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Abstract

We review the extended Jacobian approach to automatic differentiation of a user-supplied
function and highlight the Schur complement form’s forward and reverse variants. We detail
a Matlab operator overloaded approach to construct the extended Jacobian that enables
the function Jacobian to be computed using Matlab’s sparse matrix operations. Memory and
runtime costs are reduced using a variant of the hoisting technique of Bischof (Issues in Parallel
Automatic Differentiation, 1991). On five of the six mesh-based gradient test problems from
The MINPACK-2 Test Problem Collection (Averick et al, 1992) the reverse variant of our
extended Jacobian technique with hoisting outperforms the sparse storage forward mode of
the MAD package (Forth, ACM T. Math. Software. 32, 2006). For increasing problems size
the ratio of gradient to function cpu time is seen to be bounded, if not decreasing, in line with
Griewank and Walther’s (Evaluating Derivatives, SIAM, 2008) cheap gradient principle.

1 Introduction

Automated program generation techniques have been used to augment numerical simulation pro-
grams in order to compute derivatives (or sensitivities) of desired simulation outputs with respect
to nominated inputs since the 1960’s. Such techniques go by the collective name Automatic,
or Algorithmic, Differentiation (AD) [1]. Advances in AD theory, techniques, tools and wide-
ranging applications may be found in the many references available on the international website
www.autodiff.org.

Historically, development has focussed on AD tools for programs written in Fortran and
C/C++ as these languages have dominated large simulations for technical computing. AD of
Matlab was pioneered by Verma [2] who used the, then new, object-oriented features of Matlab
in the overloaded AD package ADMAT 1.0 facilitating calculation of first and second derivatives
and determination of Jacobian and Hessian sparsity patterns.

Our experience is that ADMAT’s derivative computation run times are significantly higher
than expected from AD complexity analysis leading us to develop the MAD package [3] (the
recent ADMAT 2.0 may have addressed these issues [4]). Presently MAD facilitates first derivative
computations via its fmad class, an operator-overloaded implementation of forward mode AD. The
fmad class’s efficiency may be attributed to its use of the optimised derivvec class for storing and
combining directional derivatives. The derivvec class permits multiple directional derivatives to
be stored as full or sparse matrices: sparse storage gave good performance on a range of problems.
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Bischof et al [5] investigated forward mode Matlab AD by source transformation combined
with storing and combining direction derivatives via an overloaded library. This hybrid approach
gave a significant performance improvement over ADMAT. Source transformation permits the
use of compile-time performance optimisations [6, 7]: forward substitution was found particularly
effective. Kharche and Forth [8] investigated specialising their source transformation inlining of
functions of MAD’s fmad and derivvec classes in the cases of scalar and inactive variables. This
was particularly beneficial for small problem sizes for which overloading’s run time requirements
are dominated by the large relative cost of function call overheads and branching (required for
code relevant to scalar and inactive variables) compared to arithmetic operations.

Our thesis is that automated program generation techniques, and specifically AD, should take
advantage of the most efficient features of a target language. For example, MAD’s derivvec class’s
exploitation [3] of the optimised sparse matrix features of Matlab [9]. As we recap in Sec. 2, it
is well known that forward and reverse mode AD may be interpreted in terms of forward and
back substitution on the sparse, so-called, extended Jacobian system [1, Chap. 9]. In this article
we investigate whether we might use Matlab’s sparse matrix features to effect reverse mode AD
without recourse to the usual tape-based mechanisms [1, Chap 6.1]. Our implementation, including
optimised variants, is described in Sec. 3 and the performance testing of Sec. 4 demonstrates our
approach’s potential benefits. Conclusions and further work are presented in Sec. 5.

2 Matrix Interpretation of automatic differentiation

Following Griewank and Walther [1], we consider a function F : IRn 7→ IRm of the form,

y = F (x), (1)

in which x ∈ IRn and y ∈ IRm are the vectors of independent, and dependent, variables respectively.
Our aim is to calculate the function Jacobian F ′(x) ∈ IRm × IRn for any given x from the source
code of a computer program that calculates F (x): this is AD’s primary task. We consider the
evaluation of F (x) as a three-part evaluation procedure of the form,

vi = xi, i = 1, . . . , n, (2)

vi = 'i(vj)j≺i, i = n + 1, . . . , n + p, (3)

vi = vj≺i, i = n + p + 1, . . . , n + p + m. (4)

In (2) we copy the independent variables x to internal variables v1, . . . , vn. In (3) each vi, i =
n+1, . . . , n+p is obtained as a result of p successive elementary operations or elementary functions
(e.g., additions, multiplications, square roots, cosines, etc.), acting on a small number of already
calculated vj . Finally in (4) the appropriate internal variables vj are copied to the dependent
variables in such a way that yi = vn+p+i, i = 1, . . . ,m, to complete the function evaluation.

We define the gradient operator ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
, differentiate (2)-(4) and arrange the

resulting equations for the ∇vi as a linear system,⎡⎣ −In 0 0
B L− Ip 0
R T −Im

⎤⎦⎡⎣ ∇v1,...,n
∇vn+1,...,n+p

∇vn+p+1,...,n+p+m

⎤⎦ =

⎡⎣ −In0
0

⎤⎦ . (5)

In (5): In is the n× n identity matrix (Ip and Im are defined similarly); ∇v1,...,n is the matrix,

∇v1,...,n =

⎡⎢⎣ ∇v1...
∇vn

⎤⎥⎦ ,

with ∇vn+1,...,n+p and ∇vn+p+1,...,n+p+m defined similarly; from (3) the p × n B and p × p L
are both sparse and contain partial derivatives of elementary operations and assignments; from
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(4) the m × n R and m × p T are such that [R T ] contains exactly one unit entry per row. The
(n + p + m) × (n + p + m) coefficient matrix in (5) is known as the Extended Jacobian denoted
C − In+p+m and has sub-diagonal entries cij .

By forward substitution on (5) we see that the system Jacobian J = ∇y1,...,m = ∇vn+p+1,...,n+p+m

is given by,
J = R + T (L− Ip)−1B, (6)

the Schur complement of L− Ip. Using (6), J may be evaluated in two ways [1, p.188]:

1. Forward variant: derivatives ∇vn+1,...,n+p and Jacobian J are determined by,

(L− Ip)∇vn+1,...,n+p = B, (7)

J = R + T∇vn+1,...,n+p. (8)

i.e., forward substitution on the lower triangular system (7) followed by a matrix multipli-
cation and addition (8).

2. Reverse variant: the p×m adjoint matrix Z̄ and Jacobian J are determined by,

(Ip − LT )Z̄ = TT , (9)

J = R + Z̄TB. (10)

i.e., back-substitution of the upper triangular system (9) followed by matrix multiplication
and addition (10).

The arithmetic cost of both variants is dominated by the solution of the linear systems (7) and (9)
with common (though transposed in (9)) sparse coefficient matrix. These systems have n and
m right-hand sides respectively giving the rule of thumb that the forward variant is likely to be
preferred for n < m and reverse for m > n (see [1, p.189] for a counter example). Since matrices
B, R and T in (7) to (10) are also sparse, further reductions in arithmetic cost might be obtained
by storing and manipulating the v or Z̄ as sparse matrices [1, Chap. 7].

Other approaches to reducing arithmetic cost are based on performing row operations to reduce
the number of entries in (5) or, indeed, to entirely eliminate some rows [1, Chaps. 9-10]. Such
approaches have been generalised by Naumann [10] and may be very efficient if performed at
compilation time by a source transformation AD tool [11]. In Sec. 3.3 we will adapt Bischof’s
hoisting technique [12] to reduced the size and number of entries of the extended Jacobian: reducing
memory and runtime costs. Unlike Bischof, ours is a runtime approach more akin to Christianson
et al’s [13] dirty vectors.

3 Three Implementations

In Secs. 3.2-3.4 we describe our three closely related overloaded classes designed to generate the
extended Jacobian’s entries as the user’s function is executed. First, however, we introduce the
MADExtJacStore class, objects of which are used by all three overloaded classes to store the
extended Jacobian entries.

3.1 Extended Jacobian Storage

A MADExtJacStore object has components to store: the number of independent variables, the
number of rows of the Extended Jacobian for which entries have been determined, the number of
entries determined, and a three column matrix to store the i, j and coefficient cij for each entry.
The number of rows of the matrix component is doubled whenever its current size is exhausted.
The class inherits the Matlab handle class attribute rendering all assignments of such objects to be
pointer assignments allowing us to have a single object of this class accessible to multiple objects
of our overloaded classes.
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3.2 A First Implementation - ExtJacMAD

Figure 1: Example code.

function y = F(x)

y = 2 .* x(2:3) .* x(1);

We describe our classes of this and the next three sections
with reference to a vector of independent inputs x =
[0.5 1 −2.5]T and the example code of Figure 1 which
corresponds to the function (y1, y2) = (2x2x1, 2x3x1).

ExtJacMAD class objects have three properties. The
first is the value property which stores the numeric value
of the object and, since Matlab is an array-based lan-
guage, may be an arbitrary size array. The second is the

row index property which is an array of the same size as, and holds the extended Jacobian row
index i for each corresponding element of, the object’s value property. Finally, the JacStore

component is a handle to a MADExtJacStore object used to store the extended Jacobian entries.
The statement

x = ExtJacMAD([0.5; 1; -2.5])

creates an object of ExtJacMAD class using the ExtJacMAD constructor function to set the three
properties of x. Firstly, x.value is assigned the column vector [0.5; 1; -2.5]. Secondly,
x.row index is set to the column vector [1; 2; 3] indicating that the elements of the value

component array correspond to the first three rows of the extended Jacobian. Thirdly, x.JacStore
is set to point to a new object of MADExtJacStore class with its array of entries zeroed and both
the number of independent variables and the numbers of rows set to three.

Applying the function of Fig. 1, y = F(x), initiates four overloaded operations:

1. Our class’s overloaded subscript reference function subsref forms a temporary object, call
it tmp1, with tmp1 = x(2:3). This function simply applies subscripting to the value and
row index properties of x such that tmp1.value = x.value(2:3) and tmp1.row index

= x.row index(2:3). JacStore is pointed to the same MADExtJacStore object as for x.
This approach, involving just two subscripting operations and a pointer copy, is intrinsically
more efficient than that for MAD’s forward mode [3] which involves further overloading on
derivvec objects and multiple operations required to subscript on their derivative storage
arrays.

2. Now 2 .* x(2:3) is effected as 2 .* tmp1 with the result stored in temporary object tmp2.
The associated overloaded times operation performs tmp2.value = 2 .* tmp1.value =

[2 -5] and copies the JacStore component of tmp1. However, the derivatives of tmp2.value’s
elements are twice those of
tmp1.value so two new extended Jacobian entries must be made for new rows i = [4 5],
columns j = [2 3] (i.e., the row indices of tmp1), and local derivatives c = 2. If j or c is
scalar our software automatically and efficiently replicates them by one-to-many assignments
to be the same size as i: thus c = [2 2]. The new row indices are assigned tmp2.row index

= [4 5].

3. As in step 1, tmp3 = x(1) effects tmp3.value = x.value(1) = 0.5, tmp3.row index =

x.row index(1) = 1 and tmp3.JacStore = x.JacStore.

4. Finally, y is formed by the overloaded times operation so that: y.value = tmp2.value .*

tmp3.value = [1 -2.5]; y.JacStore=tmp2.JacStore; and another four entries in the ex-
tended Jacobian are created. Entries for the tmp2 argument with i = [6 7], j = tmp2.row index

= [4 5], c = tmp3.value = 0.5 (expanded to [0.5 0.5]) are first stored. These are fol-
lowed by those for tmp3 with i = [6 7], j = tmp2.row index = [4 5], and c = tmp2.value

= [2 -5].

As a result of these steps the indices i = [4 5 6 7 6 7], j = [2 3 4 5 1 1] and coefficients c
= [2 2 0.5 0.5 2 -5] of the extended Jacobian’s off-diagonal entries have been determined.

We may now obtain the Jacobian of y with respect to x,
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J = getJacobian(y)

returning,

J =

2 1 0

-5 0 1

as expected. The ExtJacMAD class’s getJacobian function first adds m rows to the extended
Jacobian corresponding to a copy of the elements of y to ensure the extended Jacobian is of the
form (5) with the last m rows linearly independent. It then forms the sparse sub-matrices B, L,
R and T before evaluating the Jacobian using one of four subtly different Matlab statements,

J = R - T *( (L - eye(p)) \ full(B)) (11)

J = R - T * ( (L - speye(p)) \ B) (12)

J = R - (full(T) / (L - eye(p))) * B (13)

J = R - (T / (L - speye(p))) * B (14)

Equation (11) uses full storage for the intermediate derivatives ∇vn+1,...,n+p of the forward sub-
stitution (7) and Jacobian J of (8). Approach (12) performs the same operations (7)-(8) using
sparse storage. Equations (13) and (14) correspond to full and sparse storage variants respectively
of the back-substitution approach of (9)-(10).

3.3 Hoisting - ExtJacMAD H

As an alternative to the computational graph approach used by Bischof et al [12], hoisting can
be interpreted as Gaussian elimination using pivot rows with a single off-diagonal entry in the
extended Jacobian. Consider the extended Jacobian arising from the example code of Fig. 1 using
the approach of Sec. 3.2. As shown in (15), the two sub-diagonal entries of the L block arising
from the use of the two elements of the vector variable tmp1 may be eliminated by row operations
for the cost of two multiplications while generating two entries by fill-in (though in general fill-in
need not occur).

C−I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1

2 −1
2 −1

2 .5 −1
−5 .5 −1

1 −1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

row 6→row 6+0.5×row 4

row 7→row 7+0.5×row 5
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1

2 −1
2 −1

2 1 −1
−5 1 −1

1 −1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

In the extended Jacobian, rows 4 and 5 may now be removed from blocks L and B, and columns 4
and 5 may be removed from blocks L and T . This also eliminates two rows from the intermediate
matrices ∇vn+1,...,n+p or Z̄ leaving the extended Jacobian as,

C − I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1

2 1 −1
−5 1 −1

1 −1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)
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We may now extract B, L, R and T from (16) and calculate the Jacobian J . Hoisting is an
example of a safe pre-elimination which never increases the number of arithmetic operations [1, p.
212] but can drastically reduce both these and memory costs. In Matlab hoisting may be applied
to element-wise operations or functions with a single array argument (e.g., -x, sin(x), sqrt(x))
and element-wise binary operations or functions with one inactive argument (e.g., 2 + x, A .*

x with A inactive). Hoisting is not applicable to matrix operations or functions (e.g, linear solve
X \ Y or determinant det(X)).

We effect hoisting by a run-time mechanism distinguishing our work from Bischof et al [12].
We use a similar technique to that of Christianson et al [13] who used it to reduce forward or back
substitution costs on the full extended Jacobian: we reduce the size of the extended Jacobian.

Our hoisted class ExtJacMAD H has an additional property to that of class ExtJacMAD, an
accumulated extended Jacobian entry array Cij. When we initialise our ExtJacMAD H object,

x = ExtJacMAD_H([0.5; 1; -2.5])

we assign x.Cij = 1 indicating that the derivatives of the elements of x are a multiple of one times
those associated with x.row index, i.e., rows 1 to 3. Step 1 of the overloaded operations of Sec. 3.2
is as before but with the additional copy tmp1.Cij = x.Cij. Step 2 differs more substantially
with no additions to the extended Jacobian, we merely copy tmp2.row_index = tmp1.row_index

and set tmp2.Cij = 2*tmp1.Cij. Step 3 is similar to the revised step 1. Step 4 is modified to
account for the objects’ accumulated extended Jacobian entry, so when dealing with the entries
associated with tmp2 we have c = temp2.Cij .* tmp3.value = 1 (expanded to [1 1]), and
when dealing with tmp3 we have c = tmp3.Cij .* tmp2.value = 1 .* [2 -5] = [2 -5]. The
assembled extended Jacobian then directly takes the form (16) and we see that the effects of
hoisting have been mimicked at runtime. Note that the Cij component is maintained as a scalar
whenever possible. Array values of Cij would be created if our example function’s coding were
y = sin(x(2:3)) .* x(1) as then tmp2.Cij = cos(tmp1) = [0.5403 -0.8011] though this
would not prevent hoisting.

3.4 Using Matlab’s New Objected Oriented Programming Style

Matlab release R2008a introduced substantially new object oriented programming styles and ca-
pabilities compared to those used by both our implementations of Secs. 3.2 and 3.3 and previous
Matlab AD packages [2, 3]. Instead of the old style’s definition of all an object’s methods within
separate source files in a common folder, in the new style all properties and methods are defined
in a single source file.

4 Performance Testing

All tests involved calculating the gradient of a function from the MINPACK-2 Test Problem
collection [14] with the original Fortran functions recoded into Matlab by replacing loops with
array operations and array functions. We performed all tests for a range of problem sizes n: for
each n five different sets of independent variables x were used. For each derivative technique and
each problem size the set of five derivative calculations were repeated sufficiently often that the
cumulative cpu time exceeded 5 seconds. If a single set of five calculations exceeded 5 seconds
cpu time then that technique was not used for larger n. All tests were performed using Matlab
R2009b on a Windows XP SP3 PC with 2GB RAM. We first consider detailed results from one
problem.

4.1 MINPACK-2 Optimal Design of Composites (ODC) test problem

Table 1 presents the run time ratio of gradient cpu time to function cpu time for the Optimal
Design of Composites (ODC) problem for varying number of independent variables n and using
the extended Jacobian techniques of Sec. 3. We also give run time ratios for a hand-coded adjoint,
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one-sided finite differences (FD) and sparse forward mode AD using MAD’s fmad class. For these,
and all other results presented, AD generated derivatives agreed with the hand-coded technique
to within round-off: errors for FD were in line with the expected truncation error. Within our
tables a dash indicates that memory or cpu time limits were exceeded.

Table 1: Gradient evaluation cpu time ratio cpu(∇f)/cpu(f) for the MINPACK-2 Optimal Design
of Composites (ODC) test problem.

cpu(∇f)/cpu(f) for problem size n
Grad. Tech 25 100 2500 10000 40000
hand-coded 1.8 1.9 2.0 2.0 1.7
FD 26.2 102.8 2684.0 11147.2 -
sparse forward AD 66.0 55.8 134.7 - -
Extended Jacobian: Sec. 3.2
forward full 58.6 79.9 - - -
forward sparse 61.3 56.9 62.0 64.7 53.7
reverse full 57.9 51.4 42.1 42.0 35.4
reverse sparse 57.2 57.4 51.2 55.1 48.0
Extended Jacobian + Hoisting: Sec. 3.3
forward full 46.3 51.4 - - -
forward sparse 48.3 42.7 34.0 33.9 28.6
reverse full 47.0 41.0 24.3 23.1 19.9
reverse sparse 44.9 39.9 26.3 26.4 23.3
Extended Jacobian + Hoisting + New Object Orientation: Sec. 3.4
forward full 99.4 95.2 - - -
forward sparse 99.4 83.1 38.4 35.3 28.6
reverse full 100.8 88.6 31.0 26.4 21.0
reverse sparse 98.0 82.1 33.7 29.0 23.8

The hand-coded results show what might be achievable for a source transformation AD tool in
Matlab. The FD cpu time ratio is in line with theory (≈ n + 1) but FD exceeded our maximum
permitted run time for large n. Sparse forward mode AD outperformed FD with increasing n but
exceeded our PC’s 2 GB RAM for larger n.

The extended Jacobian approaches of Sec. 3.2, particularly the reverse variant with full storage,
are seen to be competitive with, or outperform, sparse forward AD with the exception of the
forward variant with full storage. Since m ≪ n we expect the reverse variants to outperform
forward and as m = 1 there is no point employing sparse storage. Employing the hoisting technique
of Sec. 3.3 was always beneficial and for larger problem sizes halved the run time. This is because
hoisting reduces the number of entries in the Extended Jacobian by approximately 55% for all
problem sizes tested.

Employing Matlab’s new object oriented features, described in Sec. 3.4, had a strongly detri-
mental effect doubling required cpu times compared to using the old features for small to moderate
n. The two sets of run times converge for large n because the underlying Matlab built-in functions
and operations are identical for both. Matlab’s run time overheads must be significantly higher
for the new approach and so dominate for small n.

4.2 MINPACK-2 mesh-based minimisation test problem

Table 2 presents selected results for the remaining mesh-based MINPACK-2 minimisation prob-
lems. We only present the most efficient reverse full variants of the Extended Jacobian approach.
Performance of the FD, hand-coded and new Object Oriented Extended Jacobian approaches was
in line with that for the ODC problem of Sec. 4.1.

From Table 2, only for the GL1 problem did sparse forward mode AD outperform the Extended
Jacobian approach. For all other problems the Extended Jacobian approach with hoisting gave
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Table 2: Gradient evaluation cpu time ratio cpu(∇f)/cpu(f) for the MINPACK-2 mesh-based
minimisation test problems. Ext. Jac. indicates use of the reverse full variant of the Extended
Jacobian approach.

cpu(∇f)/cpu(f) for problem size n
Problem Grad. Tech 25 100 2500 10000 40000 160000
EPT sparse fwd. AD 102.1 99.6 341.3 - - -

Ext. Jac. 106.4 108.6 120.2 120.8 111.8 60.6
Ext. Jac. + Hoisting 93.5 98.3 91.2 91.9 86.0 46.1

GL1 sparse fwd. AD 138.0 93.1 13.4 7.5 6.6 7.3
Ext. Jac. 160.6 104.7 34.3 26.9 27.5 25.6
Ext. Jac. + Hoisting 115.5 85.6 23.2 18.0 17.9 16.6

MSA sparse fwd. AD 85.1 69.2 158.7 - - -
Ext. Jac. 82.4 71.3 54.0 60.3 66.0 -
Ext. Jac. + Hoisting 68.8 57.7 31.5 33.9 39.6 27.9

PJB sparse fwd. AD 74.7 79.4 - - - -
Ext. Jac. 61.5 69.7 131.8 71.6 68.5 -
Ext. Jac. + Hoisting 57.4 60.8 99.8 51.8 48.3 -

cpu(∇f)/cpu(f) for problem size n
Problem Grad. Tech 100 400 10000 40000 160000 640000
GL2 sparse fwd. AD 86.9 86.7 142.8 292.8 - -

Ext. Jac. 76.8 78.6 88.1 66.2 82.8 -
Ext. Jac. + Hoisting 58.5 59.1 53.3 39.4 50.1 -

equivalent, or substantially faster, performance and used less memory allowing larger problem
sizes to be addressed. Hoisting reduced the number of extended Jacobian entries by between 34%
(EPT problem) to 49% (MSA problem) leading to significant performance benefits. In all cases,
except perhaps the GL2 problem, the Extended Jacobian with Hoisting approach gave run time
ratios decreasing with n for large n in line with the cheap gradient principle [1, p. 88].

5 Conclusions and further work

Our extended Jacobian approach of Sec. 3 allowed us to use operator overloading to build a
function’s extended Jacobian before employing Matlab’s sparse matrix operations to calculate
the Jacobian itself. Bischof’s hoisting technique [12] was adapted for run time use to reduce the
size of the extended Jacobian. The performance testing of Sec. 4 shows that the reverse variant
of our approach with full storage of adjoints and hoisting was substantially more efficient and
able to cope with larger problem sizes than MAD’s forward mode [3] for five of six gradient test
problems from the MINPACK-2 collection [14]. Performance is an order of magnitude worse than
for a hand-coded adjoint due to the additional costs of overloaded function calls and of branching
between multiple control flow paths in the overloaded functions. Additionally, the tailoring of the
hand-coded adjoint’s back-substitution to the sparsity of a particular source function’s extended
Jacobian will likely outperform our use of a general sparse solve.

Future work will address Jacobian problems. Equations (11)-(14) may be employed directly
for this together with compression [1, Chap. 8]. Compression requires Jacobian-matrix, JS =
RS + T (L− Ip)−1(BS), or matrix-Jacobian, WJ = WR + (WT )(L− Ip)−1B, products where S
and W are so-called seed matrices. Hessians can be computed using the fmad class to differentiate
the extended Jacobian computations: a forward-over-reverse strategy [1, Chap. 5].

The extended Jacobian approach is not suited to all problems. For example, the product of
two N × N matrices would create some 2N3 extended Jacobian entries. Verma [2] noted that
by working at the matrix, and not the element level, just the 2N2 elements of the two matrices
are needed to enable reverse mode. An under-development tape-based AD implementation will
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shortly be compared with this article’s extended Jacobian approach.

References

[1] A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, 2nd Edition, SIAM, Philadelphia, PA, 2008.

[2] A. Verma, ADMAT: Automatic differentiation in MATLAB using object oriented methods,
in: M. E. Henderson, C. R. Anderson, S. L. Lyons (Eds.), Object Oriented Methods for In-
teroperable Scientific and Engineering Computing: Proceedings of the 1998 SIAM Workshop,
SIAM, Philadelphia, 1999, pp. 174–183.

[3] S. A. Forth, An efficient overloaded implementation of forward mode automatic differentiation
in MATLAB, ACM T. Math. Software. 32 (2) (2006) 195–222. doi:10.1145/1141885.1141888.

[4] Cayuga Research Associates, LLC, ADMAT: Automatic Differentiation Toolbox for use with
MATLAB. Version 2.0. (2008).
URL http://www.math.uwaterloo.ca/CandO Dept/securedDownloadsWhitelist/Manual.pdf
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ADiMat, in: H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (Eds.), Automatic
Differentiation: Applications, Theory, and Implementations, Lecture Notes in Computational
Science and Engineering, Springer, 2005, pp. 181–188. doi:10.1007/3-540-28438-9 16.
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