The reflectance R' and transmittance T' of  the  

structure are given by [14, 15, 19, 20]: 
 

 *R RR , *4

1

z

z

kT TT
k

 (14) 

 
Where R* and T* are the complex conjugate of R and 

T respectively. The law of conservation of energy is 
given by [5]: 

 
 1R T  (15) 
 
For n-layers structure shown in Fig. 2 R and T are 

calculated as follows [5, 21]: 
 

 
 

Fig. 2 – n-layers of different thicknesses and refractive indices 
are embedded between two dielectric media 
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Continue on the same procedure until R2 is reached 

which is the reflectance of the structure as a whole. 
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The same procedure is performed for T2: 
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Where d2, dn – 1 and dn – 2 are thicknesses of layers 2, 

n – 1 and n – 2 respectively. 
Maximum Transmittance: In order to minimize R 

and maximize T, a pair of slabs of LH and RH materi-
als of the same width and opposite refractive indices 
are situated between two semi-infinite dielectric media 
of the same kind. By referring to Fig. 1 and under these 
conditions, 2 3 , 2 3z zk k , 23 0r , 23 1t , 12 34r r , 

12 34 12 341t t r r , 2 2 3 32( ) 1z zi k d k de . Consider these relations 
into eqs. (12, 13) yields R  0, T  1 for any frequency 
and for any angle of incidence. 

Minimum Transmittance:  In  order  to  maximize  R  
and minimize T, the relation between refractive indices 
and widths of the slabs are such that: 

2 2 3 3 2z zk d k d  at the central frequency 0 for 
normal incidence   0 (this is the first condition), and: 

1 2n n , 2 3n n , 3 4n n  (this is the second condition). 
From the first condition: 2 2 3 3 2n d n d c  at 

any frequency : 
 

 2 2 2cos
2zk d   

 

  3 3 3cos
2zk d   

 

  3 3 2 2 3 22( ) (cos cos )z zi k d k d i   

 
For dielectric adjacent to dielectric, the negative sign 

in  the  last  equation  is  replaced  by  positive  sign.  It  is  
clear that (cos 3 – cos 2) is smaller than (cos 3 + cos 2). 

From the second condition 2 and 3 are very small. 
This can be realized from Snell's law: sin 2  sin 1n1/n2, 
sin 3  sin 2n2/n3, in this case: 

 

 2 2 2zk d , 3 3 2zk d , 3 3 2 22( ) 0z zi k d k d   
 
Applying the last two conditions and their results on 

eqs. (12, 13) yield: r12 < 0, r23 > 0, r34 < 0, r12r23r34 > 0, 
2 2 3 32 2 1z zi k d i k de e , 2 2 3 32( ) 1z zi k d k de , t12 > 0, t23 > 0, 

t34 > 0. By comparing  eqs. (12, 13), it is noticed that the 
denominator is the same. The numerator of eq. (13) be-
comes smaller since t12, t23, t34 are multiplied by each 
other and each of them is less than unity. Therefore T' 
becomes very small. While each term in the numerator 
of eq. (12) is negative and the sum of them does not can-
cel out. Consequently the value R' becomes larger. 

 
3. NUMERICAL RESULTS AND DISCUSSION  

 
In calculations, a perpendicular polarization of the 

incident waves is considered and the operating fre-
quency is selected to be fo  20 GHz. The thickness of 
each  pair  of  the  LH  and  RH  slabs  is  quarter  wave-
length at the operation frequency.  

Maximum transmittance: Fig. 3 shows the transmit-
tance of the structure considered in Fig. 1 as a function 
of frequency for three angles of incidence (   0 , 
  20 ,   40 ). Region 1 and Region 4 are air. The LH 

and RH slabs are of the same thickness (d2   d3    / 8) 
and opposite refractive indices, that of RH material is 
selected to be 1.434 (fluorine) and that of LH material 
is – 1.434. As seen from the figure, when the conditions 
of maximum transmittance are satisfied, the transmit-
tance is always equal to unity for any frequency and for 
any angle of incidence. 
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Fig. 3 – The transmittance as a function of frequency of a pair 
of  slabs  of  LH  and  RH  materials  embedded  in  air.  The  slabs  
have the same thickness and opposite refractive indices 

 
Minimum transmittance: In order to illustrate the 

effect of LH material on the minimization of the trans-
mittance, the conditions of minimum transmittance are 
first applied on a structure of all dielectric pairs. Figure 
4 points out the transmittance as a function of frequen-
cy for all dielectric-pairs structure for three angles of 
incidence (   0 ,   20 ,   40 ). The structure has 
ten identical pairs of dielectrics situated in air. The 
refractive indices of each pair of dielectrics are selected 
to be 3.5 (gallium phosphide) and 1.434 (fluorite), this 
satisfies the second condition. The thickness of the 
higher refractive index slab is 0.00107 m and that of 
the lower one is 0.00262 m. These values are chosen 
such that, the first condition of minimum transmittance 
is satisfied and the total length of each pair of slabs is 
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/4 at the operation frequency. As observed from the 
figure, the transmittance becomes zero at and around 
the central frequency. The symmetry shifts in frequency 
to the right side when the incident angle increased. Also 
there is more ripples in the frequency behavior to the left 
and to the right of zero transmittance. 
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Fig. 4 – Transmittance for all dielectric structure as a func-
tion of frequency for various angles of incidence 

 
Fig. 5 presents the transmittance versus frequency 

at the incidence angle of 20  for three numbers of iden-
tical  LH-RH  pairs  structure  embedded  in  air  (N  4, 
N  7, N  10) (where N is the number of LH-RH pair 
and n is the number of layers n  2N + 2). The refrac-
tive index and thickness are – 1.434, 0.00262 m for the 
LH material and 3.5, 0.00107 m for the RH material. 
The  total  length  of  each  LH-RH  pair  is  /4 at the  
operation frequency and the two conditions for mini-
mum transmittance are satisfied by these values. From 
the figure it is seen that, the frequency band of zero 
transmittance is larger as compared to all dielectric 
structures. The mentioned band is reduced by decreas-
ing the value of N. In addition the LH-RH-pairs struc-
ture show no ripples and a monotonous quasi  
symmetric arise to the left and to the right of the cen-
tral frequency. 
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Fig. 5 – Transmittance for LH-RH structure as a function of 
frequency for various numbers of LH-RH pairs 

 
Fig. 6 depicts the transmittance against frequency 

for three angles of incidence (   0 ,   20 ,   40 ) 
and for N  10. The other parameters which satisfy the 
two conditions of minimum transmittance are kept the 
same  as  in  Fig.  5.  As  confirmed  from  the  figure,  the  
influence of the angle of incidence is very weak as com-
pared to the all dielectric structures.  
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Fig. 6 – Reflectance and Transmittance for LH-RH structure 
against frequency for various angles of incidence 

 
Fig. 7 illustrates the transmittance-frequency varia-

tion when the first condition of minimum transmit-
tance does not satisfied ( 2 2 3 3n d n d ).  The  number  of  
LH-RH pairs is ten, the LH material is fluorite (thick-
ness  4 )  and  the  RH  material  is  air  (thickness  2 ), 
where  is calculated at the operation frequency. 
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Fig. 7 –  Transmittance  for  LH-RH  structure  as  a  function  of  
frequency when the first condition of minimum transmittance 
does not satisfied 

 
4. CONCLUSIONS 

 
Regarding with the transmittance, the behavior of 

LH-RH materials is different from RH-RH materials. 
Maximum transmittance has been formed by placing 
one pair of LH and RH slabs in air. The slabs have the 
same width and opposite refractive indices. Minimum 
transmittance has been demonstrated by placing a 
number  of  identical  LH-RH  pairs  of  slabs  in  air.  The  
slabs of each pair have high and low opposite refractive 
indices and different thicknesses. It has been found 
that  for  LH-RH  structures  the  frequency  band  of  zero  
transmittance is larger as compared to all dielectric 
structure  and  the  mentioned  band  is  reduced  by  de-
creasing  the  number  of  LH-RH  pairs.  Furthermore,  
these structures display no ripples but a monotonous 
quasi symmetric in the transmittance to the left and to 
the right of operation frequency is observed. The dis-
cussed problem gives rise to possibilities of tuning the 
propagation for applications in antenna radome, mi-
crowave, millimeter wave and optical devices. 
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