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Abstract

Fault detection and diagnosis is a critical approach to ensure safe and efficient operation of

manufacturing and chemical processing plants. Although multivariate statistical process moni-

toring has received considerable attention, investigation into the diagnosis of the source or cause

of the detected process fault has been relatively limited. This is partially due to the difficulty in

isolating multiple variables, which jointly contribute to the occurrence of fault, through conven-

tional contribution analysis. In this work, a method based on probabilistic principal component

analysis is proposed for fault isolation. Furthermore, a branch and bound method is developed

to handle the combinatorial nature of problem involving finding the contributing variables, which

are most likely to be responsible for the occurrence of fault. The efficiency of the method pro-

posed is shown through benchmark examples, such as Tennessee Eastman process, and randomly

generated cases.
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1 Introduction

Fault detection and diagnosis (FDD) is a critical approach to ensure safe and efficient operation

of manufacturing and chemical processing plants. The available current FDD techniques can be

classified into the following three major categories: quantitative model-based, qualitative model-

based and process history based methods [1]. Among these techniques, multivariate statistical

process monitoring (MSPM), which is based on historical process data, has received considerable

attention in terms of both methodological research and industrial applications [2, 3]. The success

of MSPM may be attributed to the fact that a large amount of historical process data is usually

available, and thus the developed model attains high accuracy in detecting any deviation from

established normal operating conditions (NOC).

In traditional MSPM, the principal component analysis (PCA) or the partial least squares (PLS) are

applied to model the data collected under NOC. Subsequently, monitoring statistics like Hotelling’s

T 2 and the squared prediction error (SPE) are used for fault detection. During the past few years, the

focus of the research in MSPM has been on developing sophisticated statistical models to obtain more

realistic representation of the process behaviour. Some notable progress has been made in dealing

with dynamic processes [4–8] and process with non-Gaussian distributed data [8–13]. However,

investigation into the “downstream” step of MSPM, that is, the diagnosis of the source or cause of the

detected fault, has been relatively limited. The primary tool used for fault diagnosis is contribution

analysis, which quantifies the contribution of individual variables to the T 2 and SPE [14]. Since both

the T 2 and SPE are monitored in conventional MSPM, contribution analysis is typically performed

for these two statistics. Thus, if the two contribution plots indicate different sets of responsible

faulty variables, it can be difficult to resolve these conflicts and the decision is usually subject to

the operators’ experience. Furthermore, contribution analysis investigates individual variables one

by one. Thus, it can be ineffective in isolating multiple variables which jointly contribute to the

occurrence of fault and can lead to the identification of incorrect variables as being faulty due to the

correlation among variables.

More recently, the need to use a unified monitoring statistic, as opposed to using the T 2 and SPE

individually, has been well recognized. One way is to combine the T 2 and SPE algorithmically [15,

16]; the other approach is to rely on a fully probabilistic model to provide a single likelihood-based

statistic [10, 17]. A single monitoring statistic offers a clearer interpretation of the contribution plots.

In addition, these studies suggested an alternative approach to quantifying the contribution by using
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the idea of missing variables [15, 17]. The original idea is that each process variable is treated as

if it were missing and the monitoring statistic is re-calculated. This procedure is carried out for all

variables and the variable giving the largest reduction of the monitoring statistic is considered to

contribute the most to the fault. The missing variable approach opens up the opportunity to analyze

the joint effect of a group of variables by treating them as missing. However, the major difficulty is

the vast number of possible variable combinations that are required to be evaluated. For example,

if 5 out of total 50 variables are suspected to be the contributing source, then the total number

of combinations is 2, 118, 760. Therefore, Yue and Qin [15] made a restrictive assumption that the

combinations of faulty variables are specified a priori according to known faulty modes, and thus

contribution analysis only needs to be conducted on these combinations.

This paper extends the missing-variable based contribution analysis to consider the joint effect of

multiple variables, namely multivariate contribution analysis. In this study, we choose the proba-

bilistic PCA (PPCA) [18, 19] for modelling normal operating data and on-line process monitoring.

The probabilistic framework of PPCA provides a single monitoring statistic, which avoids possible

conflict in fault isolation stage if multiple statistics need to be analyzed. If needed, the PPCA can

be extended to a mixture model to suit non-Gaussian distributed process data [20].

Based on the PPCA under NOC, we derive a statistical criterion to quantify the contribution of

multiple missing variables. Using the criterion, when the occurrence of fault is identified through

on-line process monitoring, the fault diagnosis can then be conducted by solving a series of subset

selection problems. The combinatorial difficulty of the subset selection problem is tackled by a nu-

merically efficient branch and bound (BAB) algorithm developed to isolate the set of faulty variables

based on the criterion derived. The efficiency of the proposed method is demonstrated using a linear

benchmark example [15], the Tennessee Eastman (TE) process [21] and randomly generated cases.

It is worth to point out that although the proposed algorithm is developed based on the PPCA, the

methodology is readily extendable to other MSPM methods.

The rest of this paper is organised as follows: after introducing the general principle of the PPCA,

the methodology of missing variable analysis for fault isolation is presented in Section 2. Section 3

proposes the BAB algorithm for missing variable selection. The efficiency and effectiveness of the

developed algorithms are demonstrated through various numerical examples in Section 4. Finally,

the work is concluded in Section 5.
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2 Probabilistic principal component analysis

Principal component analysis (PCA) [22] is a general multivariate statistical projection technique

for dimension reduction. The central idea of PCA is to project the original r-dimensional data, x,

onto a space where the variance is maximized:

x = Wt + x̄ + e (1)

where W refers to the eigenvectors of the sample covariance matrix corresponding to the q (q ≤ r)

largest eigenvalues, t is the q-dimensional scores, x̄ is the mean of the data, and e is the noise term.

Recently, Tipping and Bishop [18] proposed a probabilistic formulation of PCA (PPCA) from the

perspective of a Gaussian latent variable model. Specifically the noise is assumed to be Gaussian:

e ∼ G(0, σ2I), which implies

x|t ∼ G(Wt + x̄, σ2I) (2)

Furthermore, by adopting a Gaussian distribution for the scores, t ∼ G(0, I), the marginal distribu-

tion of the data is also Gaussian: x ∼ G(x̄,C), where the covariance matrix is C = WWT +σ2I. In

contrast to the sample covariance S, the PPCA model defines C in terms of the auxiliary parameters

W and σ2. Note the number of free parameters in C is rq + 1 − q(q − 1)/2, which is smaller than

the r(r + 1)/2 parameters in S if q < r [18]. Therefore the PPCA provides a way to constrain the

model complexity via the selection of q. The model parameters, {x̄, W, σ2}, can be estimated using

the maximum likelihood algorithm; see [18] for details. Later, the PPCA was applied for process

monitoring with improved fault detection capability [19].

The probabilistic framework of PPCA provides a single statistic for fault detection, as opposed to

the T 2 and SPE in the traditional PCA. It was shown by Chen and Sun [17] that the data point x

should be considered as out-of-control when

M2 = (x− x̄)TC−1(x− x̄) > χ2
r(β) (3)

where χ2
r(β) is the β-fractile of the chi-square distribution with r degrees of freedom.

For the purpose of contribution analysis, Chen and Sun [17] suggested a missing variable approach

in the PPCA framework. In particular, consider that the measurement vector x is partitioned into

n-dimensional xo and d-dimensional xm as

xT =
[
xT

o xT
m

]
(4)
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where the subscripts o and m refer to observed and missing variables, respectively. Similarly, let the

mean (x̄) and covariance matrix (C) be partitioned as

x̄ =

 x̄o

x̄m

 ; C =

Coo Com

Cmo Cmm

 (5)

The conditional mean (x̄m|o) and covariance matrix (Cm|o) of xm given xo are

x̄m|o = x̄m + CmoC−1
oo (xo − x̄o) (6)

Cm|o = Cmm −CmoC−1
oo Com (7)

Then, the conditional mean (x̄|o) and covariance matrix (C|o) of whole x given xo are

x̄|o =

 xo

x̄m|o

 ; C|o =

0 0

0 Cm|o

 (8)

Therefore, the re-calculated monitoring statistic with missing values is given by

E[M2] = tr(C−1((x̄|o − x̄)(x̄|o − x̄)T + C|o)) (9)

where E[·] denotes the expectation operator.

Now, the variable can be considered to be out-of-control if E[M2] in (9) exceeds χ2
r(β). This criterion

is applicable to any number of missing variables. In the original method of Chen and Sun [17], each

individual variable of x is regarded as missing, and the monitoring statistic in (9) is re-calculated.

If a variable contributes significantly to the data being detected as faulty, then the re-calculated

statistic will be dramatically reduced. Furthermore, if E[M2] is smaller than the confidence bound,

then we can say that by removing the corresponding variable and replacing it by its conditional

mean, the process would return to the normal operating region. However, this approach is not

capable of studying the joint contribution of multiple variables.

From the fault diagnosis point of view, the original source of a fault should correspond to a small

set of measurements. Therefore, the objective becomes to select a minimum number of missing

variables, whose re-calculated monitoring statistic is below the confidence bound. The flow of the

method is given by the following algorithm:

Algorithm 1 Initially set d = 1.
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1. Select d missing variables such that the re-calculated monitoring statistic is minimized.

2. If the minimum statistic is below the confidence bound, then the corresponding variables are

isolated as the source of fault, and the algorithm can be terminated.

3. Otherwise, set d = d+ 1, and return to Step 1.

The selection of d-dimensional xd from r-dimensional x in Step 1 of Algorithm 1 is a combinatorial

optimization problem, which is NP-hard. One of the main contributions of this work is the devel-

opment of a branch and bound (BAB) algorithm to solve this optimization problem efficiently, as

discussed in the next section.

3 Branch and bound method

3.1 General principle

Let Xr = {xi|i = 1, 2, · · · , r}, be an r-element set. A subset selection problem with the selection

criterion φ involves finding the optimal solution, X∗n, such that

φ(X∗n) = min
Xn⊂Xr

φ(Xn) (10)

For this problem, the number of alternatives is Cn
r = r!

(r−n)!n! , which grows very quickly with r and

n rendering exhaustive search unviable. A BAB approach can provide globally optimal solution

for the subset selection problem in (10) without exhaustive search. In this approach, the original

problem (node) is divided (branched) into several non-overlapping subproblems (sub-nodes). If any

of the n-element solution of a sub-problem cannot lead to the optimal solution, the sub-problem is

not evaluated further (pruned), else it is branched again. The pruning of sub-problems allows the

BAB approach to gain efficiency in comparison with exhaustive search.

The available BAB methods for subset selection can be classified as downwards [23–27] and up-

wards [28–30] BAB methods. The distinguishing feature of these approaches is the search direction.

While the subset size is gradually decreased from r to n in a downwards BAB approach, it is grad-

ually increased from 0 to n in the upwards BAB approach. The use of downwards (upwards) BAB

approach is appropriate, when the lower bound on the selection criteria holds for subset sizes larger
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(smaller) than the target subset size n [28]. As shown in Section 3.2, the lower bound on the moni-

toring statistic in (9) holds in the upwards direction and thus the upwards BAB approach is used in

this paper. In the subsequent discussion, we provide a brief overview of the upwards BAB approach;

see [28] for details.

root

1 2 3 4 5

665654654365432

search
direction

Figure 1: Solution tree for selecting 2 out of 6 elements

In an upwards BAB approach, each node has a fixed set Ff and a candidate set Cc, which have f

and c elements, respectively. The relationship between the fixed and candidate sets of a node and

its ith sub-node (branching rule) is given as follows:

F i
f+1 = Ff ∪ xi; Ci

c−i = Cc \ {x1, · · · , xi} (11)

where F i
f+1 and Ci

c−i denote the fixed and candidate sets of the ith sub-node and i = 1, 2, · · · , f +

c − n + 1. Based on (11), it can be noted that Ff is gradually expanded using the elements of Cc,

until the dimension of Ff reaches the target subset size n. An example of the solution tree obtained

by recursively applying the branching rule in (11) is shown in Figure 1. For the root node in this

solution tree, we have Ff = ∅ and Cc = Xr. The label of the nodes denote the element being moved

from Cc to Ff . The solution tree has Cr
n terminal nodes, which represent different n-element subsets

of Xr.

To describe the pruning principle, let X denote the ensemble of all n-element subsets, which can be

obtained by expanding Ff using (11), i.e.,

X = {{Ff , Xn−f}|Xn−f ⊂ Cc} (12)

and φ(Ff ) be the lower bound on φ computed over all elements of X , i.e.

φ(Ff ) = min
Xn∈X

φ(Xn) (13)

Assume that B is an upper bound of the globally optimal criterion, i.e. B ≥ φ(X∗n). Then,

φ(Xn) > φ(X∗n) ∀Xn ∈ X , if φ(Ff ) > B (14)
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Hence, any Xn ∈ X cannot be optimal and can be pruned without further evaluation, if φ(Ff ) > B.

Although pruning of nodes using (14) results in an efficient BAB algorithm, further efficiency can

be gained by performing pruning on the sub-nodes directly. This happens as the lower bounds for

different sub-nodes are related and can be computed together from φ(Ff ) resulting in computational

efficiency. For xi ∈ Cc, the ith sub-node can be pruned if

φ(Ff ∪ xi) > B (15)

The pruning of ith sub-node is conducted by discarding xi from Cc, such that xi is not included in

the fixed sets of any subsequent sub-nodes. If (15) is satisfied for multiple sub-nodes simultaneously,

all these elements can be discarded from Cc together.

For a BAB method involving pruning of sub-nodes, branching needs to be carried on sub-node level

as well, which requires choosing a decision element to branch upon. Here, the decision element is

selected as the element with smallest φ(Ff ∪xi) among all xi ∈ Cc (best-first search). The branching

operation can be conducted by moving xi from Cc to Ff such that xi is included in the fixed sets of

any subsequent sub-nodes.

3.2 Application to fault isolation problem

To apply the BAB approach for fault isolation purposes, we first express the monitoring statistic in

(9) in a form that is more amenable to the application of BAB method. We have

E[M2] = tr(C−1C|o) + (x̄|o − x̄)TC−1(x̄|o − x̄) (16)

Using (8), tr(C−1C|o) = tr([C−1]22C|o), where [C−1]22 denotes the (2,2) block of C−1 having same

dimensions as C|o. Based on formula for inverse of partitioned matrices [31], [C−1]22 = (Cmm −

CmoC−1
oo Com)−1 = C−1

m|o. Therefore, tr(C−1C|o) = d, where d is the number of missing variables

given in Algorithm 1.

For the second term of (16), note that we can write

x̄|o − x̄ =

 xo − x̄o

CmoC−1
oo (xo − x̄o)

 =

Coo

Cmo

C−1
oo (xo − x̄o)
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and

(x̄|o − x̄)TC−1(x̄|o − x̄) = (xo − x̄o)TC−1
oo

[
CT

oo CT
mo

]
C−1

Coo

Cmo

C−1
oo (xo − x̄o)

Note that
[
CT

oo CT
mo

]
denotes the first n = r− d rows of C, as Coo is symmetric and Com = CT

mo.

Thus,

(x̄|o − x̄)TC−1(x̄|o − x̄) = (xo − x̄o)TC−1
oo

[
I 0

]Coo

Cmo

C−1
oo (xo − x̄o)

= (xo − x̄o)TC−1
oo CooC−1

oo (xo − x̄o)

= (xo − x̄o)TC−1
oo (xo − x̄o)

Finally, the simplified criterion is given as

E[M2] = (xo − x̄o)TC−1
oo (xo − x̄o) + d (17)

During the application of Algorithm 1, d = r − n is constant during every iteration. Thus, variable

selection can be carried out by minimizing the first term in (17). Furthermore, x̄o can be subtracted

in a preprocessing stage to simplify calculations. By defining y = x − x̄, the n observed variables

can be selected (equivalent to selecting d missing variables) by solving the following problem:

min
Xn⊂Xr

φ(Xn) = yT
Xn

(CXn,Xn)−1yXn (18)

where Xr = {1, 2, · · · , r}, yXn denotes the elements of y with indices in Xn and CXn,Xn represents

the principal submatrix of C with rows and columns indexed by Xn.

The use of BAB for solving the optimization problem in (18) requires a lower bound on the selection

criteria, calculated over all X in (12). This lower bound is derived in the next proposition.

Proposition 1 Consider a node with fixed set Ff and candidate set Cc. For X in (12),

φ(Ff ) ≤ min
Xn∈X

φ(Xn) (19)

Proof : Let R and R̃ be the Cholesky factors of CXn,Xn for some Xn ∈ X and CFf ,Ff
, respectively,

i.e. RTR = C and R̃T R̃ = CFf ,Ff
. As Ff ⊂ Xn, R̃ is a principal submatrix of R, which implies

that R̃−1 is a principal submatrix of R−1. Define z = R−TyXn . Then,

φ(Xn) = yT
Xn

R−1R−TyXn = zT z (20)
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Similarly,

φ(Ff ) = yT
Ff

R̃−1R̃−TyFf
= z̃T z̃ (21)

where z̃ = R̃−TyFf
. Since z̃ is a subset of z, φ(Ff ) ≤ φ(Xn) and (19) follows.

Proposition 1 implies that the non-optimal nodes can be pruned based on φ(Ff ). To gain further

efficiency by pruning the sub-nodes directly, we relate the selection criteria of a node with its sub-

nodes in the next proposition.

Proposition 2 Consider a node with fixed set Ff and candidate set Cc. For xi ∈ Cc, i = 1, 2, · · · , c,

φ(Ff ∪ i) = φ(Ff ) + αi (22)

where

αi =

(
yi − yFf

C−1
Ff ,Ff

CFf ,i

)2

(Ci,i −CT
Ff ,iC

−1
Ff ,Ff

CFf ,i)2
(23)

Proof : Let Q be the Cholesky factor of C(Ff∪i),(Ff∪i), i.e. QTQ = C(Ff∪i),(Ff∪i). Through simple

algebraic manipulations, it can be shown that

Q =

R pi

0 δi

 (24)

where R is the Cholesky factor of CFf ,Ff
, pi = R−TCFf ,i and δi =

√
Ci,i − pT

i pi. Using the formula

for inversion of partitioned matrices [32], we get

Q−1 =

R−1 −R−1pi/δi

0 1/δi

 (25)

Since, yFf∪i =
[
yFf

yi

]
,

φ(Ff ∪ i) = yT
Ff∪iQ

−1Q−TyFf∪i (26)

= yT
Ff

R−1R−TyFf
+

1
δ2i

(
yi − yXsR

−1pi

)2 (27)

Now, the result follows by noting that φ(Ff ) = yT
Ff

R−1R−TyFf
and substituting for pi and δi.

The evaluation of (22) requires inversion of only one matrix CFf ,Ff
, which is the same for all i ∈ Cc.

Thus, the use of (22) to obtain the selection criteria for all sub-nodes together is computationally
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more efficient than directly evaluating the selection criteria for every node. In summary, the following

BAB algorithm can be used as Step 1 of Algorithm 1 for fault isolation purposes.

Algorithm 2 Initialize f = 0, Ff = ∅, Cc = Xr, φ(Ff ) = 0 and B = ∞. Call the following

recursive algorithm:

1. If φ(Ff ) > B, prune the current node and return, else perform the following steps.

2. Calculate αi in (23) ∀i ∈ Cc. Prune the subsets with φ(Ff ) + αi > B.

3. If f = n, go to next step. Otherwise, generate the c sub-nodes according to the branching rule

in (11) and call the recursive algorithm in Step 1 for each sub-node. Return to the caller after

the execution of the loop finishes.

4. Find Jmin = φ(Ff ) + mini∈Cc αi. If Jmin < B, update B = Jmin. Return to the caller.

4 Examples

In this section, the fault isolation approach (Algorithm 1) is applied to a linear benchmark example

and the Tennessee Eastman benchmark problem. In addition, the computational efficiency of the

proposed BAB algorithm (Algorithm 2) is further evaluated using randomly generated cases. All

computations are carried out on a notebook with Intelr CoreTM Duo Processor T2400 (1.83 GHz,

2MB RAM) using MATLABr 2007b.

4.1 Linear benchmark example

To illustrate the principle of missing variable analysis for fault isolation and algorithms proposed

in this work, the linear benchmark example presented in [15] is studied. The system has 5 sensor

variables and 2 internal states, represented as follows:

x = Gt + e (28)
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where

G =



−0.1670 −0.1352

−0.5671 −0.3695

−0.1608 −0.1019

0.7574 −0.0563

−0.2258 0.9119


The internal state, t is distributed normally with zero mean and unit variance. Under NOC, the

sensor error, e is normally distributed with zero mean and 0.01 variance. Firstly, 1000 samples

representing NOC were produced through simulation. The covariance matrix, C of the PPCA

model is as follows:

C =



0.0604 0.1548 0.0435 −0.1247 −0.0983

0.1548 0.4963 0.1369 −0.4270 −0.2400

0.0435 0.1369 0.0491 −0.1225 −0.0634

−0.1247 −0.4270 −0.1225 0.5997 −0.2020

−0.0983 −0.2400 −0.0634 −0.2020 0.9262


(29)

The upper control limit of the M2 statistic for a 95% confidence level is χ2
5(0.95) = 11.07.

Then, a single sensor fault with fault magnitude being 1.8 in the 4th sensor is considered. Af-

ter subtracting the mean calculated at NOC, the deviation of the faulty sensor vector is y =[
−0.079 −0.59 −0.22 −1.78 −0.024

]T
. The M2 statistic for this fault is 244.43 > 11.07. Hence

this fault is easily detected by the PPCA. To isolate the fault, the conventional contribution plot

is shown in Figure 2. Due to the significant correlation between the second and the fourth sensors,
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Figure 2: PPCA contribution plot for the single sensor fault.

as indicated by Yue and Qin [15], the fault in the fourth sensor causes large contributions from
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both second and fourth sensors. Hence, the conventional contribution analysis will not be able to

correctly isolate this single sensor fault.

To apply the missing variable analysis, according to Algorithm 1, the values of E[M2] for 5 cases,

where one of the variables are considered to be missing are shown in Table 1. Table 1 clearly indicates

that E[M2] is less than the upper control limit, only when x4 is considered to be missing. Thus, the

fourth sensor is correctly identified as the source of the fault by the PPCA.

Table 1: Missing variable analysis for the single sensor fault

Missing Variable E[M2]

{x4} 3.02

{x5} 28.66

{x2} 67.15

{x1} 233.82

{x3} 241.73

Next, a multi-sensor fault with fault magnitude being 1.5 in both the third and fourth sensors is

studied. The fault deviation vector is y =
[
−0.079 −0.59 1.49 −1.48 −0.024

]T
. The corre-

sponding monitoring criterion is E[M2] = 385.32 > 11.07, which successfully detects the fault. For

fault isolation, the PPCA contribution plots of 5 sensors are shown in Figure 3(a). The contribution

plot incorrectly indicates that sensors 2, 3 and 4 are faulty due to the strong correlation between

sensors 2 and 4.
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(a) Fault Magnitude = 1.5
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(b) Fault Magnitude = 0.5

Figure 3: PPCA contribution plot for the multi-sensor fault.

13



To apply Algorithm 1, first all cases with one of the variables missing are analysed. The minimum

E[M2] for these cases is 145.38, which is larger than the upper control limit, indicating that the

fault is not a single sensor fault. Further, all cases with two of the variables missing are evaluated

and shown in Table 2. These results clearly and correctly indicate that sensors 3 and 4 are faulty.

Table 2: Missing variable analysis for the multi-sensor fault

Fault magnitude = 1.5 Fault magnitude = 0.5

Missing Variables E[M2] Missing Variables E[M2]

{x3, x4} 3.67 {x3, x4} 3.67

{x3, x5} 22.51 {x2, x3} 6.23

{x2, x3} 25.35 {x3, x5} 8.68

{x1, x2} 118.69 {x1, x2} 14.77

{x2, x4} 138.46 {x2, x4} 19.39

{x2, x5} 142.82 {x2, x5} 19.68

{x1, x3} 178.17 {x1, x4} 41.25

{x4, x5} 245.66 {x4, x5} 41.28

{x1, x4} 246.28 {x1, x5} 43.22

{x1, x5} 253.01 {x1, x3} 52.98

Finally, to evaluate the effect of fault to noise ratio on the proposed algorithm, the case of multi-

sensor fault is considered again with fault magnitude being 0.5. As the maximum value of noise for

different sensors is approximately 0.31, the fault magnitude is comparable to the noise level. In this

case, E[M2] is 75.74 > 11.07 and thus the fault is successfully detected by the PPCA. Similar to

the previous case, the contribution plots, shown in Figure 3(b), incorrectly identify faults in sensors

2, 3 and 4. For all cases with one of the variables missing, the minimum E[M2] is 18.77 > 11.07.

The values of E[M2] for all cases with two of the variables missing are shown in Table 2. Although

E[M2] is lower than the control limit for multiple cases, the lowest value of E[M2] is still seen, when

3rd and 4th variables are considered to be missing.

This simple example illustrates how the missing variable analysis can be applied to isolate faulty

variables and its advantages over traditional contribution plot based approach. Due to the strong

correlation between sensors 2 and 4, both single sensor and multi-sensor faults were not correctly

isolated by the contribution analysis. Nevertheless, the missing variable analysis successfully isolated

all the faults.
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4.2 Tennessee Eastman process

To demonstrate the effectiveness and efficiency, Algorithm 1 for missing variable analysis is applied

for fault isolation of the Tennessee Eastman (TE) process [21]. This process has 5 main units, which

are the reactor, condenser, separator, stripper and compressor. Streams of the plant consists of 8

components; A, B, C, D, E, F, G and H. Components A, B and C are gaseous reactants which are

fed to the reactor to form products G and H. The flowsheet of the TE process is shown in Figure 4.

For fault isolation, the TE process is considered under closed-loop control as described by Downs and

Vogel [21]. Data for the 41 available measurements and 11 out of 12 manipulated variables (MVs)

are collected for 21 operational modes, which correspond to the normal and 20 faulty operation

modes. These 52 measured variables are listed in Table 3. The root cause for five of these 20 faults

are unknown according the original description of the plant [21]. Hence, it is not possible to validate

the isolation results for these faults by analysing the process flowsheet. Furthermore, there are four

faults, which are difficult to be detected by the PCA based approaches due to dynamic and nonlinear

nature of these faults [7, 8]. Therefore, these 9 faults are excluded and the remaining 11 faults, listed

in Table 4, are adopted for the case study. The identified variables for these eleven faults studied

are listed in Table 5. Note that for some of the faults, Algorithm 1 identifies more than 1 set of

variables, among which the variable set with smallest values of E[M2] is shown in Table 5.

As indicated in Table 5, most of the faults result in only one and two responsible variables. An

exception is Fault 7, for which the BAB method indicates that there are up to seven measured vari-

ables responsive to this fault. To select 7 out of 52 measured variables, there are C7
52 = 133, 784, 560

alternatives. If one had to evaluate all alternatives to find the subset with minimum value of mon-

itoring statistic, it would take more than a day to get the conclusion even if each evaluation takes

only one millisecond. However, it only takes about 3.37 seconds for the BAB algorithm to find the

contributing subset. This indicates that the proposed algorithm is suitable for on-line FDD to isolate

contributing variables of a fault under investigation in a short time so that more sophisticated root-

cause analysis can be carried out based on the isolated contributing variables and the consequent

loss due to the fault can be minimised.

To better appreciate the proposed fault diagnosis algorithm, the relationship of the minimum cri-

terion value E[M2] against the number of variables to be observed n is shown in Figure 5. The

horizontal line in Figure 5 is the upper control limit calculated as χ2
r(β) with r = 52 and β = 0.99.
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Figure 4: Flowsheet of the TEP Plant showing detected variables for Fault 7
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Table 3: Measured variables
ID Description ID Description

x1 A Feed (Stream 1) x27 Component E (Stream 6)

x2 D Feed (Stream 2) x28 Component F (Stream 6)

x3 E Feed (Stream 3) x29 Component A (Stream 9)

x4 Total Feed (Stream 4) x30 Component B (Stream 9)

x5 Recycle Flow (Stream 8) x31 Component C (Stream 9)

x6 Reactor Feed Rate (Stream 6) x32 Component D (Stream 9)

x7 Reactor Pressure x33 Component E (Stream 9)

x8 Reactor Level x34 Component F (Stream 9)

x9 Reactor Temperature x35 Component G (Stream 9)

x10 Purge Rate (Stream 9) x36 Component H (Stream 9)

x11 Product Separator Temperature x37 Component D (Stream 11)

x12 Product Separator Level x38 Component E (Stream 11)

x13 Product Separator Pressure x39 Component F (Stream 11)

x14 Product Separator Underflow (Stream 10) x40 Component G (Stream 11)

x15 Stripper Level x41 Component H (Stream 11)

x16 Stripper Pressure x42 MV to D Feed Flow (Stream 2)

x17 Stripper Underflow (Stream 11) x43 MV to E Feed Flow (Stream 3)

x18 Stripper Temperature x44 MV to A Feed Flow (Stream 1)

x19 Stripper Steam Flow x45 MV to Total Feed Flow (Stream 4)

x20 Compressor Work x46 Compressor Recycle Valve

x21 Reactor Cooling Water Outlet Temperature x47 Purge Valve (Stream 9)

x22 Separator Cooling Water Outlet Temperature x48 MV to Separator Pot Liquid Flow (Stream 10)

x23 Component A (Stream 6) x49 MV to Stripper Liquid Product Flow (Stream 11)

x24 Component B (Stream 6) x50 Stripper Steam Valve

x25 Component C (Stream 6) x51 MV to Reactor Cooling Water Flow

x26 Component D (Stream 6) x52 MV to Condenser Cooling Water Flow
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Table 4: Operational Faults

Fault ID Description

1 Step in A/C Feed Ratio, B Composition Constant (stream 4)

2 Step in B composition while A/C ratio is constant (stream 4)

4 Step in Reactor Cooling Water Inlet Temperature

5 Step in Condenser Cooling Water Inlet Temperature

6 A Feed loss (step change in stream 1)

7 C Header Pressure Loss - reduced availability (step change in stream 4)

8 Random variation in A,B,C Feed Composition (stream 4)

11 Random variation in Reactor Cooling Water Inlet Temperature

12 Random variation in Condenser Cooling Water Inlet Temperature

13 Slow drift in Reaction Kinetics

14 Sticking Reaction Cooling Water Valve

Table 5: Possible Fault responsive variables detected by the branch and bound algorithm

Fault IDs Variables eliminated

1 {x16}

2 {x21, x24, x30}

4 {x9, x51}

5 {x11, x22}

6 {x1, x44}

7 {x4, x6, x9, x16, x22, x45, x51}

8 {x37}

11 {x51}

12 {x22}

13 {x37}

14 {x9, x51}
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It is shown that for n ≤ 45 (left to the dashed line), the minimum criterion value is less than the

upper control limit, whilst for n ≥ 46, (right to the dotted line) the criterion is above the upper

control limit. Therefore, the maximum number of non-responsive variables is 45 and the number of

possible responsive variables to Fault 7 is 52 − 45 = 7. The actual deviations of these 7 variables

are y4 = −14.5015, y6 = −3.8761, y9 = −3.1665, y16 = −4.2085, y22 = −3.4847, y45 = 4.4334,

and y51 = −4.4255. The corresponding locations of these 7 variables and the fault are marked in

Figure 4.
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Figure 5: The minimum M2 against number of variables (n) observed for Fault 7.

A physical explanation of the propagation of fault to the identified variables is as follows: Fault 7

shown in Figure 4 involves C Header Pressure Loss - reduced availability (step change in stream 4),

resulting in a decrease in the Total Feed in stream 4 (x4) and a corresponding increase in the

MV to Total Feed Flow in stream 4 (x45) to counter the effect of the fault occurrence through

the corresponding flow control loop of the plant. The decrease in the Total Feed in stream 4 (x4)

results in a corresponding decrease in the Recycle back to the reactor through stream 6, thereby

reducing the Reactor Feed Rate in stream 6 (x6) as well as the Reactor Temperature (x9). This

decrease in the Reactor Temperature (x9) results in a decrease in the Reactor Cooling Water Flow

(x51). Also, the decrease in the Total Feed in stream 4 (x4) into the Stripper results in a decrease

in the Stripper Pressure (x16) and consequently, a decrease in the Separator Cooling Water Outlet

Temperature (x22). From the above explanation, it can be concluded that the results obtained

through the BAB algorithm is also supported by the analysis through a physical understanding of

the plant. Therefore, this proposed approach will be practically useful for fault isolation associating

with condition monitoring.

19



It is worth to note that there are two pairs of faults, i.e. Faults 4 and 14, and Faults 8 and 13, which

have the same faulty variable set isolated by the missing variable analysis. That the same faulty

variable set is identified for Faults 4 and 14 is understandable as both of these faults are associated

with the reactor cooling water although one is a step change in the cooling water temperature whilst

another is due to a sticking cooling water control valve. The identification of same faulty variable set

for Faults 8 and 13, however, is difficult to explain without the knowledge of the reaction kinetics,

which was hidden for the benchmark problem [21]. Note that Algorithm 2 identifies several single-

variables sets for these two faults in addition to the common set corresponding to the minimum

E[M2]. For Fault 8, three single-variable sets, {x37}, {x6} and {x30} are identified, whilst for Fault

13, 8 single-variable sets are detected with E[M2] < χ2
r(β), which are {x37}, {x8}, {x30}, {x26},

{x40}, {x23}, {x22} and {x39}. This extra information can provide useful insight for plant engineers

to correctly diagnose the underlying causes of these two faults.

4.3 Random tests

To further evaluate the computational efficiency of the BAB in Algorithm 2, random cases are

considered. The test involves retaining n out of 40 variables. For each n, a vector y of dimension 40

and a positive definite matrix C of dimension 40× 40 are randomly generated. To ensure positive-

definiteness of C, a matrix C̃ is randomly generated, where C = C̃C̃T . The elements of y and

C̃ are normally distributed with zero means and unit variance. For each problem, 1000 cases are

tested and the average computation time and number of nodes evaluated are shown in Figure 6. For

comparison, the computational time of a brute force search is estimated by multiplying Cn
40 with the

time required for evaluating the criterion given in (17) of n variables.

Figure 6 indicates that the worst efficiency of the BAB algorithm occurs for n = 28 instead of n = 20

as expected for the brute force search. This efficiency shift towards a higher number of variables

is due to the upwards nature of the BAB algorithm. Further explanation of the efficiency shift for

different types of BAB algorithms can be found in Cao and Kariwala [28]. For most fault isolation

applications, the number of missing variables to be detected is relatively small, i.e. the number of

retained variables is relatively large. Thus, the efficiency shift indicated in Figure 6 is not favourable

for fault isolation applications. Nevertheless, even for the worst case of n = 28, the average number

of nodes evaluated and average solution time required by the BAB approach are still 5 orders of

magnitude lower than that required by the brute-force search showing the advantages of the proposed
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Figure 6: Random tests for retaining n from 40 variables (a) computation time and; (b) number of

nodes evaluated

approach. This random test together with the TE case study indicates that the proposed the BAB

algorithm is capable of efficiently solving multivariate problems with up to 50 variables. In future, a

bidirectional BAB algorithm [28–30] will be developed for handling fault isolation applications with

more variables.

5 Conclusions

In contrast to considerable attention paid to multivariate statistical process monitoring (MSPM),

research in fault diagnosis has been relatively limited due to the difficulty in dealing with the multi-

variate contribution analysis. It is the first time that a multivariate missing-variable approach and

an efficient branch and bound algorithm are proposed to efficiently solve this problem. Although the

focus of this paper is on using the probabilistic principal component analysis (PPCA), the frame-

work developed in this work can be easily extended to adopt other criteria for fault diagnosis. The

numerical case studies using a linear example and the Tennessee Eastman process show that the

proposed method is able to find the minimum set of variables, which are affected by the fault, in

a short time. This computational efficiency, which is examined through a random test, can give

operators more time to identify and further deal with the fault in order to minimize the consequent

loss due to the occurrence of the fault. However, the random tests also indicate that the largest size
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of variable set solvable by the BAB algorithm is limited. Future work will focus on improving the

computational efficiency of the BAB algorithm to make it applicable to dynamic data with a large

number of variables.
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