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Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites 

to provide negative permeability and wire array to provide negative permittivity. The structure form left-

handed material (LHM) with negative refractive index. The transmission of electromagnetic waves 

through the structure is investigated theoretically. Maxwell's equations are used to determine the electric 

and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions 

are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Nu-

merical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence 

and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very 

good when the permeability and permittivity of the structure are both simultaneously negative. The fre-

quency band corresponding to this transmission can be tuned by changing the applied magnetic fields. The 

obtained results are in agreement with the law of conservation of energy. 
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1. INTRODUCTION 
 

Metamaterials (sometimes termed left-handed ma-

terials (LHMs)) are materials whose both permittivity  

and permeability  are negative and consequently have 

negative index of refraction. These materials are artifi-

cial and theoretically discussed first by Veselago [1] 

over 40 years ago. The first realization of such materi-

als, consisting of split-ring resonators (SRRs) and con-

tinuous wires, was first introduced by Pendry [2, 3]. 

Regular materials are materials with positive  and  

and termed right handed materials (RHMs). 

Magnetized ferrite is an additional alternative to 

SRR to provide negative permeability. Consequently, a 

LHM can be achieved by inserting a periodic continu-

ous wires into the ferrite material [4-7].Both  and  of 

this LHM have tunable properties by changing the ap-

plied bias magnetic fields and both exhibit negative 

values at certain frequency band. Y. He et al. [8] have 

studied the role of ferrites in negative index metamate-

rials. M. Augustine et al. [9] have formulated a theoret-

ical analysis of ferrite-superconductor layered struc-

tures. H. Zhao et al. [10] have studied a magnetotuna-

ble left-handed material consisting of yttrium iron gar-

net slab and metallic wires. R.X. Wu [11] has shown 

the effect of negative refraction index in periodic metal-

ferrite film composite. F.J. Rachford et al. [12] have 

performed simulations of ferrite-dielectric-wire compo-

site negative index materials. Q.X. Chu et al. [13] have 

shown a novel left-handed metamaterial with wire ar-

ray in a ferrite-filled rectangular waveguide.  

In this paper we consider a magnetized ferrite-wire 

structure inserted in vacuum. A plane polarized wave 

is obliquely incident on it.  and  of the structure can 

easily be tuned by changing the applied magnetic fields 

and negative refractive index of it is achieved at a cer-

tain frequency band to make the structure as LHM. 

Maxwell's equations are used to determine the electric 

and magnetic fields in each region. Then, Snell's law is 

applied and the boundary conditions of the fields are 

imposed at each interface to obtain a number of equa-

tions with unknown parameters. The equations are 

solved for the unknown parameters to calculate the 

reflection and transmission coefficients. These coeffi-

cients are used to determine the reflected and trans-

mitted powers of the structure. The effect of many pa-

rameters like frequency, applied magnetic fields and 

angle of incidence etc. on the mentioned powers are 

studied in detail. It is demonstrated that, if both ε and 

μ of the ferrite-wire structure are both positive or both 

negative, then the electromagnetic waves can propa-

gate through it. On the other hand if either  or  of the 

structure is negative, the incident radiation will be 

reflected and no transmission of the waves will be 

through the structure. Moreover the frequency band of 

zero or nonzero transmission of the waves can be tuned 

by changing the applied magnetic fields due to the ten-

ability of ε and μ of the structure. To check the validity 

of the performed computations the law of conservation 

of energy given by [14, 15 ] is satisfied for all examples. 

 

2. THEORY 
 

Consider a rectangular ferrite-wire waveguide 

structure located between two half free spaces and a dc 

applied magnetic field acts on it along the X axis [4, 5]. 

A plane polarized wave is incident on the plane y = 0 at 

angle  relative to the normal to the boundary (Fig.1). 

The effective permeability the ferrite is given by [4, 5]: 
 

 
2 2

f , (2.1) 
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0 B , m M ,  is the gyromagnetic ratio, B is 

the intensity of the applied magnetic field, M is the 

saturation magnetization, ω is the angular frequency 

and i = 1 . The effective permittivity of the structure 

is considered to be [4, 5]: 
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Where 0 and 0 are the permittivity and permeabil-

ity of free space respectively, r is the relative permit-

tivity of ferrite material and eff is the effective conduc-

tivity of wire arrays.  

 

 
 

Fig. 2.1 – Oblique incidence of electromagnetic wave on a 

ferrite-wire structure embedded in vacuum 
 

The transverse components of the electric and mag-

netic fields in each region of Fig. 2.1 are [9, 16]: 
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Region 3: 
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Where A, B, C, D, F are the amplitudes of the for-

ward and backward traveling waves. k0  /c is the free 

space wave vector, kf  nfω/c is the wave vector inside 

the  slab and 0 0f f fn  is the refractive index of it. 

 sinoz fz ok k k  (Snell's Law) (2.10) 

 

 21 sinoyk
c

, 2 2sinfy fk n
c

 (2.11) 

 

Matching the boundary conditions for the trans-

verse field components at each layer interface, that is 

at y  0, 1 2x xE E  and 1 2z zH H , at y  a 2 3x xE E  

and 2 3z zH H . This yields the following equations [16]: 

 

 A + B  C + D (2.12) 
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Letting A  1 and solving these four equations for the 

unknown parameters enables us to calculate the reflec-

tion and transmission coefficients B and F [16]. The re-

flected and transmitted powers are defined as [16]: 
 

 R  BB* (2.16) 
 

 T  FF* (2.17) 
 

Where B* and F* are the complex conjugate of B and 

F respectively. 

 

3. NUMERICAL RESULTS AND DISCUSSION  
 

In this section the reflected and transmitted powers 

of the structure are calculated numerically as a func-

tion of frequency, angle of incidence, applied magnetic 

fields and thickness of ferrite. In our method we have 

used the parameters as in [17]: M  4398 G, 

  2.8 MHz/Oe,   0.006, r  4. Three values of B are 

selected to be B  500 Oe, 750 Oe, and 1000 Oe. The 

central frequency is selected to be 8.6 GHz. This fre-

quency is chosen such that f and f are both simulta-

neously negative for all values of the applied magnetic 

fields. The slab thickness is assumed to be one half-

wavelength long at the central frequency. 

f ( ) with real part Re ( f) and f( ) with real Re( f) 

are plotted as a function of frequency  in Fig. 2.2 for 

three values of the applied magnetic fields ( B  500 Oe, 

B  750 Oe, B  1000 Oe). As shown from the figure the 

frequency range in which Re( f) and Re( f) are negative 

can be changed with the applied magnetic field [8]. In 

the case of B  500 Oe, f and f are both negative in the 

frequency range of (6.4-10.8 GHz) and consequently the 

ferrite-wire structure exhibits negative refractive index 

(i.e. LHM) in that range. For B  750 Oe and 

B  1000 Oe the ferrite-wire structure exhibits LHM in 

the frequency ranges of (7.2-11 GHz) and (8.2-11.2 GHz) 

respectively. 

The transmitted and reflected powers as a function 

of frequency are calculated in Fig. 3.2. for   30  and 

a  /2. The frequency is changed between 2 GHz and 

12 GHz, because the simultaneously negative values of 

Re( f) and Re( f) under the three values of B can be 
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Fig. 3.1 – Calculated effective permeability and permittivity 

under different applied magnetic fields B  500 Oe, B  750 Oe 

nd B  1000 Oe 
 

realized in this range. In this example it can be seen 

that, if both f and f are both positive or both negative, 

the transmission is very good and the electromagnetic 

wave can propagate through the ferrite-wire structure. 

This is because the propagation constant of the waves 

in the structure is real ( 2 2 2
f f fk c ). If either f or 

f is negative, the propagation constant is imaginary and 

then the incident radiation will be reflected and no 

transmission of the waves will be through the structure. 

The symmetry of nonzero transmission shifts in frequen-

cy to the right side when the applied field increased. 

This is due to the tunability of the LHM which arises 

from the variation of the applied magnetic fields. 
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Fig. 3.2 – The transmitted and reflected powers against fre-

quency when the applied magnetic field changes B  500 Oe, 

B  750 Oe, and B  1000 Oe 
 

Fig. 3.3 shows the transmitted and reflected powers 

as a function of frequency when the incidence angle 

changes (   0 ,   30 ,   50 ) for B  500 Oe. The 

frequency range and thickness of ferrite is the same as 

in the last example. It can be seen that the transmitted 

power is decreasing while the reflected power increas-

ing with the angle of incidence. Moreover they show 

oscillatory behavior for   30  and 50  while they show 

nearly no ripples for   0 . 
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Fig. 3.3 – The transmitted and reflected powers as a function 

of  frequency for three values of the angle of incidence   0 , 

  30 ,   50  
 

Fig. 3.4 represents the transmitted and reflected 

powers versus the ferrite thickness for three values of 

the applied magnetic fields, 30  angle of incidence and  
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Fig. 3.4 – The transmitted and reflected powers versus ferrite 

thickness for three values of applied magnetic fields 

B  500 Oe, B  750 Oe, and B  1000 Oe 

a 

b 

a 

b 

b 

a 



 

MUIN F. UBEID, ET AL. J. NANO- ELECTRON. PHYS. 4, 01009 (2012) 

 

 

01009-4 

8.6 GHz frequency of the incident waves. The slab 

thickness is changed from zero mm to /2 (17.44 mm). 

It can be observed that the reflected power shows oscil-

latory behavior with thickness for all values of the ap-

plied magnetic fields. The transmitted power shows the 

same behavior but slightly decreasing with thickness 

for B  500 Oe and 750 Oe and considerably decreasing 

with thickness for B  1000 Oe. 

 

4. CONCLUSIONS 
 

Reflection and transmission of electromagnetic waves 

by a magnetized ferrite-wire structure inserted in vac-

uum are analyzed numerically. The total reflection of 

the waves by the structure is obtained due to the dif-

ference in signs between  and  of the structure. The 

transmission of radiations through the structure is 

realized when  and  of the structure are both negative 

or both positive. The frequency band of reflection and 

transmission of the waves by the structure can be tuned 

by changing the applied magnetic field due to the tena-

bility of  and . Thus we can say that the variation of 

the applied magnetic field changes the reflection and 

transmission of the waves by the structure. Numerical 

examples are already presented to illustrate the paper 

idea and to prove the validity of the obtained results. 

Moreover the conservation of energy is satisfied 

throughout the performed computations for all exam-

ples. The discussed problem is useful for applications 

which require controlling of reflected and transmitted 

powers like antenna radome, microwave, millimeter 

wave and optical devices. 
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