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ABSTRACT

The carbon emissions trading market has created a need for standard methods for the

determination of biogenic content (χB) in solid recovered fuels (SRF). We compare the

manual sorting (MSM) and selective dissolution methods (SDM), as amended by recent

research, for a range of process streams from a mechanical-biological treatment (MBT) plant.

The two methods provide statistically different biogenic content values, as expressed on a dry

mass basis, uncorrected for ash content. However, they correlate well (r²>0.9) and the

relative difference between them was <5% for χB between 21% w/wd and 72% w/wd. This

range includes the average SRF biogenic content of ca 68% w/wd. Methodological

improvements are discussed in light of recent studies. The repeatability of the SDM is

characterised by relative standard deviations on triplicates of <2.5% for the studied

population.
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1. Introduction

Mechanical biological treatment (MBT) is widely adopted in mainland Europe for

treating residual municipal solid waste (MSW), (Juniper, 2005; Velis et al., in press) under

EU Landfill Directive (Council of the European Union, 1999) requirements. MBT that

employs biodrying is also used to produce solid recovered fuel (SRF) (Velis et al., 2009), a

renewable alternative to fossil fuel, incorporating a high fraction of biogenic matter,

rendering SRF carbon-neutral, in part. Biogenic matter, denoted χB, is defined as material

“produced in natural processes by living organisms but not fossilised, or derived from fossil

resources” (European Committee for Standardisation, 2006a). An accurate, quality assured,

measurement of χB in waste streams processed as SRF is important because the thermal

recovery of biogenic matter is renewable and carbon-neutral, qualifying for subsidies such as:

(i) renewable energy certificates (ROCs) in the UK, and (ii) emissions trading schemes (e.g.,

the European emission trading scheme EU-ETS) respectively (Garg et al., 2007; Ofgem,

2009; Velis et al., in press).

The requirements of these policy instruments have prompted a growing interest in

analytical methods for the determination of biogenic content (Fellner et al., 2007; Fellner and

Rechberger, 2009; Mohn et al., 2008; Staber et al., 2008) in wastes. The research efforts of

the European Committee for Standardisation (CEN) have progressed through the stages of: (i)

pre-normative research on standard development (Cuperus and van Dijk, 2002; Cuperus et

al., 2005); (ii) the issue of a ‘draft standard for development’ (DD) (European Committee for

Standardisation, 2006a; 2007); and (iii) validation of the DD methods through the

QUOVADIS initiative (Gawlik et al., 2007; QUOVADIS, 2007). In the US, a simplistic

methodology using waste composition data has been proposed (Energy Information

Administration, 2007), and a 14C method has been recently standardised (ASTM, 2008).
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Draft European standard CEN/TS 15440:2006 on the determination of χB in SRF

(European Committee for Standardisation, 2006a) offers analytical methods for the

characterisation of waste tradable attributes. Many methods were considered for the

determination of χB in SRF (Cuperus and van Dijk, 2002). The manual sorting method

(MSM) and the selective dissolution method (SDM) were selected for development. The

selective dissolution method relies on a feature of most biogenic materials: they dissolve and

are oxidised more readily in acid mixtures; whereas non-biogenic matter remains intact and

can be recovered gravimetrically. By contrast, the manual sorting method relies on the

accurate sorting of components of biogenic origin from the waste stream. The method

estimates χB by assigning a fixed (deemed) value in each of 14 material categories (χB,i, i:

category index) categories considering them ‘homogenous’ from a χB perspective (European

Committee for Standardisation, 2006a).

Unsurprisingly, despite both methods offering surrogate estimates for χB, the SDM is

considered the most accurate (Cuperus and van Dijk, 2002; Cuperus et al., 2005; Staber et al.,

2008) and is used in several SRF production plants and/or prior to thermal recovery. Though

simple, the MSM is time consuming (QUOVADIS, 2007) and labour-intensive (Fellner et al.,

2007), and it embodies high levels of method uncertainty (Table 1). Nevertheless, manual

sorting data could prove valuable to the optimisation of SRF-producing MBT plants, and may

be a cost-effective means of allocating the biogenic content of certain SRF end-uses, as

required for regulatory oversight of carbon trading mechanisms (Ofgem, 2009).

<insert Table 1. A qualitative comparison of SDM and MSM methods>

The QUOVADIS initiative undertook inter-laboratory comparisons of the MSM and SDM

methods and delivered important suggestions for modifying the draft standard (QUOVADIS,
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2007). Similar limited results were reported by Flamme (2006) – it is unclear if it is the same

or different dataset. However, there remains scope for clarification on key aspects of the

SDM and MSM, hence this research. For instance, the fines category introduces high levels

of uncertainty into the estimation of χB by the MSM because of its variable composition, and

substantial mass contribution to samples. This is evident for SRF, as most end-use

specifications demand its size reduction at <30-40 mm (Velis et al., in press). This was

recognised by QUOVADIS through its proposed amendment of the fixed value of χB fines from

0% w/wd in the draft standard (European Committee for Standardisation, 2006a) to 50% w/wd

(QUOVADIS, 2007). So far, no detailed scientifically robust data have been reported on

how the SDM and MSM correlate. Could a more detailed sorting into material categories

secure a better correlation? And how does the choice for estimating or ‘deeming’ the value

of χB fines impact on this correlation?

Our study set out to: (i) critically examine the assumed, but non-quantified, correlation

between these two methods; (ii) in doing so, evaluate the required degree of detail in the

sorting categories for the MSM; (iii) examine the effect of assigning a fixed value of χB for

the fines fraction, as opposed to its direct measurement by the SDM; and (iv) investigate the

application of these methods beyond SRF to a wider range of waste fractions encountered

within MBT plants. Methodological complexities pertaining to the computation formulas

proposed by CEN for the determination of biogenic content as ‘pure biomass’ are elaborated

upon.

2. Materials and methods

An overview of the methodological steps followed in this research, intended to help

readers conceptualise the sequence of steps and equipment used, is presented in Fig 1.

<insert Fig. 1. Overview of methodological steps>
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2.1 Sampling

Samples were collected from an SRF- producing MBT plant processing residual MSW.

From the process flowsheet (Fig. 2), fifteen sampling points (SP) were identified, including

inputs to the mechanical processing of MSW, all outputs, and intermediate process streams

(Fig. 2). Sampling followed the theory of sampling (ToS) for heterogeneous solids (Gy,

2004; Petersen et al., 2005) and the CEN requirements for SRF (European Committee for

Standardisation, 2006b). Three increments (INC) (i.e., three series of fifteen process stream

samples) were used. The first two increments (INC1 and INC2) were fully analysed; with an

additional increment (INCad) used to quantify the moisture content (M) by material category,

and the biogenic content of the fines fraction (χB_fines) at each process stream. These

sampling choices enabled coverage for a range of MBT-related materials, including all pre-

processing stages of the SRF output.

Samples were stored in plastic bags in a refrigerated container (2±2°C) until the entire on-

site sampling effort was completed (up to 28 d). Because the readily biodegradable material

had already decomposed during in the biodrying stage, the moisture lowered below moisture

stress biodegradation inhibition level, and the sufficiently low storage temperature, no change

in the biogenic content of the samples is anticipated to have occurred during this storage

stage. The initial sample size (300–15,000 g) was defined by reference to the estimated

heterogeneity of each process stream. Any differences in the sample mass between INCs for

each SP, were corrected for by producing sub-samples using a riffle divider Retsch RT 75

(Leeds, UK).

<insert Fig. 2. Waste treatment plant process and sampling points>
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2.2 Manual sorting

For the manual sorting method, samples were sieved for the separation of fines and

then sorted into categories to obtain an ‘as-received’ (denoted ar) mass (g) at four decimal

place precision. Fines passed through a perforated surface of a sorting table (ø 10 mm). The

remaining material was manually separated into 24 identifiable categories (Table 2). This

represented a detailed categorisation of each process stream, expanding beyond the 14

categories stipulated by CEN for χB by the MSM (European Committee for Standardisation,

2006a). I t also supported a concurrent analysis of MBT process performance and materials

flow through the plant.

<insert Table 2. Categories into which process streams were sorted manually using the
MSM>

Samples from different process streams (SPs) produced varying recoveries of material

by category (reflecting their stage of processing) and posed different sorting challenges.

Large items upstream of the secondary shredder (SP1, 16) contained fixed sub-components of

different categories: e.g., plastic and metal and hazardous items, such as printed circuit board.

These items were separated from one another manually or with scissors, as far as was

possible. Conversely, waste fragments in process streams downstream of the secondary

shredder are finely shredded to <40 mm (SP11-13, 15) and pose their own identification

difficulties; e.g., for fragments stemming from shoes, sanitary products, and composite

packaging. Identifiable screws and nails in the fines were reassigned to the metal categories.

For each sample, the 16 shreddable waste component categories were remixed into a

reassembled fraction (Table 2) whilst 8 non-shreddable categories (Table 2) were discarded,

where the shredders could not tolerate substantial quantities of aggregates and metals. Where

fines were constituted mainly of aggregates (SP3, 7, 15; Fig. 2), they were excluded from the
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reassembled fraction as non-shreddable materials. Discarded fractions were accounted for in

the calculations of both MSM and SDM.

To investigate the influence of the level of detail in manual sorting and the approach

to the estimation of the biogenic content of the fines <10 mm (χB_fines), the χB was calculated

for three different methodological variations (groupings, G) of the waste component

categories and/or χB_fines using the INC1 and INC2 samples: (G1) the 24 detailed categories

(Table 2), with χB_fines being inferred from the extra increment INCad by measurement,

applying the selective dissolution method (see section 2.5); (G2) the manual sorting results

re-grouped in the 14 DD CEN/TS 15442:2006 categories (European Committee for

Standardisation, 2006a), following specific re-grouping choices denoted in Table 3, and with

deemed χB of each category as proposed to be amended by QUOVADIS (QUOVADIS, 2007)

apart from the χB_fines, being inferred from the extra increment by SDM as in G1; and (G3) the

same 14 re-grouped categories as in G2, with χB_fines being prescribed and fixed at 50% w/wd

(QUOVADIS value).

<insert Table 3. Grouped categories with commentary on potential impact on final results>

Biogenic content χB on a dry mass basis was calculated using:

 


 



i
i

i
Bii

B massdry

massdry 
 Eq.1

The MSM was performed once on each of INC1 and INC2 in this study, allowing no

estimation of repeatability. Manual sorting is extraordinarily lengthy and replication not

practicable given the volumes and types of material considered.

Moisture (MT) was measured in a two stages: bulk drying (24h, 40°C) (Mb in % w/war);

residual drying (Mr in % w/wb) (24h, 105°C), (European Committee for Standardisation,
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2006d). Total moisture was computed according the relevant CEN standard for SRF

(European Committee for Standardisation, 2006c). The moisture of the individual waste

component categories was approximated. Ash content was measured in accordance with the

DD CEN/TS 15403:2006 for SRF samples. These are further detailed in Supplementary

Material.

2.3 Final general analysis sample preparation for the SDM

For the measurement of χB using the selective dissolution method, the reassembled

fractions were sub-sampled in accord with the theory of sampling (Gerlach and Nocerino,

2004; Nocerino et al., 2005). Samples from the process streams SP1, 16 were shredded to

<40 mm passing them twice through a slow rotation rotary shear Rodan Engineering CS 3000

(Stoke-on-Trent, UK). All samples were then bulk dried (40°C, 24 h) in advance of dry

processing through a slow rotation cutting mill (RETSCH SM 2000, Leeds, UK) to <4 mm.

Where necessary, sample mass was homogenised and further reduced by sub-sampling

through an A/S Rationel Kornservice riffle divider (5 L, hinged container type 2, 18 splits;

Esbjerg, Denmark), before shredding to <1 mm in a RETSCH ultra-centrifugal mill ZM200

(12,000 rpm). These final general analysis samples (GAS) were then sub-sampled to 50-100

g, and stored in air-tight bags at ambient temperature, in darkness. Grinding to a size of <1

mm was thought as sufficient for the SDM. The QUOVADIS study indicates no significant

difference for χB between samples prepared at <1 and <0.5 mm (QUOVADIS, 2007).

2.4 Selective dissolution (SDM)

The SDM was performed in triplicate following the DD CEN/TS 15442:2006

(European Committee for Standardisation, 2006a). Attempted improvements, which

constitute departures from the standard, and specific choices are explained.
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For each replicate, an aliquot of 5 g from the GAS was weighed to 4 decimal places

into Erlenmeyer flasks. In a fume cupboard, 150 mL of 84% v/v H2SO4 (prepared from >95%

v/v, analytical grade; Fisher Scientific, Loughborough, UK) was added using a bottle

dispenser. The slightly higher concentration than advised by the standard (78 % w/w H2SO4)

has the advantage of being easily prepared from commercially available concentrations.

However, a properly designed statistical experiment is necessary to establish that this

departure from the standard method as proposed by CEN leads to fully equivalent results. As

a gross check, visual observation of the solid residue revealed no differences between these

two versions.

Flasks were gently stirred to impregnate the powder, and the mixture left to react for 16

h under slight continuous agitation achieved using an IKA KS60 mechanical orbital shaker

(50 rpm; Staufen, Germany). Hydrogen peroxide (35% v/v analytical grade, Acros Organics,

Geel, Belgium) was added in three 10 mL aliquots, separated by ca 10 min, whilst

submerging flasks in a 3 cm deep cooling bath to control the reaction and avoid the

deposition of material on the flasks walls. Mixtures were digested for 5 h, before 300 mL

deionised water was added. The final mixture was filtered through a pre-weighed dried

Whatman GF/B ø 90 mm glass microfibre filter (Maidstone, UK) into a Büchner funnel and

rinsed with 400 mL of deionised water to a final pH of ≥3.0. Filters were dried at 105°C for

24 h, weighed, and kept in air-tight plastic containers at ambient temperature.

2.5 The reporting basis for χB and ash content

Biogenic content χB determined by the selective dissolution method can be

expressed in a variety of ways, contingent on the specific uses and data demands. Draft

standard CEN/TS 15442:2006 introduces the concept of ‘pure biomass.’ The proposed by

CEN computation formula includes a series of corrections pertaining to the ash content. This

is necessary because during the selective dissolution a non-negligible part of the ash of the
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sample dissolves. This ‘pure biomass’ is referred to as being biomass on a dry basis

(European Committee for Standardisation, 2006a). The relevant CEN/TS formula is shown

in Eq. 2, adapted for analysis performed only on the shreddable part of each sample.
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We have shown elsewhere that around half of the ash content present in SRF of this

plant is dissolving during the selective dissolution (Velis, 2009), making necessary to account

for this for an unbiased determination of the biogenic content. This dissolved ash may

originate from any of the inert, biogenic and non-biogenic parts of the sample, not enabling a

straightforward correction. The formula proposed by CEN, attempts to overcome these

complexities, resulting in removing all the ash content present as part of biogenic materials

from the ‘pure biomass.’ Hence, the CEN termed pure biomass on a dry basis is effectively

biomass without any of its ash. Thus, it constitutes an underestimation of the biogenic

content on a dry mass basis.

On one hand, expressing the biogenic content on a dry mass basis without any ash

content (χB,pure,d) can be potentially useful, if the energy content present in a biogenic material

is to be computed in a dry-ash-free basis because the ash portion of χB is not combustible.

Similarly, some of the ash content present in materials generally considered as biogenic may

be of inert origin: characteristic case is chalk used as the filler material in paper-making

(which completely dissolved during the selective dissolution procedure) (Cuperus and van

Dijk, 2002). On the other hand, it may well constitute a natural part of a biogenic material

and where suitable it has to be reported as such. The practical limitations of the selective

dissolution computation are not able to justify its reporting only in pure form and solutions

have to be investigated
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Here, a comparison between the selective dissolution and the manual sorting methods are

made for the uncorrected for ash content values (χB,with ash,d), as explained below. Despite

that, pure biomass (χB,pure,d) results as measured with the proposed CEN formula are also

reported to enable future comparisons of our data with those from other researchers.

When reporting on a dry mass basis alone, it is suitable to report a mass percent

value, uncorrected for ash, on dry basis: χB,with ash,d (w/wd). Note that the Eq. 1 for the

determination of biogenic content by the manual sorting method returns the uncorrected for

ash biomass (χB,ash-free,d) rather than the pure biomass (χB,pure,d). Because the ash content of

each category sorted using the manual sorting method is unknown and not determined (this

would involve substantive and prolonged additional effort, and destruction of the samples

needed for the SDM), the DD CEN/TS 15442:2006 suggests a correction termed ‘sorting

precision’. We instead introduce the term ‘χB,with ash,d by SDM’ which allows direct

comparison with the uncorrected for ‘sorting precision’ χB MSM data.

The χB,with ash,d by SDM can be either an underestimation or overestimation of the

actual biogenic content percentage in a sample, depending on the relative ratios of the ash in

both the initial sample and the dried residues. Note that both dissolved and undissolved ash

fractions (i.e., of biogenic, or non-biogenic, or inert sources) cancel in the χB,d formula,

limiting any bias introduced. The Eq. 3 corrects for the mass fraction of the discarded, non-

shreddable components:
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2.6 Statistical analysis

Data were analysed using Statistica v8.0© (StatSoft, 2008). Being bulk characteristics

and reasonably homogeneous within each sample, moisture, ash and χB were assumed to

follow a normal distribution for each sample. For selective dissolution data, the uncertainty



12

is expressed as a combined extended uncertainty (Uc) for each data point (Ellison et al.,

2000), using a coverage factor of 1.96. Despite the limited degrees of freedom available, this

coverage factor is thought as conservative enough to provide 95% confidence intervals

around the mean values. Uncertainty from the duplicate determinations of moisture and ash

content and the triplicate experimental χB values for initial sample mass and dry residue was

propagated into the Uc.

To assess the correlation between the MSM and SDM estimates of the uncorrected for

ash biogenic content (χB,with ash,d), a geometric mean regression (GMR) was selected,

reflecting the fact that both variables have random measurement errors (Leng et al., 2007).

Standard errors for the GMR parameters were approximated using standard errors of the least

square linear regression parameters (Sokal and Rolf, 1995), and tested using the t-statistic at

95% confidence. Ideally, a correlation of the two methods would involve at least triplicate

results for both, with measurements being performed on exactly the same number of samples.

Due to practical limitations, sorting was performed once for each sample. Obtained values

should be accepted as such, although no replicates are available to spot spurious errors or

quantify the MSM repeatability. Furthermore, sorting needs to be performed on large

samples (300-15,000 g), while dissolution is carried out on aliquots from the GAS (5 g).

Extrapolating the value of the biogenic content (χB,ash-free,d) of the fines from the

additional increment (INCad χB_fines) back to the samples on which the correlation is

estimated upon (INC1 and INC2 samples), as done in the G1 and G2 methodological

versions, assumes limited between-increment variation. Although the bias introduced by this

is not quantifiable, we speculate the INCad χB_fines values could be closer to the true INC1 and

2 values, than the fixed value of 50% w/wd. When we perform the comparison of the SDM

χB,ash-free,d with the MSM χB,ash-free,d and use the INCad χB_fines values as part of the MSM

determination (cases G1 and G2 above), we equalise the influence of the fines category;
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hence any difference should be allocated to the grouping of the rest of the materials into

categories. This is valid to the extent to which an approximation of the INC1 and 2 χB_fines by

the INCad χB_fines is accurate.

Two contributions to the random variation can be identified here: sub-sampling

between MSM and SDM samples, which affects representativeness of SDM test-samples; and

picking of three test-samples from the small, though slightly heterogeneous GAS, which

affects the measured SDM repeatability by introducing between-replicate differences. To

keep these random sources of variability as low as possible, precautions were taken: (i) sub-

sampling followed the theory of sampling (see Section 2.2 on manual sorting) to ensure the

GAS is representative of the initially sorted sample; and (ii) the GAS, where comprising two

discrete sub-fractions which could be described as a fluffy, cotton-like material and a

granular, heavy material, was manually homogenised before picking the three aliquots for the

SDM. A nested experiment for the analysis of the components of variability (data not shown

here) of the SDM showed that the entire sub-sampling procedure introduced only very small

variability.

3 Results and discussion

Results are presented and discussed in three parts. Firstly, the results of the three manual

sorting method variations are presented, along with certain intermediate results necessary,

such as those for the biogenic content of the fines <10 mm. Then, the results of the selective

dissolution method are discussed. Finally, the correlation between these datasets is covered.

3.1 Manual sorting method

Higher values for the biogenic content of the fines <10 mm part of a sample (χB_fines,d)

might have been anticipated than for the entire sample. Indirect verification comes from the

χB_fines,d values in Table 4 and the χB,pure,d in Fig. 3 (discussed in detail in Section 3.2). Whilst
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a direct comparison between them is not feasible because of the different reporting base, it is

noted that for all process streams with a significant proportion of fines category (i.e.,

excluding SP1, 16), the χB_fines,d values are considerably higher than the biogenic content of

the overall sample, despite that the former (χB_fines,d) is ‘with ash’ and the latter ‘pure’

(χB,pure,d).

<Insert Table 4. Biogenic content of fines>

<Insert Fig. 3. Selective dissolution experimental results (value ± Uc (= 1.96* SE))>

The manual sorting method data obtained through the 3 different methodological

variations (G1,2,3) suggest that categorisation and use of deemed vs. measured values for the

biogenic content of the fines (χB_fines) has a noticeable impact on estimating the biogenic

content of the entire sample (χB), though not consistently across all the sampled process

streams (SPs) (Fig. 4). One might expect that detailed categorisation using 24 categories

(G1) would give the most accurate results, whilst the grouped categorisation (G3) with fixed

χB_fines would infer the most bias. Because all these methods constitute empirical

approximations, this cannot be directly tested and verified. However, this assertion is

indirectly supported by the results of the correlation study (Section 3.3).

<insert Fig. 4. Effect of categorisation on estimations of biogenic content using the MSM>

Re-grouping categories as in the 14 CEN ones (G2 and G3), results in a similar or higher

χB than that estimated from the analysis of 24 categories (G1), for most of the process

streams, except for SRF-type ones (Fig. 4). This reflects the between-process stream

variability. Using a fixed value for χB_fines, as in G3, influences χB by virtue of (i) the fines
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mass proportion in a process stream, which is considerable (namely >20% w/war and >40%

w/war for 61% and 36% respectively of the studied population); and (ii) the difference

between the proposed by QVOVADIS deemed value of 50% w/wd and the true value of

χB_fines. The determination of the biogenic content of the fines <10 mm component category

of samples (χB_fines) by the selective dissolution method shows highly variable values (Table

4). This justifies use of SDM to estimate it at each SP, especially for this study. This

between-process stream variability can be partly accounted for by the progressive separation

of increasingly homogeneous fractions within the MBT plant, achieved by concentrating

different types of materials. However, a high variability is also evident for the χB_fines of the

process streams with composition similar to SRF (SP13): SP 10, 11, 12.

Furthermore, a high variability can be anticipated for the composition of the fines of

SRF, produced from different source materials (such as residual MSW input to MBT plants)

and through varying processing concepts to differentiated end-use specifications.

Additionally, the weight fraction of the fines would be significant for most commercially

specified types of SRF having undergone size reduction at <30-40 mm (Velis et al., in press):

a typical mass fraction of fines in the SRF can be 40% w/war (Velis, 2009). These results

imply that deeming of the biogenic content of the SRF fines might lead to considerable bias.

As a result, investigating whether the determination of χB_fines,d by the selective dissolution

method can prove useful in enhancing the determination of the χB,d by the MSM, is fully

justified.

Generally, the G1 and G2 waste component grouping versions, not using a fixed value

for the χB_fines, are in better agreement compared to the agreement of each of G1 and G2 with

the G3. This suggests that the impact of deeming or not the χB_fines is higher than the impact

of collapsing the 24 categories into the 14 suggested by CEN. For MBT process streams very

close in composition to the SRF (SP11, 12), the use of a fixed χB_fines = 50% w/wd results in an
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underestimation of the biogenic content in all 4 cases examined, compared with the values

measured by the selective dissolution method (ca 70% w/wd, Table 4). However, this cannot

be generalised to every SRF production line.

The most heterogeneous MBT stream amongst those sampled and those with the lowest

percentage of fines are SP1, 8 and 16; their low homogeneity is mainly due to their large

particle size and low gravimetric recovery. Here, the high between-increment variability

indicates that any benefits from the extra effort to perform a more detailed sorting (G1) or to

identify the χB_fines separately by the selective dissolution method (G1 or G2) may not be

justified unless an SRF production line is sufficiently stable in time.

For the cases where additional resources can be justified, an improved classification is

proposed (Table 5), retaining those categories required to optimise sorting consistency,

accuracy and repeatability. Here: (i) composites, fines < 10 mm and fluff are generic

heterogeneous categories, in which material composition, χB and proportion of fines <10 mm

may vary according to the SRF production input and flowsheet; (ii) their χB value could be

estimated using the selective dissolution method (e.g., on triplicates), where effort is justified

or suitably deemed per SRF case (clear guidance and rules should apply); (iii) fragments of

shoes and sanitary products (nappies) are difficult to indentify in finely shredded SRF: hence,

they would be identified possibly as composites; (iv) batteries typically do not reach the SRF

stream, hence there is no need for them to appear in the standard classification; and (v) the

household hazardous waste category comprises almost 100% non-biogenic materials and can

be allocated to plastics or metals.

Some categories have been merged without influencing the results of the method,

because they are attributed the same coefficient (e.g., wood and biological waste). If the

method is applied to process streams other than SRF (especially input to the processing
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section and large rejects), the soft plastic category should be separated and its χB recalculated,

because of the potential for substantial food contamination. However, it is expected that

these simplifications would only slightly reduce the sorting time, because fragment

recognition takes more time than sorting into categories.

<Insert Table 5. Proposed classification for standard optimisation>

3.2 Selective dissolution method

Fig. 3 presents the (arithmetic) mean (n=3 for each sample) pure biogenic content values

(χB,pure,d) determined by the SDM for various process streams (SPs) within the mechanical

processing section of the MBT plant, for the first 2 increments (INC1,2). Notably these

results are not necessary for the evaluation of the correlation between the manual sorting

method variations and the selective dissolution method but are presented here for the future

benefit of researchers who will produce results in full agreement with the DD CEN/TS

15442:2006.

These results are consistent with those anticipated for the plant flowsheet configuration

resulting in an enrichment of the biogenic content of the SRF in comparison to the biodried

input (SP1). However, this is by-and-large due to the removal of the mineralised waste

components (‘inert’ fraction) the- relevant issues are detailed elsewhere (Velis, 2009).

The between-process stream-variability is high, reflecting the differences in the

composition at each process stream which can be visualised in the texture of the final general

analysis samples, and the aspect of filtrates and residues. The within-process stream and

between-increment (INC1 and INC2) variability is considerable, but lower than the between-

process stream. The combined extended uncertainty (Uc) for each data point varies between

0.02% w/wd and 1.6% w/wd, with an average of 0.5% w/wd.
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Regarding the reputability of the selective dissolution method, the relative standard

deviation (RSD) varied between 0.1% and 2.4%, with a mean of 0.9%. Ninety-three percent

of the samples studied show an RSD <1.5%, which is comparable to validated standard

methods. Empirical observations show that parameters influencing method repeatability are:

reaction time; reaction intensity, resulting in the degree of foaming which may lead to

undigested sample depositions on the walls of the flasks; stability of drying; the ashing

conditions (in all cases full ashing was evident), and the consistency of test-sample picking,

especially for heterogeneous GAS, such as the partly fluffy – partly granular ones.

Because the method is destructive, measurements cannot be repeated on the same test-

samples, and therefore the within-final general analysis sample variability, caused by sample

heterogeneity, cannot be unravelled from analytical variability. For SRF samples, the

combined extended uncertainty (Uc) varied from 0.36% w/wd to 0.89% w/wd while standard

deviation on triplicates varied from 0.06% w/wd to 0.79% w/wd. The method appears to have a

remarkably good repeatability when used for SRF, confirming the QUOVADIS findings

(standard deviation of triplicates around 1.2% w/wd) (QUOVADIS, 2007).

3.3 Correlation between the MSM and the SDM

Correlations are calculated for the biogenic content, on a dry mass basis and uncorrected

for ash content, between each of the three sets of manual sorting methodological variations

(χB, with ash,d MSM results, by G1,2,3) and the single set of data obtained from the selective

dissolution method (χB, with ash,d SMS results) (Table 6, Fig. 5).

<Insert Table 6. Geometric mean regressions parameter>
<Insert Fig. 5. MSM and SDM correlations>

Correlations are commonly used for method validation, using a reference method, or

reference samples. Currently, no reference method exists for SRF biogenic content. 14C
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method can potentially measure more accurately the biogenic content, but it is not yet fully

mature despite significant research (European Committee for Standardisation, 2007; Fellner

and Rechberger, 2009; Staber et al., 2008). Here, the empirical surrogate of selective

dissolution method is used to estimate the MSM precision because it is recognised by the DD

CEN/TS 15442:2006 (European Committee for Standardisation, 2006a) as the “main […]

method” (European Committee for Standardisation, 2006a). In this study, manual sorting

method results are assessed for their similarity with selective dissolution method results. But

no statement can be made regarding accuracy, as the true value of the measured biogenic

content is unknown for all samples, especially in the absence of readily available and matrix-

matched certified reference materials.

bSDMdwithashBMSMdwithashB  ,,,,,, a  Eq. 4

Eq. 4 provides the model fitted using geometric mean regression. For all regressions,

a ≠ 1 and b ≠ 0 (at level of significance α = 0.05). Our data show that the variations of the

manual sorting method and the selective dissolution method provide statistically significantly

different results (Table 6). However, depending on accuracy required for practical

applications, they can be regarded as providing similar results, for a range of biogenic content

values (χB,with ash,d). Based on detailed sorting (G1) regression model, the relative difference

between MSM and SDM results is <5% for χB,with ash,d ranging from 21% w/wd to 72% w/wd.

Considering the 95% confidence intervals, the regression parameters are not considerably

different from one another for the three models based upon for the 3 manual storing method

variations (G1,2,3) (Table 6).

Results from the two manual sorting approaches using variable χB_fines as estimated by

the selective dissolution method (G1, 2) are closer to the ones of exclusively selective

dissolution method. No practical difference can be established between the detailed (G1) and

grouped (G2) approaches. Both are high quality regressions, experimental values being
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tightly distributed around the linear models (coefficient of determination: r²>0.96, small

confidence intervals for both a and b).

Although no statistical difference can be asserted on the 95% confidence basis,

applying a fixed, deemed value to the biogenic content of fines (χB_fines) reduces the quality of

the regression (r²(G3)< r2 (G1/2)) and increases the gap between the regression and the ideal

equation χB,with ash,d,MSM = χB,with ash,d,SDM (a = 1, b = 0). This means the improved method

suggested in this study (based on G1 manual sorting methodological variation) provides

results marginally closer to those of the selective dissolution method than those achieved by

the manual sorting method as defined by the DD CEN/TS 15442:2006 (European Committee

for Standardisation, 2006a) and incorporating the QUOVADIS suggestions (G3 case).

No particular trend was found showing a link between sample composition, texture

and aspect, and relative results of the two methods. Hence, it seems feasible to use suitable

manual sorting data to estimate biogenic content on a dry mass basis uncorrected for ash

content for a sample, for a wide range of MBT-related material flows. However, if only the

SRF and similar types of samples were considered (generally χB,d,SDM between 50-70% w/wd),

the correlation between the methods would not have been as evident, as it can be inferred

from visual inspection of Fig. 5. Hence, further investigation is necessary to establish that the

manual sorting method can sufficiently differentiate and accurately match the biogenic

content of SRF-like materials (i.e., in the range of 50-70% w/wd).

The manual sorting method variations show a tendency to return lower results than the

selective dissolution method for SRF-types of samples (Fig. 5). This is different to both the

QUOVADIS conclusions (QUOVADIS, 2007), but all studies were limited in their number

of samples and classification categories. It is not fully clear how the QUOVADIS and the

German inter-laboratory studies have compared the two methods, especially regarding the

reporting basis of the results. In addition, this discrepancy may be indicative of, and
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attributed to, the variability in sorting practices: whilst sorting for biogenic content

determination is relatively straightforward (albeit lengthy), there is always the possibility for

differentiated interpretations and applications by research groups and individual sorters.

4 Conclusions and recommendations

(1) The manual sorting method is long and tedious, while the selective dissolution

method necessitates laboratory staff and equipment. In practice, the method

selection should be based on the objective of the measurement and how often it

needs to be carried out.

(2) Further research is necessary to enable the measurement of the biogenic content of

waste-derived product such as SRF, accurately accounting for the part of its ash

that is genuinely of biogenic origin, overcoming the limitations of the ‘pure’

biomass or ‘uncorrected for ash content’ methodological approaches.

(3) The manual sorting method, as defined by the draft standard amended by the

QUOVADIS suggestions, introduces uncertainty due to the grouping of some

heterogeneous categories and the use of a fixed deemed coefficient for the

biogenic content of the fines <10 mm (χB_fines: 50% w/wd), despite their

unpredictable content. An optimised categorisation has been proposed here,

keeping the number of categories as low as possible and strategically chosen to

allow an attribution of biogenic content coefficients as subtly and precisely as

possible. This is expected to slightly reduce sorting time and necessary skills,

while enhancing result quality and accuracy.

(4) The estimation of the biomass content of the fines <10 mm fraction by the

selective dissolution method for use within the computations of the manual sorting

method can further improve the ability of the method to simulate of the biogenic
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content (on a dry mass basis uncorrected for ash) as measured by the selective

dissolution method DM; the necessary additional effort and cost could be

practically meaningful if the long-term variability of the examined material stream

is low enough.

(5) The SDM is considered as the most accurate method, repeatability and result

uncertainty seem satisfactory especially for SRF. This high repeatability can be

partly assigned to a careful implementation of the standard, by mitigating potential

sources of variability as far as practicable, especially regarding sample

preparation. No conclusion could be drawn regarding methods accuracy; results

from round-robin tests carried on certified reference SRF available both as large

fragments and final general analysis samples can assist to appraise repeatability,

reproducibility and accuracy of both methods. Despite the inherent

methodological difficulties and a series on inevitable assumption and

approximations, the selective dissolution method and manual sorting method

correlate remarkably well (0.89<r²<0.96) for the range of materials studied, but

provide statistically different results for biogenic content, on a dry mass basis,

uncorrected for ash (χB,with ash,d) (at the level of significance α = 0.05). However,

for SRF-type of samples a correlation able to sufficiently differentiate within the

encountered range of values is not implied, suggesting that closer examination for

SRF-only materials is necessary.

(6) The manual sorting method returns lower results than the selective dissolution

method for SRF-types of samples, which contradicts previous evidence and seeks

further investigation. Although intended for use on SRF, the two methods seem to

perform adequately for very different waste streams. It would be of interest for

MBT process monitoring purpose to include in the standard a section covering the
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application of the methods to various MBT streams, including practical

adjustments and expected accuracy. This result also enables to estimate the

biogenic content of the SRF and rest outputs, from the plant processing input,

assuming a known composition of section input and sufficient knowledge of

relevant transfer coefficients for processing of waste components.
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Nomenclature

Symbol Explanation Units
Uc combined extended uncertainty
a slope of regression curve
b intercept of regression curve
m mass
r2 coefficient of determination
α significance level
χB biogenic content by mass % w/wd

A ash content % w/wd

M moisture content % w/war

INC Increment
SP Sampling point
G Grouping of waste component

categories – manual sorting
methodology variation

Subscripts
INCx x: 1,2,ad
SPx x: 1-16
Gx x: 1,2,3
d dry basis
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i index for sorting categories
j index for SPs
ar as received (i.e. wet) basis
fines of the fine fraction (<10 mm)
T total
r residual
b bulk
test sample of the aliquot of the GAS analysed
dry residue of the dry undissolved residue by SDM
full sample of the entire sample sorted for the MSM
reassembled
fraction

of the shreddable fraction of the full
sample, further processed to the GAS

residue and filter of both the residue deposited on the
filter by the SDM and the filter

ash of an ashing residue

Abbreviations

CEN European Committee for Standardisation

DD Draft for development

GAS General analysis sample

GMR Geometric mean regression

INC Increment (sample collected in a single occasion)

MBT Mechanical-biological treatment

MSM Manual sorting method

MSW Municipal solid waste

RSD Relative standard deviation

SDM Selective dissolution method

SP Sampling point

SRF Solid recovered fuel

ToS Theory of sampling
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Table 1: A qualitative comparison of SDM and MSM methods

SDM MSM

A
na

ly
tic

al
co

ns
id

er
at

io
ns

Accuracy * + –
Representativeness of test sample – + +
Analytical variability * Low High, difficult to quantify
Biogenic content expressed as Pure biomass matter (% w/wd), percent by

calorific value (% CV), percent by total carbon
(% TC)

Dry matter, uncorrected for ash (% w/wd)

Accuracy limitations Rubber, viscose, biodegradable plastics,
fatty and oily materials, leather and wool
don’t behave the way they should.
However, the error introduced by such
materials is limited, due to the small
amount they represent in SRF.

- Confusion (biodegradable plastics, fake leather, synthetic
rubber)
- Contamination (biological residues sticking to containers,
composites)
- Attribution of semi-empirical values, especially for fines
(mixture of random materials in undefined proportions)
-“lack of visual recognisability” (Fellner et al., 2007)and
limited human reliability

C
os

t Capex – – if outsourced
+ + + otherwise

+

Opex – +

O
th

er
co

ns
id

er
at

io
ns

Restrictions of use + (not applicable to SRF with high quantities of
problematic materials)

–

Sample preparation + + (sub-sampling, shredding, drying) –
Effort and duration – +
Destructive method + –
Delay in result At least 3 days Few hours
Analysis of replicates + –

(tedious and lengthy)
Health and safety risk + + + (equipments: shredder, oven; chemicals:

sulphuric acid, hydrogen peroxide,
microbiological: waste particles <1mm)

+
(bio-dried material not fully sanitised, hence
microbiological risk)

Skilled staff + –
Analysis of several samples in parallel + –
Place of analysis Laboratory In the field
Application Routine analysis Punctual control

a* Source: Cuperus and van Dijk (2002) and QUOVADIS (2007)
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Table 2: Waste component categories into which process streams were sorted manually using the manual sorting

method (MSM). All these 24 categories were used in the computation of χB in the ‘G1 grouping’.

Categories Details/main constituents χB,i (% w/wd) Fraction
Biological Non-treated wood, feathers, food 100

Reassembled
fraction

Carpet/mats 0^,a

Cartons Milk/juice packaging. Several layers
of card, film, aluminium

80*

Composites Residual plastic, cleaning wipes,
cigarette filter, polystyrene foam

0^,a

Fines ≤10 mm variable

Fluff Dust, fibres, fluffy material 30^

Hard plastic Toys, durable plastic items 0

Intermediate
plastic

HDPE bottles 0

Nappies 95^

Paper/card 100

Rubber/leather 80*

Shoes 30^

Soft plastic Plastic bags 0

Textiles Piece of clothes, wool fibres 35*

Tissues 100

Treated wood 100

Batteries 0

Discarded
fraction

Coal 0

Electric wires 0

Ferrous metal 0

Glass 0

Hazardous Chemical containers, WEEE 0

Non-ferrous metal 0

Stone/ceramic 0
* As proposed by QUOVADIS (2007)
^ Assumed in this study: values assigned according to visual inspection of the material components of each category and in line with
the results of a wider material characterisation research
a In the presence of high percentage in materials of non-fossil fuel origin (cigarette filters and other biopolymers, wool-based carpets),
these values should be increased accordingly
HDPE: High density polyethylene
WEEE: Waste electrical and electronic equipment
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Table 3: Grouped categories with commentary on potential impact on final results. These were used in the G2

and G3 waste component groupings for the determination of the χB by the manual sorting method.

Grouped
category

Grouped
χB,i

(% w/wd) Corresponds to

Detailed
χB,i

(%w/wd) Potential impact
Biological
waste 100  biological

 ¼ fluff
100
30 Overestimation

Fabric 35
 fabric
 ⅓ shoes 
 ¼ fluff

35
30
30

Overestimation, especially for
SP1, SP8, SP16, where shoes
are found

Non ferrous
metal 0

 non-ferrous metal
 electric wires
 ½ hazardous
 batteries

0
0
0
0

Null

Paper/card 100  paper/card
 ¼ fluff

100
30 Overestimation

Rigid plastic 0

 hard plastic
 ⅓ shoes
 ½ composite
 ½ hazardous

0
30
0
0

Underestimation for SP1, SP8,
SP16, where shoes are found.
Null for other SP.

Rubber/
leather 80

 rubber/leather
 ⅓ shoes

80
30

Overestimation for SP1, SP8,
SP16, where shoes are found.
Null for other SP.

Soft plastic 0  plastic films
 intermediate plastic

0
0 Null

Stone 0  stones/ceramic
 coal

0
0 Null

Tissue 100

 tissue
 nappies
 ½ composite
 ¼ fluff

100
95
0
30

Overestimation
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Table 4: Biogenic content of fines <10 mm (χB_fines,d) for the MBT plant process streams. As measured by the

selective dissolution method on triplicates of samples of an extra increment (INCad). Reported on a dry basis,

and uncorrected for ash content. These results are used in the computation of the biogenic content of the entire

samples by the manual sorting method in the methodological approaches G1 and G2 (Fig. 4).

χB,fines,d

Sampling
point

Arithmetic
mean

95%
confidence
interval*

Standard
deviation

SP1 39.8 ± 0.3 0.2
SP2 32.5 ± 0.7 0.4
SP3 29.0** - -
SP4 40.4 ± 1.0 0.5
SP5 42.4 ± 1.4 0.7
SP6 56.2 ± 3.5 1.8
SP7 29.0 ± 0.2 0.1
SP10 59.6** - -
SP11 72.0 ± 1.2 0.6
SP12 68.1 ± 1.6 0.8
SP13 50.0** - -
SP14 53.3 ± 3.2 1.7
SP15 29.0** - -
SP16 44.9 ± 2.9 1.5
* Combined extended uncertainty (Uc = 1.96 x standard error)
** Missing data, values interpolated from SPs with similar material composition
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Table 5: Proposed classification for standard optimisation

Categories Details/main constituents χB,i (% w/wd)

Aggregates Stones, ceramic, coal, glass 0

Biological and wood Non-treated and treated wood, feathers, food 100

Carpet/mats 0*

Cartons Milk/juice packaging 80

Composites Residual plastics, disposable cleaning wipes, cigarette filter,
polystyrene foam

Variable**Fines ≤10 mm

Fluff Light materials (dust, fibres, small pieces of paper, etc.)
intimately tangled and virtually impossible to separate

Metal Ferrous metal, non-ferrous metal, electric wires, WEEE, batteries 0

Paper/card 100

Plastic All kinds of plastic 0

Rubber/leather 80

Textiles Pieces of clothes, wool fibres 35

Tissues Tissues 100
* Might need to adjust if significant percentage of wool-based carpets are evidnent
** To be measured by selective dissolution, where effort is justifiable
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Table 6: Geometric mean regression parameters and coefficient of determination (r2)
Manual sorting method variation a (GMR slope) b (GMR intercept) r²GMR

G1: Detailed 24 categories,
variable χB fines by selective dissolution 0.9098 ± 0.0389 0.0293 ± 0.0174 0.9607

G2: Grouped 14 CEN categories,
variable χB fines by selective dissolution 0.9308 ± 0.0363 0.0311 ± 0.0162 0.9673

G3: Grouped 14 CEN categories,
deemed fixed χB fines = 50% w/wd (QUOVADIS) 0.8529 ± 0.0608 0.0716 ± 0.0272 0.8884

All reported 95% confidence intervals are combined extended uncertainty (Uc = 1.96 x standard error)
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Sample collection UK MBT plant process streams
Sampling points (SP)
Increments (INC): 1,2,ad

Sample preparation (Section 2.3)
 Size reduction
 Sub-sampling
 Drying

In stages, up to final general
analysis sample (GAS)

Manual sorting in 24 waste component categories
(Table 2)

Applied to INC1, 2 samples Applied to INCad samples

Fines < 10 mm for each SP

shreddable part (SHR)

Individual waste
components of each SP

Selective dissolution method
(SDM) (DD CEN/TS 15440: 2006)
Total moisture (DD CEN/TS 15414-2:2006)
Ash content (DD CEN/TS 15403:2006)

Shreddable part of SP1-16 for INC1,2 Fines <10 mm of SP1-16 for INCad

Computations 1:
Selective dissolution
method (SDM) (DD CEN/TS
15440: 2006) ‘pure
biomass’ (χB,pure,d):
For comparison with
future data fully
compatible with the draft
standard

(Results: Fig 3)

Computations 2:
Our simplified variation of
SDM: biogenic content,
uncorrected for ash, on a dry
mass basis (χB,with ash,d by
SDM) on the shreddable part
of samples – corrected for
the entire sample by using
the inerts mass fraction

Computations 3:
3 variations (G1,2,3) of biogenic content by manual
sorting method (MSM) (DD CEN/TS 15440: 2006) with
QUOVADIS suggestions, on a dry mass basis.

Input from (i) manual sorting (INC1,2); (ii) SDM of Fines
<10 mm (INCad); and (iii) moistures of individual waste
components (INCad)

G1: Categories: 24 and Fines: χB,with ash,d by SDM
G2: Categories: CEN 14 (regrouping choices: Table 3)
and Fines: χB,with ash,d by SDM
G3: Categories: CEN 14 (regrouping choices: Table 3)
and Fines: fixed 50% w/wd (QUOVADIS)

(Results: Fig 4)

Correlations
Each of MSD G1,2,3 with our version of SDM
(χB,d by SDM)

(Results: Table 6 and Fig 5)

Computations
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Fig. 1. Overview of the methodology
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Fig. 2. Mechanical-biological treatment plant flowsheet, with indication of the sampled process streams (SP:
sampling point)
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Fig. 3. Selective dissolution experimental results (arithmetic mean ± Uc (= 1.96 * SE))
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Fig. 4. Effect of categorisation on estimations of biogenic content using the MSM
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Fig. 5. Biogenic content uncorrected for ash content of MBT process streams: MSM and SDM correlations
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