Patterned crack free PZT thick films for micro electromechanical system applications

F. Dauchy, R.A.Dorey

Microsystems and Nanotechnology Centre, School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire. MK43 OAL, UK

Abstract

The fabrication and structuring of multilayer thick film piezoelectric (PZT – lead zirconate titanate) structures, using composite sol gel techniques and wet etching, will be described.

The composite sol gel technique involves producing a PZT powder/sol composite slurry, which when spun down yields films a few micrometers thick. Repeated layering, and infiltration, has been used to produce PZT films between 10 and 40µm thick. Due to the low firing temperature (<720°C) it has also been possible to produce PZT films with embedded thin (ca 100nm thick) metal electrodes.

The PZT thick films have also been structured using a wet etching technique. Examples of features and cavities with lateral dimensions in the order of 10's of micrometers are presented.

The ability to fabricate and structure thick functional films, with embedded metal electrode structures, offers the possibility to create novel micro-device structures suitable for use in micro electromechanical systems (MEMS)

Keywords: sol gel, thick film, MEMS, multilayer

1. Introduction

Ferroelectric thick films can be developed for inclusion in MEMS technology for the fabrication of transducers working in thickness mode. These devices can be made from polycrystalline ceramics. This involves two fabrication steps: preparation of the green ceramic and sintering. A PZT powder/fluid (water, oil or alcohol) slurry allows one to deposit films with thickness ranging from micrometers to millimetres via several methods, such as, tape casting (up to millimetres) 1,2, and screen printing (up to hundreds of microns).^{3,4} Unfortunately the powder route must have a high temperature sintering stage, typically above 1200°C, and also presents many technical difficulties to achieve the fabrication of uniform films tens of micrometers thick.

For piezoelectric applications wet chemical methods (sol-gel) have been used because of the very low sintering temperature, 600°C, which allows films to be integrated onto substrates such as silicon. A second advantage is the grain uniformity in terms of size distribution and composition that this technique gives, which is a key factor needed to achieve reproducibility of piezoelectric characteristics. However, a pure sol-gel technique only gives films with a maximum thickness of ca.3 μ m.⁵

The main challenge is to fabricate PZT thick films with a thickness ranging from 10 to 40 μ m and to keep the advantage of the low sintering temperature of the sol-gel method.

A mix between the two techniques presented allows these conditions to be met. A composite PZT Powder/Sol slurry used in our work can be spun to achieve different thicknesses ranging from 2 um up to 35 μ m with a sintering process at 720°C. This is a good trade off between a powder route, and a pure sol gel procedure. The thickness of 35 um for single or multi layer structures are state of the art and are suitable for several new industrial applications such as transducers for high frequency imaging using the thickness mode of excitation.

The spin coating technique was chosen for deposition, because it offers a greater flexibility in thickness, even if this range of thickness for spun PZT films have not previously been made.⁶

This paper summarises the process required to go from the sol gel through to the final shaped structures.

2. PZT sol-gel and composite slurry

2.1. PZT sol-gel 7

The general formula of the sol used was: *Pb1.1 [Nb0.02Sb0.02Mn0.02(Ti0.48Zr0.52)0.94]O3*.

Figure 1 shows the fabrication steps of the sol. The 2-methoxy-ethanol and the lead-acetate solution were mixed together and the resulting solution was refluxed under N_2 to drive the hydrolysis polymerisation. At this stage the solution was cloudy. The synthesis was completed by a long final distillation to remove the by-products. A first plateau is observed at 90°C which corresponds to the

boiling point of propanol used as a solvent to stabilize the zirconium propoxide. A second plateau is observed at 102-104°C to remove, physically, the water. The sol becomes yellow and clear. The amount of solution removed, during the final distillation, is replaced by the same amount of 2-methoxyethanol to reach a concentration of 1.1M. The sol is filtered and stabilized by the addition of ethylglycol.

2.2.Composite slurry

A sol-gel method combined with PZT powder will be useful for thick film deposition. During the sintering process atomic diffusion in the PZT powder grain occurs to minimise the surface energy which promotes crystal bonding at the interface between two adjacent particles. The added sol will increase the driving force of the system due to the presence of nanoscale particles and so lower the required sintering temperature. In addition the sol will also act like a glue binding the larger particles together and to the substrate.

With a pure sol gel route the substrate, generally a Si/SiO₂/Pt wafer, will be the "seed" inducing the crystallisation. In the case of the composite sol gel route, each microsize PZT grain will act as a site for crystallization.

The composition of the composite slurry is summarised in table 1. All of the components were mixed together under nitrogen in a 125ml flask. The slurry was then ball-mixed for 24 hours to produce a stable suspension. The slurry obtained has a density of 2.2 g.ml⁻¹.

To enhance densification of the film a small amount of sintering aid Cu₂O-PbO was added. This sintering forms a low temperature liquid phase during the sintering process, and accelerates the atomic diffusion at the grain surface⁹, further increased the density of the ceramic. The composite slurry is sintered at 720°C, following patterning.¹⁰

Table 1 Composition of the composite slurry

3. PZT Deposition

During the sintering process some Pb, from the PZT layer, diffuses into the silicon wafer substrate, to form lead silicate which is liquid at the sintering temperature. (Fig 2)

Fig 2. Holes produced at the Si/PZT interface due to diffusion of the Pb into the Si substrate during sintering.

To prevent this undesirable reaction a $ZrO₂$ diffusion barrier (table 2) was first spun on the silicon substrate.

Table 2

Composition of the ZrO₂ diffusion barrier sol

These components were mixed under nitrogen and stirred for 1 hour. The sol was spun at 3000 rpm for 30 seconds, and dried at 350°C. This stage was repeated three times. The film was then sintered at 800°C for 10 min. The final thickness is 60 nm.

Sputtered Pt bottom electrodes were then shaped with a lift off process. The photoresist S1818 was spun at 4000 rpm, dried for 90 seconds at 115°C, and partially exposed under UV light for 10 seconds, and then developed in MF319 developer.

An adhesion layer of PZT sol was spun before spinning the composite slurry in order to avoid any delamination. This step was done for all films thicker than $21 \mu m$.

PZT was deposited by fully coating the substrates with the composite suspension and then spinning at 2000 rpm for 30s. The deposited film was then dried at 200°C for 60s and pyrolysed at 450°C for 30s to remove all the organic components..

4. Infiltration steps

The composite slurry process, even when using the sintered aid, still results in a low density film after sintering. This was overcome by repeated sol infiltration to increase the green density prior to sintering. An infiltration step consists of spinning a layer of a sol, diluted in 2 methoxy-ethanol (2ME) solution, on the green ceramic (1:1 sol: 2 ME). The added sol will directly crystallise in the pore and fill them. This increase in density is shown in figure 3 and confirmed by an increase in of the relative permittivity with the number sol infiltrations. (Fig. $\tilde{4}$)

Each infiltration step was followed by drying and pyrolysis treatments, at 200°C and 450°C respectively before the next infiltration step. The next composite layer was then deposited and the process was repeated until the desired thickness was obtained.

a) 2 sol infiltrations b) 3 sol infiltrations

Fig. 3. SEM images of the surface of a PZT film showing how increased sol infiltration results in a reduction of porosity.

The sample notation use throughout this article is x [yC + zS], where:

"y" represents a number of composite layers spun, "z" represents the number of infiltrations per "yC" composite layer,

and "x" represents the number of times the unit [yC + zS] is realised to achieve the required thickness.

Fig 4: Variation in relative permittivity and dielectric loss of 4[C+xS] as a function of sol infiltration

5. Unpatterned crack free thick film

5.1 Thick film [C+4S]

The substrate, Si/SiO₂/ZrO₂/PZT sol, enabled 16 composite layers to be spun to achieve has thickness of 35 μ m. This thickness achieved is state of the art for a spin coated PZT ceramic, and not previously has been reported. The figures 5 to 7, represent the evolution of the surface with the thickness. The surface finish of films composed of 12 or more composite layers shows some cracking. The width of these cracks can be reduced to 10's of nanometers by covered the surface with a pure sol (Fig.7b). This step allows this ceramic to be used for MEMS applications as a continuous top electrode, as thin as 100nm, can be sputtered on the surface.

Fig 5. SEM micrograph of 10 μ m PZT thick film composed of 4[C+4S], cross section (a), surface (b).

Example of infiltration sol remaining at the interface between two composites layers

Fig 6. a) SEM micrograph of a 25 μ m PZT thick film composed of PZT 12 $[CHS]$. The cross section highlights the boundary between composite layers caused by the infiltration stage, b) Light microscope image of surface of this thick film showing increase in scale of cracking.

Fig 7. SEM micrograph of 35um PZT thick film composed of 16[C+4S] a) cross section, b) surface, c) surface of the same film coated with 1 layer of pure PZT sol showing reduction in crack width.

The cross section (Fig 6a) reveals that some of the 4 infiltration steps do not completely infiltrate the composite layer. Some of the infiltration sol remains on the surface of each composite layer, which marks the observable separation between the two (Fig 6). This effect is also observable during the wet etching process: Fig 14 shows a stepped pyramidal shape due to the presence of this interlayer sol.

The work presented by [Zhang, *et .al,* 2005] on pure sol, demonstrates that the interfacial sol layer is far denser than the composite ceramic. These density differences may induce a considerable amount of tensile stress due to the differential shrinkage during the drying stage, which may lead the composite film to crack and delaminate.

Experimentally, the cracks appeared during the drying stage at 200°C, and especially when the infiltration sol did not totally infiltrate the PZT, indicating that the drying / shrinkage of the pure sol plays a significant role in this process.

A trade off between dielectric properties and a better surface finish can be made. To do so, some infiltration stage causing the interfacial PZT layer can be eliminated along with the accompanying stress. It will lead to a crack free thick PZT film.

5.2 Thick film [2C+4S]

The process [2C+4S] corresponds to two infiltration steps per composite layer. The infiltration sol remaining between two composite layers, observable in Fig 7, is not observable with the new process (Fig 8). The cracking situation is improved significantly even for a thick layer of 28µm, where the surface finish remains better than for a 10µm thick film for the first process [C+4S]. Such a reduction in cracking would arise either due to a reduction in stress or an increase in material strength. However, as strength is expected to decrease with increasing porosity, it s reasonable to assume that the cracking is eliminated in these (more porous) films due to a reduction in stress. (Fig 8 and 9)

Fig 9. SEM micrograph of cross sections of x[2C+4S] film, showing the film to be more porous than the [C+4S] process shown on fig 6.

It is expected that these ceramics contain higher porosity than the x[C+4S] ceramics, as they have been infiltrated to a lesser degree. As a consequence the relative permittivity is reduced from 700 to

630-600. However, this process represents a real breakthrough regarding the thickness ($28\mu m$) of such thick films, as well as for the surface finish achievable. As an example of the quality of surface finish achievable with this process, Fig. 8 a) represents a 22m crack free thick PZT film with a 100nm electrode sputtered on its surface, showing that a continuous electrode can be deposited.

6. Multilayer PZT thick film

The composite sol gel process offers the potential for great adaptability for thick fabrication, particularly of shaping the final device. An example of the adaptability is the PZT thick film multilayer structure, with embedded electrode, as shown in Fig 10.

Fig 10. Schematic and SEM image of a multilayer PZT thick film 14[C+4S] with embedded electrode after the $7th$ composite layers.

This device is composed of 2 layers each made up of 7 spun composite layers infiltrated four times. The top, bottom and middle Ti (9nm) /Pt (100nm) electrode were deposited by sputtering. The multilayer process shows a great adaptability in being able to deposit multiple thin (100nm thick) metallic embedded electrodes in a PZT Structure.

7. Patterning

7.1. Wet etching solution

The solution used to etch the green ceramic was a HF/ HCL solution with the following composition [HF (0.5 vol%), HCl (4.5 vol%), H2O (95 vol%)]. To be efficient the solution was held at 60°C during the procedure.

- 7.2. Patterning PZT thick films via wet etching
- 7.2.1 Wet etching process of x[C+4S] PZT thick films

Considering the isotropy of the PZT thick film, a wet etching technique should etch, at the same rate in all the directions, which explains the etching slope, called undercuts, shown in Fig 11 and 12. The immersion time in the etch solution was dependent on the thickness of the PZT. (Table 3)

Table 3

PZT etch rate for different thicknesses of PZT film etched (HF (0.5 vol%), H₂O (95 vol%), HCl (4.5 vol%)

There was an intermediate product produced during the process. When the PZT was etched a white layer was left on the surface. An XRD study on wet etching done by Zheng ¹¹ indicated that it was PbClF. In order to remove this residue, the sample was cleaned using water in an ultrasonic bath for 15 minutes at the end of the etching process.

Table 3 reveals that thicker films with more residue show reduced etching rates indicates that the PbClF residue acts as a barrier which slows the etching process.

The edge resolution, as well as the etching slope, observed in all of the present pictures, seems to be dependent of the thickness and uniformity of the spun photoresist and the immersion time in the HF

solution. The spinning process of the photoresist was conducted in one stage for the sample shown in Fig 11 and two stages for that shown Fig 12. For the $21\mu m$ thick sample, the resist was spun at 4000 pm for 1 min, while for the 30 um thick sample, the resist was spun first at 600 rpm for 1 min and then at 4000rpm for 1min. The undercut seems to be reduced in the second case. Figure 11 shows an etching slope of 0.7, and Figure 12 shows a slope of 1. The thicker the resist is the longer the photoresist takes to be removed by the HF solution, and the sharper the etching slope. achieved

Fig. 11. SEM micrograph of a 21 μ m PZT thick film, patterned with features at the base of 10 μ m.

Fig. 12. SEM micrograph of a 30 μ m PZT thick film, patterned with features of 50 μ m at the surface and $10 \mu m$ at the base.

Fig 11 and 12 represent the typical gap between two devices achievable by this wet etching technique. A kerf of \sim 60 um between surfaces is shown in Figure 12 for a 30 um PZT thick film. This result is the finest result achievable with a wet etching technique considering the thickness and the isotropy of the film. The gap of 10μ m between features at the silicon face is also of a technical interest (Figure 11). A hole with 150 μ m side at the surface of a 35 μ m thick film shows the capability that the wet etching technique can achieve considering that: (Figure 13)

- The photoresist patterning mask is designed with a hole with $110\mu m$ long sides

- A minimum of 35 um undercuts with an isotropic wet etching technique

Fig 13. SEM micrograph of a 150 μ m hole PZT in a 35 μ m thick PZT film produced using mask with a 110μ m aperture. Defect near the bottom left of the hole is due to delamination of the photoresist and subsequent over etch.

Fig 14. SEM micrograph of a 21 μ m PZT thick film, patterned to produce a 10 μ m wide feature

7.2.2. Wet etching of PZT thick film [2C+4S]

The same wet etching process was tested on [2C+4S] thick films to determine how the absence of the sol interlays affects the etch process. (Table 4)

The data comparison presented in table 3 and 4 demonstrates a faster etching rate for the second process than for the first. This result is consistent with the porosity assumption made in section 5 where the porosity increases when the film is less infiltrated. With more porous film the HF solution can have a larger reaction surface with the PZT.

However, the "stepped pyramidal" etching shape observable in the first process (Fig 14, 12[C+4S]) is no longer observed with the second process (Fig 15, 6[2C+4S]) as the interlayer sol is no longer present (see section 5.2). The higher density of the extra sol layer observed on figure 14 temporarily slows the through thickness etching rate (acting like a very thin protection layer against the etching solution) resulting in the stepped structure.

For a similar thickness, the etching slope is steeper for the first process than for the second one Fig. 15. Both the porosity and the interfacial sol layer are responsible of this difference. Unfortunately as these two variables change together it is impossible to tell which has a major effect through this experiment.

6[2C+4S] +4 infiltrations 12[C+4S]

Fig 15. Comparison between the etching definition of the two process, [2C+4S] and [C+4S]. The samples are both 21um thick

This great adaptability of the spin coated thick composite PZT layer allows a wide range of shapes to be realised, some examples given are state of the art and can find application in various areas. The cross, shown in Fig 14, reveals the possibility of patterning a 10 μ m wide bar of 21 μ m PZT thick film, which is a significant achievement over previous techniques. Both the surface finish and dielectric properties are tuneable for any thickness up to 40µm.

These processes could find many applications in MEMS fabrication for devices such as cantilevers, switches and high frequency transducers.

8. Conclusion

PZT films up to 35 um thick were fabricated, using a composite sol gel route combining a PZT powder and a PZT sol gel. The maximumtemperature for the process was 720°C.

A demonstration of single and multilayer structures was given to show the flexibility of this technology. A crack free surface finish of a 28m thick film reveals the adaptability of the spin coating technique to fabricate thick films.

The wet etching technology revealed the possibility of a great adaptability to pattern and shape innovative devices such as bars 10 μ m wide of 21 μ m PZT thick film. The results open the way to a wide range of new industrial application requiring small features and/or multilayer PZT thick film with embedded electrodes.

Acknowledgements

Dr. S. A. Rocks, R. V. Wright, EC MUSTWIN project (NMP2-CT-2003-505630), Royal Academy of Engineering / EPSRC

References

[1] Scharzer S.and Roosen A., (1999), Tape Casting of piezoceramic/polymer composites, J. Euro. Ceram soc., 19: 1007-1010

[2] Liliehorn T. and Johanson S., (2004), Fabrication of multilayer 2D ultrasonic transducer microarrays bygreen machining, J. of Micromaching and Microengineering, 14: 702-709

[3] Simon Seveyrat L., Gonnard P., (2003), Processing and Characterization of Piezoelectric Thick Films Screen-Printed on Silicon and Glass-Ceramic Substrates, Integrated Ferroelectrics, 50: 1-18

[4] Cannell D. and Trigg P., (1990), Advanced Ceramic Processing and Technology, chap 4 Processing of electronic ceramics, pp 95

[5] Ledermann N., Muralt P., Baborowski J., Gentil S., Mukati K., Cantoni M., Seifert A., Setter N., (2003) ,{1 0 0}-Textured, piezoelectric Pb(Zr*x*, Ti1-*x*)O3 thin films for MEMS: integration, deposition and properties, Sensors and Actuators, A 105: 162–170

[6] Meyerhofer D., (1978), Characteristics of resist films produce by spinning, J. Appl. Phys., 49 (7): 3993-3997

[7] Livage J. and Sanchez C., 1992, Sol-gel chemistry, Journal of Non-Crystalline Solids, 8: 145

[8] Whatmore R.W., Zhang Q., Huang Z., Dorey R.A., (2003), Ferroelectric thin and thick films for Microsystems, Materials Science in Semiconductor Processing, 5: 65-76

[9] Dorey R.A., Stringfellow S.B., Whatmore R.W., (2002), Effect of sintering aid and repeat sol infiltration on the dielectric and piezoelectric properties of a composite thick film, J. Euro. Ceram. soc, 22: 2921-2926

[10] Duval F.F.F.C., Dorey R.A., Zhang Q., Whatmore R.W., (2003), Lead germanium oxide sinterassisted PZT composite thick films, J. Euro. Ceram. Soc, 23: 1935–1941

[11] Zheng K., Lu J., Chu J., (2003), Study on wet-etching of PZT thin film, Microprocesses and Nanotechnology Conference International 2003. Digest of Papers, 29-31: 248-249

[12] Zhang Q., Corkovic S., Shaw C.P., Huang Z., Whatmore R.W., (2005), Effect of porosity on the ferroelectric properties of sol-gel prepared lead titanate thin films, Thin Solid Films, 488: 258-264