Accepted Manuscript

Title: Dynamic multi-phase partitioning of decamethylcyclopentasiloxane (D5) in river water

Authors: M.J. Whelan, R. van Egmond, D. Gore, D. Sanders

PII: S0043-1354(10)00282-4

DOI: 10.1016/j.watres.2010.04.029

Reference: WR 7981

To appear in: Water Research

Received Date: 4 February 2010

Revised Date: 21 April 2010

Accepted Date: 24 April 2010

Please cite this article as: Whelan, M.J., van Egmond, R., Gore, D., Sanders, D. Dynamic multi-phase partitioning of decamethylcyclopentasiloxane (D5) in river water, Water Research (2010), doi: 10.1016/ j.watres.2010.04.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	
2	Dynamic multi-phase partitioning of
3	decamethylcyclopentasiloxane (D5) in river water
4	
5	M.J. Whelan ^{1*} , R. van Egmond ² , D. Gore ² and D. Sanders ²
6	
7	¹ Department of Natural Resources, School of Applied Sciences, Cranfield University,
8	Cranfield, Bedfordshire, UK, MK43 0AL
9	² Safety and Environmental Assurance Centre, Unilever Colworth Laboratory,
10	Sharnbrook, Bedfordshire, MK44 1LQ, UK
11	
12	
13	
14	
15	
16	Q '
17	
18	
19	

0	1	١
L	ι	J

21 Abstract

22	The behaviour of decamethylcyclopentasiloxane (D5) in river water was evaluated by
23	measuring concentration changes in open beakers. Effective values for the partition
24	coefficient between organic carbon and water (K_{OC}) were derived by least-squares
25	optimisation of a dynamic model which accounted for partitioning between the sorbed
26	and dissolved phases of D5, and for losses via volatilisation and hydrolysis. Partial
27	mass transfer coefficients for volatilisation were derived from model fits to controls
28	containing deionised water. Effective values of log (K_{OC}) were between 5.8 and 6.33
29	(mean 6.16). These figures are higher than some other experimentally-derived values
30	but much lower than those estimated from the octanol : water partition coefficient
31	using single-parameter linear free energy relationships (LFERs). A poly-parameter
32	LFER gave a predicted log (K_{OC}) of 5.5. Differences in partitioning are believed to be
33	due to the nature of the organic matter present. The new value for effective K_{OC} was
34	employed in a simple model of D5 behaviour in rivers to ascertain the extent to which
35	a higher affinity for organic carbon would depress volatility. The results suggest that
36	despite the revised K_{OC} value, volatilisation of D5 remains a significant removal
37	mechanism in surface waters.

38

39

40 Key Words: Decamethylcyclopentasiloxane, D5, volatilisation, river water, K_{OC}

1	1
4	I

42 Introduction

43

44	Cyclic volatile methyl siloxanes (cVMS) possess an unusual combination of physico-
45	chemical properties, including both hydrophobicity and volatility. Recently, concerns
46	have been raised about their environmental profile (Brooke et al., 2008) because they
47	have relatively high bioconcentration factors, implying some potential for
48	bioaccumulation and because they partition to the atmosphere where they can
49	potentially be transported over long distances (e.g. Whelan et al., 2004; Wania, 2006).
50	One of the most widely used cVMS materials is decamethylcyclopentasiloxane (D5)
51	which has a range of commercial applications including acting as a carrier ingredient
52	in some personal care products (e.g. Horii and Kannan, 2008). Key properties for D5
53	are summarised in Table 1. Most D5 which is used in cosmetic products is likely to
54	be volatilised (Brooke et al., 2008), although some will be sorbed to sewage sludge
55	during waste water treatment, and subsequently applied to agricultural land. There
56	will also be an emission to surface waters in treated effluent. In the atmosphere, D5 is
57	expected to break down to silanols by reacting with hydroxyl radicals and is not
58	expected to partition significantly from the atmosphere to surface media (Wania,
59	2006), although silanols may be removed from the atmosphere by wet deposition (e.g.
60	Whelan et al., 2004). In water, D5 is not biodegradable but does undergo acid- and
61	base-catalysed hydrolysis. Estimated hydrolysis half lives derived from experiments
62	conducted by Dow Corning (cited by Brooke et al., 2008) range from 9 days at pH 8
63	and 25 °C to 449 days at pH 7 and 9 °C. D5 does not appear to be toxic to pelagic
64	organisms at the limit of aqueous solubility (e.g. Hobson et al., 1997).

65

66	Although D5 has a very high air : water partition coefficient (K_{AW}), the potential for
67	volatile losses from rivers may be tempered by interactions with dissolved, colloidal
68	and suspended material. Estimating the partition coefficient for D5 between organic
69	carbon and water (K_{OC}) is, therefore, very important for understanding its
70	environmental fate. David et al. (2000) observed significant reductions in the
71	apparent K_{AW} of D5 measured in simulated waste water using equilibrium partitioning
72	in closed headspace vials. They estimated an effective value of log (K_{OC}) of 4.38.
73	More recently, Whelan et al. (2009) showed a clear inverse relationship between the
74	rate of volatile loss of D5 and dissolved organic carbon concentration in open beakers
75	containing mineral medium spiked with Aldrich humic acid (AHA). By fitting a
76	simple dynamic partitioning model to the data, Whelan et al. (2009) estimated a mean
77	effective log (K_{OC}) of 5.28 [log (L kg ⁻¹)]. This is very similar to a mean value of log
78	(K_{OC}) of 5.17 [log (L kg ⁻¹)] reported by Durham (2007), obtained from OECD 106
79	batch equilibrium studies on three different soils. It is also similar to the molecular
80	connectivity index estimate of 5.05 implemented in the KOCWIN software (Sabljic,
81	1987; Meylan et al., 1992). However, it is much lower than the value of K_{OC} which
82	might be expected from single parameter linear free energy relationships (LFERs)
83	between K_{OC} and K_{OW} (e.g. Karickhoff, 1981). Applying Karickhoff's relationship
84	$(K_{OC} = 0.41 \cdot K_{OW})$ yields a log (K_{OC}) value of 7.66, based on a log (K_{OW}) of 8.05, (i.e.
85	the most recent industry-derived measured value: Xu and Kozerski, 2007) although
86	the LFER recommended in EU Technical Guidance (Sabljic et al., 1995; TGD, 2003)
87	for "predominantly hydrophobic" substances yields a $log(K_{OC})$ value of 6.6 (Brooke <i>et</i>
88	al., 2008).

90	One potential problem with extrapolating the observed behaviour and derived K_{OC}
91	value reported by Whelan et al. (2009) to the natural environment is that this
92	experiment was performed using a synthetic medium with AHA. AHA is a natural
93	humic acid probably derived from coal (Latch and McNeil, 2006; Malcolm and
94	MacCarthy, 1986) and differs in quality (and hence sorptive behaviour) from DOC
95	derived from soils, from aqueous environments and from that found in domestic waste
96	water (Malcolm and MacCarthy, 1986). In this paper, we examine the relative
97	importance of phase partitioning in natural river water using a combination of
98	laboratory experiment and mathematical modelling.
99	
100	Materials and Methods
101	
102	Experimental
103	The experimental system was similar to that described by Whelan et al. (2009).
104	Briefly, the concentration of ¹⁴ C -labelled D5 was measured at different time intervals
105	in open beakers (volume 0.4 L). Each beaker initially contained 300 mL of liquid.
106	Six treatments were established, each with three replicates: (1) Millipore water,
107	stirred; (2) Millipore water, static (unstirred). (3) River water filtered through a 0.45
108	μ m filter, stirred; (4) River water filtered through a 0.45 μ m filter, static; (5) River
109	water filtered through a 125 μ m filter, stirred and (6) River water filtered through a
110	125 μ m filter, static. In those treatments which were stirred, identical glass-coated
111	magnetic stirrer bars were used with a multiplace magnetic stirrer in a fume cupboard.
112	The stirring rate was set at 150 rpm. River water was collected from the River Nene
113	(Ditchford, Northamptonshire, UK) approximately 100 meters downstream of the
114	Broadholme WWTP (which serves approximately 188,000 population equivalents).

At this point, the Nene has a mean annual discharge of approximately 4 m³ s⁻¹ (more than a third of which is derived from treated waste water) and is considered to be eutrophic (e.g. Balbi, 2000). It has also been significantly modified for navigation, principally via the construction of a series of locks. Further details are decribed in Balbi (2000), Williams *et al.* (2003), Jobling *et al.* (2006) and Sparham *et al.* (2008).

121 Radiolabelled D5 used in the experiment was kindly donated by Dow Corning. The 122 material had a specific activity of 120.5 μ Ci mg⁻¹. This was used to prepare a dosing 123 solution by dissolving 10μ L in 1 mL of acetonitrile. The concentration of the dosing solution was 1.584 mCi mL⁻¹ (13.145 mg mL⁻¹). Radiochemical purity was estimated 124 125 to be $\sim 97\%$. As a suitable method for purification was not available at the time the 126 experiments were conducted, and because of the volatile nature of the test substance, 127 no purification was attempted. The impurities were accounted for in the model and 128 are not believed to affect the interpretation of the data.

129

130 The dosing solution $(7\mu L)$ was added to the liquid in each beaker using a positive 131 displacement pipette just under the surface. All treatments were at room temperature 132 prior to test item addition. The experiment was conducted in the artificial light of the 133 laboratory. Although this may have resulted in some algal growth, with associated 134 addition of photosynthetic organic carbon to the system, no such growth was visible 135 and it is assumed here that photosynthesis was negligible. Samples were collected 136 from each beaker at 0, 2, 4, 6, 24, 48 and 72 h after dosing (t_0) . At each sampling 137 event, triplicate 5 mL aliquots were withdrawn (mid vessel) and were counted with 10 138 mL of Starscint (Perkin Elmer Life Sciences) in a Beckman-Coulter LS6000TA 139 scintillation counter. Temperature was observed to be constant throughout the

140	experiment at 25 °C. The average pH at t_0 was 8.01 ± 0.01 and did not change
141	significantly over the course of the experiment. At the conclusion of the study, the
142	contents of each beaker were discarded and the beakers were rinsed with 10 mL of
143	THF followed by 10 mL of acetonitrile. Residual radioactivity in rinse solvents was
144	determined for 5 mL of solvent in 10 mL Starscint. Residual radioactivity associated
145	with the glass beaker and stirrer bar at the end of the experiment was always < 1% of
146	the ${}^{14}C$ present at t ₀ and there was no evidence of any settling out of solid residues
147	during the experiment. It was not possible to determine the extent of any association
148	of 14 C with the beaker walls or stirrer bar during the course of the experiment because
149	no provision was made for sacrificial analysis. However, this association is assumed
150	to be minimal. Organic carbon concentration was measured using a Shimadzu TOC-V
151	total organic carbon (TOC) analyzer. No characterisation of the organic matter was
152	attempted. The nature of the organic matter present will reflect its multiple sources
153	which include dissolved and particulate losses from soils in the catchment,
154	autochthonous carbon from in-channel photosynthesis and sewage effluent. Treated
155	effluent accounts for approximately 30% of mean river discharge at the sampling
156	station.
157	
158	Model
159	The behaviour of D5 in the experimental system was described using a dynamic
160	mathematical model of partitioning and degradation. The model is based on that
161	described in detail by Whelan et al. (2009) and was solved numerically. Only a brief

162 description is included here. The total mass of radiolabel in the system (M_T) at any

163 point in time is

165
$$M_T = M_S + M_L + M_H + M_N$$
 (1)

167where
$$M_S$$
 is the mass of radiolabelled D5 in the sorbed phase, M_L is the mass of168radiolabelled D5 in the dissolved phase, M_H is the mass of any hydolysis products169generated and M_N is the mass of radiolabelled contaminant (initially 3%). The170radiolabelled contaminant was assumed to be non-volatile based on observations of171residual radioactivity in a number of pilot trials which was approximately consistent172with the level of radiochemical impurity.173Hydrolysis was described using174Hydrolysis was described using175(2)176 $\frac{dC_n}{dt} = k_{hyd}.C_L$ 178where k_{hyd} is a first order kinetic rate constant (h⁻¹), t is time (h), C_L is the179concentration of radiolabelled D5 in the dissolved phase and C_H is the concentration180of radiolabelled non-volatile hydrolysis products (e.g. dimethylsiloxane- α, ω -diols i.e.181HO(Me₂SiO)_nH [n = 1 - 5]). A value for k_{hyd} was assumed a priori based on a half182life of 9 d (valid for pH 8 and 25 °C - derived from unpublished experimental data183generated by Dow Corming and cited by Brooke *et al.*, 2008).184The only loss of radioactivity from the system was assumed to be via volatilisation186where was described using:

$$188 \qquad \frac{dC_T}{dt} = -k_{vol}.C_L \tag{3}$$

190 where C_T is the overall concentration of radiolabelled material and k_{vol} (h⁻¹) is the rate 191 constant for volatilisation i.e.

192

193
$$k_{vol} = \frac{\kappa_T}{z}$$

194

where z is the water depth (m) and k_T (m h⁻¹) is the overall water-air mass transfer 195 196 coefficient which was estimated by least-squares optimisation of the model on 197 measured concentration data from the controls (deionised water). Note that because the K_{AW} for D5 is so high, k_T will be approximately equal to the water-side partial 198 199 mass transfer coefficient in the two-film resistance model of Evaporation (Liss and 200 Slater, 1974). The relative magnitude of diffusive resistance on the air side of the film 201 will be negligible. Depth changes over the course of the experiment due to 202 evaporation of water (rate $\sim 0.2 \text{ mm h}^{-1}$) and sample collection were accounted for in 203 the model via temporal adjustment of k_{vol} and the concentration of organic carbon 204 (C_{OC}) in each beaker. Equilibrium partitioning of D5 between organic carbon and 205 dissolved phases was assumed, i.e.

206

207
$$C_{L} = \left(\frac{M_{T} - M_{N} - M_{H}}{V_{L} \cdot (1 + C_{OC} \cdot K_{OC})}\right)$$
(5)

208

where V_L is the volume of the liquid phase (which changes over the course of the experiment). After derivation of k_{vol} (via optimisation on the control data), the only unknown is K_{OC} , which can be derived by least-squares optimisation of the model on the treatment data, given a measured value of C_{OC} . Note that, strictly speaking, the

213 K_{OC} values derived from the 0.45 μ m-filtered treatments refer, operationally, to

dissolved organic carbon (DOC) : water partitioning (i.e. they are effectively values of

215 K_{DOC}). Whilst we recognise that there may be important systematic differences

between K_{OC} and K_{DOC} for many chemicals (e.g. Burkhard, 2000), the limited scope of

- 217 our experimental design does not allow these differences to be distinguished for D5.
- 218
- 219 **Results and Discussion**
- 220

221 The mean measured concentrations of total organic carbon in the 0.45 μ m- and 125 μ m- filtered river water were 1.3 and 5.1 mg C L⁻¹, respectively. Mean measured and 222 223 best-fit estimates of the ¹⁴C remaining in beakers over time are shown in Figure 1 for 224 stirred treatments and in Figure 2 for static treatments. In each case (stirred or static), 225 there is a clear difference between treatments, with significant reductions in the 226 apparent loss rate in both river water treatments compared with the respective controls 227 (deionised water). In all cases, within-treatment variability was generally low. The 228 mean coefficient of variability (ratio of measured standard deviation to measured 229 mean ¹⁴C concentration for triplicate samples at each sampling point in each 230 treatment, averaged by treatment) ranged between 6.1 and 13.5 % in the stirred 231 treatments and between 2.1 and 6.7 % in the static treatments. As expected, loss rates 232 were slower in the static treatments, confirming that volatilisation was the 233 predominant loss mechanism. The lowest rate for both the stirred and non stirred 234 treatments was observed for the 125 µm-filtered river water, which had the highest organic carbon concentration (5.1 mg C L^{-1} i.e. almost four times higher than in the 235 236 0.45 μ m filtered water). For the 0.45 μ m filtered treatments, the increase in apparent 237 half life compared with the respective control was similar in both the stirred and

238 unstirred systems (at about 2.6 times). However, there was a much greater difference 239 in the behaviour of the two river water treatments in the stirred system than in the 240 static system. For the 125 µm filtered river water, the apparent half life in the stirred 241 system was about 8.3 times that in the control, whereas in the unstirred system the 242 apparent half life was only about 3.3 times greater than in the control. 243 244 The model was able to describe changes in radioactivity in the experimental system 245 well, particularly in the case of the stirred treatments (Figure 1). Deviation of model 246 fit from the experimental data is expressed as the Root Mean Square Error (RMSE). 247 For the control, the RMSE of the fits was 1.30 for the stirred system and 5.95 % for 248 the static system. The RMSE values obtained for the river water treatments are shown 249 in Table 1. In the static treatments (Figure 2) the predicted temporal pattern did not 250 match the observed data for some points (e.g. at 24 hours in the case of the control 251 and, in the case of the 0.45 µm filtered treatment, in the initial stages of the 252 experiment and at 72 hours) but overall the match was still reasonable. 253 Derived values for log (K_{OC}), shown in Table 2, were between 5.8 and 6.33 and were 254 relatively consistent (mean 6.16; standard deviation 0.25). There was no apparent 255 relationship between the value of K_{OC} obtained and the treatment. The lowest value 256 was derived for the 125 μ m filtered static treatment and the highest for the 0.45 μ m 257 filtered stirred case. 258

Two of the main sources of uncertainty in the derived values of K_{OC} are uncertainty in the measured concentration of TOC and uncertainty in the concentration of ¹⁴C remaining (characterised by the variability in the replicate measurements made in each treatment). Since the model is implemented as a numerical solution to series of

263	ordinary differential equations, it is difficult to obtain confidence intervals using
264	standard statistics without linearization. Instead, the sensitivity of K_{OC} to the
265	measured TOC concentration was evaluated by re-optimising the model fits to the
266	observed radioactivity data (Figures 1 and 2) using 95% confidence limits for the
267	TOC concentration during fitting (rather than the mean TOC). The coefficient of
268	variation for repeat TOC measurements on the same river water was typically in the
269	range 3 - 6.5%. A conservative value of 6.5% was assumed here. The ranges in
270	resulting values for fitted log (K_{OC}) are shown in Table 2. Note that using the upper
271	and lower 95% confidence limits for TOC results in a reduction and increase,
272	respectively, in the derived K_{OC} relative to using the mean. However, the results
273	suggest that the derived value of K_{OC} is relatively insensitive to minor measurement
274	errors in TOC concentration, typically changing by only about 0.03 log units.
275	Uncertainty arising from inter-replicate variability in measured ¹⁴ C concentration was
276	expressed as 95% confidence intervals for the derived K_{OC} value in each treatment
277	(Table 2). These were calculated (using the t-distribution) from standard error
278	estimates of K_{OC} , obtained from three different model fits on the data from individual
279	replicates (rather than fitting on the mean values) in each treatment (Whelan et al.,
280	2009).
281	

In analogous experiments in which changes in radiolabelled D5 concentrations were measured in an AHA-amended mineral medium (Whelan et al., 2009) the model was also able to describe concentration changes very well in the initial period of the experiment. However, the rate of volatile loss appeared to decrease asymptotically in all treatments, with an apparent relationship between the asymptote and the organic carbon concentration in the treatment. Whelan et al. (2009) invoked a bound-residue

288	hypothesis to explain this phenomenon, based on a hypothetical slowly reversible
289	absorption of D5 to internal sites within colloids consisting of complex AHA
290	macromolecules. In the data described here, such a consistent asymptotic deviation in
291	loss rate from first order kinetics was not apparent. This could be due to the shorter
292	time over which this experiment was conducted (72 hours compared with 120 hours in
293	the case of the AHA experiment). However, it could also be due to the nature of the
294	organic matter present in the respective systems. This would also provide a
295	reasonable explanation for differences in the apparent K_{OC} values observed in the two
296	experiments. Different types of organic matter are known to exhibit different sorptive
297	properties and to give different effective values for relevant partition coefficients (e.g.
298	Gauthier et al., 1987; Raber et al., 1998; Tanaka et al., 2005; Niederer et al., 2007).
299	For example, significant correlations have been established between increasing K_{OC}
300	and decreasing polarity index and a reduced number of acidic functional groups
301	(Tanaka et al., 2005). Partition coefficients can range over more than one order of
302	magnitude using organic matter of different origins (Gauthier et al., 1987; Tanaka et
303	al., 2005). Terrestrial humic materials often have higher sorption coefficients
304	compared to organic acids taken from aquatic systems. Similarly, values of K_{OC}
305	derived for AHA are often, although not always, reported to be higher than those for
306	natural dissolved organic matter (e.g. Raber et al., 1998). However, in the case of
307	cVMS materials, the type of molecular interactions which take place are known to
308	differ from many organic chemicals, which is why they possess such unusual
309	combinations of partitioning properties. The molecular interactions involved in D5
310	sorption to organic matter were explored using an Abraham-type poly parameter
311	LFER. Such relationships account separately for the contribution of different

- 312 molecular interactions to the free energy of molecular transfer between two phases
- 313 (Abraham, 1993). They often take the general form for K_{OC} :
- 314
- 315 $\log K_{oc} = e.E + s.S + a.A + b.B + v.V + c$
- 316

317 where c is a constant, e, s, a, b and v are matrix-specific parameters, which depend on 318 the difference in chemical properties between organic carbon and water (Nguyen et 319 al., 2005) and where E, S, A, B and V are so-called solute descriptors, which quantify 320 the capacity for specific intermolecular interactions. Specifically, they refer to excess 321 molar refraction (E), dipole-dipole interaction (S), hydrogen-bond acidity (A), 322 hydrogen-bond basicity (B) and characteristic volume (V). Matrix descriptors for K_{OC} 323 have been derived empirically by Nguyen et al. (2005) using 356 measured K_{OC} 324 values for 75 chemicals in a range of soils and sediments. Nguyen et al. (2005) also 325 report regression parameters for K_{OW} . Solute descriptors have been determined 326 independently for siloxanes, including D5, by Ahmed et al. (2007) using a range of 327 techniques, including gas chromatography and liquid-liquid partitioning. The above 328 parameters, together with derived values of $\log(K_{OC})$ and $\log(K_{OW})$ for D5 are shown 329 in Table 3. The derived values for $\log(K_{OC})$ and $\log(K_{OW})$ were 5.5 and 7.75, 330 respectively. They suggest that the ppLFER is a reasonable predictor of $log(K_{OC})$ 331 compared with the measured values reported by Durham (2007) and Whelan et al. 332 (2009). However, this value is somewhat lower than the values of K_{OC} derived from 333 the experiments reported in this paper. There is also a discrepancy between the 334 ppLFER-derived value of $log(K_{OW})$ and the observed value of 8.05 reported by Xu 335 and Kozerski (2007). Without an independent measurement of K_{OW} it is not possible 336 to comment further on the validity of this estimate. The solute descriptors shown in

337	Table 3 (Ahmed et al., 2007) suggest that D5 has negative excess molar refraction (E)
338	and near zero polarizability (S) but relatively high characteristic volume (V) and
339	hydrogen bond basicity (B) . These features might explain the lower apparent affinity
340	of D5 for AHA compared with the organic matter in water collected from the River
341	Nene, which has mixed origins and which has a relatively high fraction of treated
342	waste water effluent, if phase descriptors for AHA and river water organic matter
343	were to be determined. In any case, additional empirical work is needed to
344	understand differences in partitioning behaviour for D5 and other cVMS materials,
345	with different types of organic matter in the natural environment.
346	
347	
348	Implications for Environmental Behaviour
349	
350	The implications of different effective values of K_{OC} derived from different
351	experiments for the fate of D5 in river water were explored using an extension of the
352	model described above. The model was solved to yield changes in D5 concentration
353	for time-of-travel (i.e. the quotient of river distance and velocity) in a 2 m deep river
354	over 96 hours. This corresponds to a distance of 138 km, based on a mean solute
355	velocity of 0.4 ms ⁻¹ , which is representative of river lengths in the UK. Three
356	different TOC concentrations (1, 5 and 10 mg C L^{-1}) were considered with two values
357	of $log(K_{OC})$: 5.28 (after Whelan et al., 2009) and 6.16 (the mean value derived here).
358	The range of TOC concentrations is typical of the range reported in British rivers (e.g.
359	Worrall et al., 2004). Equilibrium partitioning between the freely dissolved and
360	sorbed (suspended solid, colloidal and dissolved organic carbon fractions) phases was

362	column were considered. This is reasonable if the system is in steady state, such that
363	the bed material is in equilibrium with the water column (Schwarzenbach et al.,
364	2003). Whilst rivers clearly experience transient conditions during storm events,
365	under normal and low flows the steady state assumption is a valid one for chemicals
366	discharged continuously via waste water (Whelan et al., 1999; Facchi et al., 2007).
367	Values for the partial mass transfer coefficients in the two-film resistance model for
368	volatilisation (e.g. Mackay, 2001) were set at 0.05 and 5 m h ⁻¹ , respectively, for the
369	water (k_W) and air (k_A) sides, as recommended in EU Technical Guidance (TGD,
370	2003). Again, it should be noted that for such a high value of K_{AW} , the value of k_A has
371	no influence on the rate of volatilisation. A hydrolysis half life of 64 d was assumed
372	for dissolved phase D5 (representing pH 8 and 9 $^{\circ}$ C). Over the four-day time-of-
373	travel considered here, hydrolysis was always a relatively unimportant contributor to
374	D5 losses (< 4%), even in the absence of organic carbon.
375	

376 Changes in the predicted concentration of D5 in river water with time-of-travel are 377 shown in Figure 3. With no organic carbon in the water, the loss of D5 is relatively 378 rapid with a dissipation half life of 27.7 h. However, with increasing TOC 379 concentrations, the rate of volatile loss decreases, particularly if a high value is assumed for K_{OC} . The effective half lives for the high K_{OC} scenario were factors of 380 381 2.07, 4.38 and 5.79 higher than for the low K_{OC} scenario for 1, 5 and 10 mg C L⁻¹, 382 respectively, given an equivalent TOC concentration. Volatilisation was predicted to 383 reduce D5 concentrations by 63, 25 and 13%, respectively for TOC concentrations of 1, 5 and 10 mg C L⁻¹, in the high K_{OC} scenario over a four day time-of-travel. 384 385 However, it should be noted that in real rivers concentration changes are likely to be 386 influenced by river discharge and depth variations (spatial and temporal) and by

387	changes in turbulence (which will affect gas exchange), as well as by various
388	emissions from waste water treatment plants along the length of the river. It should
389	also be noted that K_{OC} is likely to be temperature dependent. Unpublished data from
390	Dow Corning suggest that there is a positive relationship between K_{OW} and
391	temperature (positive enthalpy of phase change). It is expected, therefore, that the
392	effective environmental K_{OC} value will, in fact, be lower than that implied by the
393	experimental data reported here since, except for the tropics, river water temperatures
394	are likely to be lower than 25 °C. Additional empirical work is needed to verify the
395	river predictions reported here, which should include a study to measure changes in
396	concentration in the same mass of water with time of travel (e.g. employing dye
397	tracing) similar to that described by Whelan et al. (2007) for Linear Alkylbenzene
398	Sulphonate.
399	
400	
401	Conclusions
402	
403	• A simple model was used to describe observed changes in the concentration of
404	radiolabelled decamethylcyclopentasiloxane (D5) in open beakers containing
405	deionised and river water.
406	• Values for the effective log partition coefficient between organic carbon and
407	water $[log(K_{oc})]$ were estimated via model optimization to range between 5.8
	water [10g(N ₀ C)] were estimated, via moder optimisation, to range between 5.5
408	and 6.33, with an average value of 6.12 $\log(L \text{ kg}^{-1})$.
408 409	 and 6.33, with an average value of 6.12 log(L kg⁻¹). The model was extrapolated to predict D5 behaviour in an idealised river
408 409 410	 when [log(kbc)] were estimated, via model optimisation, to range between 5.5 and 6.33, with an average value of 6.12 log(L kg⁻¹). The model was extrapolated to predict D5 behaviour in an idealised river reach under steady state conditions with different concentrations of TOC and

volatilisation is retarded by higher values of K_{OC} , water-air transfer is still
likely to make a significant (>50%) contribution to concentration changes of
D5 over typical solute travel times in relatively shallow river reaches with low,
but realistic, TOC concentrations.
• Additional work is required to quantify the affinity of D5 for natural organic
matter of different origins and to develop a mechanistic understanding of any
differences observed.
Acknowledgements
This work was conducted at Unilever's Safety and Environmental Assurance Centre.
MJW is grateful to Unilever for additional support whilst at Cranfield University. We
are grateful to Chris Sparham, Sean O'Connor, Colin Hastie, Dave Powell, Peter Fisk
and Todd Gouin for valuable discussion.

427		
428	Re	ferences
429	•	Abraham, M.H. (1993) Scales of solute hydrogen bonding – their construction and
430		application to physicochemical and biolchemical processes. Chemical Society
431		Reviews 22, 73-83.
432	•	Ahmed, H., Poole, C.F. and Kozerski G.E. (2007) Determination of descriptors for
433		organosilicon compounds by gas chromatography and non-aqueous liquid-liquid
434		partitioning. Journal of Chromatography A, 1169, 179–192.
435	•	Atkinson, R. (1991) Kinetics of the gas phase reactions of a series of
436		organosilicon compounds with OH and NO ₃ radicals and O ₃ at 297 \pm 2 K.
437		Environmental Science and Technology 25, 863-866.
438	•	Balbi, D.M. (2000) Suspended chlorophyll in the river Nene a small nutrient-rich
439		river in Eastern England: Long term and spatial trends. Science of the Total
440		Environment 251/252, 401-421.
441	•	Brooke, D.N., Crookes, M.J., Gray, D. and Robertson, S. (2008) Risk Assessment
442		Report: Decamethylcyclopentasiloxane. Environment Agency of England and
443		Wales.
444	•	Burkhard, L.P. (2000) Estimating dissolved organic carbon partition coefficients
445		for nonionic organic chemicals. Environmental Science and Technology 34, 4663-
446		4668.
447	•	David, M.D., Fendinger, N.J. and Hand, V.C. (2000) Determination of Henry's
448		Law constants for organosilicones in actual and simulated wastewater.
449		Environmental Science and Technology 34, 4554-4559.

450	•	Durham, J. (2007) Soil-water Distribution of Decamethylcyclopentasiloxane (D ₅)
451		using a Batch Equilibrium Method. HES Study No. 10352-108, Health and
452		Environmental Sciences, Dow Corning Corporation.
453	•	Facchi, A., Gandolfi, C. and Whelan, M.J. (2007) A Comparison of River Water
454		Quality Sampling Methodologies Under Highly Variable Load Conditions.
455		Chemosphere 66(4),746-756.
456	•	Gauthier, T.D., Seitz, W.R, and Grant, C.L. (1987) Effects of Structural and
457		Compositional Variations of Dissolved Humic Materials on Pyrene K_{OC} Values.
458		Environmental Science and Technology 21, 243-248.
459	•	Hobson, J.F., Atkinson, R. and Carter, W.P.L. (1997) Volatile Methysiloxanes
460		pp137-179 in Chandra G. (ed) The Handbook of Environmental Chemistry Vol 3.
461		Part H Organosilicon Materials. Springer-Verlag, Berlin.
462	•	Horii, Y. and Kannan, K. (2008) Survey of organosilicone compounds, including
463		cyclic and linear siloxanes, in personal-care and household products. Archives of
464		Environmental Contamination and Toxicology 55(4), 701-710.
465	•	Jobling, S., Williams, R., Johnson, A., Taylor, A., Gross-Sorokin, M., Nolan, M.,
466		Tyler, C.R., van Aerle, R., Santos, E., Brighty, G. (2006) Predicted exposures to
467		steroid estrogensin UK rivers correlate with widespread sexual disruption in wild
468		fish populations. Environmental Health Perspectives 114, 32-39.
469	•	Latch, D.E. and McNeill, K. (2006) Microheterogeneity of Singlet Oxygen
470		Distributions in Irradiated Humic Acid Solutions. Science 311, 1743 – 1747.
471	•	Liss, P.S. and Slater, P.G. (1974) Flux of gases across air-sea interface. Nature,
472		247, 181-184.
473	•	Mackay, D. (2001) Multimedia Environmental Models. The fugacity Approach
474		Second Edition, Lewis, New York

475	•	Meylan, W., Howard, P.H. and Boethling, R.S. (1992) Molecular
476		topology/fragment contribution method for predicting soil sorption coefficients.
477		Environmental Science and Technology 26, 1560-1567.
478	•	Mazzoni, S.M. (1997) Eco-relevant properties of organosilicon materials pp53-82
479		in Chandra G. (ed) The Handbook of Environmental Chemistry Vol 3. Part H
480		Organosilicon Materials Springer-Verlag, Berlin
481	•	Malcolm, R. L. and MacCarthy, P. (1986) Limitations in the use of commercial
482		humic acids in water and soil research. Environmental Science and Technology
483		20, 904-911.
484	•	Nguyen, T.H., Goss, K.U. and Ball, W.P. (2005) Polyparameter linear free energy
485		relationships for estimating the equilibrium partition of organic compounds
486		between water and the natural organic matter in soils and sediments.
487		Environmental Science and Technology 39, 913-924.
488	•	Niederer, C., Schwarzenbach, R.P.and Goss, K.U. (2007) Elucidating differences
489		in the sorption properties of 10 humic and fulvic acids for polar and nonpolar
490		organic chemicals. Environmental Science and Technology 41 (19), 6711-6717.
491	•	Raber, B., Kogel-Knabner, I., Stein, C. and Klem, D. (1998) Partitioning of
492		polycyclic aromatic hydrocarbons to dissolved organic matter from different soils.
493		Chemosphere 36, 79-97.
494	•	Sabljic, A. (1987) On the prediction of soil sorption coefficients of organic
495		pollutants from molecular structure: Application of molecular connectivity
496		model. Environmental Science and Technology 21, 358-366.
497	•	Sabljic, A., Guesten, H., Verhaar, H. and Hermens, J. (1995) QSAR modelling of
498		soil sorption. Improvements and systematics of log K_{OC} vs log K_{OW} correlations.
499		Chemosphere 31, 4489-4514.

500	•	Schwarzenbach, R. R.P., Gschwend, P.M. and Imboden, D.M. (2003)
501		Environmental Organic Chemistry 2 nd Edition, Wiley-Interscience, Hoboken, NJ.
502	•	Sparham, C., Kanda, R., Whelan, M., van Egmond, R., O'Connor, S., Hastie, C.,
503		Franklin, O. (2008) Determination of Decamethylcyclopentasiloxane in River
504		Water and Final Effluent by Headspace GC/MS. Journal of Chromatography A
505		1212, 124–129.
506	•	Tanaka, F., Fukushima, M., Kikuchi, A., Yabuta, H., Ichikawa, H. and Tatsumi,
507		K. (2005) Influence of chemical characteristics of humic substances on the
508		partition coefficient of a chlorinated dioxin. Chemosphere 58, 1319-1326.
509	•	TGD (2003) Technical Guidance Document on Risk Assessment in support of
510		Directive-93/67/EEC, European Commission, JRC, Italy.
511	•	Wania, F. (2006) Potential of Degradable Organic Chemicals for Absolute and
512		Relative Enrichment in the Arctic. Environmental Science and Technology 40(2),
513		569-577.
514	•	Whelan, M.J., Gandolfi, C. and Bischetti, G.B. (1999) A simple stochastic model
515		of point source solute transport in rivers based on gauging station data with
516		implications for sampling requirements. Water Research 33(14), 3171-3181.
517	•	Whelan, M.J., Estrada, E. and van Egmond, R. (2004) A Modelling Assessment of
518		the Atmospheric Fate of Volatile Methyl Siloxanes and their Reaction Products.
519		Chemosphere 57, 1427-1437.
520	•	Whelan, M.J., Sanders, D. and van Egmond, R. (2009) Effect of Aldrich humic
521		acid on water – atmosphere transfer of decamethylcyclopentasiloxane.
522		Chemosphere 74(8), 1111-1116.
523	•	Whelan, M.J., van Egmond, R., Guymer, I., Lacoursiere, J.O., Vought, L.M.B.,
524		Finnegan, C., Fox, K.K., Sparham, C., O'Connor, S., Vaughan, M. and Pearson,

525	J.M (2007) The Behaviour of Linear Alkyl Benzene Sulphonate Under Direct
526	Discharge Conditions in Vientiane, Lao PDR. Water Research 41, 4730-4740.
527 •	Williams, R.J., Johnson, A.C., Smith, J.J.L. and Kanda, R. (2003) Steroid
528	estrogens profiles along river stretches arising from sewage treatment works
529	discharges Environmental Science and Technology 37, 1744-1750.
530 •	Worrall, F., Harriman, R., Evans, C.D., Watts, C., Adamson, J., Neal, C., Tipping,
531	E., Burt, T.P, Grieve, I., Montieth, D., Naden, P.S, Nisbet, T., Reynolds, B. and
532	Stevens, P. (2004) Trends in dissolved organic carbon in UK rivers and lakes.
533	Biogeochemistry 70, 369-402.
534 •	Xu, S. and Kozerski, G.E. (2007) Assessment of the fundamental partitioning
535	properties of permethylated cyclosiloxanes. Poster presented at SETAC Europe,
536	Porto, Portugal, May 2007.
537	
538	CHR I

 1

 2
 Table 1. Key properties for D5. Partition coefficients refer to ¹octanol : water;

 3
 ²octanol : air; ³air : water. ⁴Cited in Brooke et al. (2008). ⁵Based on an experimentally

 4
 derived rate constant of 1.55×10^{-12} cm³ molecule⁻¹ s⁻¹ (at 24°C) and an average

 5
 atmospheric hydroxyl radical concentration of 5×10^5 molecule cm⁻³.

 6
 Property Value Source

 CAS Number
 541-02-6

CAS Number	541-02-6	Mazzoni, 1997
Molar mass	371 g mol ⁻¹	Mazzoni, 1997
Aqueous solubility at 20 °C	0.017 g m ⁻³	Mazzoni, 1997
Vapour pressure at 20 °C	30.4 Pa	Mazzoni, 1997
$\log (K_{OW})^1$	8.05	Xu and Kozerski (2007) ⁴
$\log (K_{OA})^2$	5.04	Xu and Kozerski (2007) ⁴
$\log (K_{AW})^3$	3.01	Xu and Kozerski (2007) ⁴
Atmospheric half life	10.4 days	Atkinson (1991) ⁵

7

Table 2 Treatment, initial organic carbon concentration, initial value of k_{vol} (i.e. k_{vol} at t_0) and estimated values of log (K_{OC}) at 25 °C. Values in round parentheses show the 95% confidence limits for measured organic carbon concentration and the resulting range of log(K_{OC}) estimates. Bold values in square parentheses show the 95% confidence intervals for log(K_{OC}), arising from uncertainty in measured inter-replicate ¹⁴C concentrations in each treatment.

Treatment	OC content	Initial	Best fit log	RMSE
	(mg C L ⁻¹)	k_{vol} (h ⁻¹)	(K _{OC})	(% loss)
¹⁴ C-labelled D5 in 125 μm	5.1	0.188	6.22 [0.07]	8.41
filtered river water. Stirred.	(4.78, 5.42)	$\mathbf{\Sigma}$	(6.19, 6.25)	
¹⁴ C-labelled D5 in 0.45 μm	1.3	0.188	6.33 [0.20]	3.47
filtered river water. Stirred.	(1.22, 1.38)		(6.30, 6.36)	
¹⁴ C-labelled D5 in 125 μm	5.1	0.067	5.80 [0.04]	1.76
filtered river water. Unstirred.	(4.78, 5.42)		(5.78, 5.84)	
¹⁴ C-labelled D5 in 0.45 μm	1.3	0.067	6.30 [0.15]	3.66
filtered river water. Unstirred.	(1.22, 1.38)		(6.27, 6.33)	

15

- **Table 3** Matrix parameters for log (K_{OC}) and log (K_{OW}) [Nguyen et al., 2005], solute
- 18 descriptors for D5 [Ahmed et al., 2007] and derived values of $\log (K_{OC})$ and \log
- 19 (K_{OW}). See text for explanation of terms. *Derived using all collected data rather than
- 20 using averages.

	<i>e</i> or <i>E</i>	s or S	a or A	b or B	v or V	С	Derived
						\bigcirc	Value
Matrix descriptor							
$[\log(K_{OC})]^*$	1.08	0.83	0.28	1.85	2.55	0.12	5.5
Matrix descriptor							
$[\log(K_{OW})]$	0.78	1.17	0.14	2.85	3.25	0.47	7.75
Solute descriptor	-0.698	-0.083	0	0.632	2.931	1	

Figure 1 Changes in the activity remaining over time in stirred beakers spiked with
¹⁴C-labelled D5. Symbols: measured mean ± 1 standard deviation; Lines: Best fit
model. (a) Deionised water; (b) River water filtered through 0.45 μm; (c) River water
filtered through 125 μm.

10 **Figure 2** Changes in the activity remaining over time in static (unstirred) beakers

- spiked with ¹⁴C-labelled D5. Symbols: measured mean ± 1 standard deviation; Lines:
- 12 Best fit model. (a) Deionised water; (b) River water filtered through 0.45 μ m; (c)
- 13 River water filtered through 125 μm.

17 **Figure 3** Changes in the predicted concentration of D5 with time-of-travel in river

18 water with different concentrations of organic carbon (0, 1, 5 and 10 mg C L^{-1}) and

19 assuming different values for log (K_{OC}). Solid Lines: log (K_{OC}) = 6.16; Dashed Lines:

20 log (K_{OC}) = 5.28. Numbers show the concentration of TOC (mg C L⁻¹). In all cases

- 22
- 23

²¹ the depth was 2 m.