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Abstract

We have modeled the path-length distribution in an integrating sphere used as a multipass optical cell for

absorption measurements. The measured radiant flux as a function of analyte concentration is nonlinear as

a result, deviating from that expected for a single path length. We have developed a full numerical model

and introduce a new analytical relationship that describes this behavior for high reflectivity spheres. We

have tested both models by measuring the optical absorption of methane at 1651nm in a 50mm diameter

sphere, with good agreement with experimental data in the absorption range 0-0.01cm-1. Our results

compare well with previous work on the temporal response of integrating spheres.
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1 Introduction

Interest is growing in the use of integrating spheres as optical absorption cells. Light entering the sphere is

scattered by the internal walls with very high levels of total diffuse reflectance. For an ideal diffuse

scatterer or Lambertian surface, the radiance L (in W m-2 sr-1) from a given point is a constant in any

direction. For a cavity with spherical geometry, it follows that the irradiance E (in W m-2) received from

that point is then constant over the entire sphere[1,2]. Therefore, after only a few passes across the cell to

remove the local effects of launch geometry, the irradiance is perfectly uniform over the surface. This

makes integrating spheres ideal for use in measurement of parameters such as the total emission from light

sources.

For the measurement of absorption, advantages include a tolerance to misalignment and the ability to

measure irregular or turbid samples without the scattered light affecting the measurement. In 1970,

Elterman[2] demonstrated measurements of glass samples at 546nm within a simple 3.2 cm diameter

integrating sphere. Fry, Kattawar and Pope[3] have measured visible absorption in aqueous solutions, Fecht

and Johnson[4] have adapted the principle for use with falling aqueous sample streams, and Hodgkinson et

al. have adapted a photothermal cell using an integrating cavity[5].

To our knowledge, the use of an integrating sphere for gas absorption measurements was first reported in

1980 by Venkatesh et al.[6] for carbon monoxide monitoring around 5 µm. In 1988 Abdullin and Lebedev[7]

used a copper sphere with a CO2 laser to measure ammonia concentrations and in 1996 Tranchart et al.[8]

used a 10 cm diameter sphere in combination with tunable diode laser spectroscopy at 830nm and 1.2μm to

detect water vapor and butane respectively. These studies confirmed an important advantage of using

integrating spheres. Compared with standard multipass optical cells such as those developed by White[9],
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Herriott et al.[10] or Chernin et al.[11], integrating spheres offer increased path lengths within a relatively

small volume without the need for precise alignment of the laser beam.

More recent work at the University of Limerick has resulted in broadband spectroscopic sensors for CO2 (at

1.57μm and 2μm)[12] and NO2 and SO2 (in the UV/visible)[13]. Finally, a commercial non-dispersive infra-

red (NDIR) gas sensor designed by City Technology Ltd. takes the form of an integrating cavity, using

deliberately roughened, gold coated internal surfaces[14].

At low concentrations, the level of light absorption measured in such systems is proportional to the

concentration of the analyte. However, many practical systems are required to operate over a large dynamic

range that might extend into a region of nonlinearity for absorption measurements. In particular, the lower

explosive limit (LEL) for methane is 4.9 vol. %[15], defining a concentration range in % LEL where

100% LEL corresponds to 4.9 vol. % It can be important for methane detectors in safety critical

applications to be able to cover the entire range from low ppm levels up to and through the %LEL range,

with particular attention paid to measurements at 20 %LEL (approx 1 vol. % methane) [15].

For a gas cell with a single path length, the Beer-Lambert Law (see Section 2) governs nonlinearity in the

measured light intensity as a function of analyte concentration. However, for a cell such as an integrating

sphere where the light makes multiple randomized passes with different path lengths, the nonlinearity is

exacerbated and dependent on the path-length distribution within the cavity. Previous work in this area has

so far been concerned with calculating the average path length of photons in the cavity[16,17], or calculating

the decay time of a pulse of photons[17] using a Monte Carlo simulation, the latter also providing more

general information about the distances travelled by photons in the cavity.

We have taken this work a stage further by modeling the path-length distribution within an integrating
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sphere and predicting the resulting system nonlinearity. We have compared this prediction with a simple

experimental absorption measurement based on tunable diode laser spectroscopy of a single methane line at

1651 nm. This provides an experimental test not only for our predicted absorption response, but also for

previous work on temporal responses.

2 Theory

Figure 1 shows a simplified model of the integrating sphere used in our experiments. For monochromatic

radiation, the radiant flux (in watts) transmitted through a gas cell, Φ, is given by the Beer-Lambert law[18]:

 zexp  0 (1)

Where Φ0 is the radiant flux transmitted in the absence of light absorption, z is the path length (here in

centimeters) and α is the absorption coefficient of the sample, equal to the concentration of the analyte

(here expressed in units of partial pressure, atmospheres, equivalent to volume % readings at atmospheric

pressure), multiplied by the specific absorptivity of the gas ε (here in units atm-1 cm-1). Methane has a well-

known absorption line at a wavelength of 1651 nm. At atmospheric pressure the value of ε at the line center

is 0.38 cm-1atm-1, according to information in the HITRAN database[19].
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Figure 1. Simplified model of an integrating sphere, showing the incident beam making a first pass across

the cell to the first strike spot. Two examples are shown of light beams making subsequent random multiple

passes across the cell.

At low values of αz, Eq. (1) approximates to the following linear relationship.

z




0

(2)

Where ΔΦ is the change in transmitted radiant flux, Φ0-Φ. Tranchart et al.[8] have shown that for an

integrating sphere of internal radius R and high values of mean surface reflectivity ρ, the received signal for

low αz is approximated by;

 









1
0

0

z
(3)

where the mean path length for a single pass is z0= 3
4 R. They then derive the effective total path length for

low or zero absorbance α within the sphere, Zeff;

 ρ

R
Z eff




13

4
(4)

In the next section we derive equations that describe the performance of the sphere over the full range of

gas concentrations to give a more complete description of sphere performance.
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A Simple model for path-length distribution

For gas cells involving a range of different path lengths, it is necessary to consider the contribution that

each individual path length makes separately, before integrating over all path lengths. We define the

probability density function (PDF) Ψ(z) of path lengths to give the proportion of path lengths that lie within

the interval z to z+dz, in the absence of gas, such that

 



0

1dzz (5)

Note that for this model, we have normalized Ψ(z) to the total level of light received at the detector in the

absence of gas, rather than the total incident into the sphere. We apply the Beer-Lambert Law (Eq. (1)) to

each path length in the interval from z to z+dz, such that the radiant flux at the detector at a given

wavelength is then;

   



0

0 dzzexpz  (6)

A simple expression can be derived for integrating spheres with high internal reflectivities, in which the

path-length distribution for a single pass across the cell is neglected and each pass is considered to have

length equal to the mean path length of z0 =
3
4 R. For such a cell, Fry et al.[17] have derived the temporal

response of the irradiance incident on the walls, E (in W m-2), following an impulse. The irradiance as a

function of time, E(t), is given by;

 



 ln

andexp0
tt

EtE










 (7)

Where t is the mean transit time for photons across the cavity. We can transform from time to distance as

a variable for the impulse, using z=ct where c is the speed of light in the cavity; we also have tcz 0 . The

irradiance resulting from photons with a transit distance z, E(z), is therefore
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 



 ln

andexp 0
0

zz
EzE











 . (8)

For a fixed detector and continuous wave (CW) input, this also, therefore, gives the z dependency for the

fractional radiant flux; for simplicity we separate out this z dependency as a normalized probability density

function for optical path lengths, such that;

  







 lnexp

0
0

z

z
z (9)

where Ψ0 is a normalization constant. Substitution into Eq. (6) and normalizing gives

z
z
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, (10)

which evaluates to the general expression

0ln

ln

z0 









. (11)

For low αz0 and high ρ, this approximates to Eq. (3) in this paper, taken from Tranchart et al.[8].

It was necessary to account for specific launch and de-launch conditions as follows. Our first pass across

the sphere took the form of a collimated beam from the entry point to the first strike spot, with a path length

of 2R. In our experimental integrating sphere, any final pass would involve a detector with a field of view

restricted to ±30°. Figure 2 and Table 1 summarize consecutive passes across the cell, indicating how each

pass was modeled. Eq. (10) fails to take account of the first and last pass across the cell; to do so, we

multiplied by the transmission expected from the Beer-Lambert law for the additional launch / delaunch

path, zℓ, estimated in Table 1 to be 2.52 R. We also add an additional offset path length of z0/2 to account

for averaging effects over the first few passes (see later in Figure 9(b) for a graphical explanation). The

offset ensures that both our analytical and our full numerical models converge to the same mean path length

after approximately 3-4 passes across the cell, giving the following combined equation:



8

0

0

0 ln

ln

2
exp

z

z
z

I

I






















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Figure 2. Illustration of different phases of a photon’s journey within the integrating sphere, from entrance

aperture to detector

(c) Final pass for detector
with restricted field of view:

mean pathlength 1.85 R

(b) Second (and subsequent)
passes: mean pathlength

z0 =
3
4 R

(a) First pass:
pathlength z1 = 2R
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Table 1. Summary of modelled passes across the integrating sphere.

Pass Target Reflectivity of target Mean path length Nature of model

1 First strike spot 1 a 2 R Launch condition

2 Inner surface ρ 
3
4 R Eq. (12) and full numerical model

    

n-1 Inner surface ρ 
3
4 R Eq. (12) and full numerical model

n Detector ρ b

3
4 R +0.52 R c Both models plus de-launch

condition

a Light cannot reach the detector immediately after this pass, therefore normalisation removes the

effect of non-unity reflectivity and we model it as ρ = 1.

b We assume that the detector simply samples light representative of any point on the surface,

therefore make no adjustment for a specific detector at a specific location.

c Our detector had a restricted view of ±32°. Using Eq. (13), the mean path length for any final pass to

the detector evaluates to 1.85 R; an additional 0.52 R.

B Full model for path-length distribution

A full model requires calculation of the path-length distribution for a single pass across the cell from a

Lambertian scatterer. The geometry of this pass is illustrated in Figure 3 and has been considered by

Tranchart et al. [8]; for clarity we have continued to use their formalism.
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Figure 3. Geometry used to model integrating sphere path-length distribution, including elemental surface

areas dS1 and dS2.

Tranchart et al. have shown the radiant flux Φ in Watts emitted by the annulus dS2 towards the area dS1 is

given by

22

2

1

2

d
d

d
S

z

cosL

S





(13)

where L is the radiance of the surface of the sphere (in units of W m-2 sr-1), which can be considered

constant for an ideal sphere. Now Rzθ 2cos  , giving

22
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
(14)
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


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We normalize to the total radiant flux received by dS1, setting the value of Φ as follows;

1dd SL (16)

The PDF of path lengths for a single pass across the cell, ψ, is defined as the proportion of light received at

dS1 within an interval from z to z+dz:

 
22d

d

R

z

z
z 


 (17)

As a check, we can calculate the mean path length across the sphere as follows;

  zzzz d
R2

0
0  (18)

which evaluates to z0 =
3
4 R, as expected.

Now consider multiple passes across the cell, as illustrated in Figure 1. Because light scattering is

completely randomized, each pass is independent of the next. From one pass to the next, the total irradiance

is reduced in proportion to ρ. Importantly, for a Lambertian scatterer the diffuse reflectivity is not a

function of incident angle, therefore within a sphere all light paths in one pass are equally likely to create

light paths of the same distribution in a subsequent pass.

After the first pass, the path-length distribution is equal to ψ(z). A proportion of light paths (1-ρ) do not

survive to the second pass, whereas a proportion of paths ρ go on to make a second pass. After the second

pass, each surviving path in the interval z+dz is added cumulatively to further path lengths in proportion to

the path-length distribution ψ(z), to give a distribution Ψ(z). And so on.

This reasoning does not lend itself to an analytical solution, however it has been possible to build a

numerical model to give a full path-length distribution (in the absence of gas) for multiple passes. We have

considered the full model alongside the simpler model of Eq. (10), in which the path-length distribution for

a single pass is taken to be equal to a constant value equal to
3
4 R. Comparing these models therefore allows
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us to evaluate whether the single-pass distribution makes a significant contribution, or whether each pass

across the sphere can be adequately modeled using the mean path length of
3
4 R.

3 Numerical modeling of path lengths

Our numerical model is illustrated in Figure 4. We established a discrete series of N path-length intervals

per sphere radius, with N=100 giving a resolution equal to R/100. As a total of 500 passes were modeled,

the maximum theoretical path length that could be achieved was 1000 R, split into 100500=50,000

discrete intervals. For the first pass, the values of path lengths zj and the corresponding probability density

function (PDF) ψj were given by Eq. (17). Let these be assigned to an overall cumulative distribution of

path lengths Zi with probabilities given by Ψi.

For the second pass, each of the Zi paths from the first pass could add to any of the paths zj from the second

pass. The corresponding probability is given by Ψi.ψj.ρ. This procedure yielded two matrices corresponding

to all possible summed path lengths and their corresponding probabilities. A re-binning exercise created

new cumulative vectors Zi (by sorting and summing the path-length matrix) and Ψi (by following the

mapping for the path lengths Zi and summing probabilities).
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Figure 4. Illustration of numerical modeling procedure for path-length distribution, (a) determining the

values of path lengths in discrete intervals, and (b) determining the corresponding PDF.

There was the potential to introduce a rounding error during the re-binning exercise because of the finite

resolution of the bin size. For each modeled pass a single rounding error for one bin would be equal to half

the width of one interval, or R/N. If randomly distributed, over 500 passes these could combine to a total

error for the final cumulative path length Zi in each bin of N/R500 = 0.2 R.

Note that so far, this model has accounted only for those photons that survived 500 successive passes across

the cell. We accounted for those that were absorbed at the sphere surface as follows. For each iteration of a

pass across the sphere, a proportion ρ of all the light survived to the next pass and a proportion (1-ρ) was

absorbed. A second cumulative matrix was constructed, corresponding to the photons that did not survive.

Over the course of 500 iterations, the majority of the modeled light accumulated within this second matrix;

indeed, has it not done so, it would have been necessary to extend the number of iterations to ensure that

the model converged to a solution. Had we not considered the photons that did not survive, the model

would have predicted the unphysical case of a vanishingly small amount of light that persisted in a cell with

new pathlength Z’i,j = Zi + zj

zj for a
single
pass

cumulative Zi for previous passes

sort and re-bin

new cumulative Zi

new pdf Ψ’i,j  =  Ψi·ψj·ρ 
ψj for a
single
pass

cumulative Ψi for previous passes

re-bin, following Zi mapping

new cumulative Ψi

(a) Modelling procedure for pathlengths (b) Modelling procedure for PDF
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a path length approaching infinity.

We normalized to the total level of light that reached the detector, rather than the total incident at the sphere

entry port, therefore requiring that   1i . Because the role of the detector as an absorber was already

accounted for in the value of the absorbed fraction of light, (1-ρ), we did not specifically account for its

size. Finally we accounted for launch / delaunch geometry by adding an additional distance of zℓ = 2.52 R

to all the modeled paths, following Figure 4 and Table 1.

Our results took the form of a vector of discrete path-length intervals Zi, alongside a corresponding vector

containing the fraction of light Ψi that was modeled to lie within the interval Zi+δz. To predict the fraction

of light that would then be received by a detector in the presence of a gaseous absorber filling the sphere,

Eq. (6) was evaluated using the discrete values of Zi and Ψi.

4 Experimental details

To test our models, we chose to use a simple form of direct spectroscopy, in which the emission from a

tunable diode laser was scanned across a methane line. This had the advantage of simplicity of operation

and made a direct measurement of the depth of an absorption line whose peak absorption is well-known.

Our experimental arrangement is shown schematically in Figure 5.
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Figure 5. Experimental configuration used for direct line scanning or wavelength modulation spectroscopy

of methane absorption in an integrating sphere.

Our DFB laser package (Semelab Ltd) incorporated a 1651 nm laser diode (NEL NLK1U5C1CA-TS). The

emitted wavelength was scanned across the gas absorption line center by applying a current ramp through a

driver (ILX Lightwave, LDC-3722B), the current varying between a minimum of 30mA and a maximum of

80mA (corresponding to a frequency range of 33 GHz). Gross wavelength tuning was achieved by

controlling the diode temperature using a Peltier element within the package. The wavelength of the

emission was checked, relative to the methane absorption line, using a gas reference cell consisting of a Ge

detector in a TO can filled with 100% methane (Semelab Ltd) to give a reference path length of

approximately 5.3mm.

A detector / amplifier (Thorlabs PDA400) was used with a gain of 0dB (15 kV/A). The output was sampled

using a data acquisition card and transferred to a PC for data processing. In the absence of gas, a reference

measurement showed a rising output intensity with current, as expected. In the presence of methane, at the

absorption line centre a depression was observed corresponding to the scale of the absorption (Figure 6(a)).

packaged DFB laser diode

laser
controller

sawtooth
generator

amplifier

gas inlet
(outlet at 90°
to page)

first strike
spot

recessed
detector

wedged
& angled
window
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The peak absorption was measured by subtracting the received signal from the reference and normalizing to

the reference intensity (Figure 6(b)).

An integrating sphere was chosen with a diameter of 50.8 mm (Thorlabs IS200). Light from the laser diode

entered the integrating sphere via a 6.35 mm diameter entry port. The detector (12.5 mm diameter port) was

recessed to prevent a direct line of sight light from the first strike spot; therefore, no baffle was necessary.

The detector’s field of view was restricted to ±32°. Two additional ports (1.5 mm diameter) were modified

so as to permit entry and exit of test gas concentrations.

Test gases were fed to the sphere from two certified cylinders (Scott Specialty Gases), one containing

hydrocarbon (HC) free air and the other containing 2.5 vol.% methane in air. Two calibrated mass flow

controllers (Teledyne Hastings HFC-302, 0-1000 cm3/min, with THPS-400 controller) were used to control

flow rates from the two cylinders, with downstream mixing generating a series of mixtures of different

concentrations in the range 0-2.5 vol.%, corresponding to an absorption range of α = 0-0.01cm-1. The error

in the applied concentration was dominated by the analytical error in the gas cylinder concentration (±1%

of the nominal value), except at low flow rates through the mass flow controllers, where an additional error

of 0.5% of the full scale reading applied in the worst case.

5 Results

Figure 6 (a) shows an example of raw data collected directly from the detector, for HC free air and for a

mid range methane concentration of 5770ppm. Figure 6 (b) shows the results following processing to

subtract the zero baseline from the signal and normalize for the total received light. The drop in

transmission at the absorption line centre is apparent in the figure, and this was used as our measurement.

The experimental error in the transmission for each measurement was estimated to be ±0.3%. Using a
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single measurement of direct absorption had the disadvantage of a relatively high level of experimental

noise at low concentrations; however, this method offered accurate measurement of the transmission,

without systematic errors.

Figure 6. Examples of detected signals recorded while the laser wavelength was scanned across a single

methane line at 1651nm. (a) Raw data from the detector for HC free air and for a methane concentration of

5770 ppm. (b) Methane transmission normalized by division by the background signal.

A Calibrating the model

Eq. (4) confirms that the average reflectivity ρ of the inner surface of an integrating sphere has a strong

influence on the mean effective path length. Manufacturer’s data provides an approximate value for ρ, but

measurement difficulties prevent a more precise value being known for a given sphere. Furthermore, light

sinks such as entry ports, ports for gas sampling and the presence of a detector reduce the effective

reflectivity ρ of the sphere as a whole. It was therefore necessary to calibrate the value of ρ used in our

model with some initial experimental results.
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We calibrated the sphere at our lowest experimental concentrations of 0 ppm and 2270 ppm, with

transmission at the line center of 100% and 96.51±0.14 %, respectively. Eq. (1) was used to fit these results

to a mean path length of Zeff = 1.22±0.04 m. To account for launch geometry with zℓ = 2.52 R, we used the

value of Zeff - zℓ = 1.16±0.04 m for calibration. Eq. (4) (which does not provide for these launch conditions)

was then used to find the average sphere reflectivity of ρ = 97.11±0.10%.

B Testing the simple analytical model

We tested the model of Eq. (12), which assumes that for each pass across the cell, the path length takes a

single value equal to z0 =
3
4 R. The model was tested using our calibration value of ρ = 97.11 % and launch

/ delaunch path length zℓ = 2.52 R. We were also able to fit these parameters to our data to optimise this

model, resulting in optimal values of ρ = 97.13% and launch / delaunch path length zℓ = 2.85 R. Figure 7

compares our experimental data with the modeled results, plus the prediction of the Beer Lambert law for a

single path-length cell. The graph illustrates the scale of the deviation from a simple application of this law,

and the need for a better model. The results imply that additional care needs to be taken for gas

measurement schemes that use direct absorption scans with a fitted line shape, rather than with simple

measurement of the transmission at the line centre. Such schemes would be vulnerable to apparent changes

in the line shape caused by transmission nonlinearities.
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Figure 7. Comparison between experimentally determined response and the results of Eq. (12) using

optimized values of ρ and zℓ. Also shown for comparison is the response predicted by the Beer Lambert law

for a single path-length cell.

Figure 8 shows the residual errors in the modeled response, compared to our experimental data. Our total

experimental error results from the combined effects of a 0.3% error in our transmission reading and the

error in the gas concentration. For the purpose of comparison, the latter has been transformed to an

equivalent transmission error using Eq. (12) and combined with the former to yield a total effective error of

between 0.4% and 0.5% on the transmission data.

Visual inspection reveals that the agreement between the simplified model and our experimental data is

within our estimated experimental error. The residual errors in Figure 8 show a consistent pattern as a

function of concentration. This may be associated with an underlying error in our experimental data, which

would persist in comparisons with different models. A small step change is visible between readings at
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concentrations around 1.2% vol, but it is not associated with any obvious experimental factor such as a

change of mass flow controller or any other change.

Figure 8. Residual error in modeled response of the system (as ΔI/I0) compared to experimental results,

comparing the results of Eq. (12) for different values of ρ and zℓ. Agreement with the optimized model is

within our estimated experimental error.

C Numerically modeled path-length distributions

We chose to complete a sensitivity analysis by modeling spheres with reflectivities covering the range

ρ = 96.7% to 97.5% in steps of 0.1%. Examples of three probability density functions (PDFs) are plotted in

Figure 9, showing the distribution of light in different path-length intervals. These PDFs shows the results

of our full model that takes into account the distribution of path lengths for a single pass across the sphere.

Note that the x-axis is logarithmic and the PDFs are normalized such that the integrated area under each
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curve equals unity. As ρ increases, there is a shift in the path-length distribution toward longer path lengths,

as expected. At short path lengths, the effect of consecutive passes across the sphere can be distinguished

as a series of undulations in the PDF, but with increasing passes across the sphere these merge into one

another until they can no longer be resolved. The PDF then converges to the exponentially decaying

function predicted by Eq. (9).

Figure 9. Optical path-length distribution for a 50.8 mm diameter sphere. (a) Numerical model for three

different average sphere reflectivities, (b) expanded linear scale showing the correspondence between the

numerical and analytical models for the first few passes across the cell. The launch path zℓ and the offset

z0/2 (see Eq. (12)) are indicated for clarity.

D Testing the full numerical model

The modeled path-length distributions were used to predict the level of light absorbed by the 1651nm
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with our experimental data in Figure 10 and show good agreement. For the purpose of comparison, the

prediction given by Eq. (1) (the Beer-Lambert law) is given using the experimentally determined mean path

length of the sphere in the absence of absorption, Zeff = 1.22 m.

Figure 10. Comparison between experimentally determined response and the results of a full numerical

model for a 2 inch integrating sphere with a range of average internal reflectivities. The response predicted

by the Beer-Lambert law for a single path-length cell is also provided as a comparison.

Residual errors were calculated as before. We found that errors were minimised for a value of ρ of 97.15%,

which is within the estimated error for our calibration value of 97.11%. Errors for three different values of

ρ, including this optimum value, are plotted against concentration in Figure 11. Again, the results show a

consistent systematic pattern that implies that errors in our experimental results may be contributing

significantly. Agreement between the model and our experimental data is good, within our estimated error.

0 0.5 1 1.5 2 2.5
0

20

40

60

80

Experimental results

Beer-Lambert Law, Zeff = 1.22m

concentration / %vol

Δ
I

/
I 0

/
%

ρ = 97.5%

ρ = 97.4%

ρ = 97.3%

ρ = 96.9%

ρ = 96.7%

ρ = 96.8%

Numerical model:

ρ = 97.2%

ρ = 96.1%

ρ = 97.0%



23

Figure 11. Residual error in response of the system predicted by the full numerical model (as ΔI/I0)

compared to experimental results, for three modeled values of ρ including the optimum value of ρ =

97.15%.

Figure 12 shows the results of our sensitivity analysis, in which the root-mean-square (rms) residual error

was calculated for models using a range of values of ρ lying either side of our calibrated value. As might be

expected, the error is highly sensitive to small changes in ρ, which implies that for accurate use of

integrating spheres as gas cells, cell calibration may be important. Also shown for completeness is the

variation in mean effective path length Zeff with ρ.

0 0.5 1 1.5 2 2.5

ρ = 97.1%

ρ = 97.2%

ρ = 97.15%

concentration / %vol

e
rr

o
r

in
Δ

I 
/ 

I 0
/
%

1.5

1.0

0.5

0

0.5

1.0

1.5

experimental
error



24

Figure 12. Sensitivity analysis for modeled response of a 50.8 mm integrating sphere, showing the variation

of (a) Zeff (the mean effective path length for zero absorption) and (b) rms residual error with the modeled

reflectivity ρ.

E Summary of residual errors

Table 2 shows the rms (root mean square) residual errors for comparison between different sets of

experimental and modeled data over the concentration range 0-2.5 % volume. Agreement between each of

the two models and our experimental data is generally good. Our calibration values of ρ = 97.11 ± 0.1 %

and zℓ = 2.52 R can be considered a good starting point; the experimental error on ρ was relatively high

because this value was based on a measurement at the lowest test concentration. For each model, optimum

values of ρ were found, with the new values of ρ lying within 1σ of the calibration value. An optimum zℓ

was also determined for Eq. (12). Both models agreed well with our experimental data, within our

estimated experimental error, therefore we cannot distinguish between them.
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Table 2. Levels of residual error for comparisons between modeled and experimental data.

Evaluated model Condition ρ /% zℓ

Mean path
length Zeff

/ m

rms residual error
as ΔI/I0 / %

Full numerical model calibration 97.11 2.52 R 1.242 0.37

Eq. (12) calibration 97.11 2.52 R 1.253 0.43

Full numerical model optimized 97.15 2.52 R 1.258 0.24

Eq. (12) optimized 97.13 2.85 R 1.252 0.24

Estimated experimental error 0.4

We can therefore conclude that the simplified model gives a good approximation to the level of light

transmission for the 50.8 mm diameter sphere when used as a gas cell in the range 0-2.5%vol methane

(absorption coefficients of 0-0.01cm-1). The assumption used in this model - that each pass across the cell

may be modeled by using the mean path length for a single pass – appears to be a valid one. We suppose

that this applies for cells in which the surface has a sufficiently high reflectivity to enable multiple passes to

occur, allowing the true path-length distribution to reach its asymptote corresponding to the simplified

model (as shown in Figure 9(b)) with low error.

As the results are sensitive to changes in ρ, it is perhaps not surprising that, given noise in our data, we

should find slightly different optimal values of ρ and zℓ for the two models. As can be seen from Figure 9,

after the first few passes the PDF of path lengths converges to an exponential function as approximated in

the simplified model.
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6 Discussion

We can use Eq. (12) to predict the response of the sphere at higher concentrations than were used

experimentally. Figure 13 shows the response of the sphere extrapolated to a methane concentration of

100 vol.%, compared with the equivalent response for a conventional cell whose single path length is equal

to the value of Zeff (1.252 m) calculated for the optimized model (see Table 2).

It can be seen that the response of a single path-length cell quickly becomes saturated as the concentration

increases, whereas the integrating sphere’s nonlinearity ensures that this saturation occurs at higher

concentrations. Whether or not a gas cell is useable at high concentrations depends on the degree to which

small differences in absorption may be detected as ΔI/I0. If we assume, for the sake of argument, that a

change of 1 part in 103 may be just distinguished, measurements made using the single path cell are unable

to distinguish between methane concentrations between 14 vol.% and 100 vol.%. For measurements made

using the integrating sphere, the same change in ΔI/I0 corresponds to a change in concentration from

80 vol.% to 100 vol.%. Therefore, the dynamic range of the integrating sphere is improved by virtue of its

additional nonlinearity.
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Figure 13. Extrapolated response of integrating sphere to methane concentrations in the range 0.1 to

100%vol, compared to the response predicted by the Beer-Lambert law for the single path length given in

Table 2 for the optimised model.

We can also use our path-length distribution to shows the decay in intensity as a function of time, by

scaling from distance z to time in ct, where c is the speed of light in the medium occupying the sphere and t

is the transit time of a photon. Our results for path-length distributions can therefore be directly related to

those of Fry et al.[17] for the temporal decay time of a short pulse in an empty integrating sphere. It is

generally accepted that the temporal response shows an exponential decay of the form I = I0 exp(-t/τ) [1].

However, experimental tests of this are rare. For an ideal intensity impulse, our mean modeled path length

should be equivalent to the exponential decay constant.

Fry et al. assumed in their model that the transit distance for a single pass across the sphere is equal to the

mean path length; we continued to use this approach in the simplified model considered here. For their case

(ii), they considered zero time to be at the time of light entry to the cell, with a first pass across the cell of
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length equal to R
3
4 (ie modelling an ideally diverging source). We altered our model to take account of this

(removing our launch and de-launch path zℓ) and ran the calculation for their conditions of a sphere with

radius R and an internal reflectivity ρ of 99.0%. Because the mean reflectivity was higher than for our

previous work, we ran the numerical model for a greater number of iterations (1000) to enable the model to

converge (in other words, the modeled path lengths were longer in this case). The results in Table 3 are

expressed in the same terms used by Fry et al., the dimensionless quantity cτ/R (equivalent in our model to

Zeff/R), and show good agreement between the models. Agreement between our simplified analytical model

and theirs is guaranteed by Eq. (9), which derives from their work.

Table 3. Comparison of the results of our model with the previous theoretical work of Fry et al.[17].

Study Model and parameters Exponential decay time,
R

c

Fry et al. [17]
Analytical derivation, case (ii), ρ = 99.0% 132.7

Monte Carlo simulation, case (ii), ρ = 99.0% 134.0

This paper

Full model, ρ = 99.0% 134.0

Simplified model, ρ = 99.0%

(see Eq. (12))

δ = 132.7

δ+
2
0z

= 133.4

It is interesting that the result of our numerical model agrees so well with that of Fry et al.’s Monte Carlo

approach, yet the results of both numerical models differ from those of the analytical models. For our

simple analytical model, following Eq. (12) and Table 1, we find that the use of our additional offset of z0/2

improves agreement with the numerical models but does not fully account for the difference.
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Fry et al. did not provide an experimental test of their model, presumably because of the practical difficulty

associated with measuring pulse decay times with sub-nanosecond resolution. Our experimental results

therefore provide an indirect though possibly simpler test of both our model and theirs.

Integrating spheres of are great utility in measurement applications that require an even and well-

characterized irradiance across the whole internal surface. To use such a sphere as a gas absorption cell, our

requirements are less stringent and may be listed as follows:

(i) For high sensitivity, we require a long path length contained within a practical sampling volume.

(ii) For tolerance to misalignment during manufacture and / or vibration in use, we require the irradiance

be even across the surface in a region local to the detector, but not more widely.

(iii) For ease of calibration by manufacturers it is preferred to have repeatable path lengths, requiring

both repeatable surface reflectivities and repeatable cell geometries.

For an integrating cavity the ideal solution is a sphere, but this is not an absolute requirement. The fact that

our model is not very sensitive to the path-length distribution for a single pass indicates that other cavity

geometries may give similar results if they maintain the same mean path length. Other geometries might be

easier to manufacture repeatably and at low cost. This was also considered in the work of Fry et al. [17].

Instrument users typically prefer outputs that are linear with the target measurand. At high analyte

concentrations, absorption measurements based on the use of the Beer-Lambert law will always have to

contend with some nonlinearity, which is compounded when path-length distributions are broad. However,

as long as nonlinearities are predictable, manufacturers are able to linearise the output using algorithms or

look-up tables.
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7 Conclusion

We have developed a model that describes the variation in transmission with analyte concentration for an

integrating sphere used as an absorption cell. This model has been tested by measuring the absorption of

gaseous methane at 1651nm in the concentration range 0-2.5 vol.% (corresponding to an absorption range

of 0-0.01cm-1). Within the model, the probability density function (PDF) of optical path lengths within the

sphere is calculated, and the fractional light transmission determined using the Beer-Lambert Law for light

within each path-length interval in the PDF. The total light transmission shows an additional nonlinearity

beyond what would normally be expected from the Beer-Lambert law for a gas cell with a single path

length, and this nonlinearity is shown to be in good agreement with our experimental data.

Because the full model is computationally intensive, we have also tested a simplified model, whereby each

pass across the integrating sphere is assigned a length equal to the average length pass across the cell ( R
3
4 ).

This yields a simple analytical relationship that can be easily fitted to experimental data by varying two

parameters, the average sphere reflectivity ρ and the launch path length zℓ, in our case yielding good

agreement with residual errors within our estimated experimental error. This simpler model is a

development of previous work in the field, and our experimental data provides a validation for its use.
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