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Abstract 
 
 When designing a complex industrial product, the designer often has to 

optimise simultaneously multiple conflicting criteria. Such a problem does not usually 

have a unique solution, but a set of non-dominated solutions known as Pareto 

solutions. In this context, the progress made in the development of more powerful but 

more computationally demanding numerical methods has led to the emergence of 

multi-disciplinary optimisation (MDO). However, running computationally expensive 

multi-objective optimisation procedures to obtain a comprehensive description of the 

set of Pareto solutions might not always be possible.  

 The aim of this research is to develop a methodology to assist the designer in 

the multi-objective optimisation process. As a result, an approach to enhance the 

understanding of the optimisation problem and to gain some insight into the set of 

Pareto solutions is proposed. This approach includes two main components. First, 

global sensitivity analysis is used prior to the optimisation procedure to identify non-

significant inputs, aiming to reduce the dimensionality of the problem. Second, once a 

candidate Pareto solution is obtained, the local sensitivity is computed to understand 

the trade-offs between objectives. Exact linear and quadratic approximations of the 

Pareto surface have been derived in the general case and are shown to be more 

accurate than the ones found in literature. In addition, sufficient conditions to identify 

non-differentiable Pareto points have been proposed. Ultimately, this approach 

enables the designer to gain more knowledge about the multi-objective optimisation 

problem with the main concern of minimising the computational cost. 

 A number of test cases have been considered to evaluate the approach. These 

include algebraic examples, for direct analytical validation, and more representative 

test cases to evaluate its usefulness. In particular, an airfoil design problem has been 

developed and implemented to assess the approach on a typical engineering problem. 

 The results demonstrate the potential of the methodology to achieve a 

reduction of computational time by concentrating the optimisation effort on the most 

significant variables. The results also show that the Pareto approximations provide the 

designer with essential information about trade-offs at reduced computational cost. 
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Chapter 1 
1  Introduction 
 
 
 
 Development of complex systems is the result of a large set of considerations on 

a variety of engineering disciplines. During this process, the designer searches for 

combinations of values for the parameters describing the system that will improve its 

characteristics and satisfy a set of predefined requirements. Typically, one attempts to 

minimise cost and/or maximise performance levels subject to engineering or regulations 

constraints. Over the past few decades, designers have spent a considerable effort to 

integrate design techniques from different disciplines. The integration is motivated by 

the idea that better designs can be achieved through concurrent engineering and the 

commercial imperative of reducing design time and cost (Bartholomew, 1998). This 

trend has been accompanied by the emergence of a new field in the area of complex 

system design: Multidisciplinary Design Optimisation (MDO). 

 

1.1 Multidisciplinary design optimisation  
 In the aerospace industry, designing an aircraft requires taking into account 

contributions of different disciplines, which might interact and exhibit strong coupling. 

For an aircraft, aerodynamics and structure are intimately coupled. The pressure 
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distribution over the wing results in a deformation of geometry, which in return affects 

the aerodynamics. This interaction is illustrated in Figure 1.1. Other common 

interactions that might be involved in the design of an aircraft include flight dynamics, 

payload distribution, fuel capacity and so forth. 

 

 
Figure 1.1: Coupling between aerodynamic and structure 

 

 In the traditional way of designing a complex system, each team of experts 

optimises its specific discipline and forwards the resulting design to the team in charge 

of the next analysis. In practice, since some analysis tools might require results from 

others, a few iterations of the optimisation procedure have to be completed to achieve a 

final consistent design between all disciplines. Such design process has the main 

disadvantage that each discipline analysis is carried out one after the other. Therefore, 

when several disciplines with possible interactions are taken into account into the 

design, each team of experts has to wait for the results of the previous step before they 

can carry out their optimisation of the system and propose further modifications. This 

approach can result in a very long design procedure without the guarantee that a final 

consistent design is obtained. Such practice has been extensively used for designing 

complex systems. 

 The MDO concept has been present in designers mind for the past decades 

(Sobieszczanski-Sobieski et al., 1972, 1984; Fulton et al., 1974; Kroo et al., 1994). 

However, its implementation in the industry was not possible because of enormous 

computational effort required and limited communication capabilities between 

numerical tools. Nowadays, together with the development of computer power, high-

fidelity numerical methods, parallel programming and integration frameworks (Scott, 
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2001), MDO has become a reality and attracts growing interest in the aerospace industry 

(Bowcutt, 2003; Kim et al., 2002; Walsh, 2000, Giunta et al., 1996).  

 MDO can be described as an environment, which integrates the knowledge and 

creativity of human designer with the power and capability of mathematics and 

computers in making design decision. The MDO concept is achieved through a set of 

methods, which provides a means of coordinating efforts and performing the 

optimisation of the design.  

 

1.2 MDO main issues  
1.2.1 Concurrent engineering 

 The recent developments in MDO have come together with new challenges for 

the designer as shown in Figure 1.2. 

 

 
 

Figure 1.2: Multidisciplinary design optimisation issues 

 

 The first main challenge is intrinsically related to the multidisciplinary aspect of 

MDO and the way the interactions and coupling between disciplines are handled. The 

implementation of concurrent engineering in the design optimisation procedure has 

required the development of integration frameworks to facilitate the communication 

between the different numerical tools called during the discipline analysis. They allow 
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the connection of existing engineering software and pieces of code which can be 

executed separately or in parallel from different locations. A lot of effort has also been 

spent on improving existing numerical tools and developing new capabilities for MDO. 

An essential component of an MDO process is the product model generator, the role of 

which is to provide each analysis tool with the appropriate information about the system 

to compute the various discipline outputs. In the case of an aircraft, a parametric 

geometry generator provides the information (external surfaces, structure layout…) 

required by each tool (CFD, FEA…) at each step of the optimisation process (La Rocca 

et al., 2002). Another issue related to the integration of various disciplines in the design 

process concerns the decomposition and arrangement of the problem into contributing 

analyses, which perform single tasks. This aspect of MDO is particularly important 

when there exists a strong coupling between the disciplines involved in the design. In 

such situation, there is no hierarchical organisation of the disciplines and the 

contributing analyses cannot be run sequentially. An iterative procedure must be used to 

achieve a consistent design. Researchers have come up with a range of algorithms to 

handle this complex situation and ensure that all disciplines are consistent for the final 

optimum design (Balling and Sobieszczanski-Sobieski, 1996). The deployment of MDO 

capabilities making use of high fidelity tools, complex problem decomposition and 

large number of design variables implies large computational times. 

 

1.2.2 Optimisation and decision-making 
 The second main challenge of MDO concerns the design optimisation and 

decision-making. Beside, the computational burden associated with the integration and 

implementation of an MDO procedure, there is an inherent difficulty to achieve a 

suitable solution according to the designer formulation.  

 In the context of MDO, the design process of a complex system frequently 

results in optimising multiple criteria for a large number of design variables. In the 

context of the design of an aircraft, a designer might want to maximise its range while 

minimising its life-cycle cost. The number of parameters required to describe an aircraft 

depends on the level of maturity of the design and can vary from tens to a few thousand. 

Such large number makes the exploration of the design space difficult. Choosing 

appropriate parameters to describe the system to be optimised is not straightforward. It 
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might depend on the level of accuracy required to describe the system, on the 

computational effort that can be afforded or previous design experience. On the one 

hand, if design variables with non-significant impact on the results of the optimisation 

are considered, computational effort is unnecessarily spent to set the value of these 

parameters. On the other hand, if only a reduced set of input variables is considered, it is 

possible that some parameters that can improve the results of the optimisation are 

omitted. The complex internal mechanisms of each analysis together with the strong 

interactions between disciplines make the choice for appropriate parameters to the 

optimisation a difficult task. 

 In the multi-objective optimisation formulation of the MDO problem, the criteria 

involved are often conflicting and cannot be improved together. There is no single 

optimum solution to such a problem but a set of non-dominated solutions also referred 

as Pareto solutions (Miettinen, 1999). Each Pareto solution represents an alternative 

feasible design for a particular trade-off between performance criteria considered in the 

optimisation formulation. They all satisfy the requirement expressed in the multi-

objective optimisation problem and none is better with respect to all criteria. Therefore, 

additional preferences on the solutions that are not taken into account in the initial 

optimisation problem formulation must be articulated to help the designer select the 

most suitable solution. A common approach is to define preferences representing the 

relative importance the designer assigns to each objective before performing the 

optimisation. These preferences correspond to a specific trade-off between the 

objectives and are included in the optimisation formulation. For each set of preferences, 

a different Pareto solution is obtained. This method is referred as a priori articulation of 

preferences (Marler and Arora, 2004). The main disadvantage associated with this 

method is the difficulty for the designer to postulate reasonable preferences without 

prior knowledge on the possible solutions of the problem. An alternative method is to 

generate Pareto solutions corresponding to various combinations of trade-off between 

objectives and choose among the available solutions. Such method is referred as 

Generate First – Choose Later (GFCL) (Balling and Richard, 2000) or a posteriori 

articulation of preferences (Marler and Arora, 2004). This method seems more 

attractive since no prior knowledge of the design problem is required and the designer 

can make use of the solutions available to define a set of preferences. Moreover, if no 
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solution from the reduced set of Pareto points suits the designer’s preferences, he/she 

can decide to carry out further exploration of a particular part of the Pareto front and its 

corresponding region in the design space. Such iterative procedure can help him/her 

refine the set of preferences for choosing the final trade-off solution.  

 

1.3 Research aim and objectives 
 The aim of this research is to propose an approach to improve the efficiency of 

the optimisation and decision-making aspects in multidisciplinary design. This involves 

providing the designer with appropriate information about the problem. In this thesis, 

two aspects are considered.  

 The first aspect is to provide the designer a means to understand prior to the 

optimisation which inputs will have the most important impact on the final solution. 

Only significant input variables are retained to reduce the computational effort and 

make the optimisation procedure more efficient.  

 The second aspect of the method concerns the multi-objective optimisation and 

occurs after Pareto solutions are obtained. The objective is to provide the designer with 

a means to obtain a better insight into the set of solutions the problem. For complex 

designs, the Pareto surface cannot be obtained analytically and its description is often 

limited to a reduced number of points. It is therefore essential for the designer to make 

the most out of any solution obtained without having to run more optimisation 

procedures. Additional valuable information about the solution set would enhance the 

understanding of the problem and benefit the designer.  

 Each aspect of the approach corresponds to a sensitivity analysis (SA) and 

provides the designer a better insight into the problem, at two different steps of the 

MDO procedure. 

 

1.4 Overview of thesis 
 In chapter 2, a literature review of relevant SA techniques is presented. It 

includes a description of SA methods used on a model to understand relationships 

between its input and output variables. Chapter 2 also introduces the multi-objective 

optimisation problem together with the Pareto concept and briefly describes some of the 

methods used in the field to generate solutions. Finally, it describes various techniques 
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developed to approximate the set of Pareto solutions and understand the trade-offs 

between objectives. In chapter 3, the approach proposed to assist the decision-maker in 

the optimisation process is presented. In chapter 4, a new method for approximating the 

Pareto set and understanding local trade-offs in the criterion space is derived. This 

technique also provides a means to relate the new approximate solution to the design 

space without carrying out more optimisation runs. In chapter 5, the new method for 

approximating the Pareto surface is used the optimisation of an I-beam. The whole 

approach described in chapter 3 is comprehensively tested in chapter 6 in the context of 

an airfoil optimisation for minimum drag and maximum wing volume. Finally, in 

chapter 7, a summary of the research is given and conclusions are drawn. 
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Chapter 2 
2  Literature review 
 
 
 Over the last few decades, a large number of methods for sensitivity analysis 

have been developed to obtain a better insight in their models and facilitate the decision-

making process in the science and engineering field. The choice of a sensitivity analysis 

method to adopt is not easy to make and must be based on the problem the designer is 

trying to address, on the characteristics of the model under study and on the 

computational cost that can be afforded. In this chapter, the most relevant sensitivity 

analysis techniques are reviewed. Then, the multi-objective optimisation formulation 

together with the Pareto concept are introduced and methods for generating solutions of 

such a problem are briefly outlined. Finally, attention is focused on methods and 

techniques developed to help the designer obtain sensitivity of the Pareto solution and 

understand the trade-offs as part of the decision-making process. 

 

2.1 Sensitivity analysis 
 Sensitivity analysis (SA) is the study of how the outputs of a model can be 

apportioned, qualitatively or quantitatively, to the different inputs.  

 Models have been developed in every area to approximate or mimic systems and 

processes of different nature and different complexity. Experimental results are often 

expensive, time consuming or impossible to obtain. As a result, investigation of the 
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process or the system is to be carried out through a mathematical or computational 

model. Depending on the complexity and level of development, these models enable 

results to be obtained in a reduced amount of time. Despite that time and cost to obtain 

these results have been considerably condensed, the modelling of complex systems still 

remains time consuming. Therefore, performing intensive model simulation to explore 

systems or processes over the whole range of variation of input parameters is not always 

a suitable strategy.  

 Any complex model can be represented as a black box with input parameters 

coming in and output results going out as represented in Figure 2.1. 

 

 

 

 
Figure 2.1: Representation of a computer model: the black box 

 

A mathematical model is defined as a set of equations, inputs and outputs aimed to 

describe the process being investigated. In this thesis, the terms factors, parameters and 

variables are all used to refer to the inputs of a model. In the same way, the term 

response refers to a model output. Absence of information or poor understanding of the 

internal mechanisms inside the model has led the modellers to develop methods to 

understand how inputs and outputs are related. A definition of sensitivity analysis is 

given in Saltelli et al. (2000a):  

 

 “Sensitivity analysis studies the relationship between information flowing in and 

out a model.” 

 

 Originally, sensitivity analysis was developed to deal simply with uncertainties 

in the input variables and model parameters but it has been extended by providing an 
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understanding of how the model response variables respond to changes in the inputs 

(Saltelli et al., 2000a). 

 

2.1.1 Objectives of sensitivity analysis 
 Use of sensitivity analysis is made in many different fields for different 

purposes. In engineering, SA is mainly used for design reliability and robustness, in 

chemistry and the social sciences, for model validation and confirmation, in economics 

and risk assessment to determine the most influential parameters. Sensitivity analysis 

methods are based on different mathematical or statistical tools, depending on the 

problem and the information they provide. These different types of analyses share a 

common aim to investigate how a given model responds to variations in its inputs. A 

review of the main applications of sensitivity analysis is given by Saltelli et al. (2004): 

 

• Model validation 

• Robustness of the model results 

• Identification of most influential input parameters to focus attention on a 

small set of inputs 

• Identification of non-significant input parameters which can be 

eliminated from the final model to reduce the problem dimension 

• Determination of optimal regions where specific values for output can be 

achieved 

• Identification of interactions between subsets of factors. This is 

particularly relevant when factors have effects which cannot be reduced 

to the sum of the individual ones 

  

2.1.2 Sensitivity analysis procedure 
 Information on models used to describe a complex system cannot be obtained 

analytically because the internal mechanisms are not known. This is particularly true in 

MDO as complicated coupling between disciplines must be taken into account. In such 

a situation, only numerical results can be obtained. A way to get a better understanding 

of the model is to perform a sample-based sensitivity analysis.  
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 A sample-based sensitivity analysis is a procedure in which the model is 

executed repeatedly for a particular set of input values. Such a set of input values is also 

referred as design of experiments (DOE) and corresponds to a sampling of input space. 

A variety of DOE strategies has been developed to address different problems: input 

interactions studies, polynomial curve fitting, input space exploration. Many references 

on design of experiments can be found in the literature (Mc Kay et al., 1979; Myers and 

Montgomery, 1995; Kleijnen, 2004a, 2004b). As described in Saltelli et al. (2000a) and 

illustrated in Figure 2.3, the following steps can be identified in a sample-based 

sensitivity analysis:  
 

• Design the experiment: the question which the sensitivity analysis should 

answer is defined and an appropriate strategy for sampling the input 

factors concerned with the analysis is decided  

• Assign the probability distribution or range of variations to each input 

factor 

• Generate a sample of input factors 

• Execute the model to obtain the output for each input factor generated 

• Perform sensitivity analysis to obtain the relevant information about the 

model 
 

 Figure 2.2: Typical sensitivity analysis procedure 
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 Note that when partial derivatives are used as sensitivity analysis methods for 

complex systems, they are often evaluated numerically by finite differences. In this 

case, a uniform distribution is assumed over the small interval selected for the 

evaluation.  

 Another important point is that when sample-based methods are used, both one-

at-a-time (OAT) sensitivity analysis and multivariate sensitivity analysis can be 

performed. With sample-based techniques, input factors can be varied together to study 

interaction between sets of variables and their effect on the outcome of the model. 

 When implementation of sensitivity analysis is concerned, many different 

approaches can be followed and a large number of techniques is available, which makes 

it difficult to find out the appropriate method. 

 

2.1.3 Graphical methods 
 Graphical methods are the most intuitive and simple techniques for sensitivity 

analysis (Saltelli et al., 2000a). They are used to identify visually the influence of inputs 

on a particular output. They may reveal relationship between model inputs and outputs 

such as non-linear relationship and thresholds, which could be used as prior knowledge 

of the model to decide which sensitivity analysis to apply for further investigations.   

 Graphical methods are model-independent and can be considered as global 

measures of importance because the input vector can be varied over the whole range of 

variation. A key advantage of these methods is that they allow for the identification of 

potentially complex dependencies. An understanding of the nature of the dependencies 

between inputs and outputs can guide the selection of other appropriate sensitivity 

analysis methods. Popular graphical methods for sensitivity include scatter plots, radar 

graphs, cobwebs also known as parallel coordinates plots, (Saltelli, et al., 2000a; 

Holden, 2004; Holden and Keane, 2004). Scatter plots enable to identify correlations 

between input and output variables. They can also be arranged in a matrix form to 

enhance the comparison between all variables. Radar graphs and cobwebs share the 

same principle: the variables are represented on different coordinate axes. In the former, 

the radial axes are arranged evenly while in the latter the axes are parallel. These 

graphical methods are used to identify groups of design vectors or particular behaviour 

in the data sample. Permutation of axes can sometime facilitate the visualization. These 
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basic graphical methods are often used as a first step in other sensitivity analyses such 

as regression analysis and response surface methods. A clear disadvantage of graphical 

methods is that they become inconvenient for large number of inputs and large data 

samples. 

 Another interesting technique for understanding relationship between inputs and 

outputs is the Self-organizing map (SOM) developed by Kohonen (2000). SOM is an 

efficient technique for visualizing multidimensional data. The SOM consists of neurons 

positioned on a low dimensional regular grid and described by an N-dimensional 

prototype vector in the high dimensional space. These neurons are trained on a set of 

data and their prototype vectors are iteratively updated to best describe the set of data. 

In the high dimensional space, the SOM can be seen as a net that unfolds onto the 

training set. The nodes of the SOM in the high dimensional space correspond to a fixed 

map unit in the component plane. That is, the SOM allows to project a high dimensional 

space onto a two dimensional components map. In the component plane, the position of 

the map units is arbitrary but the relative position between these maps is meaningful. 

This representation allows the visualisation of many inputs at once and to get an insight 

into their relationships (Holden, 2004; Holden and Keane, 2004). SOM can also be used 

for classifying large amount of data and identify possible clusters and similarities 

between data points (Vesanto, 1999).  

 

2.1.4 Derivatives 
 In MDO problems, local SA is often performed through computation of partial 

derivatives. For the designer, local sensitivity analysis is of great use with regard to an 

MDO problem. The aim is to provide an insight into the model behaviour in the vicinity 

of a point of interest and give directions in the design space where optimisation should 

be carried out to obtain a better design. For complex mathematical models, these partial 

derivatives must be evaluated numerically. In the case of high fidelity models with large 

number of variables, obtaining the outputs gradient can be very expensive. However, 

when automatic differentiation can be used, obtaining the derivative for SA becomes 

more efficient (Frey and Patil, 2000). Many sensitivity analysis techniques based on 

calculation of partial derivatives are developed for specific problems and applications 

(Gumbert et al. 2001; Sobieszczanski-Sobieski, 1990). 
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 Local sensitivity analysis performed with partial derivative can be viewed as a 

particular case of one-factor-at-a-time approach. When one factor is varied, all the 

others are held constant. The local sensitivity index jS can be expressed as follows: 

 

j
j X

YS
∂
∂

=                                                          (2.1) 

 

where Y  is the response output, jX  is the input factor of interest and ( )00
2

0
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is the nominal value for the input vector. However, the relative contribution is more 

useful to compare the effects between all inputs (Saltelli et al. 2000a, 2000b). This can 

be achieved by multiplying the above sensitivity index (2.1) by a fraction of the mean 

value for the factor of interest on the mean value for the output response, resulting in: 
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or by multiplying the index by a fixed fraction of the standard deviation: 
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 Saltelli et al. (2000a) advise not to use such an approach when the model is 

known to be highly non-linear. 

 

2.1.5 Regression analysis 
 In regression analysis (Hines and Montgomery, 1980; Kennedy and Neville, 

1986; Mason et al., 2003; Saltelli et al. 2000a), the user typically tries to fit a linear 

relationship between input and output variables of the following form: 

 

      1j 0 i ij j
i

y b b x , i ,...,Nε= + + =∑                            (2.3) 
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where j  corresponds to the number of runs, ib  are the coefficients of the regression and 

jε is the error that is due to the linear approximation of the model. A least square 

analysis is commonly used to compute the ib . The coefficient of determination is 

defined by:  
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where y  is the mean of the sample and iŷ  represents the estimates of iy  given by the 

linear regression. It indicates how well the model outputs can be predicted by the linear 

regression. A value close to one attests good performance. Linear regression can be 

used for SA in different ways. One of them is to use it to predict new values for the 

model under consideration. Another one is to investigate the coefficients to determine 

their statistical significance and the intervals of confidence of the regression. When the 

inputs are statistically independent, the study of the coefficients enables to understand 

the importance of the effect of each input on the output. Indeed, the regression 

coefficients jb  can be used for sensitivity analysis since they quantify the effect of each 

input factor on the output response. In some cases, it might be necessary to rewrite the 

linear regression in a standardized form to facilitate the comparison between inputs. 

Other variants of the linear regression analysis can be obtained through variables 

transformations or output response transformations. Regression analysis is based on the 

assumption that inputs are statistically independent and that the residuals are normally 

distributed. If these assumptions are not valid, the regression analysis will provide 

erroneous quantitative information about the sensitivity of the model (Frey and Patil 

2002).  

 

2.1.6 Response surface methodology 
 In the response surface methodology (RSM), the response of the model is 

approximated with an analytical function: 
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( )y f ε= +x                                                       (2.5) 

 

where ε  represent the error term and correspond to the output part that cannot be 

described by f . Linear regression can be considered as linear response surface (Myers 

and Montgomery, 1995). The error term is modelled as a random variable and therefore 

the response itself can be considered as a random variable, even if the model under 

consideration is strictly deterministic. RSM is often employed in optimisation when the 

current model response is expensive to compute. 

 One popular form for the analytical function is a quadratic polynomial (Myers 

and Montgomery, 1995; Mason et al. 2003). The response surface, referred as second-

order, is then represented by: 

 
1

2
0

1 1 1 1

N N N N

i i ii i ij i j
i i i j i

y x x x xβ β β β ε
−

= = = = +
= + + + +∑ ∑ ∑ ∑ .                        (2.6) 

 

The ( 1)( 2) 2N N+ +  coefficients of the second order polynomial are determined using 

the least square method over a number of sampled points. The entire method for 

obtaining the polynomial coefficients is described in detail in Myers and Montgomery 

(1995) and Mason et al. (2003). The presence of second order terms enables the 

description of interactions between input variables. As for linear regression, statistical 

test can be performed on the coefficients of the quadratic response to study their 

significance and effects on the output response (Myers and Montgomery, 1995; Frey 

and Patil 2002).  

 Another popular response surface methodology is the DACE (Design and 

Analysis for Computer Experiments) methodology (Sacks et al., 1989a, 1989b) also 

known as Kriging in geostatistics. A Kriging model is an interpolation model which 

expresses the realization of a deterministic process as the sum of the realization of a 

regression model and random function (stochastic process): 

 
� ( ) ( )y F z= +x x ,                                                    (2.7) 
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where F is a low order polynomial and the random process z is assumed to have mean 

zero and covariance: 

 
2Cov( ( ), ( )) ( )i j i jZ Z ,= σx x x xR                                         (2.8) 

 
where σ2 is the process variance. The correlation model R is defined by: 

 

( ) ( )
N

i j i j
l l l l

l=1

, , x x= θ −∏x xR R .                                         (2.9) 

 

A variety of correlation functions is available but the most popular correlation model 

remains the Gaussian function: 

 
2( ) ( ( ) )i j i j

l l l l l l l, x x exp x xθ − = − θ −R .                                (2.10) 

 

The hyperparameters θl are determined by fitting the Kriging model to a training 

sample. This is performed by maximising the likelihood of the training sample (Jones et 

al., 1998; Lophaven et al., 2002a). In a Kriging model, the correlation component 

accounts for interactions between variables that cannot be captured by the regression 

model. 

 For both types of response surface presented, the ability to predict a good model 

response is restricted to the input ranges of variation used to obtain the data sample on 

which the function was fitted. 

 The main disadvantage with this type of methodology is that depending on the 

number of inputs, the range of variation and the complexity of the model to 

approximate, obtaining an appropriate training sample might be very expensive. A clear 

advantage is that once a suitable response surface is obtained, a computationally 

expensive model is reduced to a more affordable one which makes this method very 

attractive for MDO purposes. 
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 Sensitivity information can be obtained by studying the values of the parameters 

or by simply performing other types of sensitivity analysis on the reduced model (Frey 

and Patil 2002). 
 

2.1.7 ANOVA 
 ANOVA is a statistical method performed on a sample of data, to test hypothesis 

on the influence of parameters on the output response (Hines and Montgomery, 1980; 

Kennedy and Neville, 1986). Note that it is different from the regression analysis as no 

model is given to explain the relationships between inputs and outputs (Frey and Patil 

2002). ANOVA is a non-parametric and model independent method used for sensitivity 

analysis to determine if the values of the output vary in a statistically significant manner 

associated with variations in values for one or more inputs. The exact nature of the 

relations is not determined by ANOVA. The significance of the output response to 

changes in inputs is usually assessed with the F-test (Kennedy and Neville, 1986).  

 The main advantage of ANOVA is that no assumption is needed regarding the 

type of underlying model and both continuous and discrete inputs can be analyzed. Only 

assumptions for normal distribution of input factors and output responses are required. 

However, its main drawback is that it can become computationally expensive if the 

number of inputs is very large.  

 

2.1.8 Screening sensitivity analysis: Morris method 
 Screening methods are used with computationally expensive models to identify 

the most influential input parameters in order to freeze or screen out insensitive 

variables, resulting in a reduction of the problem dimension and complexity. The 

knowledge gained about the model is only used to simplify the problem for further 

investigation. Screening methods are mainly sampled-based methods where the 

contribution of each factor to the response variation can be assessed. A good approach 

is to use a design of experiments where all factors are varied. It allows the evaluation of 

the main effect of each factor on the response and the effect of the interaction between 

factors. As a drawback, methods used exclusively for screening provide only qualitative 

sensitivity measures, allowing to rank the input factors in order of importance but do not 
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give useful quantitative information on the importance of the contribution of each factor 

to the output variation. 

 A popular screening method is the Morris method (Morris, 1991; Campolongo, 

1999). This method determines which input factors may be considered to have effects 

which are: 

 

• Negligible 

• Linear and additive 

• Non-linear or involved in interaction with other factors 

 

The experimental plan proposed by Morris is composed of individually randomised 

one-at-a-time experiments designed to evaluate the impact of changing one factor at a 

time: its elementary effect. Consider a computational model for which an output y  is a 

deterministic function of an input vector x  of N  inputs denoted by 1 2 3, , ,..., Nx x x x  

where 0 1ix≤ ≤  for 1,...,i N= . The design space is defined by the N-dimensional 

hypercube ( \ 0 1, 1,..., )N
iK x x i N= ≤ ≤ = . In the method of Morris, each input factor 

can only take a discrete number of values, called levels, which are chosen within the set 

{0,1/( 1),2 /( 1),..., ( 2) /( 1),1}p p p p− − − − . The region of experimentation Ω  is then 

represented by an N-dimensional p-level grid as illustrated in Figure 2.3. 

 

 
Figure 2.3: Representation of the p-level grid for p=5 
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The elementary effect for the ith input is defined by: 

 

1 1 1[ ( ,..., , , ,..., ) ( )]( ) i i i N
i

y x x x x x y xd x − ++ Δ −
=

Δ
                             (2.11) 

 

where Δ  is a predetermined multiple of 1/( 1)p −  and 1 2( , ,..., )Nx x x x=  is any selected 

value of the k-dimensional p-level grid Ω  such that the transformed point ( )ix e+ Δ , 

where ie  is a vector of zeros with a unit as its ith component is still in Ω  for each index 

1...i N= . The finite distribution of elementary effects associated with the ith input factor, 

is obtained by randomly sampling different x  from Ω  and is noted iF . The total 

number of elements of iF  that can be computed is given by: 
 

1[ ( 1)]Np p p− − Δ −                                                (2.12) 

 

 The distribution of the absolute value of the elementary effects namely iG  is 

also considered as it enables to assess the contribution of each input in the case where 

the elementary effects can take both positive and negative values and therefore cancel 

each other, leaving the experimenter with no real insight into the model sensitivity. In 

his original work, Morris (1991) proposes to use both μ and σ , respectively the mean 

and the standard deviation of iF  as measures of sensitivity. However, because of the 

adverse cancellation effect, μ on its own is not reliable for ranking inputs according to 

the importance of their contribution to the output variation. Instead, the mean value for 

iG , noted μ∗ , is a better index to detect input factors with an important overall 

influence on the output. σ  is used to detect factors involved in interaction with other 

factors or whose effect is non-linear. 

 The method of Morris is economic in the sense that it requires a number of 

model evaluations that is linear in the number of factors because input factors are varied 

one at a time. As a drawback, the method relies on a sensitivity measure, called the 

elementary effect, which uses incremental ratios and is apparently a local measure. 

However, the final measures μ  and μ∗ , are obtained respectively by averaging 
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elementary effects and their absolute values computed at different points of the design 

space, so as to lose the dependence on the specific point of the design space at which the 

elementary effects are computed. In this sense, since the average is made over the whole 

sample of points from the design space, the method can be regarded as a global 

sensitivity analysis method. In his paper, Morris (1991) compares his factorial sampling 

method with classical experimental designs and reports that the latter are much more 

expensive when the number of input factors is important. Added to its cheap 

computational cost, another advantage of the method of Morris is that its design does 

not rely on any assumptions of the model and is therefore model independent.  

 The Morris method is a qualitative method in the sense that the information 

given by ( , )μ σ  or ( , )μ σ∗  is only used to rank the input factors according to the 

importance of the contribution they make to the output. It is then used as a screening 

method to identify and discard non-significant input variables from the model under 

study. The information obtained with the Morris method is more general with respect to 

an elementary OAT method. Indeed, even if the sensitivity results are based on the 

evaluation of an elementary effect computed by varying each factor one at a time, the 

averaging on different values obtained over sampling grid gives a picture of the whole 

design space and makes the method global. As an advantage of its one-at-a-time 

heritage, the method of Morris remains relatively cheap and the number of runs required 

is given by: 

( 1)r N +                                                         (2.13) 

 

where N  is the number of inputs and 5 15r≤ ≤  is the number of local measures of the 

elementary effect that are averaged. 

 

2.1.9 Global sensitivity analysis: variance-based methods 
 Variance-based methods (VBM) are rigorous and theoretically sound approaches 

for total sensitivity calculation (Saltelli et al., 1993, 1999, 2002; Chan et al., 1997; 

Homma and Saltelli, 1996; Saisana et al., 2005). Variance-based approach for 

sensitivity analysis decomposes the output variance into partial variances of increasing 

dimensionality: 
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1,2,3,...,( ) ...i ij k
i i j

V Y V V V
≠

= + + +∑ ∑                                    (2.14) 

where 

)]/([ *
iii xXYEVV ==                                              (2.15) 

 

 

jijjiiij VVxXxXYEVV −−=== )],/([ **                              (2.16) 

and so on. 

 In the decomposition of the variance, the term ijV  is the interaction effect 

between ix  and jx . ijV  represents the part of the output variation due to input 

parameters ix  and jx  which cannot be explained by the sum of the first order effects of 

parameter ix  and jx . Similar considerations can be made for higher order terms. 

 In the expression )]/([ *
ii xXYEV = , the expectation is calculated over all 

variables jX  with ji ≠  and the variance is calculated over the values of iX . 

)/( *
ii xXYE =  is a function of iX  and for an influential factor its value will vary a lot 

with iX  resulting in a large value for the variance )]/([ *
ii xXYEV = . Therefore, the 

usefulness of )]/([ *
ii xXYEV =  as a measure for sensitivity analysis is easy to grasp.  

 The signification of  )]/([ *
ii xXYEV =  is derived from the note-worthy 

equation: 
 

* *( ) [ ( / )] [ ( / )]i i i iV Y V E Y X x E V Y X x= = + =                         (2.17) 

 

which can be rewritten as 

 
* *[ ( / )] ( ) [ ( / )]i i i iE V Y X x V Y V E Y X x= = − =                         (2.18) 

 

The term *[ ( / )]i iE V Y X x=  is the expectation of the variance of Y  when the input iX  

is frozen. It results that )]/([ *
ii xXYEV =  is the actual reduction of the output variance 

that one can expect if one fixes the input iX  to a particular value. The term ijV  
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represents the part of )],/([ **
jjii xXxXYEV ==  that cannot be explained by the sum of 

the first-order terms iV  and jV .  

 Let iX −  be the vector made up of all jx  with ij ≠ and let *
ix−  be a particular 

value of iX − . )]/([ *
ii xXYEV −− =  is the contribution to the output variance that is not 

due to i. It means that the difference )]/([)( *
ii xXYEVYV −− =−  is equal to the sum of 

all terms in the variance decomposition that include iX . Two coefficients of main 

interest for sensitivity can be defined: 

 

• The main effect index: 
)(

)]/([ *
1

YV
xXYEV

S ii
i

=
= . This gives the first-order 

contribution of iX  to the output response. 

 

• The total effect index: 
)(

)]/([)( *

YV
xXYEVYV

S iiT
i

−− =−
= .  This gives the 

total contribution of iX  to the output response. 

 

 The first term gives the direct contribution of each variable to the output and the 

second term gives the total contribution. For each input, the difference between its total 

effect and its main effect gives an indication of the importance the contribution to the 

output due to interactions with other inputs. Therefore, both the main effect indices and 

total effect indices are necessary to obtain information about the non-additivity of the 

model and on the relative importance of variable interactions. Together, the main effect 

terms and total effect terms give a good description of the sensitivity of the model under 

investigation. An illustration of the use of variance-based method is given in Figure 2.4 

where a model with three input variables and one output is considered and its variance 

is decomposed into the different contributions.  

 Variance-based methods are thought to be good candidates for potential global 

sensitivity analysis in MDO. Indeed, they present desirable properties for sensitivity 

analysis of complex models: 
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• These methods are model independent. No assumption on linearity or 

additivity of the model is required to apply them. It is particularly 

interesting for MDO problems where models are usually very complex 

and highly non-linear  

• Very few assumptions on variables are necessary. They must be 

independent. In an MDO problem, variables are independent and could 

be varied on the whole design space. 

• These methods can deal with both discrete and continuous variables 

which add to their flexibility 

• Give a better insight into the design as input contributions are considered 

all together and not one-at-a-time as in a traditional sensitivity analysis 

•  Give quantitative information on the influence of each input factor to 

help the designer identify the most influential variables, on which the 

computational effort can be concentrated, and the non-sensitive variables 

which can be discarded or frozen to a specific value 

 

 
Figure 2.4: Typical output variance decomposition 
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 Two main methods, Fourier Amplitude Sensitivity Test (FAST) and Sobol, have 

been developed to compute the different terms of the variance decomposition and are 

described in the two next sections. Based on two different approaches, they enable to 

compute both main and total effect indices and lead to the same predictions. 

 

FAST and FAST Extended 
 The FAST method enables the estimation of the first order partial variances iV  

as well as the total output variance V and hence first order sensitivity indices iS . The 

key idea underlying the method is to compute an integral in a N-dimension space 

through a non-dimensional integral (Cukier et al., 1978; Saltelli and Bolado, 1998). Let 

the function 

 

1 2( ) ( , ,..., )Ny f f x x x= =x                                       (2.19) 

 

be defined in the N-dimensional unit hypercube: 

 

( \ 0 1,  1,..., )N
iK x i N= ≤ ≤ =x                                    (2.20) 

 

Consider the set of transformations: 

 

(sin( ))i i ix g sω= ⋅ , 1,...,i N=                                   (2.21) 

 

This set of parametric transformations allows each factor to be varied in its range, as the 

new parameter s  is varied from −∞  to +∞ . The parametric equations define a curve 

that systematically explores the whole input parameter space. Note that the output 

function y  is now expressed as a function of the parameter s  only: 

 

1 2( ( ), ( ),..., ( )) ( )Ny f x s x s x s f s= =                               (2.22) 
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If iω  is chosen so that the set of frequencies 1 2{ , ,..., }Nω ω ω  is linearly independent, i.e. 

no iω  may be obtained as a linear combination of the other frequencies with integer 

coefficients, summary statistics on the output can be computed by integrating either 

over the design space or along the curve itself. A set of k  points usually equally spaced 

along the line is necessary for the evaluation of the set of main effect indices. A Fourier 

analysis of the output function f  considered as a function of s  is performed. The 

spectrum 2( )ωΛ  of ( )f s at each frequency ω  is computed by: 
 

2 2 2A BΛ = +                                                    (2.23) 

where 

1( ) ( )cos( )
2

A f s s ds
π

π

ω ω
π −

= ∫                                      (2.24) 

1( ) ( )sin( )
2

B f s s ds
π

π

ω ω
π −

= ∫                                       (2.25) 

 

are integrals numerically evaluated over s . Finally, the iS ’s are obtained by computing 

the ratio between iV  and V , which are estimated according to: 

 

2

1

2 ( )i i
p

V pω
+∞

=

= Λ∑                                                (2.26) 

2

1

2 ( )j
j

V pω
+∞

=

= Λ∑                                                (2.27) 

 

 An extended version of this method, FAST Extended, enables to obtain both iS  

and T
iS by choosing a very high value for the frequency iω  and low values for all other 

frequencies iω− ’s. By evaluating the Fourier spectrum for low frequencies only, the 

total effect index T
iS  can be estimated, whereas the first order effect index is evaluated 

as in the classical FAST. 
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Sobol Indices 

 Let a mathematical model output y described by a function ( )y f= x  where 

1( ,..., )Nx x=x , and is defined in a unit N-dimensional hypercube: 

 

( \ 0 1,  1,..., )N
iK x i N= ≤ ≤ =x                                 (2.28) 

 

Under certain assumptions (Sobol, 1993, 2001), it is possible to decompose ( )f x  into 

2 1N −  summands of increasing dimensions: 
 

1

1 0 1,2,..., 1 2
1 1

( ,... ) ( ) ( , ) ... ( , ,..., )
N N N

N i i ij i j N N
i i i j

f x x f f x f x x f x x x
−

= = <
= + + + +∑ ∑∑    (2.29) 

 

where 0f  is a constant defined as 0 ( )
NK

f f d= ∫ x x  and represents the mean value of f  

over NK . The integral of every summand over any of its own variables is zero: 
 

1 1

1

,...
0

( ,..., ) 0
s s ni i i i if x x dx =∫ , 1 n s≤ ≤                                 (2.30) 

 

Note that the decomposition into summands can be easily generalised to groups of input 

factors with no intersection. The total variance of ( )f x  can be written as : 

 
2 2

0( )
NK

V f dx f= −∫ x                                            (2.31) 

 

while 

1 1 1 1

1 1
2

,..., ,...,
0 0

... ( ,..., ) ...
s s s si i i i i i i iV f x x dx dx= ∫ ∫                                 (2.32) 

 

At this point, the sensitivity estimates can be introduced by: 

 

1

1

,...,
,...,

s

s

i i
i i

V
S

V
=                                                 (2.33) 
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The terms 
1,..., si iS ’s can be considered as natural sensitivity estimates, as they give the 

fraction of the total variance of ( )f x  which is due to any individual parameter or 

combination of parameters. The applicability of these estimates is related to the 

possibility of evaluating the multi-dimensional integrals using Monte-Carlo methods. 

Estimates of sample mean and variance are given by: 
 

0
1

1ˆ ( )
k

m
m

f f x
k =

= ∑                                               (2.34) 

 

2 2
0

1

1ˆˆ ( )
k

m
m

V f f x
k =

+ = ∑                                            (2.35) 

 

where mx  is a sampled point in the space kK  and N  the size of the sample. The partial 

variances iV  needed to compute the main effects are evaluated by: 

 

2
0

1

1ˆˆ ( , ) ( , )
k

i im im im im
m

V f f u x f v x
k =

+ = ⋅∑                             (2.36) 

 

where u  and v  denote different realisations of the vector 1 1 1( ,..., , ,..., )i i Nx x x x− + . 

Basically all variables are re-sampled but ix . As  

 

,i i i iV V V V− −= + +                                            (2.37) 

,
T

i i i i iV V V V V− −= + = −                                        (2.38) 

 

Similarly, the total effect index of ix  can be computed by evaluating  

 

2
0 1 1 1 1 1 1

1ˆˆ ( ,..., , , ,..., ) ( ,..., , ' , ,..., )
k

i m i m im i m Nm m i m im i m Nm
m

V f f x x x x x f x x x x x
k− − + − ++ = ⋅∑   (2.39) 

 

where only ix  is re-sampled. 
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Comparison between FAST/FAST Extended and Sobol 
 Comparisons have been conducted in the literature to assess their advantages 

and drawbacks (Homma and Saltelli, 1996; Campolongo et al., 1999; Saltelli and 

Bolado, 1998; Saltelli et al., 1999). Evaluation of both methods for computing both 

main and total indices iS  and T
iS  is summarised as follow: 

 

Pros of FAST Extended: 

• FAST Extended is cheaper than Sobol’ to predict both main and 

total effects 

• Relatively independent of the sample size 

 

Cons of FAST Extended:  

• Computationally expensive as a large sample is required for 

computing the integrals 

• Problem of interference when defining the frequencies iω . If 

poorly chosen, when the main order effect of one input is 

evaluated, a fraction of the contributions of other inputs might be 

added 

• Poor ability to compute high order indices 

 

Pros of Sobol’ method: 

• Stable predictions if sample large enough 

• Efficient at predicting total effects 

• Possibility to compute high order effect indices 

 

Cons of Sobol’ method: 

• Very dependent on the sample size 

• Computationally more expensive than FAST Extended 

 

 The main feature of variance-based methods is that they give a means to obtain 

quantitative information about the importance of the contribution of each input to the 
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model output. FAST Extended and Sobol’ method used to compute variance-based first 

order and total indices are “large sample-based” methods which may render this 

approach non-viable for computationally expensive models with large number of inputs. 

A large number of model evaluations is required to compute numerically the different 

integrals derived in the previous section. A summary of the amount of model 

evaluations required to carry out the different sensitivity analysis is given in Table 2.1. 
 

 SA Method 
Number of model evaluations 

(Model with N  inputs) 

Local SA OAT N  

Morris 
( 1)r N +  

where 5 15r≤ ≤  number of local measures 

FAST 

(to obtain iS ’s only) 

kN  

where 100 10000k≤ ≤ sample size 

FAST Extended 

(to obtain iS  and T
iS ) 

kN  

where 100 10000k≤ ≤  sample size 

Global SA 

Sobol’ 

(to obtain iS  and T
iS ) 

2( 1)N k+  

where 100 10000k≤ ≤  sample size 

 
Table 2.1: Number of model evaluation for model-independent sensitivity analysis methods 

 

 Compared to FAST, with the FAST Extended method, both indices iS  and T
iS  

can be obtained with no additional cost.  

 At this point it is important to note that for both quantitative methods, FAST 

Extended and Sobol, the number of runs is proportional to k  the number of inputs. It 

means that in the case of a model with a large number of inputs, a cheap preliminary 

screening sensitivity analysis, like Morris method, could be used to discard non-

significant factors and save a large number of model evaluations when it comes to 

applying global sensitivity analysis. 

 A representation of sensitivity analysis classes, given in Figure 2.5, is proposed 

in Campolongo et al. (1999) to illustrate the trade-off the designer has to make between 

the information he wants to obtain and its computational cost. Note that in this 
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representation, the cost of each sensitivity analysis method is referred to the number of 

times the model must be executed.  

 
Figure 2.5: Representation of information vs cost for model-independent sensitivity analysis 

 

2.2 Multi-objective optimisation problem 
2.2.1 Formulation 

 The aim of a multi-objective optimisation problem is to find a vector of the 

design space that optimises a set of objectives and meets a set of constraints. The 

objective functions are the quantities that the designer wishes to maximise, minimise or 

match a certain value. The mathematical problem in standard form for minimisation can 

be formulated as follow: 
 

 Minimise: { }1 2( ) ( ) ( ) ( )Mf , f ,..., f=f x x x x  (2.40) 

 Subject to: ( ) 0ig ≤x ,  1,...,i L=  (2.41) 

  ( ) 0jh =x , 1j ,...,K=  (2.42) 

  u
ll

l
l xxx ≤≤  1,...,l N=  (2.43) 
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where x  is the design vector with N  variables, ( )f x  is the objective vector with 

M objective functions, g  and h are respectively the inequality and equality constraints 

on the design vector, and the constraints (2.43) are called boundary constraints. An 

input vector is said to be feasible if all the constraints are satisfied. 

 When M = 1, there is only one objective function to minimised and the problem 

is referred as single-objective optimisation. In this case, classic optimisation methods 

(Siddall, 1982) or evolutionary methods (Rao, 1996) such as Genetic Algorithm or 

Simulated Annealing can be used to solve the problem. When M > 1, the problem is 

known as multi-objective optimisation. In this case, minimising several objectives at the 

same time might not be possible and the concept of Pareto solution must be introduced. 
  

2.2.2 Pareto concept 
 Solving a multi-objective optimisation problem with conflicting objectives 

usually does not have a unique solution, but a set of non-dominated solutions also 

known Pareto solution. Pareto optimality is an important concept for multi-objective 

optimisation. A feasible design point is said to be Pareto optimal if no other feasible 

design can improve some of the objectives without simultaneously being detrimental to 

others. In the literature, the set of non-dominated solutions is referred to as Pareto 

surface or efficient frontier. In the case of the minimisation problem formulation 

presented above, a Pareto point is defined as: 

 

*x  is Pareto ⇔  no feasible x  such that 
( ) ( )  for all 1

( ) ( )  for  1
i i

j j

f f i ,...,M

f f j M

∗

∗

⎧ ≤ =⎪
⎨

< ≤ ≤⎪⎩

x x

x x
 

 

 

2.2.3 Obtaining Pareto solutions  
 The growing interest for multi-objective optimisation required the development 

of specific methods to obtain solutions of such a problem. A large range of methods is 

available. Reviews and comparative studies are also presented in the literature (Marler 

and Arora, 2004; De Weck, 2004). De Weck distinguishes between two main types of 
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methods: those based on a reformulation of the problem into a single objective 

optimisation and those based on the dominance of Pareto solutions.  

 In the first group of methods, the approach is to reformulate the original problem 

into a single objective optimisation to make use of classic single criterion optimisation 

methods. In its simplest formulation, the single objective takes the form of a Weighted 

Sum of objectives. However, it was demonstrated that such a method has limitations to 

capture non-convex parts of the Pareto set (Das and Dennis, 1997). More recently, a 

scalarization using utility functions, also referred as a class function, was proposed by 

Messac: Physical Programming method (Messac, 1996; Messac and Ismail-Yahaya, 

2002, Messac and Mattson, 2002). Other popular methods making use of the 

reformulation into a single objective optimisation problem are the 

- Constra intε Method (Palli et al. 1998), the Goal Programming, Compromise 

Programming (Tappeta and Renaud, 1999).  

 In the second group, multi-objective optimisation methods are based on the fact 

that the Pareto solutions are non-dominated. The simplest method explores the design 

space by performing an extensive grid search with possible use of surrogate models 

(Shan and Wang, 2005; Wilson et al. 2001) and filtering to select non-dominated points. 

Such method only enables to get an approximation of the Pareto front and may not be 

affordable in the case of a computationally expensive model. Two other methods have 

attracted an increasing interest: the Normal Boundary Intersection (Das and Dennis, 

1998) and Multi-Objective Genetic Algorithm (MOGA) (Deb, 2001). The NBI allows to 

obtain evenly spread Pareto solutions of the efficient frontier. However, for complex 

problems it can converge to local optima which results in a reduced representation of 

the Pareto front. MOGA has the adverse feature of clustering the solutions in a 

particular region of the objective space, which can lead to a non-uniform representation 

of the Pareto front.  

 Parallel to the current study, a sophisticated method for obtaining an improved 

description of the Pareto surface was developed at Cranfield University in the same 

research group (Fantini, 2007; Fantini et al., 2007; Guenov et al. 2005; Utyuzhnikov et 

al., 2005). This multi-objective optimisation tool also referred as calculation engine 

allows to set up and find solutions to an arbitrary continuous multi-objective 

optimisation problem. The calculation engine is capable of determining well-distributed 
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Pareto points by reformulating the multi-objective optimisation problem for each of the 

Pareto points sought. Furthermore, it has the unique feature of determining both the 

global Pareto front as well as local Pareto fronts when present. This tool was used to 

obtain Pareto solutions of the multi-objective optimisation problems considered in the 

present research. 

 The focus of this research is not on Pareto solution generation but on sensitivity 

analysis. Therefore, these methods are not discussed in detail further. 

 

2.3 Pareto frontier exploration and sensitivity analysis for 
decision making 

 The inherent difficulty in solving a multi-objective optimisation problem makes 

generating the entire Pareto set a complicated task. In their paper, Ruzika and Wiecek 

(2005) make a comprehensive survey of methods developed to approximate part of 

the/the entire Pareto set. They distinguish between techniques developed exclusively for 

bi-criteria optimisation problems and those developed in the more general case of multi-

objective optimisation. Within each category, they propose a classification based on the 

type of approximation. Methods of 0th order approximate the Pareto front by generating 

a reduced number of Pareto optimal solutions. Methods of 1st and 2nd order approximate 

part of the/the entire Pareto front linking available Pareto solutions with line segments 

or quadratic curves. This section reviews some of these methods but focuses on those 

that provide sensitivity information of the Pareto set. 

 

2.3.1 Obtaining the sensitivity of Pareto solutions 
 A simple method to obtain sensitivity analysis of Pareto solution is proposed by 

Andersson (2002). In this paper, Andersson studies how each design parameter affects 

the solution of the multi-objective optimisation problem at different locations on the 

Pareto front. This method combines DOE and response surface methodology to obtain 

the sensitivity. Typically, once a Pareto solution is available in the objective space, a D-

optimal design DOE (Myers and Montgomery 1995) is centred on the corresponding 

point in the design space and a quadratic polynomial is used to build the response 

surface: 
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1
2

0
1 1 1 1

N N N N

i i ii i ij i j
i i i j i

y b b x b x b x x
−

= = = = +
= + + +∑ ∑ ∑ ∑                            (2.44) 

 

Sensitivity information is obtained by studying the variations of coefficients and the 

gradients of equation (2.44) along the efficient frontier. Sensitivity information is 

presented to the decision maker in the form of tables showing for each parameter the 

local effect at each Pareto point under consideration. Here no allowance is made to 

constraints that can be violated by moving away from the Pareto solution. This 

technique simply provides direct information on the relationship between objectives and 

parameters at different locations on the Pareto surface, and therefore at different 

locations in the design space. It gives an insight into how the influence of some 

parameters varies along the Pareto surface but does not allow to obtain new Pareto 

solutions. Such information allows the designer to learn more about the properties of the 

system under consideration. 

 Balbas et al. (2005) study the sensitivity of a Pareto solution related to a 

problem parameter. Based on the Karush-Kuhn-Tucker necessary condition for 

optimality, they derive first order derivatives with respect to the problem parameter. 

Balbas et al. studies how small perturbations of this parameter will affect the design 

variables and objectives of the current Pareto solution. Here, two types of sensitivity are 

investigated: the sensitivity in the design space and in the criterion space. 

 

2.3.2 Articulation of preferences  
 In the case of a convex bi-criteria optimisation problem, Li et al. (2003) try to 

approximate the entire Pareto surface with a hyper-ellipse of the form: 

 

1 1 2 2

1 1 2 2
1

min min

max min max min
f f f f

f f f f

ν ν
⎛ ⎞ ⎛ ⎞− −

+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
                                (2.45) 

 

where 1 2( )min maxf , f  and 1 2( )max minf , f  are the two end points of the Pareto surface in 

the criterion space. It is assumed that the Pareto surface is continuous and convex. Three 

points lying on the Pareto surface are necessary to derive equation (2.45). The two 
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extreme points are simply obtained by minimising objective f1 and f2 individually. A 

third point is obtained by minimising a weighted sum of both objective, for a 

combination of weight coefficients that is to be decided by the designer based on some a 

priori engineering knowledge of the optimisation problem. Once the three Pareto 

solutions are obtained, equation (2.45) can be solved for ν . Li et al. declare that a 

minimum of information (only three Pareto points) are needed to obtain a good 

approximation of the entire Pareto surface. The main advantages of the hyper-ellipse 

approximation are its simplicity and flexibility. An analytical description of the Pareto 

front can then be obtained. However, the approximation does not relate the point lying 

on the hyper-ellipse to the corresponding point in the feasible space. The hyper-ellipse 

approximation is used in Fadel and Li. (2002) to help decision-making of the designer 

when solving a bi-objective design problem. In this paper, they typically use the hyper-

ellipse approximation to offer the designer an insight in to the trade-off on the Pareto 

surface. It is simply used as a guideline for deciding on the Pareto solution that will suit 

best preferences of the designer that where not taken into account in the initial 

formulation of the optimisation problem. After the preference information returned by 

the designer, an optimisation procedure is carried out to obtain the corresponding value 

of the design variable in the design space. It is proposed to solve two types of 

optimisation problem. If one of the objective values is specified by the decision 

maker, 1 1( ) =f εx , it is used as a constraint and the -Constraintε Method is applied to 

solve for the other objective and design parameters. The optimisation problem is as 

follows: 

2min ( )f
x

x                                                        (2.46) 

subject to 

g ( ) 0x ≤i  = 1,...,i L                                                (2.47) 

1 1( )f ≤ εx                                                         (2.48) 

 

When the decision maker specifies values for both objectives 1 1( ) =f bx  and 2 2( ) =f bx , 

it is proposed to use a Goal Programming to solve for the deviation variables and input 

variables: 
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 1
2

j 1
min  ( + )  ,  = 1 or 2

p
p

j jd d p− +

=
∑

x
,                            (2.49) 

subject to 

( ) 0ig x ≤  = 1,...,i L                                                (2.50) 

( ) ,  = 1 or 2j j j jf d d b j− ++ − =x                                     (2.51) 

0 and 0,  = 1 or 2j jd d j− +≥ ≥                                     (2.52) 

0,  = 1 or 2j jd d j− +⋅ =                                             (2.53) 

 

In this method, the approximation is provided to the designer to help him/her make 

trade-off decisions and decide on a particular approximate compromise solution. The 

corresponding true Pareto solution is obtained after solving the optimisation problem. 

As a result, the error due to the hyper-ellipse approximation is eliminated. Note that in 

the case for the goal programming method, the result might exhibit an under or over 

achievement. This approach is applied to bi-criteria optimisation structural problem and 

performs well. Its use in the case of a non-continuous Pareto surface is also discussed. 

Compared to those obtained with the true Pareto front, the trade-offs given by the 

approximation might show a large discrepancy. However, this should not mislead the 

decision maker in his/her decision. As in the continuous case, the error due to the 

approximation is removed after the true Pareto solution closest to the decision maker 

preferences is obtained. It is shown that when using the Weighted Sum method to find a 

solution of the multi-objective optimisation problem, there is no relation between the 

preferences articulated by the designer before the optimisation and the results obtained. 

Indeed, the relative importance of the objectives of a Pareto solution obtained with a 

particular weighted sum does not correspond to the relation between the specified 

weight coefficients. 

 Similarly, in Kasprzak and Lewis (2001), the emphasis is put on the decision-

making process rather than on the approximation itself. In this paper, the efficient 

frontier is obtained by making use of an extensive grid search. It ensures that both 

convex and non-convex parts of the Pareto surface are captured and do not require the 

designer to articulate a priori preferences. A high order polynomial is used to fit the set 

of non-dominated solutions and obtain an analytical description of the entire Pareto 
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front. After the approximation is obtained, the designer starts making preferences about 

the solution of the problem, which results in scaling the criterion space. An immediate 

geometric consequence of the scaling is that the best solution with respect to the 

designer preferences is changed. A collinearity theorem is introduced and provides an 

immediate relationship between the preferences of the designer, i.e., the scaling factor k, 

the coordinates of the utopia point and the corresponding optimum design. In the two 

objectives case where the scaling is on f1, the relationship is a follows: 

 

2 2 2

1 1

( )u

u

f f fk
f f

′−
=

−
                                                (2.54)  

where f1u, and f2u correspond to the particular values obtained from the individual 

minimisation of objective f1 and f2 respectively. In the criterion space, the point defined 

by the coordinates (f1u,f2u) is called utopia point. 2f ′  is the derivative of f2 expressed as 

a function of f1. Another method named contour space and developed by Kasprzak and 

Lewis (2000) relates the information on these results obtained in the criterion space to 

the design space. 

 A consensus among researchers working in multi-objective optimisation is that 

it can be difficult to come up with meaningful preferences between objectives before the 

optimisation process. It is argued in Fadel et al. (2002) that articulating preferences 

once a good description of the set of efficient solutions is obtained is preferable. 

Information about the Pareto surface could be obtained to help the designer achieve a 

better trade-off solution of the problem under study than using method of a priori 

preference assignment. In their paper, Fadel et al. (2002) propose to investigate the 

robustness of a two-objective Pareto set, not related to the design variables but to the 

relative importance of the criteria. The sensitivity is studied by perturbing the initial 

multi-objective optimisation problem and minimising each objective individually. 

Assume the initial optimisation problem is formulated as: 

 

1 2min  ( ( ), ( ))f f
x

x x                                              (2.55) 

subject to 

∈ *x X                                                                  (2.56) 
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where *X is the set of all feasible design. The associated perturbed multi-objective 

optimisation problem is defined by: 

 

1 2min  ( ( ), ( ))f f
x

x x                                              (2.57) 

subject to 

1 1

2 2

( )

( )

f - f

f - f

∗

∗

≥ ε

≥ ε

∈ *

x

x

x X

                                                     (2.58) 

 

where 1f
∗  and 2f

∗  are the minimum values obtained for each objective when minimised 

individually. The resulting Pareto curve for the perturbed problem (2.57) and (2.58) is 

the truncated efficient frontier obtained for initial problem (2.55) and (2.56). However, 

the entire set does not need to be obtained. Instead, both objectives are also minimised 

individually for problem (2.57) to obtain information on the end point of the Pareto 

curve. The cost of such study is reduced as only four optimisation runs are required to 

obtain the Pareto curve end points. This technique is particularly attractive when the 

designer is interested in trade-off solutions lying near the extremities of the efficient set 

but otherwise shows limited usefulness. 

 

2.3.3 Understanding local trade-off with Pareto 
approximation   

 The literature shows that the number of methods attempting to approximate the 

entire Pareto surface is quite small. This comes from the fact that for real life cases, the 

efficient frontier might be non-smooth, discontinuous, and therefore these techniques 

can only apply to very simple optimisation problems. An alternative approach is to 

focus on a few Pareto solutions available and try to obtain more information about the 

Pareto frontier by studying locally trade-offs between objectives.  

 An attempt to provide the designer with a local analytical description of the 

Pareto set is given by Zhang J. et al. (2000) and Wiecek et al. (2001). This follows the 

work carried out by the same authors (Chen et al., 1999) where an interactive procedure 

was suggested to solve a two-objective robust design problem with the assumption that 
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preferences of the decision-maker were not always taken into account in the utility 

function. In this paper, the authors perform robust optimisation and solve a bi-criteria 

problem where they attempt to minimise both mean and variance of the system under 

study. Here the Compromise Programming approach is used to generate the Pareto 

solutions. The efficient frontier is locally described with a utility function of the form: 

 

( )21 1 2 2 1 1 2 2
1( )  
2

q w f w f p f p f c= α − + + +f                          (2.59) 

 

where coefficients p1, p2 and c are completely determined by the value of both criteria at 

the utopia point and the combination of weights used to obtain the current Pareto point. 

The coordinates of the utopia points in the criterion space are the values obtained for 

objective f1 and f2 when minimised individually. This procedure is described in more 

detail in (Chen et al. 1999). Equation (2.59) defines a family or quadratic utility 

functions. In Zhang J. et al. (2000), the authors propose a method for determining the 

best value forα . More Pareto points are obtained near the candidate Pareto solution by 

solving -constrainedε problems. The best value for α  is the one that minimises the 

difference between the predicted and true values of the utility function (2.59) at the 

Pareto points located in the neighbourhood. The discrepancy between the true Pareto 

front and the approximation might be sensitive to the range of variation. In this case, an 

iterative procedure where the range is reduced progressively should allow to find a 

range where the approximation given by the utility function is acceptable. This method 

was tested on different simple test cases and showed that is could provide the designer 

with valuable local information about the Pareto surface. However, as previously, once 

new preferences are articulated by the decision maker, there is no easy way to obtain the 

corresponding value for the design parameters and like in Fadel and Li (2002), an 

optimisation problem must be solved. Although they illustrate it in the case of robust 

optimisation, the method could be easily adapted for bi-criteria optimisation problems. 

 More sophisticated approaches based the on gradient-projection method and 

feasible descent directions have been developed recently (Tappeta and Renaud, 1999, 

2001, Zhang, W.H. 2003a, 2003b). They enable to obtain the local trade-offs between 
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objectives on the Pareto surface and the effects of a perturbation of the Pareto solution 

on the design parameters.  

 Tappeta and Renaud (1999, 2001) propose an interactive procedure to study 

solutions of the multi-objective optimisation problem under consideration, taking into 

account the designer preferences. Assuming the objective and constraint functions are 

twice differentiable and that the set of active constraints does not change in the vicinity 

of the current Pareto point, they derive local linear and quadratic approximations of the 

Pareto surface of the form: 

 

*

1

d
d

M
p

p p i
ii

i p

f
f f f
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≠

= + Δ∑                                             (2.60) 
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= + Δ + Δ Δ∑ ∑                            (2.61) 

 

where ( )p
jkH are the components of the Hessian calculated on the Pareto surface. In their 

paper, they follow the Compromise Programming method to obtain Pareto solution, 

which leads to the following optimisation problem: 
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α  is a sufficiently small positive number, and the components of f  are aspiration 

levels and uf  is the utopia point. When a Pareto solution is available, it is presented to 

the designer. If not satisfied, s/he can decide to explore the neighbourhood of this point 

according to her/his preferences. First order directional derivatives on the Pareto surface 

are obtained to derive a linear approximation. To obtain the second order 

approximation, the Hessian is evaluated based on Pareto points generated in the 

neighbourhood of the point under study using least-squares minimisation. The designer 

uses the linear approximation of the Pareto surface to provide new aspiration levels. A 

two-step optimisation procedure performed with Compromise Programming method 

give new Pareto solutions. The prediction step uses linear approximation of objectives 

and constraints with respect to the design variables to predict an approximate Pareto 

point. The second step is a correction step where the approximate solution is projected 

onto the true Pareto surface by solving the initial Compromise Programming problem. 

A local quadratic approximation of the Pareto surface is obtained and allows the 

decision maker to explore the trade-offs in the neighbourhood of the candidate point. In 

Tappeta et al. (2000), the same approach is used, but Physical Programming is 

introduced to capture the decision maker preferences. In Tappeta et al. (2002), the 

interactive procedure for Pareto solution decision-making is applied to multidisciplinary 

engineering problems, namely hover-craft design and aircraft concept sizing and shows 

very promising results for MDO.  

 Zhang W. H. (2003a, 2003b) uses the same approach based on a gradient-

projection method to derive directional derivatives on the Pareto surface and study how 

improving one objective will impact the others. In the case of a two-objective problem, 

the directional derivative corresponds to the minimum amount one must sacrifice on 

one objective to improve the other one. However, in his paper, Zhang only considers 

first order directional derivatives and no general method for obtaining a local 

approximation of the Pareto surface is proposed. As part of the local exploration of the 

Pareto surface, Zhang W. H. also proposes to use linear approximation of the non-active 

constraints to ensure they remain satisfied when moving away from the Pareto point 

under study. In addition to the local linear approximation, Zhang W. H. also proposes 

an approach to detect non-differentiability of the Pareto surface related to changes in the 

set of active constraints. The approach is based on the Karush-Kuhn-Tucker condition 
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and the gradient-projection method. Zhang W. H. shows that perturbations from the 

current Pareto point in the criterion space can lead to changes in the coefficients of a 

weighted sum of the objective functions. It indicates a modification of the normal to the 

Pareto surface, which means that the Pareto surface is not smooth. Zhang developed the 

approach to identify non-differentiability along a direction but not in the general case. 

 

2.4 Summary 
 In this chapter, the context of the present research is introduced. First, the 

concept of sensitivity analysis is presented and various methods used in the field are 

described. Their applications, advantages and drawbacks are outlined. It is shown that 

variance-based methods offer several desirable properties for use in complex system 

design. Then, the multi-objective optimisation problem and the Pareto optimality 

concept are presented. The most popular methods for obtain solutions of such problem 

are briefly described. Finally, different techniques developed for obtaining sensitivity 

information of the Pareto front are reviewed. 
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Chapter 3 
3  A sensitivity analysis approach 

for an efficient multi-objective 
optimisation 

 
 In this chapter, requirements are specified and an approach is proposed for 

sensitivity analysis aiming to increase the efficiency of the multi-objective optimisation. 

First, the method used for reducing the number of variables of the optimisation problem 

is described. Second, the requirements for an improved method for approximating the 

Pareto surface are outlined.   

   

3.1 Reducing the dimensionality of the optimisation problem 
 In Kim et al. (2004), variance-based methods (VBM) are used to identify and fix 

non-significant random variables through an adaptive procedure for reliability-based 

optimisation. It enables them to reduce the number of simulations required to construct 

the stochastic response surface required for uncertainty propagation. In this adaptive 

procedure, the reduction of the number of variables is carried out locally when a high 

order stochastic response surface is constructed. To the author’s knowledge, the 

possibility of using VBM to reduce the number of variables before solving a 

deterministic optimisation problem has not been explored yet. 
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3.1.1 Identifying non-significant inputs 
 In the context of MDO, we assume that the model, which evaluates the 

objectives and constraints of the optimisation problem, can be represented as a black-

box. This stands for the fact that the designer is unaware of the complex internal 

mechanisms of the model, which relate objectives and constraints to the input variables. 

The methodology developed in this general case can then be readily implemented for a 

more specific purpose. Let us consider the following multi-optimisation problem: 

 

 Minimise: { }1 2( ) ( ) ( ) ( )Mf , f ,..., f=f x x x x  (3.1) 

 Subject to: ( ) 0ig ≤x ,  1,...,i L=  (3.2) 

  ( ) 0jh =x , 1j ,...,K=  (3.3) 

  u
ll

l
l xxx ≤≤  1,...,l N=  (3.4) 

 

where 1( )Nx ,...,x=x  is the vector of independent variables. In the context of 

deterministic optimisation, it is also assumed that all variables have uniform distribution 

defined by a minimum and maximum bound. 

 In this approach, it is proposed to use VBM to evaluate the global sensitivity 

indices of each input with respect to all outputs. This allows to quantify the effect of the 

variations of the inputs on the outputs variance. Both main and total sensitivity indices 

described in chapter 2 are calculated. The discrepancy between these two indices 

represents the contribution to the output variance due to interaction effects among input 

variables. The main and total effects represent the minimum and maximum expected 

reduction of the output variance if the input is fixed to a specific value. Therefore, 

freezing an input variable with a negligible total sensitivity index will not affect the 

output variance.  

 It is proposed to remove from the original optimisation formulation a variable 

with a negligible effect on all objectives and constraints. When more than one variable 

is non-significant, the designer should consider these as a group of variables and see 

whether the sensitivity of the group is still below the significance threshold. Typically, 

this would imply performing another sensitivity analysis and resample the design space. 

Such procedure could be very expensive. Instead, it is recommended to make sure that 
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the sum of the group’s total indices remains below a particular threshold value. Without 

loss of generality, let us assume that the first R variables are non-significant to all 

objectives and constraints. The problem can be reformulated as follows: 
   

 Minimise: { }red 1 red 2 red red( ) ( ) ( ) ( )Mf , f ,..., f=f x x x x    (3.5) 

 Subject to: red( ) 0ig ≤x ,  1,...,i L=    (3.6) 

  red( ) 0jh =x , 1j ,...,K=    (3.7) 

  u
ll

l
l xxx ≤≤  1,...,l R N= +  (3.8) 

 

where red 1( )R Nx ,...,x+=x . All variables with negligible effect are fixed to a value 

*
m mx x=  for 1,...,m R= . 

 The approach is presented in the case of a multi-criteria optimisation, but the 

same considerations can be made when a single objective is optimised.  

 

3.1.2 Obtaining the sensitivity analysis indices 
 Two main methods exist to compute the sensitivity indices: Sobol and FAST 

Extended. Both require large samples to estimate accurately the indices. The numerical 

calculation techniques together with the sampling scheme are implemented in Simlab 

(Saltelli and Tarantola, 2003). 

 There is no clear answer on the size of the sample required. As mentioned in the 

literature review, FAST Extended can provide both main and total effect indices at a 

lower cost than Sobol method and therefore appear more efficient. However, its inherent 

complexity makes it very hard to implement if one does not use Simlab. Instead, Sobol 

is based on a more practical method for estimating the sensitivity indices. In the current 

implementation of Simlab, the sampling used to calculate the Sobol indices has a 

particular property that large samples re-use points from smaller samples. Therefore, an 

iterative procedure can be implemented. The user progressively increases the size of the 

sample until the estimate for the Sobol indices has achieved convergence. Such 

procedure cannot be carried out with the FAST Extended sampling scheme where it 

would require to regenerate the whole sample. 
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 When the model is too expensive, a possibility is to obtain a surrogate model on 

a small data sample. This enables to compute estimates of the sensitivity indices at a 

reduce cost. If the formulation of the surrogate model is explicitly known, the indices 

can be derived analytically. Chen et al. (2005) and Sudret (2006) have derived these 

formulas for Kriging models and Polynomial chaos expansions respectively. In this 

procedure, the designer is only interested in finding non-significant input rather than 

obtaining accurate quantification of the effect of significant inputs. Therefore, when 

inputs with negligible effect are present, they can be identified with relatively small 

samples. 

 Finally, one must keep in mind that the objective of the procedure is to save time 

during the optimisation process. To make the approach efficient, it is crucial that the 

total computational effort required performing the SA and the optimisation of the 

reduced problem remain significantly cheaper than the optimisation on the full problem.  

   

3.1.3 Freezing non-significant variables to a specific value 
 The question here is how to fix the non-significant variables. In design under 

uncertainty and robust design, a common practice is to fix non-significant variables to 

their mean value. However, this might not always be the most appropriate choice in the 

case of an optimisation problem. Their final impact on the solution of the optimisation 

problem is difficult to predict. In this research, the author came across some problems 

where fixing non-significant inputs variables to an arbitrary value could lead to a small 

degradation of the solution of the optimisation. A simple example is considered to 

investigate the effect of fixing a non-significant variable to an arbitrary value. 

 

Test optimisation problem: 

 

 Minimise: { }1 2( ) ( ) ( )f , f=f x x x  (3.9) 

 Subject to: 2 2 2
1 2 3( ) 1 0 2 0g x x . x= − − − ≤x  (3.10) 

  0 1lx≤ ≤  1,...,3l =  (3.11) 

where  

 1 1( ) (4 )f exp x=x  (3.12) 
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 2 2( ) (4 )f exp x=x  (3.13) 

 

 Objectives 1f  and 2f  depend only on a single variable, 1x and 2x  respectively. 

The third variable appears only in constraint g and therefore has no effect on the 

objectives. It is clear that 1f  and 2f  take small values when 1x and 2x  are close to 0. 

However, because of constraint (3.10), 1x and 2x  cannot be minimised together. 

Moreover, minimum values for 1x and 2x  are obtained when 3 1x = . The sensitivity 

indices can be derived analytically as given in Table 3.1. It is worth noting that in this 

case, there is no interaction effect between the various inputs and therefore main and 

total effect sensitivity indices are equal.  
 

 Main effect Total effect 
  x1 x2 x3 x1 x2 x3 

 f1 1.0 0.0 0.0 1.0 0.0 0.0 
 f2 0.0 1.0 0.0 0.0 1.0 0.0 
 g 0.49 0.49 0.02 0.49 0.49 0.02 

 Table 3.1: Main and total sensitivity indices of objectives f1 and f2 
and constraint g for test example 

 

 Table 3.1 shows that input 3x  has a small effect compared to input 1x and 2x  

and therefore could be removed from the optimisation formulation. Variable 3x  is fixed 

to its mean value, i.e. 3 0.5x = . The solutions for the full and reduced problem 

optimisation are obtained using the in-house developed gradient-based optimisation tool 

for multi-objective optimisation mentioned in chapter 2 (Fantini et al., 2007; Guenov et 

al., 2005; Utyuzhnikov et al., 2005). The Pareto fronts are plotted in Figure 3.1. The full 

problem required 1744 calls to the function to obtain 20 solutions while this number 

was reduced to 1324 for the reduced problem. Fixing one variable results in a 

significant reduction of the number of function calls. However, it causes degradation in 

the quality of the Pareto front. This optimisation problem proves that fixing arbitrarily 

the non-significant variable to its mean is not always an appropriate choice. It is worth 
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noting that for all solutions of the full optimisation problem, the constraint on the 

minimum bound for 3x  is activated: 3 1x = .  

 

 
Figure 3.1: Pareto fronts obtained with full optimisation and reduced problem for x3 = 0.5 

 

 In this approach, it is proposed to build a self-organizing map (SOM) of the 

problem to check whether there is a preferred value to fix the non-significant variables. 

The SOM is built with the Matlab toolbox developed at Helsinki University (Vesanto et 

al., 2000; Vesanto, 1999) and is shown in Figure 3.2. Feasible regions are marked with 

white dots while black dots are used for non-feasible ones. The examination of the SOM 

shows that objectives 1f  and 2f  are conflicting and cannot be minimised together since 

their component maps exhibit opposite pattern. It also shows that small values of 1f  

or 2f  can be reached for small and large values for 3x . This can be seen on Figure 3.1 

where the discrepancy between both Pareto fronts is smaller at the ends of the curves. 

However, for the region where both objectives take intermediate values (marked with a 

circle in Figure 3.2), 3x  takes large values. Such considerations show that a large value 

for 3x  should be preferred in order to improve the capture of the Pareto surface. The 

reduced optimisation problem is solved for 3 0 75x .= . The corresponding Pareto front is 

plotted in Figure 3.3 and a summary of the number of evaluations for each optimisation 
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run is given in Table 3.2. The SOM indicates that a high value for 3x  would help 

capture parts of the Pareto front. Unfortunately, it appears difficult to derive accurately 

a preferred value for the variable that is to be frozen. 

 

Figure 3.2: Self-organizing map for test optimisation problem 

  

 
Figure 3.3: Pareto fronts obtained with full optimisation, reduced problem for x3 = 0.5 and x3 = 0.75
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 All inputs x3 = 0.5 x3 = 0.75 

 Function 
evaluations 

1744 1324 1290 

 Pareto points 
obtained 

20 20 20 

 

 

 

Table 3.2: Computational cost comparison between full optimisation 

and reduced problem for x3 = 0.5 and x3 = 0.75 

 

 However, the SOM should be used to check whether there is a preferred value 

by studying the structure of the data (inputs, objectives and constraints). The SOM can 

be built on the same sample used for obtaining the sensitivity indices so that no extra 

computational effort is required. A summary of the approach for reducing the 

dimensionality of the optimisation problem is given in Figure 3.4. 

 

 
 

Figure 3.4: Global sensitivity analysis approach flowchart 
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3.2 Pareto sensitivity analysis 
 The Pareto sensitivity can play a predominant role in the decision making 

process because it can provide essential information about optimum solutions. 

 

3.2.1 Understanding the trade-offs on the Pareto surface 
 As discussed in chapter 1, in the a posteriori articulation of preferences, the 

decision-making process occurs after the optimisation process. An initial set of 

solutions is obtained and presented to the designer. All these designs are solutions of the 

multi-objective optimisation problem. Therefore, the selection of the final desing must 

be based on preferences that are not included in the mathematical formulation of the 

problem. The decision-maker can make considerations with regards to other disciplines, 

previous design experience and so forth. From the analysis of the initial set of designs, 

the designer can get a better understanding of the solutions that can be obtained. At this 

point, he/she can even decide to attribute a higher priority to one or more objectives. If 

the decision-maker cannot select a design from the initial set of solution, he/she might 

be interested in exploring the Pareto front further.   

 As part of the decision process, the designer would benefit from having a better 

insight into the local trade-offs between objectives on the Pareto surface. It would give 

him/her essential information about other solutions on the Pareto front because 

relationships between Pareto solutions in the objective space and their corresponding 

point in the design space are not easy to comprehend. 

 

3.2.2 Requirements for sensitivity analysis on the Pareto 
surface 

 As outlined in chapter 2, most of the methods attempting to obtain the SA of the 

Pareto surface have been developed for simple and specific cases, which are not 

representative of an MDO optimisation problem. Approximations techniques are 

interesting since they not only provide the sensitivity of the Pareto surface, but they also 

enable to explore locally other possible solutions. Here are outlined some desirable 

properties for a Pareto approximation which are not present in the methods found in 

literature. 
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• The approximation should be developed in a general case and should not be 

limited by the shape of the Pareto front, the number of variables, constraints 

or objectives. 

• The derivation of the approximation should aim to limit the number of 

model evaluations and come at a little cost. 

•  The approximation should provide a mean to relate the information derived 

on the Pareto surface in the objective space to the design space. This should 

avoid running optimisation that could be costly. 

• Recommendations on the extent of validity of the approximation should be 

available. 

 

3.3 Summary 
 In this chapter, both components of the SA approach proposed for multi-

objective optimisation are described. First, it is explained how global SA (VBM) is used 

to identify inputs with negligible effect on the output variance and fixed them to a 

specific value. It is proposed to use the data sample generated for the SA to build a 

SOM and ensure whether there is preferred value for the non-significant variables. 

Then, it is emphasised how understanding the local trade-offs on the Pareto surface can 

provide the designer with essential information to make the decision on the final 

solution of the problem. The lack of desirable features of the available methods is 

outlined.  

 In chapter 4, a new improved Pareto approximation is derived to address the 

requirements specified in this chapter. 
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Chapter 4 
4  Obtaining local sensitivity on the 

Pareto surface 
 
 
 The design of complex systems is often the solution an optimisation problem, 

which involves different disciplines and where all design criteria have to be optimised 

simultaneously. Mathematically this problem can be reduced to a vector optimisation 

problem. The solution of this problem is not unique and is represented by a Pareto 

surface in the objective functions space. Once a candidate Pareto solution is obtained, it 

may be very useful for the decision-maker to be able to perform a quick local 

approximation in its vicinity for sensitivity analysis. The literature review presented in 

chapter two shows that there exist no general equations for approximating locally the 

Pareto surface. Most attempts are only valid in a particular case and necessitate more 

discipline analysis. 

 In this chapter, a new method for obtaining a local approximation the Pareto 

surface is presented. In the first section, a formulation of the multi-objective 

optimisation problem and a definition of the Pareto concept are given. In section 2, a 

promising technique is reviewed in details and clarifications of its formulation in the 

linear case are made. The formulation is extended to obtain directly a quadratic 

approximation of the Pareto surface. The limitations of the existing method are pointed 
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out in an analytical example. Then, a more theoretically sound method is derived to 

obtain linear and quadratic approximations in the general case and an approach to asses 

the extent of their validity is discussed in section 3. Section 4 concerns the detection of 

non-differentiable Pareto points and section 5 summarises the entire Pareto analysis 

procedure. Finally, the potential of the approach is illustrated through a few analytical 

examples and conclusions are drawn. 

 

4.1 Multi-objective optimisation problem formulation and 
assumptions 

 A more general and complete formulation of the multi-objective optimisation 

problem is introduced. Then, concepts and assumptions that are necessary to understand 

and discuss existing approximation techniques of interest are presented.   

 It is assumed that an optimisation problem is described in terms of a design 

variable vector x = (x1,x2,…,xN)T in the design space X ⊂ N. A function f ∈ M 

evaluates the quality of a solution by assigning it to an objective vector 
T

1 2( )My , y ,..., y=y , where yi = fi(x), fi: N → 1, i = 1, ..., M in the objective space Y ⊂ 
M. Thus, X is mapped onto Y by f: X|→Y. A multi-objective optimisation problem 

may be formulated in the following form: 
 

min   [ ( )]
x

y x                                                      (4.1) 

 

Subject to L inequality constraints:  

g ( ) 0x ≤i   = 1,...,i L                                              (4.2) 

 

which may also include equality constraints. 

 The feasible design space X* is defined as the set {x | gi(x) ≤ 0, j = 1,2,…, L}. A 

feasible design point is a point that does not violate any constraint. The feasible 

criterion (objective) space Y* is defined as the set {Y(x) | x ∈ X*}. A design vector a (a 

∈ X*) is called a Pareto optimum if, and only if, there exists no vector b ∈ X* such that 
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yi(b) ≤ yi(a), for all i = 1,…, M and yj(b) < yj(a) for 1 ≤ j ≤ M. Henceforth it is assumed 

that all vectors are considered in the appropriate Euclidean spaces. 

 A constraint ig  is said to be active at a Pareto point x* of the design space X if a 

strict equality holds at this point, i.e. g ( ) = 0xi  (Tappeta et al., 1999, 2000). Let us note 

the set of active constraints (equation (4.2)) as G. At the given point x* of the design 

feasible space X* it means that 

( ) 0*G x = .                                                    (4.3) 

 

Two main assumptions are made in this chapter. 

 

 First assumption: f ∈ C2( M) and G ∈ C2( I). 

 

It follows that locally the constraints can be written in the linear form 

 

( )*J x x 0− = ,                                                 (4.4) 

 

where J is the Jacobian of active constraints at x*: ( )T= ∇J G . 

 

 Second assumption: The gradients of the active constraints are linearly 

independent at the Pareto point x*.  

 

Therefore, point x* is a regular point of the feasible space (Vincent and Grantham, 

1981). Another important result is that matrix T( )JJ is invertible (see Appendix A) and 

the projection matrix onto the hyperplane normal to all gradients of active constraints 

can then be defined by 

 
T T 1( ) .−= −P I J JJ J                                              (4.5) 
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4.2 Discussion on an existing technique 
4.2.1 Obtaining the sensitivity coefficients on the Pareto 

surface 
 In this section, it is intended to present an existing technique that was essential 

to the development of the general Pareto surface approximation, presented in the next 

section. This method is described in Tappeta and Renaud (1999, 2001) and Tappeta et 

al. (2000). Based on the calculation of sensitivity coefficient on the Pareto surface, a 

linear approximation is derived. This information on the linear approximation is used 

together with Pareto data generated in the neighbourhood of the Pareto point to derive a 

quadratic approximation. This approach implies running locally more optimisation 

loops to obtain the quadratic approximation.  

 In this approach, it is assumed that the set of active constraints does not change 

in the vicinity of the Pareto point under study. The feasible direction with the greatest 

improvement of objective if  is obtained by projecting its gradient onto the hyperplane 

normal to the gradients of all constraints: 
 

( ).
if if= −∇Pd                                                  (4.6) 

 

This method is known as gradient-projection method and was first introduced by Rosen 

(1960). It is illustrated in Figure 4.1. 
 

Figure 4.1: Gradient projection method 
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To obtain the Pareto sensitivity d di jf f  along the feasible direction with the greatest 

improvement of objective jf , objectives if  and jf  are differentiated with respect to x : 

 
Td

ii ff = dxd                                                     (4.7) 

Td
jj ff = dxd                                                     (4.8) 

 

and equation (4.8) is solved for x  as follows: 

 
1

T d
j j jf f f jj

f
−

⎡ ⎤= ⎣ ⎦dx d d d                                           (4.9) 

 

In equation (4.9), 
j

dx  represents the direction in the design space along the feasible 

direction with the greatest improvement of objective fj to accommodate for a change 

d jf  of objective jf . It is also important to note that T
j jf fd d is a scalar and therefore the 

inverse is always defined. Substituting equation (4.9) in equation (4.8), the trade-off 

between objective if and jf  along the direction 
j

dx  can be obtained as 

 
1

T Td
d i j j j

i
f f f f

j

f
f

−
⎡ ⎤= ⎣ ⎦d d d d                                         (4.10) 

 

and are called sensitivity coefficients. A similar analysis can be conducted for all i = 

1,…, M to obtain the sensitivity information for each objective along the same direction 

j
dx . Tappeta et al. (1999,2000) propose to represent the sensitivity information in the 

form of a matrix, where the jth row corresponds to the trade-offs required on all 

objectives for a unit improvement in the jth objectives. This matrix is called the trade-off 

matrix and is given by: 

 



Chapter 4: Obtaining local sensitivity on the Pareto surface  
 

 
59 
 

2

1 1

1

2 2

1 2

d d1
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⎢ ⎥
⎢ ⎥= ⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

T                                     (4.11) 

 

There is a trade-off between two objectives along a particular direction if the 

corresponding off-diagonal element is negative. If the matrix element is positive, it 

means that both objectives can be improved together. Note that on the same row, at least 

on element is negative otherwise, all objectives could be locally improved together 

which would contradict the fact that the point under study is a Pareto solution of the 

problem defined by equations (4.1) and (4.2). 

 A local linear approximation of the Pareto surface of the form  

 

*

1
i p

d
d

M
p

p p i
ii

f
f f f

f=
≠

= + Δ∑                                          (4.12) 

 

is proposed, where d dp if f  are based on the elements of T . The formulation and 

notation used in Tappeta et al. (2000) can be a little confusing at first. Indeed, the 

d dp if f  in equation (4.12) do not correspond to the elements of the trade-off 

matrix T . To understand this, let us consider the following simple analytical multi-

objective optimisation problem: 

 

Unit-sphere optimisation problem 

 

Minimise: T( )x, y,z=f                                           (4.13) 

Subject to: 

2 2 2( ) 1 0,
0,
0,
0.

y zg x
x
y
z

− − ≤= −
>
>
>

x

                     (4.14) 
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The design space and objective space coincide in this example. It is easy to see that the 

Pareto surface corresponds to the part of the unit sphere in the first quadrant and is 

represented by the following formula: 

 

2 21 .z x y= − −                                               (4.15) 

 

The exact first order derivatives on the Pareto surface can be derived analytically as 

follows: 

3
2 2

1

3
2 2

2

1

1

f z x
f x x y

f z y .
f y x y

∂ ∂ −
= =

∂ ∂ − −

∂ ∂ −
= =

∂ ∂ − −

                                     (4.16) 

 

 According to Tappeta et al. (2000), the elements of the last column of the trade-

off matrix T  on the Pareto surface can derived for any points as follows: 

 

[ ]2 2 2- x - y - z ,=J                                              (4.17) 

 
2 2

2 2

2 2

y z xy xz
xy x z yz .
xz yz x y

⎡ ⎤+ − −
⎢ ⎥= − + −⎢ ⎥
⎢ ⎥− − +⎣ ⎦

P                                  (4.18) 

 

Equation (4.10) gives: 

 

( )( )

( )
( )( )

( )

2 2
3

2 2 2 2 2
1

2 2
3

2 2 2 2 2
2

13

23

1d
d 1 1

1d
d 1 1

T

T

- x - yf -xz
f y z - x - x - y

x yf yz
f x z y - x - y

-x
,

- y
.

+

− −−

+ −

= = =

= = =

                         (4.19) 
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It is obvious that the elements of the trade-off matrix do not correspond to the 

derivatives on the Pareto surface. The linear approximation obtained with the derivative 

taken as the element of the trade-off matrix is given in Figure 4.2. This problem can be 

explained by the fact that in the trade-off matrix T  only elements in the same row relate 

to each other. Each row corresponds to a particular direction in the design space. 

Therefore, sensitivity coefficients d di jf f  can only be compared if they are associated 

with the same direction. The next section describes in more details how the linear 

approximation can be obtained from the elements of T . It also shows how to obtain a 

direct quadratic approximation of the Pareto surface. 

 

 
Figure 4.2: Unit-sphere optimisation problem – Erroneous linear approximation 

 

Note that using directly equation (4.10) to obtain the derivative on the Pareto surface 

would be correct in the case of a two-objective optimisation problem.  

 

4.2.2 Deriving a linear approximation from the sensitivity 
coefficients 

 Without loss of generality let us consider the first row of the trade-off matrix T . 

One element indicates the appropriate change in the corresponding objective when 

objective 1f  is improved of one unit along its greatest feasible descent direction. As a 

result, for an infinitesimal improvement 1d f  in 1f  along the direction defined by 

equation (4.9) in the design space, the new approximate Pareto point is given by: 
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1 1
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2 1
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ff f f
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∗
∗

∗

∗
∗
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⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥ +⎢ ⎥⎢ ⎥ → ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥+
⎢ ⎥⎣ ⎦

                                          (4.20) 

 

where T
1 2 m[ ]f f ... f∗ ∗ ∗  corresponds to the coordinates of the Pareto point under 

study in the objective space. Each row vector of the trade-off matrix defines a tangent 

vector to the Pareto surface. Therefore, the tangent plane to the Pareto surface can be 

obtained by finding the vector normal to all row vectors of the trade-off matrix T . The 

normal vector N can be found by solving the linear system of equations: 

 
⋅ =T N 0                                                    (4.21) 

 

and the linear approximation(4.12) can be deduced from the equation of a surface given 

a normal vector: 

[ ]1 2 ... Mf f fΔ Δ Δ ⋅ =N 0                                   (4.22) 

 

The correct linear approximation and the tangent direction corresponding to the row 

vectors of the trade-off matrix are shown in Figure 4.3.  

 

 
Figure 4.3: Unit-sphere optimisation problem – Linear approximation derived from tangent 

directions 
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4.2.3 Deriving a quadratic approximation from the sensitivity 
coefficients 

 Unlike the method proposed by Tappeta et al. (2000), in this section it is shown 

how a quadratic approximation of the Pareto surface can be derived without running 

further local optimisation. The derivation of the quadratic approximation is based on the 

same approach. In this case, when changing objective 1f  of an increment 1d f  along its 

greatest feasible descent direction in the design space, to the second order, all other 

objectives are modified as follows: 

1 1
2

1 22 2
2 1 12

1 12

2
2

1 12
1 1

d

d d1d d
d 2 d

d d1d d
d 2 d

M M M
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f f
f f ff f f

f ff
... ...

f f ff f f
f f

∗

∗
∗

∗

∗
∗

⎡ ⎤+
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ + +⎢ ⎥⎢ ⎥ ⎢ ⎥→⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ + +⎢ ⎥
⎣ ⎦

                                (4.23) 

 

In this case, all other objectives are locally approximated by a Taylor expansion up to 

the second order. The same method used for calculating the first order term of the trade-

off matrix is used to calculate the second order term d di jf f  along the greatest 

feasible descent direction of objective jf : 

 
T

2

2

d d d
d d

i i
j

j j

f f
f f

⎡ ⎤⎛ ⎞
= ∇ ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

P x                                     (4.24) 

 

where d
j

x  is defined by equation (4.10). Note that now the directions are not tangent 

vectors but parametric quadratic curves locally tangent to the Pareto surface as shown in 

Figure 4.4. The idea is now to fit these parametric curves to a quadratic hypersurface 

and to derive its equation. For convenience, let us use the following notation: 

 

d( )
d

i
i j

j

ff
f

=  and 
2

2
d( )
d

i
i jj

j

ff
f

= ,                                    (4.25) 
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for the first and second order sensitivity coefficient defined by (4.10) and (4.24) 

respectively. 

 

 
Figure 4.4: Unit-sphere optimisation problem – Parametric curves  

 

In the case of the unit-sphere optimisation problem with three objectives, it is proposed 

to obtain a quadratic approximation for 3f  of the form: 

 
2 2 2

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3( ) ( ) ( ) ( ) ( ) ( ) 0.f f f f f f f f f f f f∗ ∗ ∗ ∗ ∗ ∗− + − + − + − + − + − =α β α β β  

(4.26) 

 

Note that in equation (4.26) the coefficient for the second order term of objective 3f  is 

set to one, 3 1α = , to avoid the trivial solution where all coefficients are zero when it is 

fitted to the parametric curves defined previously. We then impose that each parametric 

curve must lie locally on the quadratic surface. Therefore, substituting (4.23) into (4.26) 

one finds: 

 

( )

( ) ( )

1 2 2 1 3 3 1 1

2 2 2
1 2 2 1 2 2 11 3 3 11 3 1 1

( ) ( ) d

1 1           ( ) ( ) ( ) ( ) d 0.
2 2

f f f

f f f f f

+ + +

⎛ ⎞+ + + + =⎜ ⎟
⎝ ⎠

β β β

α α β β
     (4.27) 

 

To satisfy equation (4.27) for any small improvements for objective 1f , the coefficient 

of both first and second order terms must be equal to zero. Therefore, performing the 
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analysis for the two remaining objectives, a linear system of equations can be obtained 

to calculate the coefficient iα  and iβ :  
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⎥
⎥
⎥
⎥
⎥
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⎦

  (4.28) 

 

Note that there are six equations and five unknowns. Row 1, 2 and 3 correspond to the 

local linear approximation of the Pareto surface. Only two equations are necessary to 

ensure the local tangency in the linear approximation and therefore, one equation among 

row 1,2 and 3 can be removed. 

 After solving the reduced set of linear equations, for iα  and iβ , the equation for 

the quadratic approximation is obtained and values for objective 3f  can be derived for 

each new value of 1f  and 2f  by solving the following quadratic equation: 

 
2 2 2

3 3 3 1 1 1 1 1 1 2 2 2 2 2 2 0
r

f f (f f ) (f f ) (f f ) (f f )β α β α β∗ ∗ ∗ ∗Δ + Δ + − + − + − + − =�����������	����������
 .     (4.29) 

This equation always has a solution because the three quadratic parametric curves 

satisfied (4.26). The solution is the obvious solution of a second order polynomial: 

 

2
3 3

3
4r

2
f

β β− ± −
Δ = .                                            (4.30) 

 

When 2
3 4r 0β − ≠ , a couple of solutions, depending on the sign in equation (4.30) are 

obtained, but only one of them approximates the Pareto surface. A simple consideration 

helps decide on the right solution for 3fΔ . In particular, equation (4.30) must be valid 
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for the Pareto solution under study 1 2 3( )f , f , f∗ ∗ ∗ . For this reason, when 

1 2 1 2( ) ( )f , f f , f∗ ∗=  we must find 3 0fΔ = . For 1 2 1 2( ) ( )f , f f , f∗ ∗= , 0r =  and the 

expression for the solution is reduced to: 

 

3 3
3 0

2
f

β β− ±
Δ = =                                                (4.31) 

 

• If 3 0β > , to satisfy 3 0fΔ =  for 1 2 1 2( ) ( )f , f f , f∗ ∗= , we must have a positive 

sign so that 3 3
3 0

2
f β β− +

Δ = = . 

• If 3 0β < , to satisfy 3 0fΔ =  for 1 2 1 2( ) ( )f , f f , f∗ ∗= , we must have a negative 

sign so that 3 3
3 0

2
f

β β− −
Δ = = . 

Therefore, 

If 3 0β >  
2

3 3
3 3

4r
2

f f
β β∗ − + −

= + , 

 

If 3 0β <  
2

3 3
3 3

4r
2

f f
β β∗ − − −

= + . 

 

The resulting quadratic approximation obtained for the unit-sphere optimisation 

problem is given in Figure 4.5.  

 

 
Figure 4.5: Unit-sphere optimisation problem – Quadratic approximation derived from parametric 

curves 
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Note that in this case, there is an ideal fit of the Pareto surface. It can be explained by 

the fact that when solved for iα  and iβ , equation (4.26) describes perfectly the surface 

of a sphere. This is a special case as the Pareto surface corresponds to the surface of a 

sphere. The unit-sphere optimisation example has been chosen for its analytical simple 

formulation with more than two objectives. Unlike the method proposed by Tappeta, 

this approach shows that it is possible to derive a linear and quadratic approximation 

from the sensitivity coefficients (4.10) without running locally more optimisation loops. 

Only gradients and Hessian of objectives and active constraints at the Pareto point under 

study are needed. 

 The implementation of a more general case with M  objectives is obvious. 

Indeed, the quadratic approximation (4.26) requires solutions for 2 1M −  coefficients 

( 1M −  alpha and M  beta). From fitting the M  quadratic parametric curves (4.23) to 

the quadratic approximation (4.26), M equations of the same type as (4.27) can be 

obtained. 1M −  equations corresponding to the first order term 1d f  and M  to the 

second order term 2
1d f  from equation (4.27) to constitute a system of linear equations 

similar to (4.28). 
 

4.2.4 Limitations 
 In this section, limitations of the previous approach are presented in the case of a 

numerical test case. Let us consider the unit-sphere optimisation problem and add an 

extra constraint. The modified optimisation problem is as follows: 

 

Minimise: T( )x, y,z=f                                           (4.32) 

 

Subject to: 

2 2 2
1

2

( ) 1 0,
( ) 0,
0,
0,
0.

y z
x y

g x
g
x
y
z

− − ≤
− =

= −
=

>
>
>

x
x

                    (4.33) 

 

As in the unit-sphere optimisation problem, design and objective space coincide. The 

addition of an equality constraint imposes that all Pareto surface correspond to the 
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intersection of the surface of the sphere located in the first quadrant and the plane 

defined by 2g . It results that the set of Pareto solutions for this three objectives 

optimisation problem is not a surface anymore (two degrees of freedom), but a curve 

(one degree of freedom) as shown in Figure 4.6. 

 

 
Figure 4.6: Modified unit-sphere optimisation problem – Limitations of the method  

 

The analytical expression of the Pareto front can be obtained easily by substituting the 

equation corresponding to the added constraint into (4.15). It results that the Pareto front 

can be represented analytically by the parametric curve: 

 

21 2

x
y x

z x

⎧ ⎫
⎪ ⎪⎪ ⎪=⎨ ⎬
⎪ ⎪

= −⎪ ⎪⎩ ⎭

                                                  (4.34) 

 

If ∇f is the matrix whose column vectors are the gradients of the M  objective 

functions, Figure 4.6 corresponds to the situation where rank( ) 1M∇ < −P f . This 

situation is discussed in more detail in the next section. In this case, the Pareto surface 

cannot be locally approximated with a hyperplane of dimension 1M − . For this reason, 

the linear and therefore the quadratic approximations developed on the sensitivity 

coefficient show a lack of generalization. In next section, this issue is addressed by 

deriving linear and quadratic approximations in the general case. 
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4.3 New approximations of the Pareto surface 
4.3.1 Derivation of linear and quadratic approximations in 

the general case 

 In this section, sound theoretical linear and quadratic approximations of the 

Pareto surface are derived in the general case. As in the previous section, it is assumed 

that constraints that are active at a particular Pareto point remain active in its vicinity. 

Thus, the sensitivity predicted at the given Pareto point is valid until the set of active 

constraints remains unchanged (Hernandez, 1995; Tappeta et al., 2000). Without loss of 

generality, let us assume that the first I  constraints are active and the first Q of those 

correspond to inequalities (Q ≤ I ≤ L). 

 Let us assume that in the objective space Y the Pareto surface is given by 

 

( ) 0yS =                                                     (4.35) 

 

and at the Pareto point y* = f(x*) function S ∈ C2( 1). In the general case, let us define 

the values of the gradient of any differentiable function F at point x* under constraints 

by the reduced gradient formula (Fletcher 1989): 

 

| ,P
lSF F∇ = ∇                                                (4.36) 

 

where lS  is the hyperplane tangent to *X  in the design space given by 

 
*{ ( ) 0}x | J x - xlS = =                                         (4.37) 

 

and P  is projection matrix. Directional derivatives corresponding to equation (4.36) in 

the objective space are represented by 

 

.x
x lS

i i

dF dF d
df d df

=                                               (4.38) 
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The first element of the product corresponds to the reduced gradient and in the second 

element dx represents the infinitesimal change in the design vector x to accommodate 

the infinitesimal shift df of the objective vector tangent to the Pareto surface. The last 

derivative in equation (4.38) can be represented via the gradients obtained in the design 

space X. Assume that matrix P∇f, (f = (f1, f2,…, fM)T) has nf < M linearly independent 

columns.  

 Here, it is to be noted that nf ≠ M. Indeed, we have: 
 

T( )d d= ∇f P f x .                                              (4.39) 
 

nf  = M would mean that for any df , in particular one where all objectives are improved 

together, there would exist a direction dx so that the set of active constraints remains 

unchanged. This contradicts the fact that the point under study is a Pareto solution. 

 Without loss of generality, we assume further that the first nf components of P∇f 

are linearly independent and represented by P∇f. Thus,  
 

T( ) ,d d= ∇f P f x� �                                               (4.40) 

 

where all columns of matrix 1( ,..., )
fnf f∇ ≡ ∇ ∇P f P P�  are linearly independent. Now, let 

us write dx in the following form: 

.x A f�d d=                                                    (4.41) 
 

Then, having multiplied both sides of equation (4.41) by T( )∇P f�  and taking into 

account equation (4.40) we obtain 

T( ) .d d∇ =P f A f f� � �                                              (4.42) 

Hence, 

T 1[( ) ] .−= ∇ ∇ ∇A P f P f P f� � �                                       (4.43) 

 

Thus, matrix A is the right-hand generalized inverse matrix to (P∇f)T. It is possible to 

prove that the inverse matrix [(P∇f)TP∇f]-1 is always non-singular because all the 
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vectors P∇fi, (i = 1,…, nf) are linearly independent (see appendix). From the definition 

of matrix A it follows that (P∇f)TA = I and Ai
TP∇fj  = δij, where I is the unit matrix and 

δij is the Kronecker symbol. Hence, the system of vectors {Ai} (i = 1,…, nf) creates the 

basis reciprocal to the basis of vectors {P∇fj } (j = 1,…, nf). From equation (4.43), it 

follows that PA = A and dx in equation (4.41) belongs to the tangent plane Sl at the 

Pareto point. Thus: 

 
T 1[( ) ]d

d
−= ≡ ∇ ∇ ∇

x A P f P f P f
f

� � �
�                                       (4.44) 

and for any fi n≤  

,
i

d
df

= i
x A                                                        (4.45) 

where 1 2( , ,..., ).
fn=A A A A  Then, from  equations (4.36), (4.38) and (4.44), it follows 

that for any i ≤ nf 
T T T( ) .i i i

i

dF F F F
df

= ∇ = ∇ = ∇P A A P A                                (4.46) 

If ( ) fj n j MF f ≤= < , then we obtain the first order derivative of objective fj with 

respect to objective fi on the Pareto surface. Thus: 

 

T      (0 ,  ).j
i j f f

i

df
f i n n j M

df
= ∇ ≤ ≤ < ≤A                           (4.47) 

 

It is important to note that this formula coincides with the formula of sensitivity of 

objective fj with respect to objective fi along the greatest feasible descent direction for 

objective fi: 
T T

T T

(( ) ) (( ) )
(( ) ) (( ) )

j j i j i

i i i i i

df f f f f
df f f f f

∇ ∇ ∇ ∇
= ≡

∇ ∇ ∇ ∇

P P P
P P P

 ,                              (4.48) 

 

(Tappeta et al., 1999, 2000, 2001) if and only if either nf  = 1 or the vectors P∇f create 

an orthogonal basis. In this case, the matrix T[( ) ]∇ ∇P f P f� �  is diagonal. In particular, in 

the case of a two-objective optimisation these formulas always coincide since nf  = 1.  
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 On the Pareto surface in the objective space the operator of the first derivative 

can be defined by: 
T .i

i

d
df

= ∇A                                                    (4.49) 

 

By applying this operator to the first order derivative found previously, one can obtain 

the reduced Hessian as follows: 

 

( )
2

T T     (0 , ).        i j f
i j

d F F i j n
df df

= ∇ ∇ ≤ ≤A A                (4.50) 

Thus, the Pareto surface can be locally represented as a linear hyperplane: 
 

1

0
fn

i
i i

dS f
df=

Δ =∑                                                  (4.51) 

 

or a quadratic surface: 
2

1 , 1

1 0,
2

f fn n

i j k
i j ki j k

dS d Sf f f
df df df= =

Δ + Δ Δ =∑ ∑                              (4.52) 

 

where ∆f = f – f(x*). Approximations (4.51) and (4.52) can be rewritten with respect to 

the trade-off relations between the objective functions as follows 
 

*

1
             ( 1,  ..., )           

fn
p

p p i f
ii

df
f f f p n M

df=

= + Δ = +∑       (4.53) 

and 

* ( )

1 , 1

1        ( 1,  ..., ),
2

f fn n
p p

p p i j k fjk
ii j k

df
f f f H f f p n M

df= =

= + Δ + Δ Δ = +∑ ∑       (4.54) 

 

where 
2

( ) pp
jk

j k

d f
H

df df
= .  

 



Chapter 4: Obtaining local sensitivity on the Pareto surface  
 

 
73 

 

A quadratic approximation where the reduced Hessian matrix Hij is evaluated with a 

least-squared minimisation using the Pareto set generated around the original Pareto 

point has been derived previously (Tappeta et al., 1999, 2000). However, in preliminary 

design such evaluation can be unsuitable because it would require generating more 

Pareto points in the vicinity of the point under study. Instead, the local determination of 

the reduced Hessian using equation (4.50) is more accurate and is entirely based on the 

value of the objective and constraint gradients with respect to the independent design 

variables. It is important to note that in contrast to the approximations developed earlier 

(Tappeta et al., 1999, 2000, 2001), the ones derived in this paper precisely correspond 

to the first two terms of the Taylor expansion in the general case. 

 Let us consider again the unit-sphere optimisation problem as defined by (4.13) 

and (4.14). According to the method developed in this section, 

 

1 0
0 1 .

yx
z z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥−
⎣ ⎦

A                                            (4.55) 

 

One can easily ensure that using equation (4.47) we obtain the exact first order 

derivatives (equation (4.16)). In the same way, it is also possible to verify that the exact 

second order derivatives can be obtained with equation (4.50). The linear and quadratic 

approximation are shown in Figure 4.7 and Figure 4.8 respectively. The relative error in 

predicting f3 is defined by 

 

approx
3 3

3
Relative error  

f f

f

−
=                                      (4.56) 

 

and is given in Figure 4.9. The analysis of the relative error gives an indication on how 

quick the approximations depart from the Pareto surface. As it can be expected, the 

quadratic approximation performs much better than the linear approximation. 
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Figure 4.7: Unit-sphere optimisation problem – New linear approximation  

 

 

Figure 4.8: Unit-sphere optimisation problem – New quadratic approximation  

 

 

 
 

Figure 4.9: Unit-sphere optimisation problem – Relative error in predicting f3 
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 Let us considered here the modified unit-sphere optimisation problem defined 

by equations (4.32) and (4.33), which was used to show the limitations of the method 

presented in Tappeta et al (1999, 2000, 2001). In this example, the new linear and 

quadratic approximations are derived as follows: 

 

2 2 2
1 1 0

- x - y - z
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J                                             (4.57) 

 
2 2

2 2

2
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1 2
2

2 2 4
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zx zx x

⎡ ⎤−
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= × −⎢ ⎥
⎢ ⎥
− −⎢ ⎥⎣ ⎦

P                                        (4.58) 

 

It is clear that  

rank( ) = 1.∇P f                                               (4.59) 

 

Therefore, in equations (4.53) and (4.54), 1fn =  and 2,3p = . As a result, matrix A  is 

reduced to a column vector: 

2

1
1
2

1 2

x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

A                                                 (4.60) 

 

and the first order derivatives on the Pareto front are given by:  

 

T2
2

1

=1,df f
df

= ∇A                                              (4.61) 

T3
3 2

1

2= .
1 2

df xf
df x

−
= ∇

−
A                                       (4.62) 

 

The resulting linear approximations are: 
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2 ,*f y y x= = + Δ                                               (4.63) 

*
3 2

2

1 2

xf z z x
x

−
= = + Δ

−
                                       (4.64) 

 

and clearly coincide with the derivatives of the analytical description of the Pareto front 

given with equation (4.34). The exact second order derivative can also be obtained 

using (4.50). 

 Even if very simple, this example shows that unlike the method proposed in 

Tappeta et al (2000), the new formulation is not limited in the case where 

rank( ) < 1M∇ −P f  and does not require any further local approximation. Moreover, the 

derivative obtained, corresponds exactly to the terms of the Taylor expansion on the 

Pareto surface. 

 

4.3.2 Local trade-off study 

 The first order derivatives dfp/dfi provide us with first order sensitivity of an 

objective fp along the feasible descent direction of an objective fi when all other 

objectives are kept constant. It is to be noted here that all the derivatives dfp/dfi are non-

positive for all i = 1,…,nf. Otherwise, two objectives could be locally improved 

together, which would contradict the fact that the point under study is a Pareto solution. 

The local approximations of the Pareto surface can be used to study the local sensitivity 

of a Pareto solution. As in a real-life problem it can be time and computationally 

expensive to obtain a single Pareto solution, local approximate solutions around a 

Pareto point can be obtained using either equation (4.53) or (4.54) without additional 

full-run computations. As discussed above, it can be very beneficial to the decision 

maker if s/he is able to perform a quick sensitivity analysis of the solution obtained to 

understand the trade-offs between different objectives. It has to be emphasized that in 

the multi-objective case, the change of one objective does not fully determine the 

changes of the others. If the designer freezes all objectives except two or three, it is then 

possible to obtain information, which is useful for understanding the trade-off between 

the selected objectives. The analysis of solutions around a Pareto point allows the 
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decision maker to correct locally the solution with respect to additional preferences, 

which can be articulated after a first solution is obtained. In the design practice, the 

knowledge for further improvement of some objectives at the expense of local 

degradation of some other objectives is important as it give the designer room for 

finding the most appropriate solution to the problem. 

 Another important feature of local Pareto analysis is that when investigating the 

vicinity of a Pareto solution in criterion space, the decision maker can immediately 

relate the new approximate solution to the corresponding approximate point in the 

design space using equation (4.41). The designer can then ensure that the changes on the 

design vector required to accommodate for the local changes in the Pareto solution 

satisfy his/her preferences. 

 
4.3.3 Extent of validity of the local Pareto approximations 

 As part of the trade-off analysis, the decision maker is able to analyze possible 

violations of the constraints. Representations given by equations (4.53) and (4.54) are 

only local approximations and there is a question on the range of Δx  where the 

approximations are valid. In the framework of a local analysis, giving a strict answer to 

this question is not possible. However, the reliable range of the variation of Δx  can be 

evaluated qualitatively by comparing the solutions obtained by the linear and quadratic 

approximations. It is reasonable to expect that the approximations are suitable as long as 

the difference between them remains small.  

 In the sensitivity analysis procedure, due to a perturbation δf and the appropriate 

displacement δx, some constraints, which are inactive at point x*
, can become either 

violated or active. The exact verification of the constraints validation may require 

running more discipline analysis and therefore may be time consuming. To investigate 

this problem, it was suggested to obtain a local linear approximation of the inactive 

constraints to study the degree of constraint violation (Zhang W.H., 2003a, 2003b). The 

approach developed in the previous section can be used to obtain the appropriate linear 

and quadratic approximations for non-active inequality constraints in any direction: 
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*

1
( ),( ) ( ) ,     

fn
k

ik k
i i

I k L
dgg g f
df=

< ≤= + Δ∑x x                            (4.65) 

 
2

*

1 , 1
.1( ) ( )

2
f f

i j

n n
k k

i i jk k
i i ji

dg d gg g f f f
df df df= =

= + Δ + Δ Δ∑ ∑x x                      (4.66) 

 

These approximations can be used to verify that inactive constraints remain inactive at a 

new approximate Pareto point. Similarly, equation (4.41) can be used to ensure that 

inactive constraints on the bounds of variables remain inactive within the 

approximation. Therefore, when performing the local Pareto analysis, the decision 

maker must ensure that the following constraints are satisfied: 

 

min max

( )
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2
*

1 , 1
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p

i
i i

n n
k k
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=
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x x x x

i

i

i
δ δ

α
δ

δ δ δ

δ               (4.67) 

 

The last point represents the constraint on the discrepancy between the linear and 

quadratic approximation of the Pareto surface. In the first case, the contribution of the 

second order term is compared to the value of objective pf  while in the second case, it 

must be smaller than a fraction of the first order contribution. The choice of the 

constraint to handle the discrepancy between linear and quadratic approximation is left 

to the decision maker. 

 
4.4 Identification of non-differentiable Pareto points 
 In general, there is no guarantee that the Pareto surface is smooth. If the 

designed Pareto solution appears at a point of lack of smoothness, the approximations 
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derived above are not formally valid. In such a case, a substantial discrepancy can 

appear between the first and second order approximations in the nearest vicinity of the 

point under study.  

 

4.4.1 Non-differentiability concept on the Pareto surface 
 The concept of non-differentiable Pareto point concerns the lack of smoothness 

of the Pareto surface in the criterion space. In the case of two objectives, it corresponds 

to a sudden change of slope  as illustrated in Figure 4.10. For higher dimensional 

objective space, a more general way to characterize non-differentiability is related to 

local changes of the normal to Pareto surface (Zhang, W.H., 2003a, 2003b). 

 

 
Figure 4.10: Non-differentiable Pareto point concept 

 

 The idea to identify non-differentiability of a point on the Pareto front is to 

detect changes in the local normal based on information available in the design space. A 

method to reveal such non-smooth points is based on the analysis of Lagrange 

multipliers and is described in this section. 

 

4.4.2 Derivation of a sufficient condition 
 Assume that an aggregate functionΦ  such that 

 

( ),      ( ) 0,   1, 2,...,p
i

i M
f

∂Φ
Φ = Φ ≥ =

∂
f x                             (4.68) 
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reaches the minimum at a Pareto point xp.  In particular, such aggregate function 

satisfying conditions (4.68) is used in the physical programming method (Messac et al., 

1996; Utyuzhnikov et al., 2005).  Then, from the Karush-Kuhn-Tucker (KKT) 

optimality condition, (Fletcher, 1989) it follows that:  

 
T ( ) 0,Φ ≡ −∇Φ − = −∇Φ =S J λ P                                   (4.69) 

 

where the vector λ  corresponds to the Lagrange multipliers: 

 
T 1( ) ,   

0  ( 1,..., ).j j Iλ

−= − ∇Φ
≥ =

λ JJ J
                                          (4.70) 

It is to be noted here that all analysis in this section is limited by the assumption of 

linear local constraints. In the objective space Y, the normal to the Pareto surface is 

determined by the vector: 

.n
ff f

∂Φ
= ≡ ∇ Φ
∂

                                               (4.71) 

Let us introduce a test function Ψ  satisfying conditions: 

 

( ) 0  ( 1, 2,..., )p
i

i M
f

∂Ψ
≥ =

∂
x                                       (4.72) 

in the vicinity of the Pareto point xp. This condition means that C∇Ψ∈ , where C  is a 

polyhedral cone defined by: 

 

1
{ | , 0}y y

M
N

i i
i

C a f a
=

= ∈ = ∇ ≥∑ i                                 (4.73) 

 

From equation (4.36) it follows that the descent direction SΨ of the function Ψ is 

determined by: 

 
( ),T

Ψ = −∇Ψ − = −∇ΨS J μ P                                     (4.74) 
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where I∈μ \  is defined by: 

 
T 1( ) .−= − ∇Ψμ JJ J                                             (4.75) 

 

The vector SΨ is the orthogonal projection of -∇Ψ onto the tangent plane to the Pareto 

surface in the design space. The vector SΨ  is a null-vector if and only if ∇Ψ belongs to 

the linear manifold VI defined by 

 

1

= | 
I

N
I i i

i

gV ν
=

⎧ ⎫
= ∇⎨ ⎬

⎩ ⎭
∈ ∑y y\ .                                   (4.76) 

 

If SΨ is not a null-vector, then the mapping of SΨ in the objective space gives a tangent 

direction to the Pareto surface. Indeed, multiplying SΦ by SΨ and taking into account the 

orthogonality condition JSΨ = 0, we obtain 

 

1
0

M

i
i

f
f
δ∂Φ

=∑
∂

                                              (4.77) 

 

where δfi = ∇fi
TSΨα is an infinitesimal variations of fi along the direction SΨ and α→0 is 

a scaling parameter. Therefore, if SΨ is not a null-vector, then it can be used to 

determine a tangent direction in the objective space and provide the sensitivity along SΨ 

 
(( ) ) ( , 1,..., ; ).
(( ) )

i i i

j j j

df df fd i j M i j
df d df f

ΨΨ

Ψ Ψ
Ψ

∇
= = = ≠

∇
S

SS
S S

T

T            (4.78) 

 

Assume now that SΨ is a null-vector. Then, ∇Ψ ∈ IV  and ∇Ψ is represented by a linear 

combination of the vectors normal to the hyperplanes of the active constraints 

 

1
g .

I

i i
i
μ

=

∇Ψ = − ∇∑                                               (4.79) 
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If in equation (4.79) μi ≥ 0 for all 1 i Q≤ ≤ , then there is no a descent direction for the 

test function Ψ. It immediately follows from Farkas’ lemma (Fletcher, 1989; see also 

Appendix B). Indeed, feasible directions are defined by the set of vectors e that satisfy: 

 
( , g ) 0  for 1     and     ( , g ) 0  for +1e ei ii Q Q i I∇ ≤ ≤ ≤ ∇ = ≤ ≤ ,           (4.80) 

while a descent direction of the function Ψ, must satisfy: 

 

( , ) 0.e ∇Ψ <                                                    (4.81) 

 

From Farkas’ lemma (see appendix), the set of vectors e  satisfying conditions (4.80) 

and (4.81) is empty if and only if in equation (4.79) μi ≥ 0 for all 1 i Q≤ ≤ . 

 Let us now determine the set of Lagrange multipliers ΩI,Q in such a way that the 

first Q Lagrange multipliers μi corresponding to the active constraints are positive  

 

, { | 0 1 }.  μ I
I Q i for i QμΩ = ∈ ≥ ≤ ≤                                  (4.82) 

 

If some of the first Q multipliers are negative (μ ∉ ΩI,Q), then the appropriate inequality 

constraints become inactive in the direction SΨ and the Pareto solution might correspond 

to a non-differentiable point of the Pareto frontier. In order to identify if the Pareto point 

is non-differentiable, it is proposed to remove the constraints corresponding to negative 

components of μ and repeat the analysis reconsidering the active constraints (Zhang 

W.H., 2003a, 2003b). 

 Let us now consider the requirements for the test function Ψ. This analysis is 

based on the consideration of the constraint cone and polar cone at a Pareto point. The 

constraint cone K is defined as follows (Vincent and Grantham, 1981) 

 

,
1

{ | , }.g  y y μ
I

N
i i I Q

i
K

=

= ∈ = − μ ∇ ∈Ω∑                          (4.83) 
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Along with the constraint cone K we define the positive polar cone K*  

 
* T 0   { | }.NK K≥ ∀ ∈= ∈ y yz z                                  (4.84) 

 

For any regular point of the feasible space, the cone T  tangent to the feasible design 

space coincides with the cone K*: K*= T (Vincent and Grantham, 1981). It is to be noted 

that if the function Ψ reaches a minimum at point xp then for any vector e satisfying e ∈ 

T the following condition must be valid 

 
T 0,∇Ψ ≥e                                                    (4.85) 

 

otherwise there is a feasible direction of minimisation for Ψ. Inequality (4.85) also 

means that ∇Ψ ∈ T* = K, where T* is the positive polar cone to the cone T. The identity 

T* = K follows from the Polar theorem: (K*)*= K (Vincent and Grantham, 1981). One 

can note that since the function Φ reaches a minimum at point xp, then ∇Φ  ∈ K. 

 If ∇Ψ ∉ K then μ ∉ ΩI,Q and there is a direction along which the function Ψ can 

be further diminished. Assume, that there is only one Lagrange multiplier μq in equation 

(4.75): μq < 0, (q ≤ Q). By removing the q-th active constraint from J, we obtain the 

reduced matrix Jr. The new descent vector S̃Ψ is defined by the set of remaining active 

constraints as follows: 

 
T ,r rΨ = −∇Ψ −S J μ�                                           (4.86) 

where  
T 1( ) .r r r r

−= − ∇Ψμ J J J                                         (4.87) 

 

Vector S̃Ψ defines a descent direction along which the q-th constraint becomes inactive. 

Before going any further, let us make sure the new direction is feasible. Subtracting 

equation (4.74) from (4.86) we obtain: 

 
T T T ( ),r r q q r r rgμΨ = − = ∇ + −S J μ J μ J μ μ                             (4.88) 
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where vector μr ∈ I-1is obtained from μ by dropping μq. Note that S̃Ψ is not a null 

vector, otherwise from equation (4.88), there would exist a non-null vector β such that 

JTβ = 0 which would contradict the assumption of local linear independence of the 

active constraints. Multiplying equation (4.88) by itself and taking into account the 

orthogonality condition JrS̃Ψ = 0, we find: 

 
2 T 0.q qgμΨ Ψ= ∇ >S S                                         (4.89) 

 

Hence, S̃Ψ
T∇gq < 0 and the direction S̃Ψ is feasible.  

 If several Lagrange multipliers in the vector μ are negative, we define the set Q¯ 

such that μq < 0 if q ∈ Q¯. Only one ∇gq with q ∈ Q¯ needs to be removed from J so 

that the above analysis remains valid. A strategy is proposed (Zhang, 2003b), to remove 

the gradient of the constraint that satisfies: 

 

max 0q

q Qk q

k λλ
μ μ−∈

<=                                              (4.90) 

to obtain the reduced matrix Jr for the descent vector S̃Ψ. Along the descent direction 

S̃Ψ, we have: 

1
0

M

i
i i

f
f=

∂Ψ
Ψ = <∑

∂
δ δ                                            (4.91) 

 

and another Pareto solution is achievable in the framework of the linear approximation 

because  all the coefficients ∂Ψ/∂fi in equation (4.91) are non-negative.  

 To find the new normal to the Pareto surface in the Y space, we multiply the 

null-vector SΨ from equation (4.74) by the multiplier αΨ defined as: 

 

max 0q k

q Q
q k

λ λα
μ μ−Ψ

∈
= − >= −                                        (4.92) 

 

and add it to the null-vector SΦ from equation (4.69). Then, we obtain: 
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T( ) ( ).α αΨ Ψ∇ Φ + Ψ = − +J λ μ                                     (4.93) 

 

This equality can be seen as the KKT optimality condition for the new aggregate 

function Φ* = Φ+αΨΨ as we can show that: 

 
* T * 0∇Φ + =J λ                                                 (4.94) 

 

with the Lagrange multipliers: λ*=λ+αΨμ. Additionally, one can verify the following 

inequalities: 

 
*

0,   ( 1,..., ),
j

j M
f

∂Φ
≥ =

∂
                                           (4.95) 

* 0,   ( 1,..., ).i i Iλ ≥ =                                                (4.96) 

 

Note that in the KKT condition (4.94) there exists k ∈ Q¯such that λk
* = 0. It 

corresponds to the active constraint that becomes inactive. As a result, the normal to the 

Pareto surface might shift to its new value: 

 
( ).n f f αΨ= ∇ Φ + Ψ                                              (4.97) 

 

It is to be noted here that the change of the number of active constraints, Q, does not 

necessarily mean that the Pareto point is not differentiable. More precisely the non-

differentiability corresponds to a shift of the normal to the Pareto surface (Zhang, 

2003b) not a change in the set of active constraints.  

 It is possible to show that the vector S̃Ψ defines a direction tangent to the Pareto 

surface. Indeed, multiplying the null-vector SΦ from equation (4.69) by S̃Ψ, we obtain: 

 
T T .k kgλΨ Ψ= −∇Φ ∇S S� �                                            (4.98) 
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Then, after multiplication of SΨ from equation (4.74) by S̃Ψ we have: 

 

T T1 ,k
k

g
μΨ Ψ= − Ψ∇ ∇S S� �                                           (4.99) 

T ,
k

k α
μ
λ

ΨΨ Ψ Ψ∇Ψ = − ∇Ψ∇Φ =S S S� � �                                  (4.100) 

hence,  

T T( ) ( )α ∗
Ψ Ψ Ψ∇ Φ+ Ψ =∇ Φ =S S 0� � .                                   (4.101) 

 

In turn, if ∇Ψ ∈ K, then ∇Ψ can be expressed as a linear combination of the gradients 

of active constraints (cf. equation (4.79)) with μ ∈ ΩI,Q. It follows that for such a test 

function, the feasible descent direction SΨ is a null vector. From the previous analysis, it 

also follows that the test function Ψ does not allow to obtain any additional information 

on the differentiability of the Pareto surface.  

Thus, to verify the differentiability of a Pareto point the function Ψ  must be chosen in 

such a way that (cf. equations (4.73), (4.76), (4.83)) 

 
( \ )IC V K∇Ψ∈ ∩ .                                            (4.102) 

 

It is worth noting that the equality constraints have an effect on the matrix J but do not 

influence the analysis with regard to the detection of non-differentiable Pareto points. 

This follows from the fact that equality constraints are to be strictly satisfied, i.e. they 

cannot be inactive, and the sign of the appropriate Lagrange multipliers is 

undetermined. It is to be noted that in contrast to (Zhang W.H. 2003a, 2003b) where 

only a weighted-sum of objective functions is considered as the test (preference) 

function Ψ, we consider here a general test function. Therefore, the approach becomes 

applicable to many other algorithms and is not limited to the weighted-sum method, 

which can only be used for convex problems. In particular, the analysis developed to 

detect non-differentiable Pareto solutions can be implemented into the Physical-

Programming based method (Guenov et al., 2005; Utyuzhnikov et al., 2005), which 

guarantees a well-distributed representation of the entire Pareto frontier. 
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4.4.3 Use of the sufficient condition for non-differentiability 
 In a practical situation, using conditions (4.102) to see whether a candidate 

Pareto solution is non-differentiable might not always be very convenient. If only two 

or three variables are involved in the optimisation problem, the designer can simply 

draw in the design space the relevant set and cones ,IV C and K  to see whether there 

exists a vector satisfying conditions (4.102). However, in the case where more than 

three variables are involved, this option is clearly not suitable. 

 Let us reconsider conditions (4.102) and try to reformulate it in a more 

convenient way. To show that a Pareto point is not differentiable, one must try to find a 

vector ∇Ψ that belongs to C  and \IV K . Therefore, one must find a set of scalars 

iμ and ja  such that: 

1 1

I M

i i j j
i j

g a fμ
= =

∇Ψ = − ∇ = ∇∑ ∑                                       (4.103) 

 

where at least one 0iμ < , 1 i Q≤ ≤  and 0ja ≥ for all 1 j M≤ ≤ . It can be reformulated 

as follows: 
T -1( ) [ ]= − ∇μ JJ J f a                                              (4.104) 

[ ]∇ =P f a 0                                                   (4.105) 

 

where at least one 0iμ < , 1 i Q≤ ≤  and 0ja ≥ for all 1 j M≤ ≤ . 

 To see whether there exist a vector satisfying (4.102), it is proposed to solve the 

following linear optimisation problem: 

 

min

[ ]
Subject to 

1

i

i

μ

μ

∇ =⎧
⎪ ≥⎨
⎪ ≥ −⎩

a

P f a 0
a 0

                                      (4.106) 

 

where iμ  is obtained from equation (4.104) and the constraint 1iμ ≥ −  is only here to 

stop the optimisation as soon as iμ  is negative. The linear optimisation problem is 
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solved for each 1i ,...,Q=  individually until one feasible iμ  is negative. If the linear 

optimisation problem has such a solution, the corresponding vector a  is such that: 

 

I
1

    C (V K)
M

j j
j

a f \
=

∇Ψ = ∇ ∈ ∩∑                           (4.107) 

 

and the Pareto point under study is non-differentiable. 

 
4.5 Procedure for local Pareto sensitivity analysis 
 In this section, an overview of the Pareto analysis concept developed in the two 

previous sections is presented. The problem of identifying non-differentiable Pareto 

point is of main importance. Indeed, if the candidate point is not differentiable, the 

general linear and quadratic approximations will perform poorly. Condition (4.102) on 

differentiability is only sufficient, i.e. if there exists a vector ∇Ψ  satisfying condition 

(4.102), it follows that the Pareto point is not differentiable. However, if such vector 

cannot be found, it does not ensure that the point is differentiable and that the Pareto 

approximations can be used safely. In the case where condition (4.102) is not satisfied, 

the designer can decide to investigate further the differentiability of the Pareto point 

under study by finding directional derivatives along principal descent directions of 

positive linear combinations of gradients of objective functions using equation (4.78). 

As for the trade-off matrix, these derivatives define tangent vectors to the Pareto 

surface. If all these vectors are in the same hyperplane, then the designer can fairly 

assume that the Pareto surface is differentiable. The whole approach is summarised in 

Figure 4.11. 
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Figure 4.11: Pareto analysis flowchart 

 

 



Chapter 4: Obtaining local sensitivity on the Pareto surface  
 

 
90 
 

4.6 Limitations of the Pareto sensitivity analysis 
 At this point, it is important to introduce the concept of global and local Pareto 

front. Points of a local Pareto front correspond to Pareto optimal points, but with 

respect to a localised region of the design space. Instead, points of the global Pareto 

front are Pareto optimal with respect to the entire design space. The global Pareto front 

might be composed of solutions from several local Pareto fronts, which correspond to 

different regions of the design space. Such situation is described in Figure 4.12. 

 

Figure 4.12: Global and local Pareto fronts 

 

 Figure 4.12 also shows that the presence of several local Pareto fronts can result 

in non-smooth regions on the global Pareto front such as discontinuity (point A) and 

non-differentiability (point B). 

 The local Pareto approximations derived in this chapter are based on local 

information and are only valid if the Pareto point under study is differentiable. If local 

Pareto approximations (4.53) and (4.54) are used at point A, one will actually 

approximate local Pareto front 1 for which point A is differentiable. For point B, one 

will approximate either local Pareto front 2 or local Pareto front 3 depending on the 

corresponding point in the design space. 

 The method developed in this chapter for detecting non-differentiable Pareto 

points can only detect non-differentiability due to local changes in the set of active 

constraints. It will fail to detect lack of smoothness corresponding to points A and B.  
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 The Pareto analysis developed in this chapter is entirely based on local 

information on the solution set. It cannot deal with non-smooth regions of the global 

Pareto front described in Figure 4.12 because they result from the structure of the 

solution set over the entire design space. It is important to observe that currently no 

method to the best of the author’s knowledge can address this type of non-

differentiability. 

 

4.7 Numerical examples 
 In this section, the new linear and quadratic equations are used to obtained the 

local Pareto approximations  

 

4.7.1 Example 1: Non linear three-objective optimisation 
 Let us now consider the following multi-objective problem studied in (Tappeta 

et al., 2000): 
  

 Minimise:  1 2 3( ) = { ( ), ( ), ( )}f f ff x x x x                               (4.108) 

 Subject to:  
2 2 2
1 2 3( ) 12 0

0
g x x x ,= − − − ≥
≥
x

x
                           (4.109) 

 

where the objective functions are given by: 
 

3 2 3 3
1 1 1 2 3 2 3

3 3 2 3
2 1 2 2 1 3 3

3 3 3 2
3 1 2 3 3 1 2

25 ( (1 ) ) 10
35 ( 2 (1 ) ) 10
50 ( 3 (1 ) ) 10

f x + x + x + x + x + x ,
f = x + x + x + x + x + x ,
f = x + x + x + x + x + x + .

= −

−

−

                          (4.110) 

 

The linear and quadratic Pareto approximations obtained with (4.53) and (4.54) are 

given in Figure 4.13 and Figure 4.14 respectively. The comparison between both 

approximations is given in Figure 4.15. As expected, a much better approximation of 

the Pareto surface is provided by the quadratic approximation.  

 In the next two examples, non-smooth Pareto surfaces are considered. The 

Pareto analysis is used to detect non-differentiable Pareto points.  
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Figure 4.13: Example 1 – Non linear  three objectives problem – linear approximation 

 

 
Figure 4.14: Example 1 – Non linear three objectives problem – Quadratic approximation 

 

 
Figure 4.15: Example 1 – Non linear three objectives problem – Relative error in predicting f3 

 



Chapter 4: Obtaining local sensitivity on the Pareto surface  
 

 
93 
 

4.7.2 Example 2: Non-differentiable Pareto point when 
design and criterion spaces coincide 

 The linear bi-criteria test case taken from Zhang W.H. 2003b is considered: 

 

 Minimise:         ( ),x y=x                                                      (4.111) 

 Subject to:         

1

2

3

4

( ) 1 0
4 4

( ) 1 0
3 6

( ) 0

( ) 0

x y
g ,

x y
g ,

g x

g = y .

,

= − − + ≤

= − − + ≤

= −

− ≤

≤

x

x

x

x

                                (4.112) 

 

In this test case, the design space coincides with the objective space. Hence, each point 

of the Pareto set is a point of the design space for which at least one constraint is active. 

The Pareto set is represented by the solid portions of the lines g1 = 0 and g2 = 0. The 

kink on the Pareto surface corresponds to the only non-differentiable Pareto solution. 

 At the non-differentiable Pareto solution, the tangent cone T = K* and its polar 

cone K are constructed and shown in Figure 4.16. In this example K ⊂ K *. 

 

 
Figure 4.16: Example 2 – Relative position of the tangent cone and its polar at a non-differentiable 

Pareto point  
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A vector ∇Ψ  satisfying condition (4.102) can be obtained and is displayed in Figure 

4.17. Therefore, according to the analysis developed in section 4, the Pareto point under 

study is non-differentiable.  

 

 
Figure 4.17: Example 2 – Existence of vector ∇Ψ 

 

As the point is non-differentiable, the linear and quadratic approximations (4.53) and 

(4.54) cannot be used. Instead, tangent derivatives along the Pareto surface can be 

obtained using equation (4.78).  

 At the non-differentiable point, both constraints are active and the corresponding 

matrix J is defined by 
 

1 1
4 4 .
1 1
3 6

J

⎡ ⎤− −⎢ ⎥
= ⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦

                                                  (4.113) 

Hence, 

P 0.=                                                        (4.114) 
 

Let us study the sensitivity for the reduction of f1 choosing Ψ1 = f1. The projection of 

−∇Ψ1 gives S1 = P(−∇Ψ1) = 0 with μ1 = −(JJT)−1J∇Ψ1 = [−4 6]T. The negative value for 
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the first component of 1μ  indicates that in the direction of reduction of f1, constraint g1 

becomes inactive. Therefore, its gradient should be removed from J to obtain the 

reduced projection matrix 

r1

1 2  
5 5
2 4  
5 5

P .

⎡ ⎤−⎢ ⎥
= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

                                                (4.115) 

 

Thus, S̃Ψ1 can be calculated as S̃Ψ1 = −Pr1(∇Ψ1) and we obtain S̃Ψ1 = [−1/5  2/5]T. The 

sensitivity along S̃Ψ1 for f1 is then 

 

2 2 1

1 1 11

( , ) 2
( , )S

S
S

df f
df f

Ψ

ΨΨ

∇
= = −

∇
                                       (4.116) 

 

which corresponds to the slope of  the line g2 = 0. 

 The same analysis can be performed along the greatest feasible direction for 

objective f2 by choosing Ψ2 = f2. It follows that S2 = P(−∇Ψ2) = 0 with the vector of 

Lagrange multipliers μ2 = −(JJT)−1J∇Ψ2 = [4 −6]T. In this case, constraint g2 becomes 

inactive and the new reduced projection matrix is 

 

r2

1 1  
2 2
1 1 
2 2

P

⎡ ⎤−⎢ ⎥
= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

                                                  (4.117) 

 

and S̃Ψ2 = −Pr2(∇Ψ2) = [1/2  −1/2]T. The sensitivity along S̃Ψ2 for  f2 is then 

 

2 2 2

1 1 22

( , ) 1
( , )S

S
S

df f
df f

Ψ

ΨΨ

∇
= = −

∇
                                      (4.118) 

 

which is the slope of  the line g1 = 0. 



Chapter 4: Obtaining local sensitivity on the Pareto surface  
 

 
96 
 

4.7.3 Example 3: Non-differentiable Pareto point when 
design and criterion space are different 

 In this example, the quadratic bi-criteria test case under linear constraints is 

considered: 
 

 Minimise:       1 2( ) ( )( , )f fx x                                                 (4.119) 

 Subject to:      
1

2

( ) 2 1 0,
1( ) 0

2 2

x

x

g y x
xg y

= − + ≤

= − + + ≤
                               (4.120) 

with  

( )x, y=x                                                                  (4.121) 
2

1

2

2

3 1( )
2 2

2 1( )
3 2

x

x

f y x

f y x

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

                                    (4.122) 

The feasible space is given in Figure 4.18.  

 

 
Figure 4.18: Example 3 – Design space / Pareto set 

 

Only the two contour lines corresponding to the minimum value of the objectives are 

represented in the design space. Isovalue contour lines for each objective are straight 

lines parallel to the one corresponding to their respective minimum value. The set of 

Pareto solutions for the problem is given in Figure 4.19. In this example, design space 
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and objective spaces are different. This example puts emphasis on the fact that only 

information in the design space is used to identify a non-differentiable point in the 

objective space. 

 
Figure 4.19: Example 3 – Objective space / Pareto set 

 

The Pareto point, corresponding to the design point where both constraints are active, is 

clearly non-differentiable point in the objective space. Moving away from this point, the 

set of active constraints is changed and implies a shift in the direction tangent to the 

Pareto surface. Figure 4.20 shows the tangent cone T = K*and its polar cone K in the 

design space. 

 
Figure 4.20: Example 3 – Relative position of the tangent cone and its polar at a non-differentiable 

Pareto point 
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As shown in Figure 4.21, there exists a vector ∇Ψ  satisfying condition (4.102), 

therefore, the Pareto point is not differentiable. 

 

 
Figure 4.21: Example 3 – Existence of vector ∇Ψ 

 

Only derivatives along descent direction for each objective can be obtained using 

equation (4.78). 

 At the Pareto point under study, both constraints are active and the 

corresponding matrix J is defined by 
 

2   1
.1 1

2
J

−⎡ ⎤
⎢ ⎥=
⎢ ⎥−
⎣ ⎦

                                              (4.123) 

 

Hence, 

P 0.=                                                     (4.124) 
 

Let us evaluate the sensitivity for the reduction of objective f1 and choose Ψ1 = f1. 

Proceeding as in the previous example, we obtain S1 = P(−∇Ψ1) = 0 and the 

corresponding vector of Lagrange multipliers μ1 = −(JJT)−1J∇Ψ1 = [4/3 −2/3]T. The 

negative value for the second component of μ1 indicates that in the direction of 

reduction of f1, constraint g2 becomes inactive. Therefore, its gradient should be 

removed from J to obtain the reduced projection matrix: 
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r1

1 2
5 5
2 4
5 5

P .

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                               (4.125) 

 

Thus, S̃Ψ1 can be calculated as S̃Ψ1 = −Pr1(∇Ψ1) and we obtain S̃Ψ1 = [1/5  2/5]T. The 

sensitivity along the greatest feasible direction for f1 is then given by 
 

2 2 1

1 1 11

( , ) 2
9( , )S

S
S

df f
df f

Ψ

ΨΨ

∇
= = −

∇
.                                   (4.126) 

 

The same analysis can be performed along the greatest feasible direction for objective f2 

by choosing Ψ2 = f2. It follows that S2 = P(−∇Ψ2) = 0 with the corresponding vector of 

Lagrange multipliers μ2 = −(JJT)−1J∇Ψ2 = [−0.1852  1.4815]T. In this case, constraint g1 

becomes inactive and the new reduced projection matrix is 
 

r2

4 2
5 5
2 1
5 5

P

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                (4.127) 

 

and S̃Ψ2 = −Pr2(∇Ψ2) = [2/9  1/9]T. The sensitivity along the greatest feasible direction 

for f2 is then 

2 2 2

1 1 22

( , ) 0.1389
( , )S

S
S

df f
df f

Ψ

ΨΨ

∇
= = −

∇
.                              (4.128) 

 

4.8 Conclusions 
 In this chapter, a promising existing technique (Tappeta et al., 1999, 2000, 2001) 

is reviewed in detail. Some clarifications about the formulation of the derivation of the 

linear approximation are made. Based on the same concept, the method is extended to a 

quadratic approximation where no local optimisation is needed. However, a simple 
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analytical example proved that this approach could not always provide a local Pareto 

approximation. 

 Taking into account the limitations of the first method, new theoretically sound 

linear and quadratic approximations are derived in the general case. The assumptions 

are clearly stated and an approach to use them as part of a Pareto local sensitivity 

analysis is given. It includes an approach to assess the extent of validity of the 

approximation by defining the range of local feasible moves on the Pareto surface. 

 A sufficient condition to identify non-differentiable Pareto points is derived. It is 

shown how it can be conveniently reformulated as a linear optimisation. 

 The limitations of the sensitivity analysis procedure in the context of a global 

Pareto surface composed of solution from several local Pareto front are outlined. 

 Finally, a summary of the entire Pareto analysis procedure is given and 

numerical tests are performed to evaluate the advantages of the approach. 
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Chapter 5 
5  Beam optimisation problem 
 
 
 
 In this chapter, a typical engineering design optimisation problem is considered. 

The optimisation of an I-beam, namely minimisation of its cross section area and the 

resulting displacement, subject to a particular load is carried out. The test case can be 

entirely described with analytical equations, which makes the interpretation of the 

results easier as the relations between inputs, and outputs are straightforward. This 

example serves as the first of two representative test cases to demonstrate the 

advantages of using local Pareto approximation once a Pareto solution is available. 

Emphasis is put on the analysis that can be carried out during the search of a 

satisfactory solution of the multi-objective optimisation problem and the information 

about trade-offs that can be obtained. 

 

5.1 Description 
 The I-beam design test case is taken from Yang et al. (2002). The problem is to 

find the dimensions of the cross section of a beam of fixed length, which satisfies 

geometric and strength constraints, and minimise its weight and static deflection under 
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the loads P and Q applied along the z and y axis, respectively. A description of the I-

beam problem is given in Figure 3.1.  

 
Figure 5.1: The I-beam design problem 

 

Since the length of the beam is fixed, minimising its weight is equivalent to minimising 

its cross-sectional area. Therefore, the problem can be formulated as follows: 
 

( )2 4 3 1 4
1 3
2

2 2
min PL

48EI

area x x x x xf
f displacement

⎛ ⎞= + −
⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟=⎝ ⎠ ⎜ ⎟

⎝ ⎠
x

                       (5.1) 

 

Subject to a strength constraint: 
 

y -2z
a

y z

M M( ) = 0  (kN.cm )
Z Z

g + −σ ≤x                              (5.2) 

 

and geometric constraints on the input range of variation: 
 

1

2

3

4

10 80
10 50
0.9 5
0.9 5

x
x
x
x

≤ ≤
≤ ≤
≤ ≤

≤ ≤

  

(cm)
(cm)
(cm)
(cm)

                                             (5.3) 
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where the moments are given by: 

 

y
P L M
2 2

= ×  ,                                                     (5.4) 

z
Q LM
2 2

= ×                                                       (5.5) 

 

and the moments of inertia are calculated as follows: 

 

3 2
y 3 1 4 2 4 4 1 1 4

1

1Z { ( ) +2 [4 +3 ( 2 )]}
6

x x x x x x x x x
x

= − − ,                  (5.6) 

3 3
z 1 4 3 4 2

2

1Z {( ) +2 }
6

x x x x x
x

= − ,                                      (5.7) 

 

with 4 2E 2 10 kNcm−= × , 2
a 16kNcm−σ = , P 600kN= , Q 50kN=  and L 200cm= . 

 

5.2 Pareto surface 
 The set of solutions for this problem is obtained using an in-house developed 

gradient-based optimisation tool for multi-objective optimisation (Fantini, 2007; Fantini 

et al., 2007; Guenov et al., 2005; Utyuzhnikov et al., 2005). This tool searches for 

solutions that are uniformly distributed over the Pareto front. Since all equations 

necessary to describe the present problem are analytical, obtaining a large number of 

Pareto solutions is not a problem and 260 points can be obtained in a matter of a couple 

of minutes. The large number of solutions allows to compare easily results of the 

approximation with the true Pareto front. 

 The set of Pareto solutions obtained for this test case is plotted in Figure 5.2. 

The high density of points gives a good representation of the Pareto front, particularly in 

the region where the curvature is important. It appears quite clearly that the Pareto front 

is differentiable everywhere. Therefore, in this chapter, the analysis about the Pareto 

differentiability is omitted. Instead, the analysis will focus on the use of local Pareto 

approximation for understanding the local trade-offs at different candidate Pareto 

solutions.  
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Figure 5.2: Pareto front for the I-beam design problem 

 

5.3 Local Pareto sensitivity analysis 
 In this section, the approximation analysis is carried out on two candidate Pareto 

solutions and approximations are derived to understand their local sensitivity. 

 The first candidate solution considered is given in Table 5.1. Its location on the 

Pareto surface is shown in Figure 5.3. 
 

   
Pareto solution 1   

 x1 (cm) 80  
 x2 (cm) 50  
 x3 (cm) 0.9  
 x4 (cm) 3.48  
    
  
 f1 (cm2) 413.83  
 f2 (cm) 0.0093  
 g (kN. cm-2) -12.930  
 

Table 5.1: Candidate Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm) 
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For this candidate Pareto solution, three constraints on the input range are active: two 

constraints on the maximum bound for x1 and x2, and one constraint on the minimum 

bound for x3. 

 

 
 Figure 5.3: Candidate Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm) in 

criterion space 
 

 

Equations derived in chapter 4 are used to find the first and second order derivatives on 

the Pareto surface at this point and are given in Table 5.2.  

 

                         Derivatives   
 df2/df1 -2.29×10-5  
 d2f2/df1

2 1.26×10-7  
Table 5.2: First and second order derivative on the Pareto surface 

at candidate Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm) 

 

Simple considerations on the values for the first and second order derivatives provide an 

insight into the local trade-offs. The small value of the first order derivative suggests 

that to improve (decrease) slightly objective f2, a larger compromise (increase) in 

objective f1, must be conceded. Indeed, an improvement for f2, of 0.001 cm implies that 
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f1, must be increased of around 43 cm2. The small value for the second derivative 

indicates that the local curvature is small and therefore the candidate solution is located 

on a flat portion of the Pareto front. 

 The linear and quadratic approximations are derived as follows: 
 

* 2
2 2 1

1

dff f f
df

= + Δ                                                   (5.8) 

2
* 22 2

2 2 1 12
1 1

1
2

df d ff f f f
df df

= + Δ + Δ                                        (5.9) 

 

and plotted in Figure 5.4. Equations (5.8) and (5.9) provide us with the local description 

of the Pareto curve. However, more information can be obtained than just local 

approximate sections of the Pareto front.  
 

 
 Figure 5.4: Linear and quadratic approximation at candidate Pareto solution 

(f1 = 413.83 cm2, f2 = 0.0093 cm) 
 

 

Indeed, in chapter 4, it was described how the extent of validity of the local 

approximation can be estimated and how solutions lying on the approximate portion on 
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the Pareto curve can be mapped back into the design space. With respect to the 

aforementioned analysis, the study of the extent of validity of the solution can be 

formulated as a single objective optimisation problem, which reduces to a linear 

problem in the case of two objectives: 
 

   Minimise and maximise:   1fδ  

 

   Subject to: 

1 1− ≤ + ≤x xδ                                                   (5.10) 
2

2
1 12

1 1

1 ( ) 0
2

dg d gg f f
df df

+ + ≤δ δ                                   (5.11) 

2
2 2

12
1 1

1
2

d f dff
df df

≤δ α                                          (5.12) 

 

where alpha is fixed to 0.2 for this test case. The values for inputs variables, objectives 

and constraint of the approximate solutions defining the bounds of validity of the Pareto 

approximation are given in Table 5.3. Here, the values for objective f1 are the results of 

the linear optimisation problem and approximate values for f2 and g are obtained with 

the quadratic approximation. Figure 5.5 plots the approximate solutions in the criterion 

space and Figure 5.6 shows the geometry of the corresponding beams. 

 

 Approx solution 1 Pareto solution 1 Approx solution 2 
x1 (cm) 80 80 80 
x2 (cm) 50 50 50 
x3 (cm) 0.9 0.9 0.9 
x4 (cm) 2.74 3.48 4.22 
    
 Approx Model Model Approx Model 
f1 (cm2) 341.175 341.175 413.83 486.493 486.493 
f2 (cm) 0.0113 0.0113 0.0093 0.0079 0.0078 
g (kN. cm-2) -12.232 -12.202 -12.930 -13.392 -13.412 

 

Table 5.3: Inputs, objectives and constraint values of candidate Pareto solution 

(f1 = 413.83 cm2, f2 = 0.0093 cm) and approximate Pareto solutions associated 

with the limits of validity of the approximation 
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 Figure 5.5: Extent of validity of approximation at candidate Pareto solution 

(f1 = 413.83 cm2, f2 = 0.0093 cm) 
 

 

 
 Figure 5.6: Beams associated with the limits of validity of the approximation at 

candidate Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm) 
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The small value of the first order derivative of objective f2 with respect to f1 and the fact 

that no inactive constraints are close to activation, results in a large range of variation 

for f1 associated with the extent of validity of the approximation. 

 The predictions given by the Pareto approximation are in accordance with the 

estimates obtained with the analytical equations. The small discrepancy on the strength 

constraint values obtained with the approximation and the model does not really matter 

as the constraint at the candidate Pareto solution is not close to being activated. Indeed, 

at the candidate Pareto solution, the first and second order derivatives for the strength 

constraint given in Table 5.4 are relatively small when compared to the actual value of 

the constraint and would require a much larger change in objective f1 to activate it. 
 

                         Derivatives   
 dg2/df1 -7.98×10-3  
 d2g2/df1

2 4.48×10-5  

Table 5.4: First and second order derivative on the Pareto surface for strength 

constraint at candidate Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm) 

 

The back-mapping analysis indicates what variables are changed as a result of the 

Pareto approximation. The analysis derived in chapter 4 was based on the assumption 

that active constraints remain active in the vicinity of the Pareto solution under study. 

For this candidate point, three constraints on the bounds of the inputs variables are 

active (x1, x2 and x3) and remain active for the Pareto approximation. Therefore, the 

Pareto approximation analysis indicates that locally, this part of the Pareto front 

corresponds to changes with respect to x4 only. This can be clearly seen in Figure 5.6 

where only the thickness of the foot and head of the beam, i.e., x4, is changed. Such a 

consideration provides the designer with valuable information about the Pareto solution 

in the vicinity of the point under study. It also indicates what parameters can be adjusted 

locally if the compromise solution does not entirely satisfy some preferences on the type 

of solutions that were not articulated in the formulation of the optimisation problem. 

 As mentioned in chapter 4, the Pareto approximation comes at a reduced cost 

compared to Tappeta et al. (2000). Gradients and Hessians of the objectives and 

constraints are required to obtain the first and second order derivatives. In the case of a 

gradient-based optimiser, obtaining the gradients at the point under study has no cost 
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since these are obtained during the optimisation procedure. If Hessians are not 

calculated during the optimisation, they must be computed if the designer wants to 

make use of the approach described to assess the extent of validity of the Pareto 

approximation. Dennis and Schnabel (1983) show that in the case of forward 

differences, when the gradients are already available, the Hessian is obtained at an 

additional cost of (n2+n)/2 where n is the number of variables. In the case of central 

differences, Abramowitz and Stegun (1972) show that the additional cost of obtaining 

the Hessian with finite differences is 2n2. Finally, two extra runs of the model: one for 

each bound of the extent of validity, allow to verify that the approximation is consistent 

with the model and can be used safely.  

 The second candidate solution considered is given in Table 5.5. Two constraints 

on the minimum bounds for x3 and x4 are active at this point. The constraint on the 

strength is also activated here. This means that on this portion on the Pareto surface, 

input variables x3 and x4 are fixed to their minimum value. Only x1 and x2 are left free to 

move along the Pareto curve. As mentioned before, the apparent smoothness of the 

Pareto surface given by the high density of Pareto points obtained led to the conclusion 

that the Pareto surface was differentiable. However, the set of active constraints at this 

Pareto point is different from the one at the first candidate point. As explained in 

chapter 4, it shows that a change in the set of active constraints on the Pareto surface 

does not necessarily indicate non-differentiability. Only the study of the local normal 

vector to the Pareto surface can reveal whether the surface is smooth or not. 

 

   
Pareto solution 2   

 x1 (cm) 70.72  
 x2 (cm) 37.05  
 x3 (cm) 0.90  
 x4 (cm) 0.90  
    
  
 f1 (cm2) 128.718  
 f2 (cm) 0.0472  
 g (kN. cm-2) 0.000  
 

Table 5.5: Candidate Pareto solution (f1 = 128.718 cm2, f2 = 0.0472 cm) 
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Compared to the first candidate Pareto point, this one corresponds to a very different 

solution. Indeed, its cross-section area is much smaller than the previous one: 128.7 cm2 

compared to 413.8 cm2. A 70% reduction in weight has been traded for a 0.0379 cm 

increase in displacement. However, this came at a price: the constraint on the maximum 

stress allowable is now activated. It means that the current point corresponds to a 

critical solution where an essential structural constraint is strictly satisfied, with no 

margin. 

 The first and second order derivatives on the Pareto surface in the criterion space 

are given in Table 5.6. 
 

                         Derivatives   
 df2/df1 -4.01×10-3  
 d2f2/df1

2 1.42×10-3  

Table 5.6: First and second order derivative on the Pareto surface 

at candidate Pareto solution  (f1 = 128.718 cm2, f2 = 0.0472 cm) 

 

The first order derivative is clearly larger than the first candidate solution, which 

indicates that the point corresponds to a part of the Pareto curve with a steeper slope. It 

also shows that at this point, a smaller cross-section area, i.e., less weight, must be 

sacrificed to significantly decrease the displacement. However, compared to the first 

candidate solution, the relatively large value for the second order derivative suggests 

that the quadratic approximation will depart early from the linear approximation. A 

direct consequence is that the analysis of the extent of validity of the approximation will 

give a limited range for legitimate variations of objective f1. 

 The extent of validity of the approximation is estimated with the same approach, 

i.e., by trying to minimise and maximise the change in objective f1, subject to 

constraints defined by equations (5.10), (5.11) and (5.12). The values for these input 

variables, objectives and constraint of the approximate solutions defining the bounds of 

validity of the Pareto approximation are given in Table 5.7, while Figure 5.7 plots the 

approximate solutions in the criterion space. As previously discussed, values for f1 

correspond to the solution of the optimisation problem that is solved to assess the extent 

of validity of the approximation. Values for objective f2 and constraint g are given by 
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their respective quadratic approximation. The design points associated to the bounds of 

validity of the Pareto approximation are found using back-mapping to the design space. 

The resulting beam designs are given in Figure 5.8.  

 

 Approx solution 1 Pareto solution 1 Approx solution 2 
x1 (cm) 66.91 70.72 74.53 
x2 (cm) 38.33 37.05 35.77 
x3 (cm) 0.90 0.90 0.90 
x4 (cm) 0.90 0.90 0.90 
    
 Approx Model Model Approx Model 
f1 (cm2) 127.588 127.588 128.718 129.845 129.848 
f2 (cm) 0.0527 0.0521 0.0472 0.0436 0.0430 
g (kN. cm-2) 0.000 0.046 0.000 0.000 0.045 

 

Table 5.7: Inputs, objectives and constraints values of candidate Pareto solution 

(f1 = 128.718 cm2, f2 = 0.0472 cm) and approximate Pareto solutions associated 

with the limits of validity of the approximation 

 

 

 
 Figure 5.7: Extent of validity of approximation at candidate Pareto solution 

(f1 = 128.718 cm2, f2 = 0.0472 cm) 
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 Figure 5.8: Beams associated with the limits of validity of the approximation at 

candidate Pareto solution (f1 = 128.718 cm2, f2 = 0.0472 cm) 
 

 

It is worth noting that when a constraint is active at the point under study, the 

approximation guarantees that it will remain active and therefore will not be violated 

within the extent of validity of the approximation. However, when moving away from 

the point under study, the model will most of the time depart from the approximation. 

Therefore, it is difficult to ensure that the active constraints will strictly remain active. 

Indeed, Table 5.7 shows that at the bounds of the approximation, the strength constraint 

does not remain active exactly. The assumption behind the approximation theory is that 

locally the move in the design space to accommodate for the change in the objective 

functions on the Pareto surface is locally normal to the set of active constraints. For 

active bound constraints, it ensures that the constraint will remain active in this 

direction, however, for any other active constraint, this is only valid locally. 
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5.4 Conclusions 
 In this chapter, the Pareto approximation methodology proposed in chapter 4 is 

used in the context of a typical engineering multi-objective optimisation: beam design 

problem. 

 It is described in detail how the approximation can be used at a discrete number 

of Pareto points to gain valuable information about the local sensitivity of the Pareto 

surface. It is shown how the approximation derived in the criterion space enables to 

obtain new approximate Pareto solutions. The back-mapping allows the corresponding 

design in the design space to be obtained. It indicates what design variables can be 

modified to remain locally on the Pareto surface, and to what extent these inputs must 

be changed. Therefore, input variables can be adjusted according to the designer 

preferences on the objectives that are not included in the initial formulation of the 

optimisation problem. 

 Approximations are derived for the constraint to ensure that the constraint is not 

violated within the extent of validity of the approximation. 

 The Pareto approximation is entirely based on first and second order derivatives 

of the objectives and constraints and therefore comes at a reduced cost. It is also 

suggested to perform a small number of runs on the true model to ensure the quality of 

the approximation at the bounds of the range of validity. 

 The Pareto approximation analysis provides valuable information about the 

Pareto surface to facilitate the trade-off study between available solutions of the multi-

objective optimisation problem. 
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Chapter 6 
6  Airfoil design optimisation  
 
 
 
 In this chapter, a multi-objective airfoil optimisation is considered. The 

implementation of the problem together with the surrogate model strategy adopted for 

this test case are described. Variance-based indices are obtained for each criterion and 

constraint to identify non-significant design variables. The reduced problem is 

formulated and the set of Pareto solutions is obtained. The results are compared with 

those obtained without reduction of dimensionality and followed by a discussion on the 

performance of the method. Then, local Pareto approximations described in section 4, 

are obtained for several candidate Pareto solutions to illustrate the advantages of the 

method in a complex design optimisation situation. 

 

6.1 Description of the problem and model implementation 
 This section concerns the implementation of the model used for this test case. 

More precisely, it describes the chosen method for the airfoil parameterisation and the 

aerodynamic code used to assess the aerodynamic performance. 
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6.1.1 PARSEC-11 parameterization 
 In this test case, the PARSEC-11 parameterisation proposed by Sobieczky 

(1998), was used to represent the airfoil with 11 geometric variables as shown in Figure 

6.1. A description of all input parameters is given in Table 6.1.  

 
Figure 6.1. PARSEC-11 airfoil parameterization 

 

 Inputs  Description  
 rle  Leading edge radius  
 xup  Upper surface max thickness location  
 xlo   Lower surface max thickness location  
 zup   Upper surface max thickness  
 zlo  Lower surface max thickness  
 zxxup   Upper surface curvature at xup  
 zxxlo  Lower surface curvature at xlo  
 zte  Trailing edge position  
 Δzte  Trailing edge thickness  
 βte  Trailing edge aperture angle  
 αte   Angle of trailing edge bisector  
 

Table 6.1: Description of model inputs 
 

 A polynomial is used to describe the upper and lower surface: 
 

6 1
2

1
z a ( ) xn

n
n

−

=

=∑ p ,                                               (6.1) 

 

where x varies between 0 and 1. The coefficients an of the polynomial are real and 

depend on the design vector p  made of the 11 geometric parameters 

le up lo up lo up lo te te te ter x x z z zxx zxx z z .⎡ ⎤= Δ β α⎣ ⎦p       (6.2) 
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Here, the coefficients an  of the polynomial are not taken as design parameters. Instead, 

the geometric parameters are used to define the polynomial for the upper and lower 

surface, which entirely determine the shape of the airfoil. The 11 geometric parameters 

are used to derive 12 equations on the airfoil shape based on the radius of leading edge, 

position of maximum thickness, curvature and so on (see Appendix C). It results that 

the geometric parameters and polynomial coefficient are related through a linear 

algebraic system of 12 equations. Once the geometric parameters are given, the linear 

system is solved for the coefficients an  to obtain the polynomials describing the upper 

and lower surface. The high order polynomial representation of PARSEC-11 might 

result in the upper or/and lower surface to have more than one relative maximum for 

particular combinations of these parameters. This implies that humps might appear 

locally on the airfoil surface. This feature can be interesting in the context of airfoil 

optimisation as these humps might have a significant impact on the flow characteristics 

but it is not clear how they can be controlled with the geometric parameters. This 

problem is discussed later in this chapter. 

 The PARSEC parameterization is a popular and efficient approach for transonic 

wing profile parameterization (Jeong, 2005; Oyama, 2000; Oyama et al., 2000a, 2000b; 

Vavalle, 2005). Its most attractive feature is the use of a reduced number of intuitive 

and explicit geometric design parameters that the designer can directly relate to changes 

in the flow characteristics. On one hand, Oyama (1999) shows that for the optimisation 

of a transonic airfoil for lift to drag ratio with evolutionary algorithm, PARSEC-11 

leads to a better design than a B-spline parameterisation with a similar number of design 

parameters (11 for PARSEC and 12 for B-spline). On the other hand, Vavalle (2005) 

and Kumano (2006) report that PARSEC-11 sometime fails to describe accurately well-

known existing profiles. Another parametric geometry description based on 

polynomials has been developed by Kulfan (2007). In parameterisation, the Class 

function/Shape function Transformation (CST) extends to different types of geometry 

and allows for an intuitive description using a reduced number of variables. The 

geometry is described with a Class function, which defines classes of geometries 

(airfoils, axi-symmetric bodies, nacelles…), and a Shape function, which defines 

specific geometric shapes within each class. However, for this test case, the PARSEC-

11 describes a design space, which is complex enough to apply the proposed 
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methodology and demonstrate its potential to assist the study of multi-objective 

optimisation problems. PARSEC-11 representation was implemented in a Matlab script 

to generate the airfoil geometry. 

 

6.1.2 VGK 
 The aerodynamic features (Cd and Cm) of the airfoil were obtained using an 

ESDU code, VGK (ESDU 96028, ESDU 96029), which was developed for subsonic 

free streams and includes viscous and weak transonic effects. VGK (Viscous 

Garabedian-Korn) is a FORTRAN code developed by DERA to predict two-

dimensional transonic attached flow around an airfoil placed in a subsonic freestream, 

with allowance for viscous effect. Solutions of inviscid flow about an airfoil and 

displacement effects of boundary layer and wake are coupled to compute the flow 

around the profile. Laminar and turbulent boundary layer elements are calculated with 

integral methods. The computation of displacement and momentum thickness takes into 

account the effect of pressure obtained from the solution of the inviscid flow. The 

coupling between potential equations and boundary layer effect is obtained by iterative 

procedure and allows to reach a converged and consistent solution of the flow around 

the airfoil.  

 The equations governing the region of inviscid flow are the full potential 

equations for steady compressible gas. These equations are exact in the case of shock-

free flow and only approximate for flows with relatively strong shocks. Nevertheless, 

VGK can still predict a solution whose pressure distribution over the surface is close to 

the true physical flow provided the shock is not too strong. The viscous solution is 

obtained by means of integral turbulent boundary layer method where high-order effects 

disregarded in the first-order boundary theory (zero normal pressure gradient) are taken 

into account. VGK has good accuracy for viscous flows with attached boundary layer 

and weak shock waves, for 1.3
shockLM < . When the boundary layer is close to 

separation, valuable information about the flow can still be obtained even if the 

prediction is not regarded as accurate (ESDU 96028). 

 The inviscid flow potential equations are solved on a mesh by means of iterative 

finite-difference scheme with a relaxation method. A conformal mapping function 

generates the mesh in the external region of the airfoil. Airfoil surfaces with concave 
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regions and/or rapid changes of slope may cause the mesh generation to diverge/crash 

or lead to anomalies in the mesh. This must be avoided as a poor mesh will result in 

poor estimates of the aerodynamic characteristic of the airfoil. VGK uses a two-level 

mesh strategy to obtain the solution of the inviscid flow. A number of iterations is first 

performed on a coarse mesh to speed up the procedure, followed by a larger number of 

iterations on a fine mesh to achieve a converged and accurate solution. Boundary layer 

conditions updates are made at regular intervals during the iterative process for solving 

the inviscid flow on either the coarse or fine mesh. When separation appears, i.e. the 

friction coefficient goes to zero, VGK has a strategy to compute the flow. It fixes the 

friction coefficient to a value close to zero, 62 10fc −= × , which allows to complete the 

boundary layer calculation. This is how VGK handles separation bubbles. However, 

when VGK fixes the friction coefficient to this value at more than two locations on 

either upper or lower surface, it is recommended to consider the results of the flow with 

care as they might not be reliable (ESDU 96028, 96029). 

 In VGK, two different approaches are used to determine the drag coefficient: 

near-field and far-field approach. The former is based on the evaluation of the total drag 

by integrating pressure and skin friction over the airfoil surface: C C Cd dp df= + . In the 

latter, the overall drag is calculated as the sum of a viscous term and a wave drag 

component due to the presence of a shock: C C Cd dv dw= + . The viscous drag 

component is derived from the momentum thickness of the wake far downstream of the 

airfoil. The wave drag component is computed by means of two methods incorporated 

in the solver and referred as first-order and improved method. Both are based on the 

assumption that the shock is normal to the airfoil surface but the improved approach 

makes allowance for effects of the profile upstream the shock location and often leads to 

better prediction. The far-field approach is recommended in the case of shock-free 

flows, but there is no clear indication in the case of flows with significant wave drag 

(ESDU 96028). Also in the case of the near-field approach, the inherent difficulty in the 

evaluation of the pressure term by means of numerical integration can lead to 

phenomena of numerical cancellation and the consequent numerical instabilities. 

Therefore, the improved far-field approach was preferred to estimate the overall airfoil 

drag. The FORTRAN code VGK was relatively fast to run (2-3 seconds) and could be 



Chapter 6: Airfoil design optimisation 
 

 
120 

 

easily implemented in a Matlab environment for immediate use with an existing in-

house developed optimisation tool. 

 

6.1.3 Implementation for optimisation 
 VGK was originally conceived to work under the direct control of the user, who 

had to provide the inputs and analyze the outputs to read the required results and check 

for their soundness and accuracy. Both inputs and outputs are written to text files, which 

work as interfaces for the program core. In order to automate this process in a Matlab 

environment, two appropriate preprocessing and postprocessing modules are created. 

The overall configuration of the CFD code used for this test case is shown in Figure 6.2. 

 The preprocessing module is a Matlab mex function, which links the original 

preprocessing code for VGK: vgkcon.for, to the Matlab main script. The mex function 

allows for a readily modification of vgkcon.for input parameters from the main Matlab 

script. These inputs include the conditions of the simulation, (fixed incidence 

angle/fixed Cl ), flow conditions (Mach and Reynolds number), parameters regarding 

the solver (inviscid/viscous number of iterations/relaxation factors), the transition 

locations for boundary layer (upper and lower surface), and so forth. 

 In this test case, the optimisation is performed for a fixed lift coefficient and the 

incidence angle is adjusted by the solver during the flow calculation to accommodate 

for the specified lift coefficient. There is no transition prediction implemented in VGK, 

instead, the user must specify the transition location. If a laminar separation occurs 

upstream of the specified separation point, transition to turbulent boundary layer is 

assumed where the laminar flow separates. In practice, many different factors can affect 

the location of the transition point and it becomes difficult to provide the VGK with a 

valid transition location before the flow around the airfoil is calculated, especially when 

VGK is used as a black box. In this case, it is proposed to fix it to the usual transition 

location of a small passenger transport aircraft. Typically, xT U / xTL  = 1% of the chord 

where xT U and xTL  are the position of the boundary layer transition point on the upper 

and lower surface respectively. The VGK settings adopted for this test case are given in 

Table 6.2. 
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Figure 6.2: Overall configuration of the model 
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Airfoil flow conditions   
  Cl 0.71  

 Mach 0.72  
 Re 21×106  
 xT U  0.01  
 xTL  0.01  

 
Table 6.2: VGK settings for flow calculation about an 

airfoil 
 

 

 In ESDU 96028 and ESDU 96029, it is suggested to check the output files 

written by VGK to verify that the results obtained are reliable. These checks must be 

performed by the user on the various output files produced by VGK. In this test case, 

the model is included in an optimisation loop where calls to VGK are automated. 

Therefore, Matlab routines are written to perform the appropriate checks on the relevant 

output files.  

 

• check_crash ensures the VGK code is executed without failure from the main 

Matlab script. 

• check_diverged reads VGK output file .FUL to ensure that the run has not 

diverged.  

• check_converged reads the residuals of inviscid flow and boundary layer 

calculations from VGK output files .IEH and .VEH respectively, to ensure that 

the run is sufficiently converged. 

• check_cf reads VGK output file .FUL to ensure that the friction coefficient fc  

has not been fixed to 62 10−×  more than twice. 

• check_hbar reads VGK output file .FUL to ensure that the shape parameter has 

not reach its limit value on either upper or lower surface. 

 

The post processing module sequentially scans the various output text files produced by 

the VGK. If a check fails, it automatically adjusts some parameters or uses a 

continuation run procedure to obtain reliable results corresponding to this particular run. 
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First, if check_crash or check_diverged fails, the VGK simulation is run again for 

smaller values for the relaxation factors for supersonic and subsonic region of the 

inviscid flow, XM and XS respectively. For particular profiles and transonic flow 

conditions, regions of the flow around the airfoil might be difficult to compute. If 

diminishing the relaxation factor does not help the convergence, the Mach number is 

reduced to a value for which the flow can be computed and increased iteratively. In this 

continuation procedure, the flow of the previous step is used as a starting point for the 

computation of the new flow for an increased Mach number. When VGK has not 

crashed or diverged, check_converged is performed to make sure that the residuals are 

small enough and the run is sufficiently converged. Then, check_cf and check_hbar are 

carried out to verify that there is no boundary layer separation. If check_converged or 

check_cf or check_hbar fails, a continuation run starting with the result of the current 

run is performed. In this continuation procedure, the viscous relaxation factors are 

decreased and the number of inviscid iterations between two boundary layer updates is 

doubled. If all checks are fine, the results are considered reliable and a routine reads the 

respective values for Cd and Cm. In the case when a check fails and the parameter 

adjustments do not help, suitable values for Cd and Cm are passed to the optimiser to 

penalize that particular combination of independent variables. The postprocessing 

flowchart is given in Figure 6.3. 

 It is also recommended to check the quality of mesh generated around each 

airfoil (ESDU, 96028; ESDU, 96029). However, when VGK is wrapped in a Matlab 

script to be called as a black box into an optimisation loop, this is not possible. It can 

happen that when VGK is fed with an odd profile, the mesh is not properly generated. 

In the case where the mesh generation process crashes, the flow around the airfoil 

cannot be computed and the model simply returns penalisation values for the drag and 

pitching moment. However, when a poor mesh is generated a converged flow might be 

obtained, but the estimate should not be considered reliable. Such situation is a problem 

as it is difficult to distinguish between good and poor quality meshes when VGK is 

executed automatically. In the next section, it is shown that some of the poor quality 

meshes or failed runs are caused by an erroneous parameterization of the airfoil. 
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Figure 6.3: Postprocessing checks flowchart 
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6.2 Optimisation strategy 
6.2.1 Initial range of variation and PARSEC-11 issues 

 An initial range of variation for PARSEC-11 input variables was defined and is 

given in Table 6.3. 
 

Inputs Min value Max value 
rle   0.005 0.00938 
xup  0.3 0.45 
xlo   0.3 0.56 
zup   0.045 0.057 
zlo   -0.058 -0.04 
zxxup   -0.555 -0.1 
zxxlo   0.28 1.1 
zte   -0.02 0.0 
Δzte   0.005 0.0082 
βte (rad) 0.003491 0.41958 
αte (rad)  -0.20944 0.0 

Table 6.3: Initial input range of variation 

 

Preliminary results obtained on this range of variation showed that many VGK runs 

crashed or failed to converge, even after the checks and continuation run procedure. 

Giving penalisation values to Cd and Cm corresponding to these failed runs was not a 

suitable strategy. Indeed, the large number of failed runs indicated that the optimiser 

was stuck in a particular region of the design space corresponding to profiles that could 

not be calculated by VGK. 

 These odd profiles are essentially due to the formulation of PARSEC-11 

parameterization. Both upper and lower surface are described by equation (6.1), which 

can be re-written as: 
61 12
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where 
1

2x  will provide a round nose for the airfoil and the function in brackets is a 5th 

order polynomial. Using the 11 parameters, geometric conditions regarding airfoil shape 

are derived to fit the polynomial between x 0=  and x 1=  corresponding to the leading 

and trailing edge positions respectively. An adverse feature of high order polynomials 

when their coefficients are derived to fit particular conditions, is their tendency to 
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produce uncontrolled oscillations. In the case of transonic airfoil design, small bumps 

on either the upper or the lower surface can lead to interesting designs. However, when 

the size of these oscillations is too large, PARSEC-11 can fail to give meaningful 

profiles, which will result in the mesh generation procedure to crash or produce poor 

quality mesh. 

 In PARSEC-11 formulation, the position of the maximum thickness is given as 

an input and is used to derive a condition on the airfoil surface to determine the 

coefficients of the polynomial. A first order condition is used to impose the position of 

maximum thickness on either upper or lower surface. It is simply required that the first 

order derivative of the polynomial given in equation (6.1) must be zero for upx  and lox  

(see Appendix C). Such condition is necessary but not sufficient, which means it 

ensures that upx  and lox  are a local maximum or minimum respectively, but does not 

guarantee that it is the only one between 0 and 1. In this situation, the airfoil given by 

PARSEC does not correspond to the one we intend to describe. The resulting profile is 

therefore not meaningful. Such situation could occur within the bounds of the initial 

range of variation given in Table 6.3. An example is shown in Figure 6.4, where both 

airfoils correspond to the same parameterization, but the z axis for the upper airfoil has 

been stretched to make the variation of thickness more obvious. The corresponding 

parameter values are given in Table 6.4. Another type of meaningless profile 

corresponds to the situation when upper and lower surface intersect. In this case, the 

mesh generation algorithm will fail to build a mesh around the airfoil and crash. In 

PARSEC-11 formulations, no condition is derived to impose that upper and lower 

surface do not intersect. An example of airfoil where upper and lower surfaces intersect 

for parameter values lying within the initial bounds is plotted in Figure 6.5. The 

corresponding geometric inputs are given in Table 6.5. 

 It is shown that for particular combinations of values for the input parameters, 

PARSEC-11 fails to generate the corresponding profile. This issue is entirely due to its 

representation using high order polynomial which exhibits some adverse features such 

as uncontrolled oscillations on the resulting surface. 

 In the next section, it is attempted to identify the regions of the design space that 

correspond to erroneous profiles in order to redefine a valid input range of variation for 

PARSEC-11. 
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Figure 6.4: PARSEC-11 erroneous parameterization – Inconsistent maximum thickness location 
 
 

 

 Inputs Value  
 rle   0.008  
 xup  0.32  
 xlo   0.5  
 zup   0.056  
 zlo   -0.05  
 zxxup   -0.11  
 zxxlo   0.4  
 zte   0.0  
 Δzte   0.007  
 βte (rad) 0.4  
 αte (rad)  -0.18  
 

Table 6.4: Example of PARSEC-11 input values giving an airfoil with 
inconsistent maximum thickness location 
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Figure 6.5: PARSEC-11 erroneous parameterization – Intersection between upper and lower 
surfaces 

 
 

 

 Inputs Value  
 rle   0.009  
 xup  0.45  
 xlo   0.3  
 zup   0.046  
 zlo   -0.04  
 zxxup   -0.55  
 zxxlo   1.1  
 zte   -0.01  
 Δzte   0.007  
 βte (rad) 0.02  
 αte (rad)  -0.2  
 

Table 6.5: Example of PARSEC-11 input values giving an airfoil where 
upper and lower surface intersect 
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6.2.2 Definition of a suitable range of variation for input 
variables 

 The strategy adopted to define a valid range of variation was to use SOM to 

identify the regions of the design space that correspond to erroneous PARSEC-11 

parameterizations. SOM have the ability to classify large amount of data and identify 

clusters. The idea is to understand how these erroneous profiles are clustered in the 

design space and reduce the input ranges to discard these regions. 

 The geometry generator is run on a large LP-Tau design of experiments 

(Statnikov and Matusov, 1995) to screen the design space. Checks for the position of 

maximum thickness and detection of intersection between upper and lower surfaces are 

performed to identify erroneous profiles. A large number of erroneous profiles is 

required to build a meaningful SOM. Here LP-Tau sampling is very convenient as it 

ensures the sample is evenly spread and points from smaller sets are re-used for larger 

sets. Therefore, the sample can be iteratively increased until a sufficiently large number 

of erroneous profiles is obtained. For this test case, an LP-Tau sampling of 131072 

points was used and 2052 erroneous profiles were identified. The large sample size was 

not a problem as the geometry generator was extremely fast to run and the whole 

analysis only takes a few minutes. 

 The SOM of erroneous profile is built and given in Figure 6.6. The component 

maps corresponding to the U-matrix and the 11 parameters of PARSEC 

parameterization are plotted. The U-matrix (top left corner) gives an indication of how 

the data points are clustered. Low values correspond to clusters, while high values 

correspond to borders between clusters. Here, the U-matrix clearly shows that most of 

the erroneous profiles are clustered together (blue region) in the same region of the 

design space. This region corresponds to low values of xup, high values of zxxup and zte, 

and extreme values (low and high with respect to the input range) of βte and αte. 

Therefore, to discard the region corresponding to meaningless profiles, the range of 

variation for these inputs is truncated. The new reduced range of variation is given in 

Table 6.6. The same screening analysis with same size LP-Tau sampling was carried out 

on the reduced design space. Out of the 131072 sample profiles, only 2 failed. This 

method allows for a significant reduction of the number of erroneous profiles generated 

by the PARSEC-11 parameterization.  
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Figure 6.6: SOM of erroneous PARSEC-11 profiles obtained on initial input range 
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 This also allows to concentrate the optimisation on regions of the design space 

where the PARSEC-11 parameterization is meaningful. 

 

Inputs Min value Max value 
rle   0.005 0.00938 
xup  0.36 0.45 
xlo   0.3 0.56 
zup   0.045 0.057 
zlo   -0.058 -0.04 
zxxup   -0.555 -0.26 
zxxlo   0.28 1.1 
zte   -0.02 -0.009 
Δzte   0.005 0.0082 
βte (rad) 0.1 0.29 
αte (rad) -0.13 -0.08 

 
Table 6.6: Reduced input range of variation 

 

6.2.3 Kriging adaptive sequential training 
 The noise inherent to VGK in the estimates of Cd and Cm implies that any 

gradient-based method (optimisation or sensitivity analysis) will perform poorly as the 

output response is not smooth. Therefore, a surrogate model was built for both Cd and 

Cm. Another consequence is that it will also speed up the optimisation procedure. The 

choice went for a Kriging model as it presents some attractive features for this test case. 

First, Kriging models are capable of accurately approximating complex functions and 

usually perform better than low order polynomial response surfaces (Jones et al., 1998; 

Simpson et al., 2001, 2004; Van Beers and Kleijnen, 2003). Secondly, their formulation 

allows to calculate analytically the sensitivity indices (Chen, 2005) as described in 

Appendix D. Finally, as a surrogate model, the resulting output response will be 

noiseless, continuous and differentiable. 

 An appropriate design of experiments (DOE) strategy is necessary to obtain a 

suitable Kriging. Sequential designs (Martin and Simpson, 2002; Van Beers and 

Kleijnen, 2003) usually perform much better than standard space filling designs. They 

are based on adding iteratively to the training sample, points of a design of experiment 

with large prediction error variance. Different techniques such as cross-validation and 

parametric bootstrapping can be used to select the candidate points (Martin and 

Simpson, 2002; Van Beers and Kleijnen, 2003) but they become burdensome when the 

size of the sample increases. For this test case, a large number of points was required to 
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obtain a sufficient description of Cd and Cm. Therefore, these strategies were not 

appropriate. Instead, an alternative sequential strategy was adopted to ensure that 

training points were selected in regions that required a better description. 

 In the proposed sequential strategy for fitting the Kriging model, an LP-Tau 

(Statnikov and Matusov, 1995) DOE of 4096 design points is first generated. The 

resulting design vectors are supplied to VGK to obtain the corresponding estimates for 

Cd and Cm. LP-Tau sequences are deterministic space-filling DOE that ensure uniform 

distribution of design points over the design space. As mentioned above, an important 

feature of LP-Tau DOE is that larger LP-Tau sequences re-use points from smaller ones. 

From the total sample (4096 LP-Tau sequence), an initial training sample (256 LP-Tau 

sequence) is used to train the first Kriging model. The remaining points compose the 

test sample. Since the Kriging models are to be used to predict outputs for the 

optimisation, the Max error (6.4) over the test sample is preferred to the Mean Square 

Error (MSE) (6.5) as a measure of accuracy. Indeed, considering only an average value 

of the error could lead to erroneous solution of the optimisation problem. In the case of 

a Kriging model, the max error on the total sample and on the test sample are the same 

as the model predictions for the points used for training are exact. Next, a set of new 

points with large max error is taken from the test sample and is added to the training 

sample. A minimum Euclidian distance is defined to ensure that the selected points are 

not clustered in the same region.  
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�( )
test test sample

 
21MSE =

n iiy y−∑                                          (6.5) 

 

Then, the new Kriging is fitted and its max error is compared with the previous one. If 

the max error has increased significantly, the new points are rejected and another set of 

points with large max error is taken from the test sample. The aim is to reduce the max 

error by adding selected points. Typically, we want: 

 

new max error  max error≤ γ× ,                                        (6.6) 
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with γ < 1. We observe occasionally that adding such points might instead slightly 

increase the max error. Also, in this case, the training strategy experiences difficulties 

and takes longer to reach lower max error. Our experience shows that better results are 

achieved if γ is relaxed. For this problem, we used γ = 1.1. The sequential strategy 

adopted for fitting the Kriging model is described in Figure 6.7. 

 

 
 

Figure 6.7: Adaptive sequential strategy for Kriging model training 
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In this test case, DACE toolbox (Lophaven et al., 2002a, 2002b) for Matlab is used to 

fit the Kriging model. The Gaussian correlation model is chosen as it is the most 

popular. However, the choice of the regression model was not clear. Therefore, the 

adaptive sequential Kriging fitting described above was carried out for three regression 

models available in DACE toolbox, i.e constant, linear and quadratic. The history plot 

of max error and MSE during the sequential fitting procedure for Cd and Cm are given in 

Figure 6.8 and Figure 6.9, respectively. For this test case, the maximum training sample 

size was fixed to 1024 and the stopping criterion for max error was set to 0.02.  

 

 
 

Figure 6.8. Error history of Kriging model for Cd during adaptive training for different regression 
models  

 

 
 

Figure 6.9. Error history of Kriging model for Cm during adaptive training for different regression 
models 
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The general tendency is that the max error and MSE decrease as the number of training 

points increases. Note that the curves for the MSE appear much smoother than the ones 

corresponding to the max error. This is a clear effect of the averaging of the error. For 

this test case, the quadratic regression model clearly outperforms both constant and 

linear regression models. Therefore, the resulting Kriging models with quadratic 

regression and Gaussian correlation model are used to predict the output values for Cd 

and Cm during the multi-objective optimisation procedure. The max error and MSE for 

the final Kriging models when adaptive training reached the maximum training sample 

size of 1024 points are provided in Table 6.7.  

 

 Kriging - Cd Kriging - Cm 

Regression model Max error MSE Max error MSE 

Constant 9.38×10-2 2.05×10-3 1.63×10-1 5.37×10-3 

Linear 6.98×10-2 1.06×10-3 5.46×10-2 4.36×10-4 

Quadratic 5.82×10-2 3.73×10-4 2.24×10-2 1.11×10-4 

Table 6.7: Max error and MSE of Kriging models with different regression functions after adaptive 

training 

 

6.3 Formulation of optimisation problem 
 The design problem is to optimise the airfoil shape for 11 PARSEC input 

variables, namely to minimise the total drag and maximise the wing box volume. In the 

case of a 2-d airfoil, the area of the trapezoid defined by the position of the front and 

rear spars as shown in Figure 6.10 is to be maximised. 

 
 

Figure 6.10. Area of inner trapezoid box defined by front and rear spar 
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The optimisation problem can be formulated as follows: 

 

Cd1min
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and the input range defined in Table 6.6. 

 A description of the outputs considered in the optimisation problem is given in 

Table 6.8. Here g1 and g2 are constraints on the achieved pitching moment while g3 and 

g4 are constraints on the thickness of the airfoil where the front and rear spar are 

positioned, respectively.  

 

 Outputs  Description  
 Cd  Total drag  
 Cm  Achieved pitching moment  
 area  Area of trapezoid defined by front and rear spar  
 t12%  Airfoil thickness at front spar position: 12% chord  
 t60%  Airfoil thickness at rear spar position: 60% chord  
 

Table 6.8: Description of model outputs 
 

During the optimisation procedure, the drag and pitching moment coefficient are 

predicted with the Kriging model and the geometric outputs (area, t12%, and t60%) are 

evaluated with the geometry generator module which does not require running VGK. 

For practical reasons, the input variables are scaled between -1 and 1. If not specified 

otherwise, all design input values given in the following sections are scaled.  

 

6.4 Reducing the dimensionality of the problem 
6.4.1 Identifying non-significant inputs using VBM indices 

 For the aerodynamic outputs, Cd and Cm, the exact first order and total 

sensitivity analysis indices are analytically derived from the Kriging models (Chen, 
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2005; see also Appendix D). For the geometric outputs, i.e. the area, t12% and t60%, the 

first order and total sensitivity analysis indices are obtained numerically using the Sobol 

method implemented in Simlab (Saltelli, 2003; Saltelli, 2004). It implies running 

extensively the PARSEC-11 geometry generator on a particular sample of points 

(49152). However, this only require a few minutes on a normal computer. The first 

order and total sensitivity indices for all outputs are given in Table 6.9 and Table 6.10, 

respectively. 

 

First order 
indices 

     

   Cd Cm area t12% t60% 
1 rle 0.0912 0.0039 0.0144 0.0592 0.0015 
2 xup 0.0320 0.0332 0.0018 0.0154 0.0232 
3 xlo  0.0314 0.3737 0.0262 0.3360 0.4270 
4 zup  0.1927 0.0954 0.1661 0.0628 0.1042 
5 zlo 0.1240 0.1392 0.4117 0.1597 0.2542 
6 zxxup  0.1030 0.0182 0.0370 0.0220 0.0165 
7 zxxlo 0.0980 0.1824 0.3425 0.2806 0.1106 
8 zte 0.0400 0.0566 0.0002 0.0003 0.0001 
9 Δzte 0.0004 0.0016 0.0000 0.0001 0.0000 
10 βte 0.0025 0.0033 0.0000 0.0020 0.0012 
11 αte 0.0077 0.0461 0.0000 0.0000 0.0000 

 

Table 6.9: First order sensitivity indices for Cd, Cm, area, t12% and t60% 

 

Total order 
indices 

     

   Cd Cm area t12% t60% 
1 rle 0.1896 0.0055 0.0162 0.0602 0.0025 
2 xup 0.1730 0.0365 0.0022 0.0169 0.0240 
3 xlo  0.0462 0.4160 0.0279 0.3985 0.4878 
4 zup  0.3740 0.0959 0.1660 0.0634 0.1036 
5 zlo 0.1524 0.1400 0.4098 0.1574 0.2550 
6 zxxup  0.1662 0.0208 0.0371 0.0227 0.0176 
7 zxxlo 0.1205 0.2224 0.3424 0.3415 0.1694 
8 zte 0.0655 0.0576 0.0011 0.0017 0.0002 
9 Δzte 0.0010 0.0017 0.0001 0.0001 0.0001 
10 βte 0.0045 0.0038 0.0009 0.0033 0.0013 
11 αte  0.0103 0.0464 0.0003 0.0004 0.0000 

 

Table 6.10: Total order sensitivity indices for Cd, Cm, area, t12% and t60% 
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 A more intuitive visualization of the results is given in Figure 6.11 and Figure 

6.12 where each bar represents the total contribution of each design variable to the 

output variance and is broken down into main effect and interaction effect. This bar 

chart representation gives a clear idea of the nature of the contributions and interactions 

between inputs. 

 

 
 

Figure 6.11: Variance-based sensitivity analysis – Main and interaction effect for 

Cd and Cm 

 

 

 
Figure 6.12: Variance-based sensitivity analysis – Main and interaction effect for area, t12% and t60%

 

Here we consider as non-significant, inputs with a total order index smaller than 0.02. It 

is clear that variables 9 and 10, i.e. Δzte and βte are non-significant and according to the 

methodology described in section 2 can be discarded from the optimisation problem by 

fixing them to a specific value.  
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6.4.2 Formulation of the reduced optimisation problem 
 The reduced optimisation problem is formulated as follows: 
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with tez*Δ and te
*β  constant. 

 

6.4.3 Choosing values for non-significant variable using 
SOM  

 As described in section 3, a SOM is used to investigate the most appropriate 

value to freeze tezΔ  and teβ . All inputs and outputs are taken into account to build the 

SOM on the same data set used for training the Kriging model (LP-Tau 4096 set). The 

same set is re-used to try to obtain more information about the design problem at no 

extra computational cost. Figure 6.13 shows only the component maps for tezΔ , teβ  

and all outputs. The map units corresponding to feasible design are marked with white 

dots while non-feasible units are displayed with a black dot. It can be noted that in the 

representation given by the SOM, the region of feasible design represents a small 

portion of the entire design space. This region clearly corresponds to large value of area 

and relatively small value of drag. A look at the values taken by tezΔ  and teβ  for these 

map units shows that they are centred on their mean value. Therefore, there is no 

preferred value for tezΔ  and teβ . For that reason, it is decided to fix both values for 

tezΔ  and teβ  to zero. 
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Figure 6.13: SOM with feasible regions for Δzte, βte and all outputs 
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6.4.4 Obtaining the different Pareto fronts 
 The set of Pareto solutions of the optimisation problem is obtained using an in-

house developed gradient-based optimisation tool (Fantini, 2007; Fantini et al., 2007; 

Guenov et al., 2005; Utyuzhnikov et al., 2005). Three runs are performed. In the first 

run, all inputs are considered. In the two other runs, the optimisation is performed on 

the reduced problem. The non-significant variables Δzte and βte are fixed to zero in the 

second run. In the last one, Δzte and βte are fixed to their lower bound value as a 

significant number of Pareto solutions of the full optimisation problem correspond to 

these values. Table 6.11 provides information on the optimisation procedure for the 

different runs. 

 

 All inputs Δzte = 0 / βte = 0 Δzte = -1 / βte = -1 
Time 3h53min 2h11min 2h36min 
Function 
evaluations 314266 181997 219989 

Pareto points 
obtained 201 167 221 

Table 6.11: Performance comparison between different three optimisation runs 

 

It is clear that removing two inputs from the optimisation procedure by fixing them to a 

specific value considerably reduces the number of function evaluation and therefore the 

total computational time. It is a direct consequence of the reduction of the problem 

dimensionality. In the case of gradient optimisation, fewer input variables implies that 

less effort is spent to obtain numerical estimates of gradient using finite differences. The 

Pareto fronts corresponding to these three optimisation runs are plotted in Figure 6.14. 

In this figure, the extreme values for Cd and area obtained on the 4096 LP-Tau DOE are 

taken as the bounds of the x and y axes. Figure 6.14 clearly shows that all Pareto fronts 

are located in the same region. It is important to notice that the extent of the range of 

variation for Cd and for the area remains the same. The Pareto front, where Δzte and βte 

are fixed to zero, shows good agreement with the solutions of the full problem for 

values of Cd up to 0.0098, but fails to do so for higher values. It can be explained by the 

fact that for solutions of the full problem that correspond to values of Cd higher than 

0.0098, the constraints on the minimum values for Δzte and βte are active. As it could be 
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expected, the solutions obtained, when Δzte and βte are fixed to -1, show a better match 

with this part of the Pareto front obtained for the full problem.  

 Reducing the dimensionality of the optimisation problem by freezing non-

significant variables to a specific value might come at the expense of the quality of the 

Pareto front. Indeed, some parts of the Pareto surface are not captured accurately by the 

reduced problem. Therefore, when the designer decides to reduce the number of 

variables using this approach he/she must be aware that the quality of the resulting 

Pareto surface might be compromised. 

 

 

Figure 6.14: Pareto surface obtained for the two-objective airfoil optimisation problem 

 

6.5 Local Pareto sensitivity analysis 
 In this section, we focus on the use of local approximations of the Pareto surface 

to understand the trade-offs between objectives and the adaptability of a Pareto solution.  

Figure 6.14, shows that all Pareto solutions are located in a specific region of the 

criterion space but the discontinuities in the Pareto surface seems to indicate that they 

correspond to different type of airfoils. Figure 6.15 shows the location in the criterion 

space of a few representative Pareto solutions. The corresponding airfoils are plotted in 
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Figure 6.16. It gives an idea of the diversity of the Pareto solutions lying on the Pareto 

surface.  
 

 
Figure 6.15: A few characteristic solutions in the criterion space 

 

 
 

Figure 6.16: A few characteristic Pareto solution airfoils 
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 In this test case, a good description of the Pareto surface is given as a significant 

number of Pareto points can be obtained at an affordable computational cost. However, 

when high fidelity codes are used in place of surrogate models, obtaining a single Pareto 

solution could be very demanding and the designer will benefit from obtaining 

information about the local sensitivity analysis of the candidate solution.  

 When a candidate Pareto solution is obtained, the linear and quadratic 

approximations developed in chapter 4 can be derived. For a small change in one 

objective, the local trade-off in the other objective and the corresponding change in the 

design space can be computed. In this context, the range of validity of the local 

approximation is not clear. It is proposed to use the difference between quadratic and 

linear prediction to measure the extent of the validity of the approximation. When the 

contribution of the quadratic term becomes too important with respect to the linear term, 

the linear approximation is not considered reliable. Meanwhile, the designer must 

ensure that all constraints from the optimisation problem are still satisfied. In other 

words, in the case of a two objective optimisation problem, to assess the extent of the 

validity of the linear approximation, the designer must solve a double linear 

optimisation problem:  

 

   Minimise and maximise:   1fδ  

 

   Subject to: 

 

1 1− ≤ + ≤x xδ ,                                              (6.12) 
2

2
1 12

1 1

1 ( )
2

d df f
df df

+ + ≤
g gg 0δ δ ,                                 (6.13) 

2
2 2

12
1 1

1
2

d f dff
df df

≤δ α .                                     (6.14) 

 

The first two equations impose that constraints on the design variables range and that 

the other constraints (6.13) are still satisfied. Equation (6.14) requires that the 

contribution of the quadratic term remains smaller than a fraction of the linear term. It 

allows to detect when the curvature becomes important and where the Pareto surface 
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departs from the linear approximation. The scalar α is defined by the designer and 

represents the relative contribution of the quadratic term with respect to the linear one. 

 Let us consider the candidate solution (Cd = 0.00807, area = 0.04339) and study 

its local adaptability. The first and second order derivatives are given in Table 5.2 and 

the linear optimisation problem is solved for α = 0.1 to derive the extent of the validity 

of the approximation. Note that f2 is defined as the negative value of the area, see (6.7). 

The limits of the range of validity of the linear approximation are plotted in Figure 6.17 

and the associated airfoils are shown in Figure 6.18.  

 

                         Derivatives   
 df2/df1 -7.51  
 d2f2/df1

2 3.28×104  
Table 6.12: First and second order derivative on the Pareto surface 

at candidate Pareto solution (Cd = 0.00807, area = 0.04339) 

 

 

 
Figure 6.17: Linear approximation at candidate Pareto solution (Cd = 0.00807, area = 0.04339) 
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Figure 6.18: Airfoils associated with the limits of validity of the approximation at candidate 

Pareto solution (Cd = 0.00807, area = 0.04339) 

 

 

 It is clear that along the direction given by the linear approximation, 

approximated Pareto airfoils differ mainly in their lower surface. The corresponding 

values for their inputs, objectives and constraints are given in Table 6.13. The output 

values predicted by the approximation show good agreement with those obtained with 

the model. The linear approximation provides the designer with an insight in the Pareto 

solution that can be found in this region of the Pareto surface.  

 For candidate Pareto solution (Cd = 0.00807, area = 0.04339), the range of 

validity of the linear approximation is limited by constraint (6.14) related to the 

departure of the Pareto surface from its local tangent. Table 6.13 shows that no other 

constraint is activated. It follows that the range of validity of the linear approximation is 

centred on the candidate Pareto solution. 
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 Approx solution 1 Pareto solution 1 Approx solution 2 
rle 0.06400 0.06521 0.06641 
xup 0.37032 0.37263 0.37493 
xlo -0.91566 -0.94435 -0.97303 
zup 0.90145 0.91516 0.92887 
zlo -0.67471 -0.69336 -0.71202 
zxxup 0.16030 0.16645 0.17260 
zxxlo -0.81905 -0.83604 -0.85303 
zte -0.16488 -0.16715 -0.16942 
Δzte 0.04200 0.04235 0.04270 
βte -0.09983 -0.09997 -0.10011 
αte 0.01455 0.01341 0.01227 
    
 Approx Model Model Approx Model 
Cd 0.00802 0.00802 0.00807 0.00811 0.00812 
area 0.04305 0.04306 0.04339 0.04374 0.04375 
g1 0.00000 0.00032 0.00000 0.00000 0.00029 
g2 -0.03000 -0.03032 -0.03000 -0.03000 -0.03029 
g3 -0.00617 -0.00617 -0.00663 -0.00708 -0.00708 
g4 -0.02520 -0.02524 -0.02617 -0.02715 -0.02719 

 

Table 6.13: Inputs, objectives and constraints values of candidate 

Pareto solution (Cd = 0.00807, area = 0.04339) and approximate Pareto 

solutions associated with the limits of validity of the approximation 

 

 

 Let us consider a different candidate solution (Cd = 0.00837, area = 0.04512) and 

carry out a similar analysis. First, the first and second order derivatives are obtained and 

given in Table 6.14. For this candidate solution, the trade-off between objectives is 

clearly less important than for the first candidate solution.  

 

                         Derivatives   
 df2/df1 -4.35  
 d2f2/df1

2 9.01×103  
Table 6.14: First and second order derivative on the Pareto surface 

at candidate Pareto solution (Cd = 0.00837, area = 0.04512) 

 

 

As for the first Pareto candidate, the linear optimisation problem is solved for α = 0.1 to 

derive the extent of the validity of the approximation. For this candidate Pareto solution, 
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the minimum value for df1 is limited by the constraint on the quadratic term (6.14) while 

the maximum value for df1 is limited by a constraint on the range of variation of x (see 

equation (6.12)), which becomes active first. It results that the range of the validity of 

the linear approximation is not centred on the candidate Pareto solution as shown in 

Figure 6.19. It illustrates that all constraints must be taken into account when estimating 

the extent of validity of the local approximation since for a candidate Pareto solution, 

inactive constraints might be close to become active. The associated airfoils are given in 

Figure 6.20 and show that the changes in the airfoil geometry for the approximated 

Pareto solutions are very small.  

 The corresponding values for their inputs, objectives and constraints are given in 
 
Table 6.15. Similar to the first candidate Pareto solution, the values of the outputs 

obtained with the linear approximation for the new approximated Pareto solution match 

the values obtained with the model. As mentioned before, for the second approximated 

solution, variable zup reaches its maximum value (zup = 1). 

 

 

 
Figure 6.19: Linear approximation at candidate Pareto solution (Cd = 0.00837, area = 0.04512) 
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Figure 6.20: Airfoils associated with the limits of validity of the approximation at candidate 

Pareto solution (Cd = 0.00837, area = 0.04512) 

 

 Approx solution 1 Pareto solution 2 Approx solution 2 
rle 0.07227 0.07590 0.07744 
xup 0.39724 0.41098 0.41678 
xlo -1.00000 -1.00000 -1.00000 
zup 0.92966 0.97911 1.00000 
zlo -0.77073 -0.81022 -0.82691 
zxxup 0.19328 0.21416 0.22298 
zxxlo -0.95874 -0.98073 -0.99002 
zte -0.26966 -0.28366 -0.28958 
Δzte 0.10616 0.10855 0.10955 
βte -0.21414 -0.21912 -0.22122 
αte -0.10551 -0.11622 -0.12075 
    
 Approx Model Model Approx Model 
Cd 0.00827 0.00828 0.00837 0.00841 0.00841 
area 0.04469 0.04469 0.04512 0.04529 0.04529 
g1 0.00000 0.00005 0.00000 0.00000 0.00001 
g2 -0.03000 -0.03005 -0.03000 -0.03000 -0.03001 
g3 -0.00803 -0.00803 -0.00856 -0.00878 -0.00879 
g4 -0.03020 -0.03020 -0.03142 -0.03194 -0.03194 

 

Table 6.15: Inputs, objectives and constraints values of candidate 

Pareto solution (Cd = 0.00837, area = 0.04512) and approximate Pareto 

solutions associated with the limits of validity of the approximation 
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6.6 Conclusions 
 In this chapter, the optimisation of an airfoil shape to minimise drag and 

maximise the inner trapezoid area is carried out. 

 The popular PARSEC-11 parameterisation used in this test case seems very 

attractive because it makes use of a reduce number of intuitive geometric parameters to 

control the airfoil shape. However, in some cases, this parameterisation can produce 

erroneous profiles causing the VGK code to crash. An approach using SOM was 

proposed to tackle this problem. The use of SOM enabled to identify regions of the 

design space where PARSEC-11 failed to generate meaningful profiles. These regions 

could be removed from the design space, to allow the optimisation to concentrate on 

well parameterised regions only. The use of a Kriging model allowed to eliminate the 

inherent noise problem in estimates for Cd and Cm obtained with VGK. Moreover, it 

saved time for the estimation of VBM indices for Cd and Cm and accelerated the 

optimisation procedure. An adaptive procedure was used to train the Kriging model as 

some regions of the design space required a more detailed description. 

 The identification of non-significant variables (Δzte and βte) enabled to reduce 

the problem from 11 to 9 variables. A SOM was built to investigate the most 

appropriate values to fix the non-significant variables. It showed that for feasible 

regions, Δzte and βte were taking values centred on their mean, making it a preferred 

choice. The Pareto set obtained with the reduced problem indicated that a reduction of 

the dimensionality might come at the expense of the quality of the Pareto solutions. 

Indeed, it showed a good match with the Pareto front obtained with the full optimisation 

problem for small values of the drag coefficient. However, a small discrepancy occurred 

for higher values because this part of the Pareto front corresponds to solutions where 

constraints on the minimum bound for Δzte and βte are active. 

 The use of local approximations derived in section 4 enabled to investigate the 

type of airfoils that corresponded to the part of the Pareto front where the candidate 

solutions were located. It indicated what parameters could be varied to remain on the 

Pareto set, and to what extent. It also provided essential information on the local trade-

offs of the candidate Pareto point and gave a better insight into the solution set at a 

reduced cost. 
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Chapter 7 
7  Summary and conclusions 
 
 
 
 This thesis focuses on the optimisation aspect of the MDO process. A novel 

strategy for sensitivity analysis (SA) is proposed to improve the process efficiency and 

effectiveness. It includes two components. The first one is to provide the designer with 

a methodology for identifying non-significant variables that can be removed from the 

optimisation formulation. The second component is linked to the decision-making 

process in the case of a multi-objective optimisation where it is essential for the 

designer to obtain an insight in the trade-offs between objectives. The main elements of 

novelty of this thesis include: 

 

• A new strategy combining global sensitivity analysis and self-organising 

maps to reduce the dimensionality of the optimisation problem. 

• A new method for studying the sensitivity of Pareto solutions in which: 
 

o New general equations for obtaining local linear and quadratic 

approximations of the Pareto surface are derived. 

o A method for using the local approximations, including limits of validity 

and back-mapping is proposed. 
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o A new general sufficient condition for identifying non-differentiable 

Pareto points is derived. 

 

7.1 Reducing the dimensionality of the design problem 
 The aim of the first component of the proposed approach is to reduce the 

dimensionality of the problem prior to the optimisation to reduce the computational 

effort. Sensitivity analysis is used to understand the relationship between variables and 

outputs of the models involved in the design procedure. A review of available 

sensitivity analysis methods shows that Variance-based methods (VBM) are the most 

appealing candidate. They present many desirable properties to develop a general SA 

approach in the context of MDO: 

 

• VBM are model independent, no assumption on the model additivity or 

linearity is required.  

• VBM can capture contributions to the output, which are due to interaction 

effects between input variables. 

• VBM can examine the effect of each input over the whole range of variation. 

• VBM can treat groups of factors. This property allows to perform studies by 

grouping factors by discipline or component. 

 

 In this thesis, a new approach for reducing the dimensionality of the 

optimisation problem is proposed. Global SA is used to understand and quantify over 

the entire design space the effect of input variables on the various outputs. It provides a 

means to identify which inputs are the most important for the design. In this approach, it 

is recommended to retain only significant input variables to reduce the computational 

effort and make the optimisation procedure more efficient. Typically, one must fix the 

non-significant variables to a specific value. In this research, it is shown that in some 

cases, fixing these to an arbitrary value might lead to a small degradation of the 

solutions of the optimisation problem. It is suggested to make use of the data generated 

for the SA to build a self-organising map (SOM) and determine whether there is a 

preferred value for the non-significant variables. 
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7.2 Pareto sensitivity analysis 
 The second component of this approach is a novel method for SA of the Pareto 

solutions and includes local approximation and differentiability study of the Pareto 

surface. At this stage of the design process, when Pareto solutions have been obtained, it 

is essential for the designer to understand the trade-offs between objectives in order to 

select the final solution that will suit his/her preferences best. The local sensitivity of the 

solutions of the multi-objective optimisation problem is obtained to understand the 

trade-offs between objectives.  

 

7.2.1 Investigation into available methods 
 The author’s investigation into available methods for SA of the Pareto front 

shows that most of these have been developed for specific and simple cases. Therefore, 

they present little interest in an MDO situation. However, a technique based on gradient 

projection was found to offer interesting features for Pareto approximation. It is 

thoroughly investigated in the thesis and its advantages and limitations are outlined. 

This technique relies on two assumptions: 

 

• The objective and constraint functions are twice continuously differentiable 

• The set of active constraints remains the same in the vicinity of the Pareto 

point under consideration 

 

This method enables to obtain directional derivatives to derive a linear approximation of 

the Pareto surface. It also proposes to generate additional Pareto information in the 

neighbourhood of the solution under study to obtain a quadratic approximation.  

 

7.2.2 Derivation of new local Pareto approximations 
 In this work, new general equations based on the gradient projection method 

under the same assumptions are derived for local linear and quadratic approximations. 

Results on several algebraic examples show that they give the exact analytical 

approximations. This new method for obtaining local approximations presents several 

advantages with respect to those found in literature: 
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• The new approximations are not limited by the number of design variables, 

constraints or objectives. 

• Both exact linear and quadratic approximations of the Pareto surface are 

derived in the general case. 

• No additional Pareto information is needed in the vicinity of the current 

Pareto solution and the quadratic approximation is obtained without running 

further optimisation.  

• The computational cost for obtaining the linear and quadratic 

approximations can be clearly measured since it is directly linked to the 

effort required for evaluating the gradients and Hessians of the constraint 

and objective functions. 

• A unique feature of these approximations is that local moves on the 

approximated Pareto surfaces are directly related to moves in the design 

space and is referred as back-mapping. The designer not only has the 

possibility to obtain new approximate solutions in the objective space, he/she 

can also understand what are the degrees of freedom on the Pareto surface 

and how variables must be varied with respect to each other.  

• The linear and quadratic approximations of the non-active constraints are 

obtained and are used as part of the back-mapping to ensure that moves on 

the Pareto surface remains feasible. 

 

It is also proposed in this thesis to use the discrepancy between the linear and quadratic 

approximation to assess the extent of validity of the moves on the Pareto surface. 

 

7.2.3 Development of a new method for identifying non-
differentiable Pareto points 

 Previous work found in the literature is used as a starting point to develop a 

more general method for detecting non-smooth area of the Pareto surface. In this thesis, 

a sufficient condition entirely based on consideration of gradient obtained in the design 

space is derived to identify non-differentiable Pareto points. It is also shown how it can 

be formulated into a linear optimisation problem to make it more convenient in the high 

dimensional case. 
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 Non-differentiability detection and Pareto surface approximation are the two 

components of the Pareto SA approach. A detailed scheme describing how to 

implement it is also provided. 

 

7.2.4 Limitations of the proposed approach 
 The Pareto approximations are only valid at differentiable regions of the 

efficient frontier. However, the global Pareto front might be composed of solutions 

from several local Pareto fronts and as a result might present non-smooth regions. In 

such situation, the new linear and quadratic equations can only approximate the local 

Pareto front and do not guarantee a good approximation of the global Pareto front. In 

the same way, the method for identifying non-differentiable Pareto points developed in 

this thesis can only detect non-differentiability due to changes in the set of active 

constraints and will fail to identify such situations. It is important to observe that 

currently no method to the best of the author’s knowledge can address this type of non-

differentiability. 

  

7.3 Test results 
 The approach was conducted on two representative design examples: beam 

optimisation problem and airfoil design. In the beam problem, the approximation 

enabled to identify typical families of Pareto solutions on the Pareto surface. This gives 

a better insight in the solutions of the problem. In the airfoil design problem, the entire 

SA approach was tested. Two non-significant variables were identified which allowed 

to reduce the problem from eleven to nine design parameters. It resulted in a very 

significant reduction of the computational effort (up to 40%), which came only at a 

small degradation of Pareto front. The strategy developed for local sensitivity of the 

Pareto front proved to be very effective. Part of the Pareto set could be approximated 

locally with a high degree of accuracy, providing new approximate Pareto solutions at a 

reduced cost. This additional information could be very useful for the designer during 

the decision-making process as it could help articulate a posteriori preferences to select 

the final solution. 
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7.4 Further work 
 In this thesis, VBM and SOM are used together to identify non-significant 

variables and freeze them to a specific value. It is also shown that for some parts of the 

Pareto front, there might be a small discrepancy between the results obtained with full 

optimisation and the reduced one. It will be interesting to investigate this problem 

further. 

 A significant feature of the Pareto approximation approach is its ability to find 

approximate solutions on the efficient frontier. It is thought that it could contribute to 

improve methods striving to generate evenly distributed solutions on the Pareto front. If 

the distribution is not homogeneous, approximate points could be obtained to help fill in 

gaps. 

 A further direction for research would be to investigate further the non-

differentiability problem due to the presence of several local Pareto fronts. 
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Appendix A 
 
Theorem 
 If M  is a matrix of shape m n×  and all column vectors are linearly independent 

then matrix TM M  is invertible. 
 

Proof 

 Let M  be a m n×  matrix where all column vectors jM , 1j ,...,n=  are linearly 

independent: 

 ( )1 n...=M M M . (A.1) 

Let us consider equation: 

 ( )T =M M x 0 . (A.2) 

 

 Assume that matrix TM M  is not invertible. Therefore, there exists a solution x  such 

that ≠x 0 . Multiplying equation (A.2) by Tx we obtain: 

 

 ( )T T 0=x M M x  (A.3) 

which can be rewritten as 

 ( ) ( )T 0=Mx Mx . (A.4) 

Therefore 

 
2

0=Mx  (A.5) 

and  

 =Mx 0  (A.6) 

 

which contradicts the fact that the columns of M  are linearly independent. Therefore, 
TM M  is invertible. 
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Appendix B 
 
 
As given in Fletcher (1989) 

 

 

Farkas’ lemma 

 Given any vectors 1 2 m, ,...,a a a  and g  then the set 

 { T  0S ,= <s s g  (B.1) 

  }T 0        =1,2,...,i , i m≥s a  (B.2) 

is empty if and only if there exist multipliers 0iλ ≥  such that 

 
1

m

i i
i

λ
=

=∑g a  
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Appendix C 
 
 
PARSEC-11 parameterisation 

 

 
 

Figure C.1. PARSEC-11 airfoil parameterization 

 

 In PARSEC-11 (see Figure C.1), the upper and lower surface of an airfoil are 

described with a polynomial of the form: 

 

  
6 1

2

1
z a ( )xn

n
n

−

=

=∑ p     (C.1) 

 

where x  varies between 0 and 1. The coefficients an of the polynomial are real and 

depend on the design vector p  made of the 11 geometric parameters: 

 

 le up lo up lo up lo te te te ter x x z z zxx zxx z z⎡ ⎤= Δ β α⎣ ⎦p   (C.3) 

 

 The 11 geometric parameters are used to derive 12 equations on the airfoil 

shape characteristics: 
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Equations Characteristics  

1 lea 2r+ =  leading edge radius (C.4)

1 lea 2r− = −  leading edge radius (C.5)

( )
6

3 2
up

1
1 2 a x 0n

n
n

n .+ −

=

− =∑  max thickness location (C.6)

( )
6

3 2
lo

1
1 2 a x 0n

n
n

n . −−

=

− =∑  max thickness location (C.7)

6
1 2

up up
1

z a xn
n

n
.+ −

=

=∑  max thickness (C.8)

6
1 2

lo lo
1

z a xn
n

n
. −−

=

=∑  max thickness (C.9)

( )( )
6

5 2
up up

1
zxx 1 2 3 2 a xn

n
n

n n .+ −

=

= − −∑  curvature at max thickness (C.10)

( )( )
6

5 2
lo lo

1
zxx 1 2 3 2 a xn

n
n

n n . −−

=

= − −∑  curvature at max thickness (C.11)

( )
6

te
1

z a an n
n

+ −

=

Δ = −∑  trailing edge thickness (C.12)

( )
6

te
1

1z a a
2 n n

n

+ −

=

= +∑  trailing edge position (C.13)

( )
6

te
te

1
1 2 a

2 n
n

tan n +

=

β⎛ ⎞−α = − −⎜ ⎟
⎝ ⎠

∑  trailing edge angles (C.14)

( )
6

te
te

1
1 2 a

2 n
n

tan n −

=

β⎛ ⎞+ α = −⎜ ⎟
⎝ ⎠

∑  trailing edge angles (C.15)

   

where an
+  and an

−  correspond to the coefficients of the polynomial for the upper and 

lower surface respectively. 
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Appendix D 
 
 In Chen et al. (2005), it is shown how the VBM main and total indices of a 

Kriging model with constant regression term can be derived analytically. To obtain the 

sensitivity indices in Chapter 6, these formulas have been extended in the case of a 

Kriging model with quadratic regression term.  

 

Formulas for variance-based sensitivity analysis indices 
 In their paper, Chen et al. (2005) derive convenient formulas to obtain the VBM 

indices for tensor-product functions:  

 

( ) ( )0
1

bM

i i
i

f a a B
=

= +∑x x                                              (D.1) 

where  

( ) ( )
1

        1
N

i il l b
l

B h x , i ,...,M
=

= =∏x                                  (D.2) 

are called multivariate tensor-product basis functions and ( )xil lh are univariate basis 

functions. 

 It is shown that for a tensor-product function: 

 

( ) ( ){ }1 2 1 2 1 2 1 2

1 2

1 1 2 1 1
1 1 1

1
b bM M N

u i i ,i l ,i l ,i ,i ,u ,i u ,i u
i i l

V a a C C C C C
= = =

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑ ∏               (D.3) 

( ) ( )
1 2 1 2 1 2 1 2

1 2

1 1 2 1 1
1 1 1 1

1
b bM M N N

u i i ,i l ,i l ,i ,i ,l ,i k ,i l
i i l l ,l u

V a a C C C C C∼
= = = = ≠

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= −⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑∑ ∏ ∏          (D.4) 

( ) ( )
1 2 1 2 1 2 1 2

1 2

1 1 2 1 1
1 1 1 1

1
b bM M N N

i i ,i l ,i l ,i ,i ,l ,i k ,i l
i i l l

V a a C C C C C
= = = =

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= −⎨ ⎨ ⎬⎬
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

∑∑ ∏ ∏            (D.5) 

where 
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( ) ( )1il il l l l lC h x p x dx= ∫                                          (D.6) 

( ) ( ) ( )
1 2 1 22i i l i l l i l l l l lC h x h x p x dx= ∫                                   (D.7) 

 

 

The main and total VBM sensitivity indices are given by: 

 

1 u
i

VS
V

=                                                          (D.8) 

T u
i

V VS
V

∼−
=                                                      (D.9) 

 

 In their paper, Chen et al. (2005) also show that some commonly used surrogate 

models can be written in the form of a tensor-product function. Here are given the 

results obtained for the second order regression model and Kriging model. 

 

Second order regression model 

 

 In its more general form, it can be expressed as: 

 

( )
1

2
0

1 1 1 1

N N N N

i i ii i ij i j
i i i j i

f x x x xβ β β β
−

= = = = +
= + + +∑ ∑ ∑ ∑x                    (D.10) 

Defining: 

2
( )

0
    

j

i, j j

i j

x i
x i j

i jx x

β

⎧ =
⎪⎪= =⎨
⎪ <⎪⎩

                                               (D.11) 

( )
2

1 none of ( )       
only one of ( )

both of ( )       
i, j l l

l

i, j l
h x i, j l

x i, j l

⎧ =
⎪

= =⎨
⎪ =⎩

                                (D.12) 

 

the second order regression model can be written in a tensor-product function: 
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( ) 0 ( ) 0 ( )
0 0 0 0 1

NN N

ij i , j ij i , j l
i , j N , j i , j N , j i

f B h
≤ ≤ ≠ ≤ ≤ ≠ =

= + = +∑ ∑ ∏x β β β β               (D.13) 

with 0 j j=β β . 

 The corresponding 1C  and 2C  are given by: 

 

1,( )

2 2 2

1 none of ( )       

( )d only one of ( )

( )d both of ( )       

i, j l l l l l l

l l l l l l

i, j l

C x p x x i, j l

x p x x i, j l

μ

μ σ

⎧ =⎪
⎪= = =⎨
⎪

= + =⎪⎩

∫
∫

               (D.14) 

 

1 1 2 2

1 1 2 2

2 2 2

2,( )

1                                                    none of ( )         

( )d                           only one of ( )    

( )d               

l l l l l

l l l l l l
i, j l

i , j ,i , j l

x p x x i , j ,i , j l

x p x xC

μ

μ σ

=

= =

= +=

∫
1 1 2 2

3 2 3
1 1 2 2

4 2 2 2 2
1 1 2 2

  only two of ( )    

( )d 3             only three of ( )  

9( )d 6 all of ( )             
5

l l l l l l l

l l l l l l l l

i , j ,i , j l

x p x x i , j ,i , j l

x p x x i , j ,i , j l

μ σ μ

σ μ σ μ

⎧
⎪
⎪
⎪

=⎪
⎨
⎪ = + =
⎪
⎪

= + + =⎪⎩

∫
∫

∫

 (D.15) 

 

 

Kriging model with constant regression term  

 

 In the paper, the formulas are derived for a Kriging in the case of a gaussian 

correlation model and with the regression model reduced to a constant term: 

  

( ) ( )
1 1

bM N

i il l
i l

ˆf h xβ κ
= =

= +∑ ∏x                                        (D.16) 

with 

( ) ( )( )2
il l l l ilh x exp x xθ= − −                                      (D.17) 

 

The corresponding 1C  and 2C  are defined by: 
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( ) ( ){ }1
1 2 2

2,il il l il l
l l

C a b= −
π φ θ φ θ

δ θ
                          (D.18) 

( ) ( )( ) ( )( ){ }1 2 1 2 1 2 1 2

2
2

1
2 2 2

l
,i ,i ,l i l i l l i l i l l i l i l

l l
C exp x x a a b bθπ φ θ φ θ

δ θ
⎛ ⎞= − − × + − +⎜ ⎟
⎝ ⎠

 

(D.19) 

where 

il l l ila xμ δ= + −                                                 (D.20) 

il l l ilb xμ δ= − −                                                 (D.21) 

 

Kriging model with quadratic regression term  

 

 In this case, the Kriging model can be written as a sum of (D.10) and (D.16): 

 

( ) ( )
1

2
0

1 1 1 1 1 1

bM NN N N N

i i ii i ij i j i il l
i i i j i i l

f x x x x h xβ β β β κ
−

= = = = + = =

= + + + +∑ ∑ ∑ ∑ ∑ ∏x           (D.22) 

 

which is still of the form of a tensor-product function. Therefore, equations (D.3)-(D.9) 

can be used to obtain analytically the VBM sensitivity indices. 

 All 1C ’s have already been derived in (D.14) and (D.18). 2C ’s where both 

univariate basis functions ilh  come from the quadratic part or the Gaussian term have 

already been calculated and are given by (D.15) and (D.19) respectively. Only the 2C  

cross-terms between the regression part and the Gaussian part must be derived: 

 

( ) ( ) ( )
1 12( ) ( )i , j i l i , j l l i l l l l lC h x h x p x dx= ∫                              (D.23) 

 

 Using the same notation as in Chen et al. (2005), it can be shown that: 
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1

1 1

1

1 1

1

1 1
2( )

2
2 1

none of ( )
 

only one of ( )

1 both of ( )        
2

,i l

i l ,i l
i , j i l

i l ,i l
l

C i, j l

I x C i, j l
C

I x C i, j l
θ

⎧ =
⎪
⎪
⎪ + =⎪= ⎨
⎪
⎪ ⎛ ⎞⎪ + + =⎜ ⎟⎪ ⎝ ⎠⎩

                  (D.24) 

where 

( ) ( )( )1 1

2 2
1

1
4 l i l l i l

l l
I exp b exp a= − − −θ θ

δ θ
                             (D.25) 

and 

( ) ( ) ( ) ( )( )1 1 1 1

2 2
2

1 2 2
4 l i l l i l l i l l i l

l l
I a exp b b exp a= − − − − −μ θ μ θ

δ θ
           (D.26) 
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