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Abstract 

Turbulent flame speeds were measured over a range of pressures to 0.8MPa using a jet-flow 

apparatus fired with a synthetic mixture representing a mid-European natural gas. The equivalence 

ratio (Ø) was 0.9. The gas contained significant proportions of ballast gases and higher 

hydrocarbons.  

The method adopted was the ‗flame angle‘ technique, using schlieren imaging to obtain the flame 

vertex angle from the peak density gradient. Image analysis techniques were developed to reduce 

interpretation errors and give an unbiased result.  The data shows higher flame speeds than were 

obtained with pure methane at elevated pressures, using similar methodology, and has an 

application in numerical modelling of combustors.      
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NOMENCLATURE 

Da  Damköhler number 

Ka  Karlovitz number 

It Integral length scale 

P Mixture pressure 

ReT  Nozzle Reynolds number  

V Nozzle velocity 

SL  Laminar flame speed 

ST Turbulent flame speed 

T Mixture temperature 

u' Fluctuating velocity 

 

Greek Letters 

 Flame thickness 

λ Taylor scale 

η  Kolmogoroff scale  
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1 Introduction 

For advanced GT Combustion Systems, the high efficiency, low pollutant emission and 

stabilization of the lean flame in the engine are more and more required. A database for turbulent 

flame properties is needed both for practical uses and developing multi-dimensional models for 

numerical simulations. Unfortunately still only few experimental studies are available for detailed 

high pressure premixed turbulent flame, especially under different temperature and fuels. 

Kobayashi et al. [1-2] used a Bunsen burner with perforated plates within a constant pressure 

chamber operated up to 3.0 MPa. His schlieren images showed finer turbulence structures in high 

pressure environments than at low pressure. Soika et al.[3] used a bluff body stabilized flame up to 

1.1 MPa. They indicated the effect on the smaller turbulence scale and flame instabilities by 

pressure. Lachaux et al.[4] studied lean premixed (Ø=0.6) flames up to 0.9 MPa using a Bunsen 

burner. They studied the wrinkling scales, flame front curvature and surface density by using LDA 

and Mie scattering tomography. They showed that the increased pressure can cause small scale 

flame structures but roughly constant integral length scales. 

 In the present study, we use a synthetic gas mixture, designated ―Ruhr Gas‖, typical of 

compositions used in mid-Europe, which contains significant amounts of ballast and higher 

hydrocarbons. The turbulent flame velocity measurements were taken under different pressures and 

temperatures. 

 

2 Experimental Hardware Design & Construction 

A turbulent flame speed experiment with a jet-stabilized pre-mixed flame having optical access for 

LDA and schlieren analysis was constructed.  The design of the jet nozzle and its velocity and 

turbulence profiles was explored using CFD (FLUENT) and checked by cold experiment. The 

criteria of primary importance for the nozzle flow are taken as uniform mean and turbulent velocity 

and mixture concentration distributions at the jet exit, with steep wall gradients. The maximum 

sustainable grid-induced turbulence levels are about 8% from an area contraction ratio of 7.29, with 

third-order wall profile and a nozzle exit diameter of 20mm: the intrinsic, clean jet turbulence is 

~1.5%.  Flame stabilization was provided by a thin rim, the outer face of which formed the inner 

annulus of the flame root stabilization diffusion flame fuel supply. The outer wall of the diffusion 

flame flow-path was heavily cooled by radiation to a water jacket: the diffusion flame fuel was not 

pre-heated.      

To reduce risk and experimental tuning of apparatus to a minimum, CFD simulation was used to 

guide the design of the flow-path of the experiment, in particular for the jet nozzle profile and 

turbulence generator, and for a heat transfer study of the high-pressure casing and optical windows. 

The tasks were broken down into nozzle and turbulence generator studies, combustion chamber 

flow and heat transfer.   

Preparation of a homogeneous pre-mixed fuel: air mixture close to the point of use has difficulties 

and contradictory requirements, given the relative fuel and air mass and momentum ratios available 

and the final range of nozzle exit velocity. It was decided to pre-mix the fuel and air upstream of the 

nozzle and control the wall boundary layer growth to minimize flashback propensity and produce a 

well-controlled shear layer with the stabilization flow.   

 

2.1 Jet Nozzle & Turbulence Generator 

The mean flow and mixture concentration fields at the nozzle exit must be controllable, 

symmetrical and, ideally, flat, with similar characteristics over a range of nozzle Reynolds Number. 

A conventional round jet with exchangeable turbulence generator plates was used to enable 



turbulence levels to be varied. To minimize the possibilities of flashback during combustion, the 

wall boundary layer should be thin and continuous, with the highest level of induced turbulence 

sustainable and the lowest intrinsic (i.e. clean) turbulence level in the core flow for each case. The 

conventional method of using an accelerated flow to achieve low intrinsic turbulence has the risk 

that any flashback of the flame may propagate into a large space holding combustible mixture. A 

study of the contraction area ratio, wall profile and exit velocity distribution showed that a third-

order wall profile and AR of ~8 would produce the required mean flow field.   

The turbulence generator flow should be sufficiently mixed prior to the exit plane to minimize the 

opportunity for aerodynamic flame-holding. Surveying flow conditioner design showed that the 

simple perforated grid-plate design represented a solution [5], enabling simple tuning using the 

orifice area and few restrictions on manufacture. A numerical study was run to indicate the 

optimum grid-plate porosity and hole size, with hole spacing, radial and circumferential, adjusted.   
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Fig. 1 The turbulence generation plate and Test lines 

The test for the velocity and turbulence intensity:  

  

Fig. 2 Velocity & Turbulence distribution 



2.2 Performance Check of the Nozzle, Turbulence Generator & Mixer 

Detailed construction of the components required close-tolerance CNC machining of many mating 

parts forming the final assembly. The assemblies were made in stainless steel and copper and 

vacuum-brazed together. Before committing to this step, the CNC programmes and fluid dynamic 

performance of the designs were checked using aluminium models at full-size, run with air at the 

operating nozzle Reynolds Number range expected in the combustion experiments. Mean and 

fluctuating velocity in the jet was measured using HWA. In the case of the mixer, helium was used 

as a tracer, with a mass spectrometer to map concentration fields across the nozzle exhaust plane.   

 

2.3 Pressure Casing and Internal Combustion Liner  

A twin-wall, convectively cooled inner liner was taken as the basic design. The casing was 

fabricated from carbon steel to standard pressure vessel design codes and standards. Provision for 

four windows aligned on two orthogonal, axially off-set diameters was made: the windows were 

made of laser-quality fused quartz glass, resiliently mounted in a frame that formed the cooling and 

ventilation gallery for window purge. Blanks were made for the window apertures not used. 

Provision was made to move the nozzle vertically with respect to the window axis to enable 

variations in flame location to be accommodated without major re-alignment of the optical axis.   

The internal double-skinned stainless steel combustion liner was insulated with a high-grade 

material and wall film-cooled. The inside was painted with matt black high-temperature paint to 

minimize reflection.   

Heat transfer analysis was performed for the high pressure containment. The concerns are that for 

the size of jet and its heat release, the wall thermal losses could appreciably alter the quasi-adiabatic 

boundary condition of the practical gas turbine combustor flames for which model data is sought, 

and the thermal loading and stressing of the optical windows. The casing for the experiment is then 

a compromise between size (mass and pressure capability) and modification to the jet flow 

(chamber diameter/volume) and the relative energy input. At the maximum condition for which data 

was sought, the maximum heat release from the jet flame was ~36kW. The solution applied used a 

separate internal insulated liner to limit radial and axial heat loss. This was contained in a light-

gauge metallic structure to approximate a realistic radiative boundary. The pressure vessel had some 

relatively large apertures necessary for windows with views across and oblique to the jet axis to 

permit optical measurements. The thermal losses from the windows could not be compensated but 

those windows not used for any set of measurements were covered with appropriately constructed 

blanks.   

 

2.4 The Schlieren System 

Most premixed turbulent flames of practical interest are within the flamelet regime. Thin flamelets 

also mean that the flame zone is characterized by large density gradients. This offers high 

sensitivity to the application of light deflection techniques such as schlieren, deflection mapping 

and interferometry. A typical flamelet oriented parallel to the incident beam direction produces a 

density gradient orthogonal to the beam and because schlieren is only sensitive to density gradients 

orthogonal to the beam, flamelets normal to the beam direction will be transparent. For the conical 

flame configuration, schlieren can outline the flame cone very clearly [6]. 

The optical system was built around a folded-path arrangement using large spherical mirrors, 

diameter 305mm, to reduce distortion.  Images were generated using a Xenon flash lamp source 

(100hz repetition rate, 60w average input, 2.90us average flash duration) driven by a signal 

generator and CCD camera (1024 1260 resolution) to capture the images.  Image files were 



dumped directly to a PC hard drive.  The window apertures were 100mm and the whole window 

area could be imaged.   

 

2.5 Experiment Control System 

The main features are shown schematically below. Thermal mass-flow meters/controllers were used 

for air and fuel feed.  These were check-calibrated at intervals throughout the experiments.  Rig 

pressure was maintained by an exhaust regulating valve or fixed orifice, depending on need.  

Coolant was supplied to the jet nozzle jacket under manual control.  Spark ignition, driven by a 

conventional HV transformer, was used with a retractable electrode.     

  

Fig. 3 Overview of the experimental rig 

Data was acquired from digital pressure transducers, the mass-flow controllers and thermocouples 

and logged to PC using standard methods.  Some on-line data reduction enabled the operator to 

control rig health, safety and set-point conditions.   

 

3  Results  

The flame speed is determined by the angle method (ST=Usin( /2), where U is the mean velocity of 

mixture at the tube outlet,  is the vertex angle of the mean flame region). 

The initial testing phase established a stable flame and consistent conditions.  Flame root 

stabilization was provided using the test fuel, although the apparatus would burn without diffusion 

support over a reasonable equivalence ratio at room temperature.  All the data presented is with root 

stabilization, for consistency.   

At elevated pressure, the flame brush became shorter and less well-defined, with the degree of 

definition becoming less as the nozzle Reynolds Number was increased.  It was possible to reduce 

the pilot stabilization flow to a small value.   The illustration shows typical results on the test fuel.   

 



 

P=0.1MPa 

 

P=0.3MPa 

 

P=0.7MPa 

Fig. 4 Instantaneous images under different pressures 

To commission the schlieren apparatus, the system was operated at atmospheric conditions, with all 

the elements of flash-lamp source, pinhole, mirrors, lens, knife edge, filter, and camera to assess 

any degradation in image quality arising from the windows.   

Some experimentation with knife-edge was required to achieve good image quality and the 

photographs show a change in knife-edge position.   

Schlieren images from the elevated pressure experiments illustrate the difficulty of data 

manipulation to arrive at flame speed.  Although the flame is stable, there is sufficient shot-to-shot 

variation to give a fuzzy appearance to the averaged image and binary image extraction was 

necessary to provide a consistent density gradient interpretation. 

 

Good schlieren images were obtained after some tuning. The effects of flame radiation were 

controlled using a filter in front of the camera lens and short camera shutter duration (1 ms). Using 

the filter preserved the dynamic range of the CCD, thus reducing errors due to saturation.  

The short shutter speed minimized image blurring from flame oscillation in space. The flash lamp 

frequency was set to be 100 Hz, and the trigger was set synchronously for the camera and the lamp 

giving clear,sharp images The original instantaneous images were taken from the CCD at 256 grey 

scales, and an averaged image was determined by an average of pixel data taken from fifty images. 

A program was written to find the digital profile of flame front mainly according to the brightness 

of the edge, assuming axisymmetry of the flame. In the program, the flame zone was firstly chosen 

from the averaged image, the threshold value was determined considering the intensity histogram 

and average pixel data for each scan line.  

The number of images taken for the results in the paper is 50, however, more images were used in 

development (in increments up to 300), and no obvious difference was found between these cases, 

this might because of the relatively sharp difference between the background and the flame image. 

Furthermore, turbulence generator, nozzle configuration, stabilized diffuse flame and chamber 

volume were carefully designed to minimize the perturbation (shear flow) caused by the edge of the 

nozzle and outside flow together with the heat loss.  
 

The illustration shows the development of a typical schlieren record from a single instantaneous 

image to a 50-image average and its derived intensity profile for conditions of   Ø =0.9 at 700kPa 

chamber pressure.   
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Fig. 5 Illustration for image processing 

Instantaneous and averaged schlieren images, with derived flame envelope over a range of 

conditions were taken. There are significant variations in image quality and derived flame vertex 

angle over the pressure range covered, as shown, Figs 4 & 5.  

The main experimental results were obtained with an equivalence ratio of 0.9 and at pressures up to 

0.8MPa, the experimental details and conditions are shown below. 

 

P 

(KPa) 

T  

(K) 

V 

 (m/s) 

u' 

(m/s) 

ReT SL 

(m/s) 
 

(mm) 

It  

(mm) 

λ 

(mm) 

η 

(mm) 

Le Da  Ka u'/SL 

 

100 300 3.75 0.29 40.95 0.34 0.064 3.09 0.48 0.190 0.92 56 0.113 0.85 

230 296 1.39 0.12 23.29 0.24 0.039 2.82 0.47 0.192 0.92 146 0.041 0.49 

300 296 1.06 0.10 38.24 0.21 0.045 2.83 0.53 0.229 0.92 137 0.039 0.46 

400 343 1.16 0.11 61.39 0.24 0.029 3.83 0.49 0.174 0.93 281 0.028 0.47 

600 329 1.06 0.08 57.81 0.25 0.017 3.08 0.41 0.147 0.93 534 0.014 0.33 

700 354 1.06 0.09 67.07 0.20 0.022 3.20 0.39 0.136 0.94 326 0.025 0.45 

760 357 1.09 0.09 79.67 0.19 0.021 3.64 0.41 0.136 0.94 386 0.023 0.45 

Table 1 Tabulated Experimental Conditions and Results 

Where: P = mixture pressure; T= mixture temperature; V= nozzle velocity;  

u' = fluctuating velocity; ReT (u'lt/ /SL)= nozzle Reynolds N
o
;  

SL = laminar flame speed calculated from CHEMKIN;  

 = flame thickness  = (λu/( uCpuSL) (for u: unburnt conditions); It = Integral length scale;  

λ = (lt
2
/ReT)

1/2
 = Taylor scale; η (lt/ReT

3/4
)= Kolmogoroff scale;  

Da (ltSL/ /u‘) =Damköhler N
o
; Ka (ReT

-1/2
(u'/SL)

2
) = Karlovitz N

o
 

 

Ruhr Gas was used for the experiment, which contains significant amounts of ballast and higher 

hydrocarbons. 

 

Mixture Component Mol (%) 

Carbon dioxide  (CO2) 1.57 

Nitrogen  (N2 ) 8.74 

Methane (CH4) 86.45 

Ethane (C2H6) 2.55 

Propane (C3H8) 0.69 

Table 2 The fuel mixture (Ruhr gas) composition 



Pilot fuel mass flows were ~0.5 – 1.5% of main fuel flow: equivalence ratio was calculated on total 

fuel flow.   

The laminar burning velocity SL was calculated from the program package CHEMKIN, the 

chemical kinetics was modelled by GRI-MECH v3.0.  

 

4  Discussions 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5

u'/SL

S
T
/S

L

0.1 MPa

0.2 MPa

0.3 MPa

0.4 MPa

0.5 MPa

0.7 MPa

 

Fig. 6  Relationship between ST/SL and u’/SL for various 

chamber pressures 
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Fig. 7 Turbulent combustion regimes of the investigated 

flames 

From Fig. 6, we can see the asymptotic tendency under 0.1 and 0.2 MPa similar with [7], however it 

is not clear due to the lack of data under higher pressures. The effects of pressure on ST/SL are 

significant, this implies an additional pressure modification term may be helpful when generating a 

correlation between ST/SL and u‘/SL.  

The turbulent flames for the experimental conditions are mostly in the wrinkled-flamelets regimes 

of Bray‘s diagram [8]
 
as shown in Fig. 7.     
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Fig. 8 Relationship between ST/u’ and Ka, Da 

There are many proposed correlations as to the relationship between turbulent burning velocity, 

turbulent intensity, timescale, laminar burning velocity and so on and these correlations are 

summarized in references [9-11].  

Our experimental data Fig. 8, shows a substantially stronger dependence of ST/u‘ both on Da and 

Ka (ST ~ u′ (Da)
0.59

,  ST ~ u′ (Ka)
-0.61

) than other datacases  [12-13] where ST ~ u′ (Da)
0.27

 and ST ~ 

u′ (Ka)
-0.3

. However the features of our experimental data basically agree with their correlations 

when a pressure modification item (P/P0) item is added, here P0 is the atmosphere pressure, 0.1 

MPa. 

ST ~ u′ [(Da(P/P0)]
0.30

,  ST ~ u′ [1/Ka/(P/P0)]
-0.31 
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Fig. 9 General correlation of turbulent burning velocity (the top and bottom line are correlations from [12]) 

 

The turbulent velocity data in Fig.9 are within the range of other correlations reflecting the 

composition of the fuel used in the experiment [12], when considering about the u' and SL.  

The correlation obtained from this work is: 

ST/SL =2.4×[(P/P0)(u'/SL)]
0.30 

The differences in coefficients are due to the different compositions. 

Furthermore, unlike in the reference [12], different mixture temperatures were tested during this 

work, this also brings some effects apart from the pressure. Correlations were obtained by adding 

two different terms (T0/T) and (T/T0), here T0 is equal to 273.15K. 

ST/SL =2.5×[(P/P0)(u'/SL)(T0/T)]
0.34 

ST/SL =2.3×[(P/P0)(u'/SL)(T/T0)]
0.26 
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Fig. 10 General correlation of turbulent burning velocity  

Different temperature cases have been investigated during the experiment, however this will not 

impact as much as pressure on the turbulent flame speed. When adding the term (T/T0), the 

exponent is nearer to the value given in [14], this may imply the temperature acts inversely to the 

pressure, Fig 10.  

 

5 Conclusions  

In this work, turbulent flame speeds ST were measured over a range of pressures to 0.8MPa using a 

jet-flow apparatus fired with a synthetic mixture representing a mid-European natural gas. The gas 

contained significant proportions of ballast gases and higher hydrocarbons which affect the 

turbulent velocity.  

The following results are obtained: 

An asymptotic tendency of the ST/SL curves with increasing u'/SL was seen, although this is not 

entirely clear due to the reduced data set available under high pressures.  



A power law of ST/SL with (P/P0)(u'/SL) was obtained using the vertex angle from the mean flame 

cone by schlieren imaging, which shows comparable agreement with other authors [12].  

Also as ST correlates to Damköhler and Karlovitz number, a pressure modification term (P/P0)
n
 may 

be helpful to get better correlations. 

Further work should be carried to study the high turbulence velocity and the pressure and 

temperature modification items (P/P0, T/T0) in the correlations. 
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