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Abstract 

The paper reports on the preparation, structure and properties of ternary thermosetting 

blends, based on DGEBA epoxy, cured with 3,3’-DDS and modified by the addition of 

CTBN reactive liquid rubber and/or 0.3 wt% of commercial multiwalled carbon 

nanotubes. The toughening effect of the phase separated rubber particles is enhanced by 

the presence of the nanotubes, through a change in the morphology. In the absence of 

the rubber, the nanotubes alone produce a minimal effect upon the thermo-mechanical 

characteristics of the resin. However, the electrical conductivity of the cured resin 

samples is found to increase by five orders of magnitude, up to 3.6 x10
-3

 S/m in the 

ternary blend. 
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Morphology; Electrical conductivity 

1. Background 

This paper reports a fundamental study of hitherto little studied ternary epoxy based 

blends, containing a commercial rubbery modifier and commercial carbon nanotubes. 

The context of the original study was the identification of possible means to minimise 

the thermal residual stresses usually created in the manufacture of adhesively bonded 

aluminium-to-composite joints, such as structural elements of current aerospace 

structures. A model adhesive was formulated for 120ºC cure, with the intention of 

identifying the critical parameters in terms of processability and performance, in pursuit 

of the aim. Commercial multi-walled carbon nanotubes were included in the adhesive as 

they were believed to be capable of reducing the coefficient of thermal expansion of the 
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resin [1,2]. The accompanying expected increase in the thermal and electrical 

conductivity was considered to be of secondary importance to the intended application. 

A commercial rubbery adduct was used to toughen the resin [3,4] to the level expected 

in relevant commercial adhesive systems. This paper focuses on the description of the 

microstructures of the cured resin blends and their thermo-mechanical, mechanical and 

electrical properties in the solid state. 

2.  Material composition, preparation and thermo-analytical characterisation 

The epoxy resin was a standard diglycidyl ether of bisphenol-A (DGEBA), (Araldite 

MY750, Huntsman; 182 g/eq epoxide equivalent weight), cured with 34 wt% of a solid 

aromatic diamine, 3,3’-diamino diphenyl sulphone (3,3’-DDS, Aldrich) and accelerated 

with 1 wt% boron trifluoride-monoethylamine (BF3-MEA, Chemos GmbH). The rubber 

was a carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber (Hypro CTBN 

1300x8, Emerald Performance Materials; 18% acrylonitrile content) which has been 

pre-reacted with DGEBA resin to give a 40 wt% CTBN-epoxy adduct, (HyPox RA840, 

Emerald Performance Materials; 340 g/eq epoxide equivalent weight) (Fig. 1). The 

adduct was employed to lead to a concentration of 5 wt% CTBN rubber in the final 

product. In the formulations containing the rubber adduct the amount of DDS was 

reduced so as to maintain the chemical stoichiometry of the base resin matrix. 

 

 

Fig. 1. CTBN-epoxy adduct. 

The multi-walled carbon nanotubes (MWCNTs) (NC-7000, Nanocyl) were added to 

the epoxy resin to achieve a concentration of 0.3 wt% in the final composite. As 

produced, the carbon nanotubes are highly entangled (Fig. 2), with a diameter in the 

region of 10 nm and length ranging from 0.1 to 10 m. The mixture of carbon 

nanotubes and epoxy (without hardener) was stirred at 100ºC for 1 hour at 3000 rpm 

using a high shear mixer (Dispermat CN10-F2); the mixture was then ultrasonicated, via 

a digital sonicator horn (Branson S-450D), operating at a frequency of 20 kHz, with 

maximum power setting of 400W. The sonication energy input was determined by the 
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need to hold the temperature at between 97 and 103 ºC in order to maintain the relatively 

low viscosity [5]. The total specific energy input was 1.2 kJ/g.   

 

Fig. 2. Scanning electron micrograph (FEG-SEM) of NC-7000 multi-walled carbon nanotubes, as 

supplied, showing a highly-entangled structure. 

The sonicated suspension was degassed, transferred back to the high shear mixer, 

mixed with the CTBN-epoxy adduct for 30 minutes at 3000 rpm and then with the 

hardener and the accelerator for another 30 minutes at 3000 rpm. During the stirring in 

of these constituents the mixture was kept under vacuum at 80ºC. Differential scanning 

calorimetry confirms that no significant cure reaction occurs in these systems at this 

temperature. 

A shorthand nomenclature is used for identification of the samples. C is the 

abbreviation for the control formulation alone, CR for the control with rubber 

formulation, CN for the control with carbon nanotubes formulation and finally, CRN 

denotes the control formulation containing both rubber and carbon nanotubes. 

Flat plaques of thicknesses between 3 and 6 mm were cast from all the formulations, 

in waxed glass moulds with metal inserts, after thorough degassing. They were cured in 

an air oven under partial vacuum. The curing cycle was 6 hours at 120ºC for all the 

formulations, which was believed to be well in excess of the time required to achieve 

complete cure at this temperature – see Fig. 3. 
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Fig. 3. Conversion versus cure time at 120ºC, in the first 100 minutes. Conversion was determined by 

differential scanning calorimetry experiments, giving total reaction enthalpies as 449 and 380 J/g for CR 

and CRN formulations respectively. Conversion was determined using a horizontal integration baseline, 

method described fully in [6]. 

2.1. Conversion and glass transition temperature, Tg 

The glass transition temperatures, determined by modulated differential scanning 

calorimetry (MDSC) measurements on cured samples, at a heating rate of 1ºC/min and 

with temperature modulation of 1ºC and period of 60 seconds, only varied between 133 

and 134ºC for all the various formulations. Despite the prolonged cure at 120ºC, these 

samples were found to have reached final conversion levels of between only 73 and 

75%. The rates of crosslinking in the early stages of cure in the base resin appeared 

unchanged by the presence of the nanotubes, which agrees with previous (unpublished) 

observations in our laboratory. However, all the blended samples exhibited great 

sensitivity to any increase in cure temperature above 120ºC, in that significant post-cure 

drifts in the glass transition temperature were observed in experiments carried out by 

dynamic mechanical analysis. The 120ºC cure does not drive the reaction to chemical 

completion, even after 6 hours, in any of the formulations. Post-cure can thus be 

expected when the solid samples are heated above this temperature and to be more 

pronounced in the CNT-containing samples. Post-cure experiments were carried out to 

determine the ultimate achievable Tg values in these systems and the results from 

MDSC measurements are shown in Table 1. To get stable values of Tg it was necessary 

to post-cure the samples at 200ºC for 80 minutes; this is far above any intended 

practical application of such blends but is probably an indication of the extent of 

diffusional limitations on the final stages of cure. 
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Compositions of the formulations employed and thermal analysis data, with ranges 
a
 

Sample 
CTBN     

content (wt%) 

MWCNTs 

content (wt%) 

Tg (ºC) 

MDSC 

CTE  

(10
-6

 K
-1

) 

Tg (ºC) 

MDSC, after post-cure 

C 0 0 133 ± 1 51.93 ± 0.03 163 ± 1 

CR 5 0 134 ± 1 52.11 ± 0.39 158 ± 1 

CN 0 0.3 133 ± 1 51.84 ± 1.01 165 ± 1 

CRN 5 0.3 134 ± 1 51.62 ± 0.77 162 ± 1 
a 
CTE values obtained from samples that were not post-cured 

 

The fully cured samples exhibit a slight drop in Tg consequent on the incorporation of 

the rubber – this is as expected in a phase separated system in which a very small 

proportion of the rubber remains dissolved within the continuous epoxy phase. Using 

the well known Fox equation [7], the amount of rubber that has not phase separated and 

remains dissolved in the epoxy is estimated to be a very low proportion (~ 2 %) of the 

total rubber added.  

In contrast, the incorporation of the nanotubes results in a very slight increase in the 

final Tg of the resin, as previously noted by other authors [8,9]. The combination of the 

effects means that the final achievable Tg in the CRN blend is indistinguishable from 

that achievable in the initial control resin.  

2.2. Coefficient of thermal expansion 

The thermal expansion coefficients of cured specimens were measured using a 

thermal mechanical analyzer (TA Instruments 2940). Rectangular specimens of 5×5×10 

mm were used (BS ISO 11359-2). After placing the specimen in the cell, the linear 

dimension of the sample was monitored from –50ºC to 100ºC at a heating rate of 

1ºC/min. A slow cooling and reheating cycle was used in order to remove the effect of 

any initial residual stresses in the polymer and the thermal expansion coefficients were 

obtained from the second heating cycle, from the slope of the extension versus 

temperature curve in the temperature range of interest. The values at room temperature 

were determined from an average of three specimens and are shown in Table 1. The 

differences in the values for the specimens tested here cannot be considered significant, 

in the room temperature region or indeed any other region between –50ºC and 100ºC. In 

this respect the inclusion of the nanotubes fails to deliver on the initial promise of 

property modification. 
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3. Balance of mechanical properties 

Flexural tests were performed using the three-point bending configuration at a 

crosshead speed of 1 mm/min according to the BS ISO178 test standard. The 

dimensions of the specimens were 3×15×80 mm for C and CR formulations and 

2×12×60 mm for CN and CRN formulations. The span to thickness ratio L/D was set at 

16 for all the formulations. The stress-strain dependence was linear and the flexural 

modulus Ef was determined in the region between 5% and 25% flexural strain in the 

beam, as an average from five specimens, as shown in Table 2. 

The compression yield stress, yc was obtained from uniaxial compression testing of 

six 3×5×6 mm specimens using a crosshead speed of 0.6 mm/min (BS ISO604), see 

Table 2. The compression test fixture used was a 10 kN rated Instron compression cage. 

This test jig is self aligning in that the movable cross-head moves downwards, 

compressing the specimen between two parallel plate faces as shown in Fig. 4a. No 

lubricating agent was used on the specimen surfaces and the experiments were stopped 

before any global buckling or barrelling had occurred. The stress-strain curves showed a 

clear yield point, taken as the maximum engineering stress. The post-yield strain 

softening observed in these samples (Fig. 4b) is recognised as an essential pre-requisite 

of a toughenable thermosetting system [10]. 

 

Fig. 4. (a) Compression cage, with a schematic of specimen loading (not to scale) (b) Stress- displacement 

curves under compression loading, for C and CRN samples. 
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The fracture toughness (KIC) and fracture energy (GIC) were determined according to 

the BS ISO 13586 test standard. The values were taken from an average of five single 

edge-notched bending (SENB) specimens measuring 4×15×80 mm for the C and CR 

formulations and 3×12×60 mm for the CN and CRN formulations. The notch on the 

specimen edge was machined to a depth of at least 40% of the specimen width. Prior to 

testing, a sharper notch was introduced by tapping a pristine razor blade into the base of 

the machined notch. The new notch depth was between 45% and 55% of the specimen 

width. For all the formulations the specimens were tested in a three point bend 

configuration using a span four times greater than the specimen width and a crosshead 

speed of 10 mm/min. Visual inspection of the fracture surfaces revealed no air bubbles; 

the C and CN specimens exhibited a mirror fracture surface whilst the fracture of the 

CR and CRN samples resulted in a slightly matt fracture surface but without any 

noticeable whitening. The fracture toughness results obtained are summarized in Table 

2. The aromatic nature of the hardener limits the toughenability of the system, compared 

to more conventional rubber toughened epoxies. 

 

Table 2 

Mechanical properties of the cured samples, with standard deviations
 b 

Sample 
KIC  

(MPa  m
0.5

) 

Ef 

(GPa) 
yc 

(MPa) 

C 0.8 ± 0.1 3.4 ± 0.1 141 ± 1 

CR 1.1 ± 0.1 2.9 ± 0.1 114 ± 2 

CN 0.9 ± 0.1 3.2 ± 0.1 141 ± 1 

CRN 1.3 ± 0.1 2.7 ± 0.1 113 ± 2 
b 
Properties obtained from samples that were not post-cured 

4. Electrical properties of cured samples 

Rectangular specimens of 4×12×30 mm were used to measure DC electrical 

resistivity. The cross-sectional areas were painted with silver paint to provide good 

contact. Electrodes were connected to the test specimens on both sides and two-terminal 

DC resistance measurements were performed using a 6517A Keithley electrometer, 

typically used for high resistance materials. The resistance of the formulations 

containing carbon nanotubes, CN and CRN, were obtained using a combination of a 

precision current source (6220 Keithley Instruments) and a nanovoltmeter (2182A 

Keithley Instruments) appropriate for lower measuring ranges. The values reported in 
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Table 3 were taken after 1 minute of voltage application, determined on five specimens. 

The AC electrical response of the materials was investigated using a Solartron SI 1260 

frequency response analyser. Twenty-seven frequencies in the 1 Hz to 3.16 MHz range 

were swept on a logarithmic scale using an excitation voltage of 1 V. The conductivity, 

which was calculated as:  

*

d
f

Z f S

 

 

where d  is the thickness, S  the area and fZ *  the complex impedance, is illustrated as 

a function of frequency in Fig. 5. The base formulations follow a pure capacitive 

behaviour with the characteristic slope of unity in the conductivity versus frequency 

log-log plots. In contrast, the nanocomposites show a frequency independent 

conductivity, characteristic of ohmic behaviour. This behaviour, which is typically 

observed in nanotube-epoxy composites with nanotubes forming a conductive network 

[11], is maintained up to a certain inflection frequency over which a transition to a 

dielectric response occurs. The AC spectra can be used for the evaluation of the DC 

properties using the plateau conductivity observed at low frequencies for 

nanocomposites. The values obtained are identical to the DC measurements reported in 

Table 3. 

 

Table 3 

Direct current electrical conductivities of the formulations in a solid state, with standard deviations
 b 

Sample 
(S/m) 

C < 10
-9

 

CR 3.2 x10
-9

 ± 1.1 x10
-9

 

CN 1.6 x10
-3

 ± 2.3 x10
-4

 

CRN 3.6 x10
-3

 ± 3.2 x10
-4

 
b

 Properties obtained from samples that were not post-cured 
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Fig. 5. AC conductivity spectra for the base formulations and for the nanocomposites. The close-up graph 

at the bottom shows detail of the response of nanocomposites at the higher frequencies. 

5. Structure – property relationships 

Scanning electron microscopy (SEM) was used to examine cryo-fracture surfaces of 

the samples. The samples containing rubber were etched in toluene for 2.5 hours at 

ambient temperature in order to extract the dispersed rubber phase [12]. 

Fig. 6a-b shows SEM micrographs of the cryo-fracture surfaces of the formulations 

containing nanotubes; CN and CRN. In these images the bright dots are the ends of 

carbon nanotubes. Qualitative investigation of a large number of similar micrographs 

reveals the carbon nanotubes homogeneously dispersed, without any large 

agglomerates. The presence of the nanoparticles reflects itself in a significantly 

increased roughness of the fracture surface surrounding the CNTs, as previously noted 

by other authors [13]. 
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Fig. 6. Scanning electron micrographs (FEG-SEM) of cryo-fracture surfaces for (a) CN and (b) etched 

CRN. 

All the formulations containing rubber displayed a two-phase morphology with an 

epoxy rigid continuous phase and a dispersed rubbery phase of isolated spherical 

particles. The nanotubes are believed to be associated with the epoxy phase, but 

presence of nanotubes within some rubbery particles cannot be discounted. On these 

micrographs only the imprints of the (cavitated and subsequently etched out) rubber 

particles are visible. The darker round holes indicate some porosity in the samples, but 

this is not significantly higher than might be expected in any cured epoxy sample. 

The important information to be gained from Fig. 7a-b is the change in the 

distribution and sizes of the precipitated rubber particles for the CR and CRN 

formulations respectively. Whilst difficult to quantify, the mean size of the rubber 

particles was demonstrably larger in the CR formulation than in the CRN sample. This 

decrease in size with the addition of the carbon nanotubes is thought to be associated 
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with the increase in viscosity of the system caused by the dispersed nanotubes, which 

would inhibit the growth of the rubbery domains in the pre-gel phase [14]. The 

possibility of particle nucleation being enhanced by the nanotubes cannot be discounted, 

but has not been demonstrated. 

 

 

Fig. 7. Scanning electron micrographs (FEG-SEM) of etched fracture surfaces for (a) CR and (b) CRN. 

It is thought that the high starting viscosity of the CRN mixture is beneficial in 

maintaining the quality of the CNT dispersion, by preventing the re-agglomeration 

during cure that is otherwise often observed in thermosetting nanocomposites [15,16]. 

In terms of the mechanical performance (see Table 2), the addition of the relatively 

low modulus, rubber–rich particles to the base formulation results in a reduction in the 

flexural modulus of 15%. This is as expected in rubber toughened epoxies [3,17,18], 

whereas no stiffening effect of nanotubes has been found [19]. The compressive yield 
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strength is reduced by the addition of rubber, again as expected; inclusion of carbon 

nanotubes shows no effect. 

In the notched fracture tests, there is a small, but measurable increase in the stress 

intensity factor upon the addition of rubber to the control formulation. The addition of 

nanotubes alone shows no significant effect. However, the inclusion of nanotubes and 

rubber in the formulation provides a further increase in KIC, over 10% above the value 

obtained when rubber is used alone. This synergistic effect on toughening is seen more 

clearly in the data shown in Fig. 8. In this particular system, the increase in fracture 

energy is accompanied by an increase in the electrical conductivity, giving the solid 

CRN samples an attractive overall balance of properties. 

 

Fig. 8. Fracture energy, GIC, and electrical conductivity of the formulations employed. 

Future aerospace applications may require electrically conductive, polymer-based 

composites for static discharge, electrical bonding, interference shielding, primary and 

secondary power and current return through the structure [20]. Good electrical bonding 

of a joint is needed to assist in controlling and dissipating the build-up of electrostatic 

charge. Commercial adhesives exist that have been filled with high amounts (up to 60% 

by volume) of powdered silver, nickel or carbon black to achieve electrical 

conductivity. Unfortunately such additives make the adhesive weaker. The very high 

conductivity of carbon nanotubes makes them excellent candidates for the production of 

conductive epoxy adhesives, capable of dissipating electro-static charge build-up [21], 

and the present work shows that the required conductivity levels can be achieved 

without a compromise in the mechanical performance. 

The most notable effect found in this study is the reduction of the mean rubber 

particle size in the rubber toughened epoxy samples also containing carbon nanotubes. 
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The only other ternary nanocomposites system studied in the context of adhesives 

preparation, an anhydride cured epoxy, uses silica nanoparticles with CTBN rubber and 

no effects on phase separation are reported [22]. However, it should be noted that the 

silica nanoparticles have little effect upon the viscosity of the system, unlike the carbon 

nanotubes used in this study. The toughening mechanism in the silica particle ternary 

system is debonding of the silica nanoparticles accompanied by cavitation within the 

epoxy matrix.  

The smaller rubber particles in the present CRN formulation are still large enough to 

be capable of cavitating under the triaxial stress field at the crack tip [23,24] and would 

therefore be expected to be contributing to toughening by initiating shear yielding in the 

surrounding matrix, which is the conventional mechanism of epoxy rubber toughening. 

In the absence of quantified morphology information, namely the volume fractions of 

small and large particles, it is not practical to use existing rubber cavitation theories [25] 

to estimate the expected toughening contributions in the different systems. There is no 

specific evidence that a high proportion of small rubber particles is generally beneficial 

to the toughness of a rubber modified epoxy, but there have been reports of beneficial 

effects of a bimodal particle size distribution in such systems [26,27]. It is therefore 

possible that the carbon nanotubes have a positive effect on the toughness of a ternary 

blend, not by the creation of any new toughening mechanisms, but by indirectly 

enhancing the overall contribution of the existing, highly efficient, toughening 

mechanisms.  

6. Conclusions 

The thermosetting ternary blends of epoxy, CTBN rubber and commercial carbon 

nanotubes, characterised in the present study, show that it is possible to achieve 

significant electrical conductivity at a low level of inclusion of CNTs and without a 

compromise in the thermo-mechanical performance of the adhesive. The good overall 

balance of properties is believed to be associated with the specific morphology of these 

systems, providing an efficient toughening mechanism as well as a conductive network. 
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