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ABSTRACT 

 

Knowing the dynamic behaviour of polymer materials that are used in the construction of 

fibre reinforced composite materials is particularly important for such materials that are 

subjected to impact.  In this work, we have conducted a number of plate impact 

experiments on a commercially important aromatic amine epoxy resin that is used in the 

construction of carbon fibre composite materials.  The measured Hugoniot in shock 

velocity – particle velocity space is Us = 2.65 + 1.55up (ρ0 = 1.141 g/cc) and is similar to 

the measured Hugoniots of other resins presented by different researchers.  We have also 

measured the longitudinal stress in the shocked material and shown, in common with 

other polymers, that above a threshold stress, an increase in shear stress behind the shock 

wave is observed. 
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I. INTRODUCTION 

 

Understanding the dynamic response of polymer materials is becoming 

increasingly important due to their use in explosive compositions, warhead design and 

composite material construction.  For the latter example, glass fibre reinforced composite 

laminates have been used for many years in armour systems that are inherently subjected 

to shock [1]. The shock response of carbon fibre / epoxy composites is also of interest 

due to these materials becoming more commonly used in military and civilian aircraft.  

Consequently the response of these materials due to high velocity impact of small 

projectiles has been studied. [2-5] 

An important constituent part to a carbon fibre reinforced plastic is the polymeric 

matrix. Carter and Marsh [6] conducted an extensive study on the shock response of 

polymer materials, and showed that a significant number of polymers, and indeed an 

epoxy resin, undergo a change in slope in the shock velocity – particle velocity curve at 

high stresses (~20-30GPa). The authors thought that this was probably best explained in 

terms of pressure-induced cross-linking of the long polymer chains.  In particular, for the 

polymers that contained aromatic rings in their monomer structure and that showed the 

largest volume change at transformation, it was proposed that tetragonal bonds form 

between the chains in a manner analogous to the graphite / diamond transformation. 

Other researchers have shown that for polymers that contain a phenyl ring, such as 

polystyrene, this behaviour can be explained in terms of the ring’s collapse at the 

elevated pressures [7]. Other researchers have shown that certain polymers have a 

positive dependence on shear strength with increasing shock stress.  This behaviour has 
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been seen in polycarbonate [8], PMMA [9], and PTFE [10] with embedded lateral 

gauges.  This behaviour has also been observed in the elastomer Estane™ [10].  

Unlike metals, thermoplastic polymers and ceramics, there is a paucity of data 

dealing with the shock response of thermoset epoxy resins.  This is perhaps surprising as 

these resins are integral to the construction of considerable civilian and military hardware 

that is subjected to shock.  Munson and May [11] investigated three different epoxy resin 

systems that used different hardening agents. They found that, within experimental error, 

the measured Hugoniot of the material was the same for each resin.  Barnes et al [12] 

have measured the Hugoniot of an epoxy resin, and found that it was very similar to that 

of Munson and May.  Both sets of researchers assumed a linear shock velocity particle 

velocity relationship.  Barnes et al suggested that, similar to the polymers mentioned 

above, their resin demonstrated a positive dependence of shear strength with shock stress. 

This positive dependence has been investigated by Bourne et al [13] and in 

accompanying work by Millett et al [14] who used the embedded lateral gauge technique 

to directly measure the variation of lateral stress. They observed that with increasing 

shock stress, the lateral stresses decreased resulting in an increase in strength behind the 

shock. 

 

In this study, we have investigated the shock behaviour of a commercially important 

aromatic amine epoxy resin. This resin is a key constituent of carbon epoxy composite 

materials that are used by the aerospace industry. This work is part of a larger programme 

of work examining the impact and shock behaviour of carbon-fibre / epoxy composite 

materials. 
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II. EXPERIMENTAL TECHNIQUE 

 

A common way for measuring the shock Hugoniot of materials is by conducting plate-

impact experiments. A typical experimental set-up is shown below in Figure 1(a). Here, a 

flyer-plate is accelerated towards the target and arrives so that all points on the 

projectile’s surface make contact with the target simultaneously. The impact generates a 

planar shock wave in the target.  In this situation, all strain is accommodated along the 

impact axis while the orthogonal components of strain are zero due to inertial 

confinement.  

 

Figure 1: (a) the Flyer plate technique, (b) schematic target assembly 

 

The shock response of the resin target was measured using two Vishay Micro-

measurements Manganin Pressure gauges LM-SS-125CH-048, encapsulated between two 

layers of 25μm Mylar.  Calibration of the gauges was to Rosenberg et al [15].  Dural (Al 

6082-T6) and copper flyers were accelerated to velocities of between 176 m/s and 992 

m/s using a ∅50-mm single-stage gas gun.  A typical target set-up is given schematically 

in Figure 1(b).  One gauge (the ‘front-surface gauge’) is fixed at the interface between the 

cover plate and the test specimen, and the other (the ‘back surface gauge’) is fixed 

between the test specimen and the backing material.  The shock Hugoniot was measured 

using the standard impedance matching technique [16]. Before firing, the thickness of 

each test specimen was carefully measured, so that the distance between the gauges was 

accurately known.  By measuring the time of arrival of the shock at each gauge, the 

(assumed constant) shock velocity (Us) could be calculated from the transit time (Δt) of 
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the shock across the specimen.  By knowing the Hugoniot of the flyer plate material and 

the impact velocity we established a value for the particle velocity (up) behind the shock.  

Hugoniot data for our flyer-plate materials were taken from Marsh [17] and the velocities 

of the projectile were measured by using a sequential pin shorting system to an accuracy 

of 0.5%. Fast digital storage oscilloscopes (2 GS/s) were used to capture the arrival and 

shape of the shock; subsequent data reduction and analysis was done on a PC.  

 

III MATERIALS USED 

 

The resin studied was a commercially available epoxy/amine resin system supplied by 

Hexcel Composites (Duxford UK) with the trade name RTM6.  This resin was specially 

developed to fulfil the requirements of the aerospace composites industry in advanced 

resin transfer moulding (RTM) processes. It consists of a multifunctional epoxy resin 

cured with a mixture of aromatic amines. 

 

The resin was fully cured at 180°C for two hours at atmospheric pressure. The resulting 

blocks of resin measuring 70 mm × 70 mm square and 10 mm thick were machined to 6 

mm thickness and lapped to a flatness of ±5μm.  The longitudinal and shear velocities 

were measured using 5MHz quartz transducers with a Panametrics 5077PR pulser-

receiver in the pulse-echo configuration.  Density was measured using a Micrometrics 

AccuPyc 1330 gas pycnometer. The elastic properties of the cured resin are provided in 

Table I. 
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Table I:  Elastic properties of the cured RTM6 resin. 

 

IV. RESULTS AND DISCUSSION 

 

A typical gauge trace for the RTM6 resin is seen below in Figure 2.  In this example, a 5-

mm thick copper flyer was accelerated to 566 m/s prior to impact with the resin target.  

 

Figure 2: Typical gauge trace showing the formation of the shock and release. 

 

In each stress history, the stress rises rapidly to its maximum value in 40-50 ns.  This is 

due to the close match between the shock impedance of the epoxy sample, the gauge 

backing substrate and the epoxy adhesive used to construct the gauge package.  It can be 

seen on the front-surface gauge trace that just before the arrival of the shock there is an 

apparent drop in measured stress.  This feature is not present on the back-surface gauge.  

We believe that this is due to the motion of the conducting cover plate towards the gauge, 

which increases the capacitance between the gauge and the cover plate.  It can also be 

seen that the there is an overshoot recorded by the front-surface gauge as the measured 

stress reaches its maximum value. This is due to the fast rising nature of the shock 

causing ringing [18].  The Hugoniot stress is measured, in this example, over the period 

from 0.8 to 2.2μs.  The stress level in the back-surface gauge over the period from 2.6 to 

3.6μs is similar to the Hugoniot stress measured by the front-surface gauge.  This 

indicates that both the resin and the PMMA have very similar shock impedance levels.   
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The Hugoniot of many polymers, metals and ceramics can be fitted assuming a linear 

shock velocity – particle velocity relationship given by the following equation: 

 

Us = c0 + S.uP        (1) 

 

where S  is the slope and c0 is the intercept of the shock velocity axis. This has previously 

been observed in other polymers such as PMMA [9], polycarbonate [8], polyether ether 

Ketone [19] and an epoxy resin [14]. For metals, c0 has been correlated with the bulk 

sound speed of the material whereas S has been theoretically shown to relate to the first 

derivative of bulk modulus with pressure [20]. Our measured Hugoniot in shock velocity 

– particle velocity space is shown below in Figure 3: 

 

Figure 3: The measured Hugoniot of the resin in shock velocity particle velocity space. 

 

There are two points to note here. Firstly, a linear line of regression has been fitted 

through all ten data points resulting in c0 and S values of 2.65 mm/μs and 1.55 

respectively.  However we note that other researchers [7,21] have shown from theoretical 

considerations that the Hugoniot for many polymers over a much larger particle velocity 

range is parabolic instead of linear. Secondly, the fitted line provides a bulk sound speed 

of 2.65 mm/μs which is higher than the ultrasonically measured value of 2.26 mm/μs at 

the frequency of the transducer (5MHz). This is consistent with epoxy behaviour, and 

indeed most polymer behaviour as surveyed by Carter and Marsh and points to a rapidly 

varying rate of change in compressibility in the low particle velocity region [6]. 
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In Table II below we have summarised the shock parameters for epoxy resins from a 

number of sources.  References 6, 11 and 22 used a commercially available general 

purpose epoxy resin Epon 828.  This resin is a typical epoxy, being a condensation 

product of epichlorohydrin and Bisphenol-A.  Millett et al [14] used a blend of epoxy 

prepolymers based on modified and unmodified Bisphenol-A, with the addition of a 

diglycidyl ether polypropylene glycol plasticizer.  Several amine hardeners were used.  

Munson and May used three different hardening systems:  metaphenylenediamine 

(MPDA); an aromatic eutectic mixture of methylenedianiline, MPDA and phenylglycidyl 

ether; and the organic salt of tridimethyl aminomethyl phenol.  Boettger [22] used a 

relatively high percentage weight (30%) commercially available hardener – Jeffamine® 

T-403, a poyether triamine. Millet et al used a cycloaliphatic polyamine. 

 

It can be seen that, despite the data being acquired by a variety of researchers over 

several decades for ostensibly different epoxy resin systems, the Hugoniots in shock 

velocity – particle velocity space are quite similar.  Our data are in good agreement with 

those of the other researchers.  This work supports the view of Munson and May, that the 

shock response of cured epoxy resins does not depend strongly on the degree of 

crosslinking, nor on the structural properties of the crosslinking chains. 

 

Table II: Shock parameters for epoxy resin systems; the ultrasonic measurement of cB is also added. 

 

We have also measured the release time for each of our experiments.  This was done in a 

systematic way by numerically differentiating the stress history, and selecting the time at 
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which the differential became negative.  For certain experiments, there is a degree of 

oscillation near to the release portion of each differentiated stress history, and it is 

therefore difficult to obtain the precise timing of the onset of release.  This uncertainty is 

reflected in the choice of error bars on subsequent analyses. 

 

The distance between the two stress gauges is compressed by the passage of the shock 

wave according to 

 

x = x0 1−
up

c0 + Sup

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,       (2) 

 

where x0 and x are the thicknesses of material before the arrival of the shock front and 

behind it respectively. From the compressed distance between gauges, we established the 

release velocity by measuring the time between releases from the shock traces. 

Consequently the release wave velocity (UR) can be calculated (UR = x/ΔtR). This data is 

plotted in Figure 4. 

 

Figure 4: A plot of the calculated release wave velocities. One data point is omitted due to premature 

failure of one of the gauges in that experiment. 

 

It is interesting to note that the measured intercept (2.68 mm/µs) is very similar to the 

intercept calculated from the resin’s Hugoniot (2.65 mm/µs). This behaviour has also 

been seen by Millett et al in polycarbonate and implies that the material returns to its 

ambient condition without factors such as phase transformations occurring [8]. Isbell [23] 



Polymer Composites Vol. 29 (10) pp. 1106-1110 

 11

estimates the head of the release wave to travel in metals at a velocity of 1.2Us + up and 

for the RTM6 resin, this equates to a release velocity given by UR = 3.18 + 2.87up. Given 

that Isbell’s data are for a range of metals of varying c0 values, including Dural, OFHC 

copper, Iron and Titanium it is perhaps surprising that the relationships are similar in 

gradient at least. 

 

Finally, in Figure 5 below we plot the Hugoniot in longitudinal stress – particle velocity 

space.  The gauges used in this study, and their mounting within the target, measure the 

longitudinal stress (σx) that consists of a hydrostatic component and a deviatoric 

component of stress in accordance with 

 

σx = P +
4
3

τ ,        (3) 

where P is the hydrodynamic pressure and τ  is the shear stress. 

 

Also fitted to the data is a calculation of the hydrodynamic pressure calculated by 

 

psuUP 0ρ=          (4) 

 

where Us is calculated from Equation 1 using our experimentally determined shock 

parameters. Note that there is a good fit for the data at the lower particle velocities 

indicating that the material is behaving hydrodynamically.  However beyond a shock 

stress of c. 4 GPa the measured stress is greater than the value predicted by the 

hydrodynamic curve.  Similar behaviour has been observed in a range of materials from 
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polymers, [8,9] epoxy resins [14] and ceramics [24], and is evidence that this particular 

resin possesses an ability to strengthen with increasing shock stress. A possible 

hypothesis to explain this is that steric resistance to compression increases, as initially 

separate polymer chains are brought closer together and begin to interact. Other work on 

a range of polymers [25] has shown that the stress level at which departure from the 

hydrodynamic curve occurs can be modified by the choice of the side group attached to 

the main polymer chain. This work concluded that increasing the size of the side groups 

increased the resistance to compression, with polystyrene (having a phenyl side group) 

showing a departure from the hydrodynamic curve of c.1 GPa at 0.9 mm/µs. We believe 

that our results are consistent with this view. For the RTM6 resin, this occurs at c. 0.85 

mm/µs. 

 

The shock parameters from our experiments are shown in Table III.  

 

Figure 5: Stress – particle velocity Hugoniot plots for the resin. 

 

Table III: Experimental data. 

 

V. CONCLUSIONS 

 

We have measured the shock and release behaviour of a commercially important epoxy 

resin that is used in the manufacture of a carbon epoxy composites. The Hugoniot in 

shock velocity – particle velocity space is given by Us = 2.65 + 1.55 up (ρ0 = 1.141 g/cc); 

the measured release wave velocity is given by UR = 2.68 +3.05 up.  The Hugoniot is 
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similar in shock velocity-particle velocity space to published data for numerous resins of 

differing composition that has been collated over several decades. At higher shock 

stresses, the behaviour of the resin exhibits an increase in shear stress behind the shock 

wave in common with many other polymers. The specific reason for this is unclear but 

for other polymers this behaviour has been suggested as being due to side groups 

restricting compression between chains.  
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Table I:  Elastic properties of the cured RTM6 resin. 

Material ρ0 (g/cc) cL (mm/µs) cS (mm/µs) cB (mm/µs) ν 

RTM6 1.141±0.001 2.699 1.284 2.256 0.35 
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Table II: Shock parameters for epoxy resin systems; the ultrasonic measurement of cB is also added. 

Reference ρ0 (g/cc) co (mm/μs) S cB (mm/μs) 

This work 1.141±0.001 2.65 1.55 2.256 

Carter and Marsh [6]† 1.192 2.69 1.51 2.264 

Munson and May [11] 1.194 2.64 1.66 2.15-2.36* 

Millet et al [14] 1.14±0.01 2.58 1.47 1.935 

Boettger [21]† 1.154 2.63 1.52 2.255 

†Shock parameters for the initial slope of the Us – up curve taken before the apparent phase change at 

~20GPa. 

* Depending on the hardener. 
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Table III: Experimental data. 

Flyer 

thickness 

material 

Impact 

velocity 

(m/s) 

up 

(mm/µs) 

Us 

(mm/µs) 

UR 

(mm/µs) 

σx 

(GPa) 

5 mm Al 171 0.134 2.834 3.052 0.43 

5 mm Al 212 0.164 3.006 - 0.54 

5 mm Cu 344 0.313 3.100 3.629 1.08 

10 mm Al 460 0.360 3.300 3.910 1.34 

5 mm Al 520 0.411 3.186 3.849 1.51 

5 mm Cu 566 0.511 3.415 4.209 2.04 

5 mm Cu 794 0.713 3.606 4.919 3.00 

5 mm Cu 959 0.853 3.968 5.096 4.50 

5 mm Cu 965 0.855 4.103 5.293 4.00 

5 mm Cu 992 0.880 4.049 5.313 4.90 
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Figure 1: (a) the Flyer plate technique, (b) schematic target assembly. 

Figure 2: Typical gauge trace showing the formation of the shock and release. 

Figure 3: The measured Hugoniot of the resin in shock velocity particle velocity space. 

Figure 4: A plot of the calculated release wave velocities. One data point is omitted due 

to premature failure of one of the gauges in that experiment. 

Figure 5: Stress – particle velocity Hugoniot plots for the resin. 
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Figure 1: (a) the Flyer plate technique, (b) schematic target assembly 



Polymer Composites Vol. 29 (10) pp. 1106-1110 

 21

 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5

Time (micro-seconds)

Lo
ng

itu
di

na
l S

tre
ss

 (G
P

a)

-0.5

0

0.5

1

1.5

2

2.5

3
0 1 2 3 4 5

Back surface gauge

Front surface gauge

 

Figure 2: Typical gauge trace showing the formation of the shock and release. 
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Figure 3: The measured Hugoniot of the resin in shock velocity particle velocity space. 
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Figure 4: A plot of the calculated release wave velocities. One data point is omitted due to premature 

failure of one of the gauges in that experiment. 
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Figure 5: Stress – particle velocity Hugoniot plots for the resin. 

 


