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1« Introduction and summary

Most bodies whose wave drags in supersonic flow have
been calculated by linearised theory are such that the flows can
be represented by a suitable distribution of sources. The
present paper extends this idea by considering the drag problem
for the general class of thin and slender bodies which can be
replaced by sources only. The flow due to sources is necess-
arily acyclic, so there can be no local cross-strean . forces on
such bodies, since their presence would require the introduction

of vortex elements,

As a preliminary, an expression for the drag force due
to a volume distribution of sources is calculated from the
momentum flux through a closed surface surrounding the sources.
This general problem has been considered briefly by Hayes (1),
but the development given here, while yielding results equivalent
to those obtainable by extending Hayes's ideas, follows somewhat
different lines,

Next it is shown that the flow past a body of the
class under consideration can be derived from a distribution of

sources in the surface of the body, whose surface density is

proportional to the local slope of the surface relative to the
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direction of the undisturbed strean, Expressions for the drag
farce on thin and slender bodies are then cbtained from the
general result for volume distributions, the method of reduction

being different for thin and slender bodies,

Finally, the results are applied to the problem of
determining the shape of a slender fuselage cearrying a given
wing~system so that the drag of the combination may be a minimum.
This problem is determinate only if suitable conditions on the
fuselage shape are specified, and, since these conditions can
take many forms, no explicit solutions are given, Instead, it
is shown how the problem may be reduced to a similar problem for
a slender body alcneg such problems have been treated in detail

by other authors.

2. Volume distributions of sources

It is assumed that the sources under consideration
cause a2 small steady disturbance to an otherwise uniform super-
sonic stream of density Pos flowing with speed U and Mach
number M relative to a co=ordinate frame in which the sources
are fixed, and that the total source strength is zero, Rectan-
gular nartesian co-ordinates, x,y,z, are chosen so that the
z-axis 1s parallel to the undisturbed stream and 2z increases
domstreamy k is the unit vector parallel to the z-axisy R
denotes the position vector of the point (x,y,z) relative to the
origin of co-ordinatesy r denotes the vector distance from the
z-axis, so that it has rectangular components (x,y,0), and dsS
and dV denote elements of surface area and volume respectively,
Corresponding quantities with suffices 1 and 2 are defined

similarly, Differentiations with respect to 1z, z and Z,

1!
are denoted by primes,

If ¥ is the perturbation particle velocity, W is

defined by

_Yi = K-l‘:‘lzk k'-}i’ ....,.......(1)
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and pOQ is the source density, then the linearized equations
for irrotational flow are (2)
V;\}L:O and .v.::@;= Q. .olnoo--avvc(‘?)
When the sources are contained in a bounded volume of
space, so that they lie inside a closed surface, S, of finite
extent, then the drag force, D, associated with the sources is

given by the momentum-flux integral (2)

A L
D = pD:!E" (%’l{.\;‘iﬂ- Ki{.ﬂ)ds, .n..n---ng.o(j’)
S
where n dis the unit outward normal to S, The divergence

theorem applied to the surface integral in (3) gives

B = PC}'&. J }M;‘{f\(?’\ X) - 1\7 .EI*.‘J dv, -.-.......(4)
where the integration is over the interior of 8§, and, on using

the equations of motion (2), this becomes

D ==~ POI-E‘. [\Q(E1)E(§1) "1?_1. .-nonvocuovo(.‘i)

v

Since the perturbations are due to sources only, it can be shown

(2) that the value of k.y is given by

2 ) 10
mlf..}r(R.) =--._;-: Q(E)“(_)dv ,.'l...uo.t.o(é)
w] 2,\ . 2 322 RB 2
where
S 2 2 2 2
hB = (2‘-1'—:'2) - B (EA]-Ez) ? B™ - “"'Iz-‘i’ qncoo-(?)

the integration is over that part of the dcmain R%:?'O, Z, Z Z,
for which Q # 0, and the star indicates that the finite part of
the divergent integral is to be taken in Hadamard's sense, On

substituting (6) ia (5), the expression for the drag becames

# If the total source strength is not zero, then an extra term
has to be added to this expression for the drag.,
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Finally, this repeated integral can be written as the double

3¢« The representation of bodies by sources

The bodies under consideration are supposed to be thin

or slender, so that the slopes of their surfaces relative to the

J

direction of the undisturbed stre

™

£

e small compared with unity

to experience no local

X A proof of this statement for incompressible flow is given in

Lamb's 'Hydrodynamics' B58, 6th Edition (Cambridge, 1932).
corresponding result for linesrized compressible flow can be
proved in an analogous way,




lies inside the body; let n be the unit normal to the new
closed surface E_x + S so formed, and let p_ g be the surface
density of sources on Ex s Which are assumed to lie just inside
E',x + Se Then the law of conservation of mass for the interior
of 5 + S gives

r =
E jg.n’dS = Clds. Qtl‘tl..l..l(11)
J 48 {J

=
By using the linearized boundary condition on 2 , namely

Ve
o

s

:ji{.E:—UEO‘E:Uﬂ SaY ....-uo.o-to(12)
where m is the slope of the surface relative to the direction
of the undisturbed stream, (11) becomes

£ L

1 (q—U'ﬂ) as = j ‘W.}:.!. d.S. 'ucnn-----'t(13)
5 >
|

z U S
If the thickness ratio of the body is.denoted by t, and 71 is
0(t) uniformly over the body surface,then q and y are O0(t),
and if S can Lé chosen so that the ratio of the area of S to

%
the axea of &~ dis 0(t), then (13) can be written

1
' % ds = O‘ t---i.ao....(1}-{-)
x o

Js

Since Sf is an arbitrary part of the body surface, it follows

from (14) that q is given by

2 -
o LA U’r‘i-i-O(‘i; ). notoot-oo--l(13)

A 1ittle reflexion will show that the surface S can
be chosen in the way described whenever the body is slender, or

when its local thickness is amall and 0(%t), or for combinations

of these, But in the case of the external flow past quasi=-
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cylindricel bodies, for example, S cannct be chosen in this

way, and (15) is not true in general for bodies of this kind.

The results of the previous section can now be used
to obtain the drags of bodies for which (15) is true, by allowing
Q to become very large inside thin layers of sources located on
the body surfaces and to vanish outside these layers, and then
proceeding to the limit of a surface distribution of sources with
density Un. The volume integrals then become surface integrals,
and if dS denotes an element of the body surface, then ¢ dV
is to be replaced by Un d&S. If the body is closed, then it

follows from (15) that the total source strength is zero,

s The drag of thin bodies

In the case of a thin (wing-like) body, the expression
(10) can be modified directly, because differentiation with
respect to z en the body surface is the same, within a factor
1 + 0(t), as partial differentiation with respect to z, and
Q'dV in (10) can be replaced directly by Un'dS. The expression

for the drag then becomes

2 NN -
POU ! _1 4 IZ1 s = 22,
3R JJn*(§1)n'(§2) cosn™!( ——2}as, as,;
e Bigq= Eol,
lt‘i.ll....l(16)

where the integrations are over those parts of the body surface
for which |z,- zzi 7 Bly= Eole

Such a body possesses a mean surf&ce‘, 2 , and the
source distributions on the actual body surface can be combined
to give a source distribution on 2 . If T(R) is the thick-
ness of the body at any peint R on the mean surface, measured

normally to the mean surface, then, since the actual and mean

# The mean surface is a developable surface, with generators
parallel to the z-axis, to which the body reduces as t-30,




surfaces are seperated by a distance of magnitude 0(t), and the
sum of the slopes of the body surfaces on the two sides of X is

T'(R), (16) can be replaced by

2

ed” [ -3 L P zg!>
D== ™" (R,)T" (R,) cosh = )dS,dS,..(17)
Lx dJ w &p/ <O (R 4= Zol . i

where the integration is over those parts of > for which
121-z2| 7 Blr,lurz] .

In general, m and T' are discontimuous functions of
z (for example, at leading edges of finite angle), and the inte-
grations in (16) and (17) must be taken in Stieltjes sense., A
very similar result was given by Lighthill (3) for the special
case of plane wings with polygonal streamvise sections, The
expressions (16) and (17) are not valid when the body has rounded

leading or trailing subsonic edges at which T'(R) becomes infinite,

5« The drag of slender bodies.

When the body under consideration is slender, so that
all points on its surface lie at distances of magnitude O0(t) fram
a mean axis parallel to the z-axis, then, although Q dV may still
be replaced by Un dS, it is no longer possible to replace Q'aV
in (10) by Un'dS, and an alternative limiting process must be
sought, The simplest procedure in this case is to express the
inverse cosh in (10) as a logarithm, end to rewrite (10) in the

f'orm

Po | il ™ T
D= - 2] | Q'(R))Q By 108(I5,2,) ) av,av,

¥ 'AE?J/ Q'(B4)Q" (Bp)1og (3B |z, =r,] ) av,av,

f 121-2214-5
2;2.1-

oo |
- — L ] =
b |} Q (131 )Q (32)106

7

- . ]
2] ) dv,dv,,(18)
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the integrations are over the domain |z,~-z,| 2 Bjr,~r,| in

each integral, Some of the integrations can now be performed

I o envrEanas 1 o
cO The 1L1miting sSuriacc G1S

takes the form
{ i
1 P=| |
13 | Q° = 1lim — - Jrdv
Lim | |9 = 1im 5= 11 dxdy
_i_ - N T l l- 3 I] C A
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Qz 2 | S dz
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where the terms the first

only by a factor 1+0(t) because the surface slope is small and
0(t) everywhere, On using this last result, the first in
in (18) becomes

T_T2 {*t :

P \ /
- o f 1
o f 8 Ak (31);\” (32) log | \ dz,dz.

kllfz,l—z” 12

(o]

aeans { 20)
2
and, on neglecting a further factor 1+0(t“log t), the integrations

can be taken over all values of 2z, and 2z, for which S" £ 0,
| 4

If S'(z) 4is discontiruous, then (20) is to be interpreted as a

Stieltjes integral, but the set of points for vhich z, = 2 is

to be excluded from the domain of integration, otherwise infinite

terms occur$ this excluded set of points does not occur in the

original domain of integration, Following Li
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integral, obtained by rejecting the infinite terms for which

2, = 2

1 2"

In the secand integral of (18), the integrations with
respect to z, and. z, cen be made, If the integrations in this
integral were over all space, then the integral would vanish
because Q = 0 outside a bounded volumey hence this integral
can be replaced by another of the same form, but of opposite sign,
for which the integrations are over the domain lz1-zd < Bigﬂfgzl.
The only significant contributions from this new integral come
from discontinuities in Q, or, in the limit, from discontimuities
in Te The ultimate florm of the final expression depends on the
location of the contours on the body surface at which m is
discontimous, The simplest case, and the only one considered
in detail here, is when m is discontimous on a finite mmber
of contours, Ci (L = 1,2,404yn), lying in planes 2z = constant
end separated by distances of magnitude 0(1)e In this case,
if the discontinuity on the contour l'". and at distance r fram

the z—ax1b is denoted by [ln (r), then, on neglecting a factor
1+O(t log t), the contrlbutlon from the second integral is

p ik -
2 ._ t J&'ﬂ £1)x"m (rz)log(m—r_-;:z"r) ds, dsz
SE, e )

where the integrations in each double integral are both over the
contour Cye For more general contours of discontimuity, the
integrations may be over only parts of the contours, and should
the contours be separated by distances of magnitude O0(t), then
terms involving integrations over more than one contour may occur.
These more general results are not difficult to write down, but
they can be cemplicated expressions, so their development is left
to the reader,

The third integral in (18) can be shown to be less
than the first by a factor of magnitude 0(t), and so is negligible

ts the present order of approximation,




Hence, from (21) and (22), the expression for the drag

in the cases under consideration is
2
p U = /
= o f
1) o) S log
LN U
©“
i P
p U n {
YR = ] | Any(z, 1955
' i=1 v -~
e 5 ..,.........'{23:'
which is a generalization of Ligh z of
a body of revolution with discontimuous meridian section (4), to

which it reduces in that case,
slender bodies with open noses and bases, provided that the body
is considered to be continued upstream and downstream by cylinders

whose generators are perallel to the z-axis, and the discontin-

1 4 2 dadnda B s ~orynd W o e
ulities In m at the Jjoints are taken into account, Of course,
the internal and externmal flows must be independent, and only the

eresting to notice that each double integral

in (22) has the same form as the 'energy' of a two-dimensional

distribution of electric charge on the contour C,, with density

proportional to fj*qj.. Since a given charge distributes itself
¥ ed is

+he 4

over the surface of a fixed conductor so that the energy a
''''' ] oo T or LAar =2 mive 34 +4drmiity in 7!("\

n-.__.l-i.l, +“b L0L1L0WS LI.'...\.J, 10 & given dl sScontinulty n s ._.)

over & fixed contour (., each temrm 1s =2

proportional to the charge density on an

conductor having C. as its boundary,

il s et 20 ~ 24 = 1~ 41 L 1 R R & e b X & A

inside C,, it is known that the 'capacity' is a minimum wher

C. is a circle (;;), so that for a given total charge, the energy
is a maxdmum when C, is a circle, Hence, in the present context,

_'
a circular cross-section at a section of discontimiocus surface
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the design of intakes (or outlets) for slender open-ended bodies

when the area of the intake and the initial rate of change of cross~

sectional area are given,

6. Fuselages of minimum drag

In this section, the body under consideration is taken
to consist of a slender fuselage to which is attached a system
of thin wings, tail surfaces, etc., called the wing-system below,
on which there are no local cross-stream forces, The z=axis is
chosen so that it coincides with the mean axis of the fuselsge, and
S(z) denotes the cross-sectional area of the fuselage, For sim-
plicity, it is assumed that 8(z) is an analytic function of =z
over that part of the z-axis occupied by the fuselagey the modi~-
fications required when S'(z) is discontimous follow the lines
indicated in B5, and are very easily made, The wing-system is
taken to have a thickness T(R) et any point, R, of its mean
surface, as in 84, Since the surface of the fuselage is at a
distance of magnitude O(t) from the z-axis, the interference
drag force between the fuselage and the wing-system can be cal-
culated to a sufficient order of epproximation by taking the
sources on the surface of the fuselage to be concentrated on the
Z=8X1iS, The drag force on the cambination cen then be written

down at once as

P U2 no
oL . =
D = T LLJT"(§1)T"(§2) cosh (Iﬂx‘—r /) ds,as,
2 an
Pl ) ¢ -1 iz 21\
e, :JT’ (;@1)5"(%) cosh (BLE. } as,dz,
POUZEﬁ?
- L Jd Sn (z,i)S” (2.2) 108‘;('21-221) dz'id'z.?' oo-oo-(zii-)

In the following applications, the drag given by (24)

is to be minimized for the restricted class of problems in which
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the wing-system is given and the area-distribution of the fuselage,
S8(z), is varied, It is assumed that the variations of the shape
of the fuselage do not affect the source distribution which rep-
resents the wing-systemy this is not strictly true, and the
analysis can be refined to take the change into account, but the
small gain in accuracy is unlikely to justify the extra complica-
tion, An approximate method of taking the change into account

is to take as part of the fuselage the small parts of the wing-

system which are covered or uncovered as the fuselage varies,

These problems can be converted into similar problems
of a type already familiar in slender-body theory by defining

a new function, A(z), satisfying the integral equation

Lﬂ\” (-— )lOE-_.U""" | )rlz. - [ e (P )COSh s { :

— }d8,= 0,
J J ‘-.kb £1| 1
.Ollll..l!..(25)

This equation can be solved by standard methods to give the

particular solution

AN (R, )as,
) =3 e ]

where the integrations are over that part of the mean surface of

PR [ |

the wing-system for which Iz—z1| £ B;:f::q\ . On using (25), (24)

can be written

2
D= = POU J{‘I mae (R )hh (P ) "‘h f | 4 xf a8
- Lr |} os \\ E"EF 43S,
?OU/_ i'!' . , f
e Jﬁ (z,)A" (z,) log(| z ...‘mj) vjd‘zo

PY | I~
= 4ﬂ4JJ;§.'(z )+A" (2 lj fgir(z )+A11(“2){ 10&(|z -z |)dz (B s

---u.-oo-o-c(ﬂ—?)

# This result can be obtained very easily if both integrals in
(25) are integrated by parts with respect to z,, and the result is
compared with Poisson's integral comnecting the real and imaginary
parts of the function ’ (2—21)2 - Bér 1‘7 for real values of Z.

2 1
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from which it follows that the problem of determining S(z) in
any given problem is equivalent to that of determining S(z) + A(z)
so that the third integral is minimized, This problem has been
investigated in detail by other authors, so it is not considered
further herey it is sufficient to notice a few useful and inter-
esting facts concerning the function A(z),

By integrating (26) with respect to z, and since TTEQGS
is an element of volume of the wing-system, it follows immediately

that

1 1
Al
--\Z) = p——

/B -2y’

where the integration is over that part of the domain |z—z1I§§}3tE”

? -..-........(28)

which lies inside the wing-system., The function A(z) defined

by (28) is non-zero only over a finite segment of the z-axis which

is such that the wing-system is just included inside the closed
surface formed by the liach cones with vertices at its ends, I

A(z) is the cross-sectional area of scme body by planes =z = constant,
then this body can be constructed by spreading each element of

volume of the wing-system over the segment of the z-axis defined

by z,-Blr,| < z < z, + Blz,| according to the law dvﬁ/ﬁwfi%%gf-(z—z1)
and combining these distributions, It follows from this construction,

or directly from (28) by integrating with respect to z, that the

volume of this body is equal to the volume of the wing-system,

o=

-

2
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Addendum to College of Aeronautics Report No.88

'The Drag of Source Distributions in Linearized Supersonic Flow'

by G. N. Ward

1o Detzrmination of the function A(z)
If the wing-system consists of a single wing whose mean
surface lies in the plane xX=0, then A(z) is given from (26)

A(z) = 1 ([[-Z(y'sz')dy'ds' (29)
i_; - ~— [ (R I e,
I J f‘r (o) 5 'Jl
:“E:‘JL--'I?L- r _i
W I[B3 s R
where the integration is over that part of the mean wing surface
for which l!z-2'| € E!y‘{. As it stands, this is an awkward
integral toc evaluate numerically, but Dy making the substitution
R NP i T,y N SRSV RE R R U RS (30)
(29) becomes
O =L
A(z) = = JJ T(y'sz=By' cos A)dy'dA,

where >\ now varies from O to w, and y' varies over the wing-
span, and lhis expression fur A(z) can be evaluated by a simple

semi-graphical method.

Let the wing-planform be divided into chord-wise strips of
width Ay' and let AWBW be the centre-line of the m th strip as

i
4

shown in Figurec 1. Also let ‘he rangs of A be divided into
equal increments AA, and if the point z on the axis of the
fuselage at which A(z) is required be denoted by P, as in
Pigure 1, let ?Qn correspond to the centre of the nth increment
of A, that is to A= (n=-23)AAN. IT A B and PQ  intersect,

let them intersect in the point Cmn’ and let the wing-thickness




1 ! —_
A - L T 5 m Z0
\ T & LN “mn’ T T (_ d)
where the summation is over &ll values cf m and n which

correspond %o peints inside the wing-planform.

If the chord-wise sections corresponding to the lines
A.Br are arawn on the wing-planform, then the values of TW" can
In m = = Hifl
be reed of at esac and added together to
A7 e m
S ey ST

In practice, it wi be found couvenient to draw the

1
pencil of lines PQn on transparent paper so that it can be

moved to give A(z) for any desired value of z. The pencil

=
ted by calculation, or by a

11

of lines PQ_ can be construc
geometrical construction as shown in the self.explanatory

re 2, for the case when A A = «/6.

Of course, the process described above must be carried
out for both halves of the wing, or if the wing is symmetrical
about the axis of the fuselage, the result for the half-wing
may be doubled,

Clearly the method of evaluating (31) described above is
only one of meany methods which could be used, and in fact is

the erudest method possible, corresponding as it does to the

3

rapezium rule for integration. However it has the merit of

ct
i

being suitable for use in a drawing office, and if increased
accuracy is required, this can be achieved either by decreasing

the intervals QA ¥' and AN, or by using Simpson's Rule, the

B

iatter probably being the more economical mcthod.
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