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Abstract

o Forest ecosystems exert an important influence on global biogeochemical cycles. A global dataset
of nitrogen (N) and phosphorus (P) concentrations in leaf-litter of woody plants was compiled from
the literature. Among the 677 data sets, 482 included P concentrations and the N:P ratio.

e At a global scale, the mean leaf-litter N and P and N:P ratio were 10.9 mg g~', 0.85 mg g~! and
18.3, respectively. Leaf-litter N and P were significantly correlated. When the data was grouped by
continents, the highest mean N was found in Africa (19.5 mg g~!), and the lowest in North America
(8.18 mg g™!). P was significantly smaller in the Asian Islands (Japan and Malaysia, 0.44 mg g~!)
than on the Asian mainland. For the global dataset, leaf-litter N increased linearly with mean annual
temperature and annual precipitation and decreased with latitude. Although leaf-litter P showed no
significant relationship with temperature, it declined linearly with precipitation and there was a con-
vex quadratic relationship with latitude. For the global dataset and also for different functional groups
(e.g. shrubs, evergreen broadleaf, deciduous broadleaf, and conifers) the leaf-litter N:P ratio gener-
ally followed a positive linear relationship with temperature and precipitation, and showed a concave
quadratic response with latitude.

o The differences in leaf-litter N:P ratio among functional groups and among continents should be
taken into account when modeling biogeochemical cycles in different regions as well as on a global
scale.

The concentration of nutrients in leaf-litter and how this
varies globally with climatic factors is an area of active re-
search (Agren, 2008; Hittenschwiler et al., 2008; Manzoni

The abscission and decomposition of senesced leaves are
important processes in the functioning of ecosystems. The
concentrations of nitrogen (N) and phosphorus (P) and their
ratios in leaf-litter can determine the litter decay rate, the rate
of return to the soil, their subsequent availability for other
plants and soil organisms, and potential N leaching or ni-
trous oxide release (Berg and McClaugherty, 2003). Forests
and woodlands account for about 28% of the terrestrial sur-
face of the Earth, and hence the abscission and decomposi-
tion of the leaves from woody plants form a vital part of the
global process of nutrient cycling (Hittenschwiler et al., 2008;
McGroddy et al., 2004).

* Corresponding author: chjliu@sjtu.edu.cn

et al., 2008; McGroddy et al., 2004; Yuan and Chen, 2009b).
Aerts (1997) reported that both leaf-litter N and P concen-
trations follow a positive but non-linear relationship with ac-
tual evapotranspiration based on a dataset concerning cool and
warm temperate sites, the Mediterranean and the humid low-
land tropics. Liu et al. (2006) reported that leaf-litter N con-
centration increased linearly with mean annual temperature
(MAT, °C) and mean annual precipitation (MAP, mm) at a re-
gional scale. Yuan and Chen (2009b) reported a linear increase
for the N concentration and decrease for the P concentration in
leaf-litter with increased MAT and MAP. In addition, for live
leaves at a global scale, there is a non-linear relationship be-
tween the N (or P) concentration and climate factors (Reich
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and Oleksyn, 2004; Yin, 1993). The nutrient status of leaf-
litter nutrient status is primarily the product of the nutrient sta-
tus of live leaves and the ratio of nutrient resorption back into
the plant during senescence (Killingbeck, 1996; Kobe et al.,
2005; Ratnam et al., 2008). As an inference, in this context,
leaf-litter N (or P) concentration would display a non-linear re-
lationship with climatic factors. Hence the aim of this research
is to investigate the relationships based on a new dataset.

One possible reason for different responses with MAT and
MAP is the confounding of climatic effects with species ef-
fects. Different functional groups such as broadleaf trees,
conifers and shrubs can show different concentrations of leaf-
litter N and P, with for example conifers generally showing
lower values than that for broadleaf trees (Yuan and Chen,
2009b). Differences between leaf-litter chemical traits have
also been reported for different biomes (boreal, temperate,
and tropical biomes) (McGroddy et al., 2004; Yuan and Chen,
2009b), but not compared between different continents. Coni-
nental differences may also be possible because of differences
in geology. For example Han et al. (2005) reported that the
low P concentration of P in the unsenesced leaves in China
was caused by the low availability of P in Chinese soils.

During recent years, we have compiled a global dataset of
leaf-litter N and P of woody plants based on a survey of the lit-
erature and the Eurasian dataset of Liu et al. (2006). Although
this dataset shares 44 papers with Yuan and Chen’s (2009b)
meta-analysis of global trends of leaf-litter N and P reported,
this amounts to only 13% of their dataset. Hence our present
dataset is complementary to previous studies and we expect it
to improve our understanding of the variations in leaf-litter N
and P at a global scale.

For a global analysis of leaf-litter N and P, the role of tem-
perature and precipitation are particularly important. Both can
affect the functional type of vegetation and the rate of chemical
processes (Liu et al., 2006; Yuan and Chen, 2009b). Other cli-
matic factors that have been implicated include actual evapo-
transpiration (AET, mm) which when integrated with precip-
itation it can describe the water balance (Aerts, 1997). Lastly
the use of latitude (LAT, defined as degrees away from the
Equator) can act as an alternative measure of temperature
and water availability combined with seasonality (Berg et al.,
1995).

The objectives of this study were to determine at a global
scale the leaf-litter N, P and N:P ratio of (1) different func-
tional plant groups, (2) different continental groupings., and
(3) the relationship with mean annual temperature, mean an-
nual preciptation and latitude. To achieve these objectives we
compiled a global data set of N and P concentrations and N:P
ratios for the leaf-litter of woody plants, by expanding a data
set of 204 samples for Eurasia (Liu et al., 2006) to a total of
677 samples worldwide.

2. METHODS

2.1. Data collection

The data used in this study was compiled from publications
on leaf-litter N and P concentrations at a global scale (data
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in Appendix S1, available on line only at www.afs-journal.
org). A total of 677 data samples were included, encompassing
401 species from 24 countries. The sites ranged from 41.37° S
to 68.37° N in latitude, from 155.67° W to 0 to 151.45° E in
longitude, from O to 2 920 m in altitude, from —4.9 to 30.2 °C
in MAT, and from 200 to 5260 mm in MAP. The distribution
of data was showed in Figure 1.

The studies concerning N-fixing species and the fertilized
stands were not included in the dataset in present study. To
ensure data comparability, the unit percentage (%) used by
some authors for nutrient concentration was converted to units
of mg g~!. If climate data were not provided in the original
data source, MAT and MAP were calculated based on the
coordinates and altitudes using the Local Climate Estimator
“New_LocClim V1.10” (FAO 2006).

2.2. Data processing

The leaf-litter data were analyzed in four functional groups:
“shrubs”, “coniferous trees”, “deciduous broadleaf trees” and
“evergreen broadleaf trees” in order to determine differences
in N and P concentrations and the N:P ratio. The leaf-litter data
were also analysed according to six continental areas: North
America (NA), South America (SA), Europe (EU), Africa
(AF), and Asian mainland (AM). In view of possible climatic
differences due to proximity to the sea, results from Japan and
Malaysia were grouped into a separate group called Asian Is-
lands (AI). The means of each group were compared using
1-tests.

Linear and polynomial regression analyses were also under-
taken to establish the best fitting descriptions of N and P con-
centration and N:P ratio in relation to climate (MAT, MAP)
and latitude (LAT). The best fitting relationships were deter-
mined as those with the highest correlation coefficient (r) and
lowest p value. The statistical analyses were performed using
Excel (Microsoft Corporation, USA) and SPSS (SPSS Inc.,
USA).

3. RESULTS

3.1. Leaf-litter N and P concentrations and the N:P
ratio

The mean N and P concentrations and N:P ratio of woody
plant leaf-litter were 1093 mg ¢! n = 677, SD =
6.48 mg g7!), 0.85 mg g7' (n = 482, SD = 0.71 mg g")
and 18.32 (n = 482, SD = 11.17) respectively (Tab. I). The
leaf-litter N concentration was significantly (p < 0.001) and
positively correlated with that of P (> = 0.31) (Fig. 2).

Leaf-litter N and P concentrations were significantly dif-
ferent between shrubs and conifers (p < 0.05) (Tab. I). The
deciduous and evergreen broadleaf trees had similar values for
leaf-litter N concentration (12.12-12.30 mg g~') and P con-
centration (0.84-0.94 mg g~'). However the N:P ratio in ever-
green species (20.7) was significantly higher (p < 0.05) than
that in deciduous broadleaf species (18.2). Compared to the
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Figure 1. The distribution of leaf-litter N concentration, P concentration and N:P ratio for woody plants at a global scale (data in Appendix

S1). The dashed curves in the figures indicate fitted log-normal curves.

Table I. Statistics of leaf-litter N and P concentrations as well as N:P
ratio for different functional groups at a global scale (the data used is
listed as Appendix S1). Standard deviation (SD) is given.

Table II. r-test for significant differences in N and P concentrations
as well as N:P ratio between leaf-litter from different continents (also
see Fig. 2).

Stoichiometric traits n Mean Min. Max. SD SA EU AF AM Al
Woody plants (all samples) Leaf-litter N
N (@mgg™) 677 1093 0.60 50.50 6.48 NA* < 0.001 0.012 <0.001 <0.001 0.045
P (mg g7!) 482 0.85 0.10 6.40 0.71 SA 0412 <0.001 0427 0.133
N:P ratio 482 1832 0.20 79.00 11.17 EU <0.001 0.035 0.649
Shrubs AF <0.001 <0.001
N (mgg™) 61 10.24a* 3.80 38.10 6.06 AM 0.035
P (mg g™!) 42  092a 0.10 3.07 0.74 Leaf-litter P
N:P ratio 42 1598ac 2.63 46.00 11.32 NA 0.979 0.951 0.977 0.905 0.700
Evergreen broadleaf SA 0.989 0.716 0.825 0.001
N (mg g™ 176 12.30b 1.41 30.60 6.02 EU 0.671 0.697 0.004
P(mgg™) 141 0.84a 0.10 6.40 0.86 AF 0.482 0.003
N:P ratio 141 20.67b 0.80 69.33 11.68 AM 0.003
Deciduous broadleaf Leaf-litter N:P ratio
N (@mgg™) 306 12.12b 0.76 50.50 6.69 NA 0.235 0.024 <0.001 0.007 <0.001
P (mg g7!) 234 0.90a 0.10 440 0.65 SA 0.868  0.087 0.791 0.005
N:P ratio 234 18.20a 0.20 79.00 11.46 EU < 0.001 0.38 < 0.001
Conifers AF 0.025 0.072
N (@mgg™) 134 6.69¢ 0.60 38.10 4.71 AM < 0.001
-1
PI\I(:r;gragtio) 22 105'.6123]30 (2);(3) 32502() (7);1? * North America (NA), South America (SA), Europe (EU), Africa

* Different letters indicate significant differences among different
functional groups (#-test, p < 0.05).

two groups of broadleaf trees, coniferous litter had signifi-
cantly (p < 0.05) lower concentrations of N (6.69 mg g~!)
and P (0.62 mg g~') and a lower N:P ratio (15.13) (Tab. I).
For the different continental regions, the mean level of leaf-
litter nitrogen for the samples from Africa (19.15 mg g™!) was
greater (p < 0.001) than in each of the other five regions
(Fig. 3A). The lowest N concentration (8.18 mg g~!) which
was obtained for North America was lower (p < 0.05) than in
each of the five other regions (Tab. II). The lowest leaf-litter
P concentration (0.44 mg g~!) was obtained for the “Asian Is-
land” grouping (Fig. 3B). This value was significantly lower
(p < 0.01) than that in any other region with the exception of
North America (Fig. 3B, Tab. II). The low value of P for the
“Asian Island” grouping resulted in this region also having a

(AF), Asian mainland (AM), Asian Islands (AI).

higher N:P ratio than each other region with the exception of
Africa (Fig. 3C, Tab. II).

3.2. Variation in leaf-litter N and P concentrations
and N:P ratio with latitude, MAT and MAP

For the global dataset, leaf-litter N concentration increased
(p < 0.001) linearly with MAT and MAP and decreased
(p < 0.001) linearly with latitude. By contrast, the leaf-litter P
concentration showed no significant relationship (p = 0.192)
with MAT, and a negative linear relationship (p < 0.01) with
MAP. The leaf-litter P concentration also showed a convex
quadratic relationship (p < 0.05) with LAT, i.e. the lowest
values occurred at high or low latitudes. The resulting N:P
ratio was positively linear with MAT and MAP (p < 0.001)
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Figure 2. The relationship between leaf-litter N and P concentrations
in woody plants. Fitted line in the figure follows the model, log (N) =
0.3772 log (P) + 1.0749 (¥2 = 0.3141, n = 482, p < 0.001). The data
indicated with filled circles is not included in the regression.

(Figs. 4 and 5) and showed a concave quadratic relationship
(p < 0.001) with LAT (Fig. 6, Appendix S3 available on line
only at www.afs-journal.org).

Within the relatively small (n = 42—61) shrub leaf-litter
dataset, the N concentration showed no significant relation-
ship (p > 0.24) with MAT, MAP or LAT. However, the P
concentration did show a significant decrease (p < 0.05) with
MAT (Fig. 4E). The P concentration also showed (p < 0.01)
a concave quadratic relationship with MAP (Fig. SE), and in-
creased (p < 0.05) linearly with LAT (Fig. 6E) (regression
models are listed in Appendix S3 available online only at
www.afs-journal.org). For the shrub dataset, the N:P ratio var-
ied (p < 0.01) as a concave quadratic relationship with MAT
(Fig. 4C), a positive (p < 0.01) linear relationship with MAP
(Fig. 5C), and as a concave quadratic relationship with LAT
(p < 0.01) (Fig. 6C).

Each of the three tree datasets generally showed similar re-
lationships as the global dataset. For each tree dataset leaf-
litter N concentration increased (p < 0.001) linearly with
MAT and decreased (p < 0.01) linearly with LAT. Whereas
the leaf N concentration increased (p < 0.01) with MAP for
the evergreen broadleaf tree and conifer tree groups, the ef-
fect was not significant (p = 0.88) for the deciduous broadleaf
tree group. For each of the three datasets the relationships
between leaf-litter P concentration and MAT, MAP and LAT
were generally not significant (p > 0.05). The main exception
was that the P concentration within the deciduous broadleaf
tree group varied (p < 0.05) in a concave relationship with
MAT (Fig. 4K), showed a negative (p < 0.001) linear rela-
tionship with MAP (Fig. 5K), and had (p = 0.05) a convex
relationship with LAT (Fig. 6K). The P concentration within
the conifer tree group also showed a convex relationship with
LAT (Fig. 60). Lastly in each tree group there were generally
significant relationships between N:P ratio and MAT, MAP

H. Kang et al.
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Figure 3. Leaf-litter N concentration (A), P concentration (B) and
N:P ratio (C) for flora in North America (NA) (n = 116 for nitrogen
and 97 for phosphorus and N:P ratio), South America (SA) (n = 50
for nitrogen, 19 for phosphorus and N:P ratio), Europe (EU) (n = 189
for nitrogen, 113 for phosphorus and N:P ratio), Africa (AF) (n = 21
for nitrogen, phosphorus and N:P ratio), Asian mainland (AM) (n =
127 for nitrogen, 103 for phosphorus and N:P ratio) and Asian Islands
(AI) (n = 45 for nitrogen, 33 for phosphorus and N:P ratio). Vertical
bars indicate standard deviation. Significant differences between the
continents and islands are seen in Table II.

and LAT. In each group the N:P ratio increased with MAT, but
the effect was only significant (p < 0.05) for the “Deciduous
broadleaf tree”” and “Conifer tree” group (Figs. 41, 4L and 40).
The N:P ratio increased (p < 0.05) linearly with MAP for each
group (Figs. 51, 5L and 50) and varied (p < 0.01) in a concave
relationship with LAT (Figs. 61, 6L and 60) (Appendix S3).

4. DISCUSSION

4.1. General levels of N, P and N:P ratio in leaf-litter
of woody plants

A number of studies have attempted to establish relation-
ships between climate factors and N and P concentration for
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Figure 4. Variation in leaf-litter N and P concentrations as well as in N:P ratio with mean annual temperature (MAT) for all data combined (A,
B, C), shrubs (D, E, F), evergreen broadleaf trees (G, H, I), deciduous broadleaf trees (J, K, L) and coniferous trees (M, N, O) (corresponding
regression equations are given in Tab. S3-1 in Appendix S3).
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Figure 5. Variation in leaf-litter N and P concentrations as well as N:P ratio with mean annual precipitation (MAP) for all woody plants
combined (A, B, C), shrubs (D, E, F), evergreen broadleaf trees (G, H, I), deciduous broadleaf trees (J, K, L) and coniferous trees (M, N, O)
(corresponding regression equations are given in Tab. S3-2 in Appendix S3).
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Figure 6. Variation in leaf-litter N and P concentrations as well as N:P ratio with latitude for all data combined (A, B, C), shrubs (D, E, F),
evergreen broadleaf trees (G, H, 1), deciduous broadleaf trees (J, K, L), and coniferous trees (M, N, O) (corresponding regression equations are

given in Tab. S3-3 in Appendix S3).

the leaf-litter of woody plants at a regional (Aerts, 1997; Liu
et al., 2006) and global scale (Aerts, 1997; McGroddy et al.,
2004; Yuan and Chen, 2009b). Our study use a new dataset
to establish the general patterns in N and P concentrations and
N:P ratios in leaf-litter of woody plants at a global level, show-
ing some inconsistent results with previous studies. The mean
nitrogen concentrations reported here for evergreen and decid-
uous broadleaf trees (12.1-12.3 mg g~!) are higher than values
of 9.6-10.3 mg g~! reported by Yuan and Chen, (2009b). By
contrast the mean N concentration reported here for conifer
trees (6.69 mg g~!) is lower than that (7.9 mg g~') reported
by Yuan and Chen (2009b) (Tab. III). The P concentration for
deciduous broadleaves (0.9 mg g~!) and conifers (0.6 mg g~!)
are similar in the two studies, although the value reported here
for evergreen broadleaves (0.84 mg g~!) is higher than that
(0.5 mg g~!) reported by Yuan and Chen (2009b).

According to Yuan and Chen (2009b), the N:P ratios of
the leaf-litter increased as one moves from boreal to temper-
ate, and then to Mediterranean and tropical forests (Tab. III).
Within this study, the N:P ratio also increased as the MAT
increased (Fig. 4C) and the highest ratios were found in the
“Asian Island” and “Africa” continental regions.

In the present study, mean leaf-litter N and P concentrations
for all woody plants combined were 10.93 mg g~! and 0.85 mg
g1, respectively (Tab. I). These averages are 40% lower than
N (18.3 mg g™') and P (1.42 mg g~') concentrations reported
in a global study of live leaves (Reich and Oleksyn, 2004). The

lower leaf-litter N and P concentrations result from resorption
by the plants during leaf senescence. For example Yuan and
Chen (2009a) reported resorption efficiencies of about 47%
for nitrogen and 54% for phosphorus. Aerts (1996) reports a
resorption efficiency of about 50% loss for both N and P.

4.2. Global patterns of variation in leaf-litter N and P
concentrations

Liu et al. (2006) found that across Europe and Asia, tree
leaf-litter N concentration increased linearly with increasing
MAT and MAP (> = 0.45, p < 0.001, n = 204). Yuan and
Chen (2009b) also found that at a global scale leaf-litter N
increased linearly with temperature and precipitation. Our re-
sults on leaf-litter N (Figs. 4 and 5) support these two obser-
vations. In addition, because mean temperature tends to de-
crease with increasing latitude, the above relationships means
that the leaf-litter N concentration tends to decrease with lati-
tude at a global scale (Fig. 6). Hence we can conclude that lin-
ear models are generally adequate for describing global varia-
tions in leaf-litter N concentration. However at smaller scales,
whilst the positive response should still be evident, other re-
lationships have been observed. For instance, Aerts (1997) re-
ported that leaf-litter N concentration followed a positive non-
linear relationship with actual evapotranspiration (AET) with
the data collected from temperate, Mediterranean and tropical
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Table III. Comparisons of leaf-litter concentrations of N and P as well as N:P ratio (on a mass basis) in this study with previous ones.

P(mgg™)

N:P ratio

N (mgg™")
This study*
Woody plants 10.93 + 6.48 (677)
Shrubs 10.24 + 6.06 (61)

Evergreen broadleaf
Deciduous broadleaf

12.30 + 6.02 (176)
12.12 + 6.69 (306)

Conifers 6.69 +4.71 (134)
Yuan and Chen (2009b)+
Evergreen 9.6
Deciduous 10.3
Conifers 7.9
Yuan and Chen (2009b)#
Tundra 6.8 +0.341)

Boreal forest
Temperate forest

8.6 £ 0.3 (253)
9.8 £ 0.2 (439)

0.85 + 0.71(482)
0.92 + 0.74 (42)
0.84 + 0.86 (141)
0.90 + 0.65 (234)
0.62 + 0.47 (65)

0.5
0.9
0.6

0.5+0.1(9)
0.8 £ 0.0 (152)
0.7 £ 0.0 (233)

18.32 + 11.17 (482)
15.96 + 11.32 (42)
20.67 + 11.68 (141)
18.20 = 11.46 (234)
15.13 + 7.31 (65)

23.1 +8.9(5)
15.0 +£ 0.9 (141)
17.6 +£ 0.6 (204)

Mediterranean forest 9.6 +0.5(32) 0.6 £ 0.0 (35) 17.8 £ 1.2 (28)
Tropical forest 12.5 £ 0.3 (255) 0.4 +£0.0(172) 273+ 1.2(112)
Grassland 8.7+ 0.5 (69) 1.1 £ 0.1 924) 14.7 + 8.9 (10)
Average 10.0 + 0.1 (1089) 0.7 £ 0.00 (625) 19.2 + 0.5 (500)
McGroddy et al. (2004)]
Woody plants 20.6 (99)
Temperate broadleaf 13.2 (30)
Temperate conifers 11.8 (20)
Tropical broadleaf 28.4 (50)

* Mean = 1 sd (n). T No sample number was found. & Mean =+ 1 se (n). { The N:P ratio is calculated from the values on a molar basis.

regions, but with mimimal samples from boreal regions. Berg
et al. (1995) established exponential functions (p < 0.001)
between both N and P concentration and MAT and MAP for
Scots pine foliar litter across a small transect of MAT from
—1.7 to 10.5 °C and MAP from 443 to 1067 mm. Based on
Berg’s et al. (1995) data, Oleksyn et al. (2003) showed that for
Scots pine, leaf-litter N decreased with latitude across Euro-
pean continent.

Across the global dataset, leaf-litter P concentration showed
no significant relationship with MAT at a global scale, al-
though a negative linear relationship was observed with shrubs
and a concave quadratic relationship for deciduous broadleaf
trees (Fig. 4, Appendix S3). These results are not consis-
tent with those of Yuan and Chen (2009b) who showed that
senesced-leaf P was negatively and significantly correlated
with MAT. Reich and Oleksyn (2004) also showed that P
concentrations of non-senesced leaves tended to decline with
MAT. The low P concentrations at high temperatures has been
related to the high abundance of low-P soils in the tropics due
to low P weathering inputs (Chadwick et al., 1999; Walker and
Syers, 1976), hydrologic losses of dissolved organic P (Hedin
et al., 2003), and sorption of P to soil surfaces (Crews et al.,
1995; Walker and Syers, 1976). The resulting low level of soil
P results in vegetation with lower P concentrations (Han et al.,
2005; Reich, 2005; Reich and Oleksyn, 2004), and higher P re-
sorption by senescing leaves (Yuan and Chen, 2009a). By con-
trast at high latitudes within a European study, Oleksyn et al.
(2003) demonstrated that the P concentration of unscenesced
Scots pine needles remained relatively consistent at latitudes

between 47 and 55° N but there was a significant decline be-
tween 63 and 65° N. However because the relative level of P
resorption by the tree increased steadily with latitude, the P
concentration of the leaf-litter also declined steadily between
47 and 65° N. In addition to these within-species effects, as
one moves from low to high latitudes, the abundance of leaf-
litter from evergreen broadleaf trees (which generally has a
high P concentration) decreases and the abundance of conifer
trees (which tend to have a low P concentration) increases.
Hence within the global dataset the principal pattern of P con-
centration with latitude is of low values in the tropics and at
high latitudes with higher values at mid-latitudes (Figs. 6B,
6K, 6N).

4.3. Global patterns of variation in leaf-litter N:P ratio

Our results show that litter-leaf N:P ratio generally in-
creased linearly with MAT and MAP (Figs. 4 and 5). This is
consistent with the observations of Yuan and Chen (2009b),
and can largely be attributed to the increases in leaf-litter N
concentration with MAT and MAP being greater than any as-
sociated decline in P concentration. An increase in the N:P
ratio of unsenesced leaves with increased temperature has also
been observed by Reich and Oleksyn (2004) and Han et al.
(2005).

In terms of latitude, the highest N:P ratios tended to be
at low latitudes with the lowest values at mid-latitudes, with
some evidence that N:P ratios start to increase slightly towards
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the highest latitudes. Again these results arise from the combi-
nation of the general decline in N concentration with latitude
being superimposed on a generally convex relationship be-
tween P concentration and latitude. As explained earlier leaf-
litter P concentrations tend to be reduced near the equator due
to low levels of soil P, and at high latitudes by low mineraliza-
tion rates and relatively high rates of P resorption. Within this
study this latitude effect only became apparent by the use of a
non-linear model (Fig. 6, Appendix S3).

5. CONCLUSION

Based on a global dataset different from previous ones, our
results support previous observations that leaf-litter N shows
a positive linear relationship with both MAT and MAP at a
global scale. Although there was no significant relationship
between P concentration and MAT, our analysis supports pre-
vious observations that leaf-litter P can decline with MAP. The
net result of these is that the N:P ratio tends to increase with
MAT and MAP. A key result is that the leaf-litter P concen-
tration tended to show a convex relationship with latitude with
the highest values occurring at latitudes of between 25 and 50°.
Hence because the N concentration tends to decline with lati-
tude, the greatest N:P ratios tend to occur at low latitudes, with
the lowest values at mid-latitudes before increasing slightly at
the highest latitudes. In addition, evident differences in leaf-
litter N and P concentrations exist among some continents or
between the mainland and island in Asia area. These results
are of clear importance in modeling biogeochemical cycling
and particularly the probable responses of litter chemistry to
global climate change.
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