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The state of residual stress in welded joints is a well-studied topic, and many methods 

of residual stress measurement are now available. However, far less is known about 

the transient strains which occur during the welding process, even though these are the 

direct cause of residual stresses. Efforts to model welding processes usually include 

transient stresses and strains among their results, but in general these models can only 

be easily compared against experimentally measured residual stresses: there is a lack 

of published data covering strain in the transient regime.  

In this study, electrical resistance strain gauges were used to measure transient strains 

during welding, and comparison is made between these measurements and the results 

from a sequential thermo-mechanical finite element model of the process. Well-defined 

mechanical boundary conditions were used for the experiments to ease interpretation 

of the measured strain data, and to enable close approximation with the boundary 

conditions of the computational model. The transient biaxial state of strain was 

measured during Gas Metal Arc Welding (GMAW) of S355 steel samples in a bead-on-

plate configuration. Measured transient strains were found to be consistent between 

samples, and showed good agreement with the modelling results. It is hoped that 

future study of welding transient strains will aid in the optimisation of in-process 

methods to reduce residual stress, such as rolling and quench cooling. 

1 Introduction 

During welding, significant residual stresses are produced by differential thermal 

expansion of material under a non-uniform thermal field. As it cools, material close to 

the source of heat input is constrained by material further away, generally resulting in 

high tensile residual stresses in an area around the weld seam. These tensile stresses 

can have a negative impact on the mechanical properties of the joint, aiding both 
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fatigue cracking [1] and brittle fracture [2]. They also cause distortion of the component, 

a problem which is especially evident in the welding of thin materials, which are prone 

to buckling. 

Several methods for reducing residual stress, including local rolling [3], global 

mechanical tensioning [4], and the use of trailing impingement cooling [5] have been 

used during the welding process to inhibit the initial formation of residual stresses. To 

enable the best use of such in situ techniques, it will be necessary to characterise the 

transient thermal stress and strain fields present in the parent material while welding 

takes place. This will allow the design of processes which can more precisely 

counteract the thermal stress field. 

While many computational models have been developed to study the mechanical 

effects of welding, verification of mechanical modelling is most often done by 

comparison of residual stresses only. As is evident from a summary of experimentally 

verified models by Lindgren [6], the transient strains are seldom compared. Early 

experiments on measuring welding thermal strains were carried out under the 

supervision of Masubuchi [7, 8, 9]. Although the results were mixed, they did prove the 

concept of using resistance strain gauges to measure welding strains in situ. More 

recently, optical Fibre Bragg Grating (FBG) sensors have also been shown to be 

suitable for such in situ measurements [10, 11] 

2 Experimental 

2.1 Sample description 

Five bead-on-plate welds were carried out using the sample layout shown in Figure 1. 

The material used for the experimental samples was 3 mm S355 mild steel supplied in 

the as-rolled condition. The welds were carried out in a single pass using pulsed 

GMAW; the welding parameters were designed to achieve full penetration of the weld 

pool through the plate thickness, and are given in Table 1. 
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Figure 1: Sample layout for strain gauge tests (dimensions in mm). 

 

Table 1: Welding parameters. 

Process GMAW (pulsed) 

Power supply Fronius TransPuls Synergic 5000 

Contact tip to work distance 13 mm 

Torch angle 90° 

Filler wire diameter 1 mm 

Filler wire feed speed 173 mm s
-1

 

Travel speed 10.8 mm s
-1

  

Current 270 A 

Voltage 27.8 V 

Gas composition 20% CO2, 2% O2, balance Ar 

Gas flow rate 200 ml s
-1

 

 

2.2 Sample restraint 

During testing, the samples were held flat using a vacuum clamping system, which 

applied a vacuum to the underside of the plates. This method was chosen since it 

allowed complete access to the top side of the samples for strain gauge and 

thermocouple attachment. It is also very simple to model compared with other types of 

clamping: a steady, even pressure is applied over almost the entire plate area, and 

there are no local stress concentrators. Finally, the system holds all parts of the plate 

completely flat during the experiment, meaning that only strains due to in-plane 

deformation are measured by the strain gauges. No out-of-plane bending of the sample 
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occurs until it is unclamped, which greatly simplifies interpretation of the strain gauge 

data. 

2.3 Strain and temperature measurements 

The strain measurements were carried out using foil resistance strain gauges attached 

to the upper side of the sample, in a line running from the weld seam to the edge of the 

plate as shown in Figure 1. Elevated-temperature gauges (Micro-Measurements WK-

series) were used at the 20 and 30 mm positions, while standard types (CEA and L2A-

series) were used elsewhere. Three of the five samples had uniaxial gauges attached 

at all eight locations. The fourth had the gauges at 20 and 30 mm substituted for three-

gauge rectangular rosettes, while the final sample employed rosettes at 40, 50, 60 and 

80 mm, and uniaxial gauges elsewhere. Rosettes could not be employed at all 

locations simultaneously due to the limited number of channels available on the data 

logging equipment. 

The strain at a point on the sample consists of a plastic component εp, a thermal 

component εt due to thermal dilation of the material at that point, and an elastic 

component εe due to the stress state. Hence the total strain ε is given by: 

 
pet εεεε  (Eqn. 1) 

In these experiments, all the strain gauges were self-temperature-compensating, and 

had the same coefficient of thermal expansion as the base material. This ensured that 

only the plastic and elastic components of strain were measured. The strain readings 

were also compensated for temperature effects on the transducer itself, as per the 

manufacturer’s recommendations [12]. Wherever strain rosettes were employed, the 

usual strain transformation equations were used to calculate strain components in the 

coordinates of the plate [εxx, εyy, γxy] from the rosette strains and gauge orientation [13]. 

It was then possible to calculate stresses in the longitudinal and transverse directions 

using Hooke’s law for plane stress: 
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 (Eqn. 2) 

where E and ν are the Young’s modulus (210 GPa) and the Poisson ratio (0.3) 

respectively. It should be noted that this method assumes the material to be linearly 

elastic (see Section 4.2). 
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Thermocouples were used to determine the temperature at the gauge locations 20, 30, 

40, and 50 mm from the weld line. Preliminary experiments showed that the 

temperature change at 60, 80, 100 and 120 mm was too small to affect the strain 

measurement. Aluminium tape and glass fibre insulation was used to protect the 

measurement area from arc radiation, and the addition of this protective layer was 

shown not to affect the temperature field in the sample significantly. 

An external sensor was used to determine the instant when the arc passed the line of 

strain gauges, which simplified the comparison of data collected from separate 

samples. All measurements were logged to a PC at a frequency of 2 Hz using a 

National Instruments CompactDAQ modular data acquisition unit. 

3 Modelling 

3.1 Overview 

A three-dimensional finite element model of the welding process was developed using 

Abaqus software. A sequential thermal-mechanical analysis was performed using a 

single mesh comprising 56,475 elements. Quadratic brick-type elements were used for 

the thermal part of the analysis, while the mechanical analysis used linear brick 

elements with the same mesh. 

The model had the same dimensions as the experimental sample, however due to 

symmetry about the weld line only one half of the object was modelled. Deposition of 

the raised weld bead resulting from the GMAW process was not simulated; the weld 

bead material was assumed to exist from the start of the weld. Further details of the 

modeling techniques used are given elsewhere [14]. 

3.2 Heat source 

To simulate the heat input from the welding arc, the model used a double-ellipsoid heat 

source of the type developed by Goldak et al. [15]. The heat source dimensions were 

based on empirical measurements of the size of the weld pool, while the total heat 

input was based the actual welding parameters. An arc thermal efficiency of 77% was 

assumed, a typical value for the GMAW process [16, 17]. 

3.3 Boundary conditions 

Thermal conduction from the sample to the backing bar and clamping bed was 

modelled using simple convective heat transfer. The heat transfer coefficients used in 

the model were tuned so as to approximate a temperature field similar to that 

measured experimentally (see Figure 2). In the case of conduction into the backing bar, 
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the heat transfer coefficients were defined as an exponential function of temperature, 

however constant coefficients were used elsewhere. The mechanical restraint provided 

by the vacuum clamping system was modelled by preventing displacement of the lower 

surface of the model in the vertical (z) direction. Along the weld line, displacement in 

the transverse (y) direction and rotation in the y-z and x-y planes was prevented, to 

simulate the condition of symmetry at this side of the model.  

 

Figure 2: Comparison between modelled and experimental temperature distributions. 

 

4 Results and discussion 

4.1 Repeatability of strain measurements 

Figure 3 shows a plot of strain in the longitudinal direction, 30 mm from the weld line, 

for the five welds made. Welding takes place between -28s and +28s, with the arc 

passing the measurement line (see Figure 1) at 0s. After completion of welding, the 

plate is allowed to cool (+28s onwards). Close agreement between samples can be 

seen for the initial transient region during the weld, although there is some divergence 

during cooling, resulting in a range of residual strains. It is suggested that this 

discrepancy is caused by small sample-to-sample variations in heat transfer, clamping 

conditions, initial residual stresses, or a combination of these factors. 
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Figure 3: Strain in the longitudinal direction, 30 mm from the weld line, for five identical 

bead-on-plate samples. 

4.2 Calculation of biaxial state of stress 

For the calculation of the transient stress from the strain data using Hooke’s law (see 

Section 2.3), the material is assumed to be both isotropic and linearly elastic. 

Therefore, the stress can only be calculated via this method if the material undergoes 

purely elastic deformation during the measurement. Fortunately, no plastic yield was 

observed at any of the gauge locations (see Figure 4c), although the peak compressive 

strains measured by some of the gauges closest to the weld line did reach 80-90% of 

the yield strain of the material. From the absence of yielding at any of the gauge 

locations it can be inferred that in this case, all of the thermally-induced plastic 

deformation caused by the welding process occurs within 20 mm of the weld line. 

The calculation of stresses using Hooke’s law also makes the assumption that the plate 

is initially unstressed at the start of welding, so that any strain increment from this point 

corresponds to the total stress in the plate. Although residual stresses are known to 

exist in rolled material of this type, it is likely that they are small in comparison to the 

large stresses induced by welding. 
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By calculating the stresses at a number of strain rosette locations and plotting them 

over time, it is possible to produce a map of stress for the region where rosette 

measurements were taken. Data from two identical specimens with rosettes in different 

locations (see Section 2.3) were used in this way to produce the plots in Figure 4. As in 

most linear welds, the largest stresses observed are in the longitudinal direction: Figure 

4a shows the longitudinal component of stress between 20 and 80 mm from the weld 

centreline as the arc passes by. Initially unstressed at -20s, the material experiences a 

small compressive ‘bow wave’ at around -4s as the heat source approaches. As the arc 

passes, it heats the material close to the weld line, which expands, causing 

compression in the weld region and a balancing tensile stress in the far field (0 to 

+20s). However, the heat rapidly conducts outwards and the central material cools and 

contracts, causing tensile stresses directly along the weld line, while compressive 

stresses develop further away from it (+20 to +60s and beyond). Overall, the transient 

distribution of stress is similar to that predicted by most previous models of linear welds 

[4, 18, 19, 20, 21]. 
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a.  

b.  

c.  

Figure 4:  Measured stress components in a plate sample during GMAW: a. 

longitudinal, b. transverse, and c. von Mises. The arc passes the 

measurement line at 0s. 
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4.3 Comparison of model with experiment 

Figure 5 shows a comparison of measured and modelled transient stresses. 

Qualitatively, the results are very similar: the development of stress over the transient 

region agrees well, however there are some differences in the magnitudes of the 

transient stresses. The most obvious difference between the measured and modelled 

cases is the disparity between the peak compressive stresses at 20 mm from the weld 

centerline, and the small inflection in measured stress at this point approximately 8 

seconds after the arc pass. This inflection (and the subsequently reduced peak 

compared with the model) was a consistent feature of all the measurements taken at 

this distance, and is thought to be caused by effects of the γ→α phase transformation 

at the weld line, which were not included in the model. 

 

Figure 5: Comparison of modelled and measured longitudinal stress at different 

distances from the weld line. 
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4.4 Estimation of residual stresses 

The stress calculated from strain rosette readings after cooling of the sample is an 

indication of the residual stress introduced by welding. As shown in Figure 6, the 

modelled residual stresses compare well with stresses calculated by this method. 

Unfortunately, the high temperature during welding limits the proximity of the strain 

gauges to the weld line, so the central tensile peak in residual stress cannot be directly 

measured from the strain data. However, since the residual stresses must be self-

equilibrating over a section of the sample, the magnitude of the compressive residual 

stresses is an indicator of the level of tensile stress in the weld region.  

This method of estimating residual stresses using strain gauges attached throughout 

the welding process is simple to apply and entirely non-destructive. In theory, these 

kinds of measurements could be used to rapidly assess the effectiveness of residual 

stress mitigation methods. 

 

Figure 6: Longitudinal residual stress across the plate section (prior to unclamping). 
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5 Conclusions 

In this paper, we have demonstrated the following: 

 Measurement of transient strains during GMA welding of steel plate specimens 

using foil resistance strain gauges. The repeatability of this method has also 

been shown. 

 Calculation via Hooke’s law of the transient biaxial state of thermally-induced 

stress due to welding from measured strain data. By plotting the stress variation 

over time at several locations, the stress state around the advancing welding 

torch can be visualized (Figure 4). However, the assumption of a linear elastic 

material in this method prevents the calculation of stress for regions very close 

to the weld line. 

 Transient stresses calculated from the experimental data compare well with the 

results of a finite element model of the process which was developed for this 

investigation, and are in qualitative agreement with previously reported 

modelling results from other sources. 

 Residual stresses away from the weld line can be estimated, nondestructively, 

using the final strains measured at the end of the welding process. This method 

of residual stress estimation is conceptually simple and easy to apply in 

practice. However, values of residual stress calculated this way may be affected 

by pre-existing stresses within the material. 
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