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Abstract

The paper details the manufacturing processes involved in the preparation of

through-the-thickness reinforced composites via the ‘dry preform – tufting – liquid resin

injection’ route. Samples for mechanical testing were prepared by tufting a 5 harness

satin weave carbon fabric in a 3mmx3mm square pitch configuration with a commercial

glass or carbon tufting thread, infusing the reinforced preforms with liquid epoxy resin

and curing them under moderate pressure. The glass thread reinforcement increases the

compression-after-impact strength of a 3.3mm thick carbon fabric laminate by 25%.

The accompanying drop-downs in static tensile modulus and strength of the same tufted

laminate are below 10%. The presence of tufts is also shown to result in a significant

increase in the delamination crack growth resistance of tufted double-cantilever beam

specimens and has been quantified for the case of a 6mm thick tufted carbon

non-crimped fabric (NCF)/epoxy composite.
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Introduction

Tufting is a relatively novel technique for achieving through-the-thickness

reinforcement in thermosetting polymer matrix composites. It is ideally suited to load

bearing structures intended to be made via the dry-fabric/liquid resin moulding

processes. The process involves the insertion of a threaded needle into a loose dry fabric

or bindered preform and its removal from the fabric along the same trajectory (see

Fig.1). The ‘tuft’ of thread relies on friction from the fabric itself and/or hold provided

by underlying ancillary material (e.g. foam) to remain in place. The loop of thread is not

locked in place and, given that the samples are made from woven fabric, any additional

crimp due to the insertion of the tufts can be considered insignificant. It is to be noted

that the process requires only one-sided access to the piece.

Information available in the published literature is currently limited to technical

information on the tufting process itself [1] and to general comparisons of tufting

against other forms of stitching [2-4] or other forms of Z-direction reinforcement [5].

There is currently no published database relating to the mechanical performance of

tufted composites. In contrast to this, much work has been done in the past on more

conventional forms of stitching of fabrics for structural composites and significant

amount of information has been generated and published [6-13]. Some problem have

been encountered in terms of manufacturing complexity, especially in large composite

structures and the crimping effect of the locked stitches appears to result in an

unacceptable reduction of the in-plane properties of stitched composites.
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The present paper describes the manufacturing processes involved in the preparation of

glass and carbon thread tufted carbon fabric/epoxy resin samples and concentrates on

the evaluation of the compression-after-impact (CAI) and of the in-plane tensile

properties of the cured composites. Preliminary results of measurement of the

delamination crack growth resistance of a relatively thick, tufted carbon NCF/epoxy

laminate are given.

The tufting process

The tufting technology is based on the ancient methods of carpet making. The novel

aspects involve the development of specialised continuous yarn tufting threads,

compatible with the liquid resin moulding type processes for composites manufacture

and with the subsequent mechanical and durability performance demands on the final

composite. In line with the rising expectation of cost effective manufacturing in the

composites industry, the tufting process has been automated. The system used in the

present work (see Movie 1) consists of a commercial tufting head (KSL KL150),

interfaced to a Kawasaki 6-axis robot arm (FS 20N). The trajectory tracking has been

achieved using AS machine programming language designed specifically for use with

Kawasaki robot controllers, and the dedicated KCWIN software from Kawasaki.

Figure 2 shows detail of the tufting needle arrangement. The needle diameter is 2mm.

This size is required for robustness of the needle in repeated application but is roughly

comparable with the typical ‘unit cell’ dimensions of a dry continuous fibre preform. If

loosely woven dry preforms are used, then the size of the needle seems to pose little

problem in term of fibre breakage, as the fibres are able to move out of the way of the

needle. However, significant fibre damage can be expected to result in the tufting of

highly bindered preforms. The effect of such damage will be a reduction in the in-plane
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strength of the final composite. Our experience to date indicates that knitted fabrics are

unsuitable for use with this technology, whilst woven fabrics are relatively easy to tuft

and the so called non-crimped-fibre (NCF) fabrics appear ideally suited for tufting.

The machine set up is capable of tufting at rates of up to 500 tufts per minute. Rates up

to 250 tufts per minute have been tested successfully in our laboratory on 5mm thick

bindered preforms, however, all the results reported this study correspond to a tufting

rate of 50 tufts per minute. The insertions were orthogonal to the plane of the preform,

in a 3mmx3mm square tufting pattern. Figure 3 shows the top-side of a tufted preform

and the underside loops, revealed after removal of the preform from the support bed.

Table1 summarises the attributes of the two commercial threads used in the present

work. The 3-yarn glass fibre thread has been used in these types of applications for

some time, whereas the particular 2-yarn carbon fibre thread grade used has been

developed only recently [14]. The threads were tested for tensile strength in the

un-impregnated form, using a Zwick Z010 tensile tester and standard rope specimen

grips from Zwick.

The tufts were held in place on the underside of the preform by using an 8mm thick

silicone based backing layer. Two different materials were utilised: a silicone rubber

from Dow Corning® (Silastic® 3481 with Silastic® 81T curing agent) or a silicone

foam from Samco® (SIL16). The first of these is tougher and guarantees a better grip

on the thread whereas the second is cheaper and more suitable for thinner and more

‘delicate’ threads. An additional nylon film (see Fig. 2) was placed between the dry

fabric stack and the silicone rubber or foam bed, to facilitate the removal of the tufted

stack from the support prior to the infusion with resin.
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An obvious question arises as to whether the tuft loops should be removed from the

panel prior to resin infusion and, if so, how. In the work reported here the tuft loops

were left intact, leading to the formation of a thin (under half a millimetre) resin rich

layer, containing the flattened tuft loops, on one side of the cured composite panel.

The geometric arrangement of the tufts or blocks of tufts within a panel is an evident

process parameter. In this early work we report results obtained by the use of a simple

square tufting pattern, with tuft centre-to-tuft centre spacing of 3mm. This choice was

prompted by desire to achieve some form of a comparison with our previous work on

Z-pinning of prepreg laminates, in which similar areal densities of the Z-direction

reinforcement had been used [15].

Materials and methods

Samples were made from woven 5 harness satin carbon fibre fabric, 373gsm, 6K

(WEAV-RITE), supplied by Cytec Engineered Materials. The fabric stack was made up

from 8 plies of this fabric, arranged as a symmetric 0/90° lay-up. The dry fabric stacks,

containing defined regions with and without tufts, were placed in a fixed dimension

rectangular flat plate Resin Transfer Moulding tool and infused with Cycom® 977-20

resin under 2 bar pressure. Upon successful completion of the resin fill, the panels were

cured in the tool at 180°C for 185 minutes. On completion of the cure the nominal panel

thickness was 3.35mm, with a theoretical fibre volume fraction of 50%.

The tensile tests were carried out following BS EN ISO 527-4:1997 standard, on

parallel sided 25mm wide specimens. The length of the tufted area was selected to be
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longer than the gauge length, with the tabs covering part of the tufted portion of the

specimen. At least six specimens were tested for each sample type and the average

strength was evaluated by taking into account only those specimens which failed within

the gauge section. The ‘top side’ (no loops) specimen surface was spray-painted with a

speckle pattern of black dots on a white background in order to obtain a full strain field

measurement via a LIMESS GmbH Digital Image Correlation system [16]. Two 1.4

Mega Pixels digital cameras, operating at a fixed frequency, monitored the displacement

of the random dots. In the post-processing stage, image correlation algorithms calculate

the strain maps by comparing successive images and following the evolution of the

displacement of the dots. The average strain was measured over the central area of the

gauge section of the specimen in order to minimise any edge effect.

Compression after impact tests were carried out on 102x152x3.35mm specimens. All of

these specimens were obtained from a single infused panel, thus ensuring that they all

had the same thickness, fibre volume fraction and cure history. There were control

specimens and specimens containing a 50mmx50mm central square block of tufts (GF

or CF) with a 3mmx3mm pattern. This size of the tufted area was selected so that the

damage area due to impact did not extend beyond the tufted region. They were clamped

at four points according to the Boeing BSS7260 standard for CAI and pre-impacted at a

single energy level of 15J, with the 20mm diameter hemispherical impactor of a Rosand

Instrumented Falling Weight System. They were then C-scanned prior to being

subjected to compression within a Boeing CAI test fixture. Three or four specimens

were tested in each case. The C-scan is able to indicate the presence of the tufts (Fig.
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4a) in the non-impacted specimens and the damage created by the 15J impact (Fig. 4b)

is visualised with the help of image processing software (Fig. 4c).

Standard double cantilever beam (DCB) specimens (BS ISO 15024:2001) were

prepared for the evaluation of the delamination propagation resistance of control and

tufted coupons. These samples were manufactured from the same materials and by the

same manufacturing methods as in the above described tests, with cured plate thickness

of 3.35mm. The first line of tufts had been positioned 15mm beyond the edge of the

crack starter film. It was subsequently found necessary to use considerably thicker DCB

specimens and to reduce the areal density of through-the-thickness reinforcement, in

order for the delamination to propagate in the correct plane of the specimen. For these

specimens, carbon Sigmatex MC904 quasi-isotropic non-crimped fabric was used,

tufted with the glass tufting thread in a 4mmx4mm square pattern. Given the size

limitations of our RTM tool, these much thicker plates were vacuum infused with a low

viscosity three component epoxy resin, to arrive at a cured thickness of 6mm. It should

be noted that, under vacuum infusion process conditions, the local perturbations to

fabric permeability become important. The blocks of tufts can cause localised air

trapping when the preform is infused by ‘in-plane’ resin flow but facilitate impregnation

via a transverse resin flow. The impregnation conditions have to be carefully controlled

to take account of this added complexity.

Results

The overall quality and the mesostructure of tufted specimens were analysed via optical

microscopy of polished cross-sections of the cured composite. The inclination of the

tufts remains reasonably orthogonal to the laminate plane after curing, as shown in
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Figures 5a and 5b. The glass thread tuft cross-section (Fig. 5c) is circular whereas in the

carbon thread tuft the yarns appear to remain well separated in a 4-lobe shape (Fig. 5d).

The total carbon fibre volume fraction of the panels was determined by an acid

digestion technique and the average value was 51.5%. In those tensile test specimens

tufted with the glass thread, the total theoretical volume fraction of glass was calculated

as 7.7% of the final cured composite. The actual glass fibre content of such tufted

specimens, determined from the acid digestion data and the detailed geometry of the

specimens, was 7.9%. In terms of the effects on the mechanical properties, it is more

correct to consider only the ‘functional’ portion of glass thread, neglecting the surface

stitches and the loops contained in the 300 – 400μm thick external resin-rich layer. On

this basis, the functional glass fibre content drops to 4.4% of the sample volume, for a

3mmx3mm tufting pattern.

Figure 6 shows representative stress vs. strain curves of control and glass fibre tufted

samples tested in tension. Control samples exhibit a linear response almost to failure.

The initial slopes of the two lines are indistinguishable, giving a Young’s Modulus of

55GPa, but the behaviour of the tufted sample shows a deviation from linearity at a

strain of 0.35%. The ultimate tensile strength of the samples is reduced from 477 (+/-

25) MPa to 430 (+/-16) MPa by tufting. This translates to a 10% reduction. In the tufted

samples the crack always propagates along a line of tufts, transverse to the longitudinal

axis of the specimen. Several mechanisms could be responsible for weakening the area

around each tuft. Apart from the expected localised breakage of the preform fibres due

to the needle penetration itself, post mortem analysis of tested specimens also revealed

the presence of small resin pockets and voids around the tufts (Fig. 7).
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The falling weight impact tests recorded in Figure 8 demonstrate that the maximum load

experienced during the impact on glass thread and carbon thread tufted samples is

increased by 24% and 28% respectively when compared to control samples.

The apparent total extent of the damage in the central region of the specimen does not

change significantly between the control and the tufted samples. However, analysis of

the images obtained by processing the C-scan patterns reveals that delamination in the

control samples usually propagates along the main directions of the fabric fibres

(0°/90°), giving a characteristic and well defined cross shape to the damage region (see

Fig. 4.e), whilst in the case of tufted samples the shape of the damage area is more

circular and fewer delaminated planes are observed. Accordingly, the CAI strength of

these samples is increased by 25% and 27% in the presence of a central tufted block,

using glass and carbon threads respectively (see Table 2).

In the 3.35mm thick DCB samples the delamination did not propagate into the tufted

region, instead the specimens failed by flexural failure of the beam arms. It was also

impossible to propagate the centre plane delamination when the equivalent samples

were stiffened by bonding of 6mm thick aluminium sheets on each side.

In the case of the 6mm thick NCF based samples two of the tufted specimens still failed

by breakage of the beam arms, but from the remaining samples it was possible to obtain

a quantified comparison of the delamination resistance curves under Mode I loading for

control and tufted samples (see Fig. 9). There was no evidence of tuft pull-out during

the test and subsequent examination of the fracture surfaces showed broken tufts.

Discussion and Conclusions

The technique of robotic reinforcement of dry carbon fabric stacks by glass or carbon

fibre threads has proved to be relatively easy to introduce in the laboratory environment.
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Apart from the issues of interfacing and programming of the robot arm and the

commercial tufting head, the major practical challenges are in ensuring sufficient

anchorage of the tuft loops on the underside of the tufted preform and in avoiding

frequent thread breakage. The latter is achieved by initial selection of a suitable thread,

coupled with suitable selection of the needle eye shape and a suitable tufting speed.

Less frequent thread breakage is observed at higher tufting speeds.

The observed reduction in the ultimate tensile strength of the tufted samples is a

measure of the extent of fibre damage caused by the tufting process; in our particular

case a drop of 10% of the original strength for the addition of 4 to 5% by volume of

‘functional’ glass tufting thread in the z-direction. This reduction in the in-plane

strength is comparable to what has been observed in Z-pinned laminates [17,18].

However, the values quoted here cannot be expected to be a universal quantification of

the effect for tufted composites as this is likely to be dependent on the thread size and

type, pattern grid, nature of the fabric, level of binder used, size of the needle and the

tufting speed.

A drop-down in tensile stiffness of some 5% might also have been expected, based on

simple ‘dilution’ effect of the presence of the Z-direction reinforcement [18]. This has

not been detected within experimental error. As shown in Figure 6, after the initial co-

incidence with the control sample data, the stress-strain curve for the tufted composite

becomes non-linear at a tensile stress of about 150MPa. This effect is not found with the

control material. It is interesting to note that this non-linear behaviour has also been

observed at about the same stress level in the tensile stress-strain curves for 3D woven

composites with through-the-thickness reinforcement. The deflection of the curve is
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attributed to plastic straightening of load-bearing tows that have been crimped by the

through-thickness reinforcement [19,20].

As in Z-pinned laminated samples [17,18] the presence of the tufts would be expected

to increase significantly the resistance to propagation of a delamination crack in our

samples. The significant increase in the CAI performance of the tufted samples must, in

part, be due to the increased resistance to delamination. Our initial crack opening mode

delamination tests did not provide any useful data, apart from demonstrating just how

much stronger the tufted samples are. It was necessary to increase the tuft-to-tuft

spacing from 3 to 4mm and use a 6mm thick specimen before valid Mode I

delamination failures were obtained. For the particular specimen configuration used, the

presence of this local reinforcement results in an order of magnitude increase in the

delamination propagation resistance.

The early investigation presented here indicates an attractive balance of mechanical

performance in the tufted composite samples which is comparable to, and possibly

superior to, the performance achievable by Z-Fibre® pinning of prepreg laminates

[5,7,17]. It remains to be clarified what damage resisting mechanisms are responsible

for the significant delamination suppression in the tufted specimens, especially noting

the apparent absence of tuft pull-out from the laminates. In Z-pinned composites the

frictional pull-out of the Z-pins is a major energy absorbing mechanism, accounting for

their crack bridging action under crack opening displacement.

The question of how to deal with the external loops of thread produced by the tufting

process is unique to this technology. If, as in this work, the loops are left and
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subsequently impregnated by resin, then any mechanical properties measured

necessarily become sample specific. As with other forms of Z-direction reinforcement,

it is important to realise that the absolute value of the change in any given mechanical

property, as a result of tufting, will be a function of the specimen geometry as well as of

the tufting parameters. Future parametric studies, such as effects of tuft type, size,

spacing, overall sample geometry and even eventual structural response, will probably

best be carried out via carefully validated modelling. To this end work has started on the

development of suitable models, along the same principles as modelling methods

previously applied successfully to Z-pinned composites [21,22].
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Figures

Figure 1: Schematic of the thread arrangement in a tufted preform
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Figure 2: Detail of the KSL KL150 tufting head in operation showing: (1) thread
feeding system, (2) pneumatic scissors, (3) tufting needle, (4) nylon film and (5)
silicone foam layer.
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Figure 3: Top-side and under-side view (showing the loops) of a region of 5HS carbon
fibre preform, tufted with glass fibre thread in a 3mmx3mm pattern.
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Figure 4: C-scans of the central area of a CAI specimen. The top row of pictures refer to
a tufted sample: (a) central 50mmx50mm area tufted with a 3mmx3mm pattern before
impact, (b) after impact and (c) processed image. The bottom row refers to a control
sample: (d) central area of the specimen before impact, (e) after impact and (f)
processed image.
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Figure 5: Micrographs of tufted samples showing the longitudinal section of (a) glass
fibre thread and (b) carbon fibre thread tufts and the cross section of a single tuft of (c) a
glass fibre and (d) a carbon fibre.
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Figure 7: Resin pockets and impregnations defects in a glass thread tufted composite
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Movie
Movie 1: KSL KL150 tufting head installed on a Kawasaki FS 20N robot arm in
operation

(The movie file will be sent to the editor separately.)
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Tables
Table 1: Attributes of the commercial tufting threads used

Glass fibre thread Carbon fibre thread
Material EC 9 68x3 S260 T8G

Saint Gobain® Vetrotex®
Tenax®

HT Sewing Yarn
Specific weight 204g/km 137g/km
Filament count 204 (3x68) 2000 (2x1000)

Filament diameter 9μm 7μm
Max load

(unimpregnated)
93N 139N
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Table 2: Impact and Compression after Impact behaviour of control, glass thread and
carbon thread tufted specimens

Maximum load during impact CAI strength
N Coefficient of

variation MPa Coefficient of
variation

Control 2710 1.9% 162 3.0%
GF tufted 3371 1.4% 203 5.2%
CF tufted 3455 5.5% 205 2.8%


