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I AIJTH. .J---
Most bodies whose wave drags in supersonic flow have

been calculated by l ineari sed theory ore such t hat the f'Lowe can

be r epresen t e d by a suitable distribution of' sources . The

present paper extends this i dea by considering the drag problem.

t'or- the general class of thin and slender bodies ..zhach can be

r eplace d by sources only. The f'Low due to sources is necess­

arily acyclic J so there can be no l ocal cr-oee-ebr -ecn . f'or-cee on

such bodies , s ince t heir presence would r equire the introduction

of vortex elements .

As a preliminary, an expression for t he drag force due

to a voluoe distribution of sources is calculated f'rOCJ. t he

mcmentum f l ux t hrough a c losed surface surrounding the ecur-cea ,

This general problem has been considered brief'ly by Hayes (JJ,
but the developnent given here , while yielding results equivalen t

to those ob tainable by extending Hayes 's ideas , t'o'Llowe ecmewhab

d..iff'erent line s .

Next i t is sho.....m t hat the f'Low past a body of' the

c lass under consideration can be derived f'r-cm a distribution of'

sources in t he eur-rece of' the body, whose surface density i s

propor t ional to the l ocal slope of' the surf'ace relative to the

I.lEP
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direction of t he undisturb e d s tr-eem,

force en thin and s lender bodies are

Expressions for t he drag

then ob ta:1ned fraa tm
general r -e au'l.t f or volume dist ributions , t he me-thod of reduction

being different f or thin and slender bodies .

Finally, the r esult s are applied t o the problem or
determining the shape of a s lender fus e l age carrying a given

wing-system so t hat the drag of t he combination may be a minimum.

This problem is determinate only if sui t able conddt ions on the

fuse lage shape are apecdf'Led, and , s ince these canditions can

t ake I:1an.Y rccms , no explicit solutions are given. Instead, it

i s shown how t h e pr-ob.Lera may be r educ e d to a s imiJ.er problem far

a slender body alone J such probleo.s have been treated in detail

by other airthor-e ,

2 . Voltun.e distributions of' sources

I t i s assumed that the sources under consideration

cause a smcJ.J. steady disturbance t o an otherwise unifonn super ­

sonic atrreera of density Po ' fleming with speed U and Mach

number M r ela t i ve to a co-or-ddnzrte frame in 'Which the sources

are f ixed, and that tho; t ot al source s t rength i s zero . Rectan­

gular -rar-te af.an co-ordinates , x , y ,z , are chosen so that the

z- axis i s paral lel t o the undfs-turb ed stream and z increases

downeta-eem j Jt i s the unit vector parallel to the a-axfa j li
deno'tee the position vector of t he point (x,y,z) relative to t he

origin of co-ordinates) L. denotes the vector distance froo. the

a-ecd,a , so that i t has rectangular canponents (x,y,O) , and dS

and dV denote e lements of euz-f'ace area and volume r e spec t i v ely.

Corresponding quant i tie s with suffices 1 and Z are defined

sim:i.larJy . D:i.f'ferentiations with respect to e , z1 ' and Zz
ore denoted by primes .

I f' :!.. is the perturbation particle velocity, !i. i s

defined by

w =- v - ~Ac k . v ,
..... ... ... - •• ••••• • ••• • (1)
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and PoQ is t he s ource den s ity , t hen t he linearized e quat ions

f or irrotational f l ow are W

•

... ...... .. ...... (2 )

.......... ........ .. (3)

When the sources ore contained in a bounded volume of

apace, so t hat t hey l i e inside a c losed sur-race , 5 , of' finite

extent, then the drag f orce , D, associat ed with the source s i s

gi ven by the manentum-flux integral. (~)

D = P k . J(h.w n - v w.n) dfJ:0- - _ _ ..... _ ......

S

where n i s t he unit outward normal t o S. The divergence
~

t he orem appl ied t o t he surface integral in (3) gives

where the integration i s over the interior of S, And, on u sing

t he equations of mot ion (2 ) , t his bec ceee

............... (5)

Since the per turbations are due .t o sources only, it can be shown

(g) t hat t he valu e of ~.z.. i s gi ven by

! ·X(!.\1) = - ~" ] Q(!i2) a~2 (~)dV2 , · (6 )

where

. .. .. . . .. (7)

2t he integration i s over that part of the da::mjn RB ~ 0 , z1 ~ z 2

f or which Q '; 0 , and t he star indicates thnt the rinite part of

the divergent integraJ. i s t o be 't aken in Hademer-d f S sonse , On

SUbstitut ing (6) b (5 ) , the expression far t he drag b cc ccce

• If' the total source strength i s not zero, t hen en e xtra. 'term
has t o be added t o this express ion f'or the drag.
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or, on integrating by parts rlth respec t to Z1 end z2 ' and

since Q = 0 OJ.t sid.c a bounded vol ume of space ,

Finally, this repeate d integra l can b e written as t he double

drrtegr-ef

D= - =~fJQ ' (g,)Q ' (~)COSh-1( B;~; :;~ ; )dV1 dV2 '
•••••••••••• (10)

in which the integration i s over the dCTJa in f or whic h

\z1 -z21 q BI!:.l -I21 and Q'; O. When Q is a daacont dnucua

f'unction of z , then (10) i s to b e interpreted us a double

Sti~ltjes integral.

3 . The representation of bodie s by s ource s

The b odie s under' c onsi derat ion are supposed t o be thin

or s lender , so that the s lopes of their surfc.ces r elative t o the

dire c t i on of the undisturbe d a ta-ecra are scali c oraper-cd with unity

everywhere , and they are also supposed t o experience no l ocal

cros s-strean. :force s , in which ccae the 1'10\7 pas t them i.s acycl ic

and con b e represented by distribut ions of sources in t heir
Ifsurf'ecee ,

For any b ody of' t he above c.Ieaa J l et ~;J:. b e the port

of i ts surf'ace which lie s inside nny c losed surface which inter­

sects t he body, l et S be the part of t he closed surf'ace which

~ A proof of' this a tatenen t f or incanpres sible flcm is ~ven in
I..a.mb ' s Iltfdrods'nmnics ' §5 8 , 6t h Edition (Cao.b r idge , 193 2) . The
c orre sponding result for linearize d compres sible flow c wn b e
proved in an analogous way .
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lie s inside the body;
_ "

closed surface z.. + S s o forme d , and let

"density of s ources on ~ ,,'iffiich are assumed t o lie just inside

"2: + S. Then t he law of conservation of' ma s s f or the interior

"of ~ + S gi ves

•

-J "q es,
~

• •••••••• ••• (11)

_"
By u s ing t he linearized boundary cendit ion on 2. , namely

v .n = w. n =- U k . n =Un s~,-- """ .... --
where n i s t he s lope of the surface r elative

of the undisturbed stream, (11) becomes

JL"(q - Un) es = J8 ,:::.;! es,

•••••••••• •• (12)

to the direction

• •••• •• • • ••• (13)

It' the thicla1ess r atio of the body i s . denoted by t, and n i s

OCt) unif'ormly over the body surf'ace,then q and. :fZ. are OCt ),

and if' S can be chosen so t hat t he r atio of t he area of S to

"the ar ea o~ :E: 13 ot t ) , then (13) can be writ ten

•••••••••• •• (14)

Since ~ i s an arb i trary part of t he body surface , it f olloyrs

from (14-) thet q is gi ven by

•••••••• •••• (15)

A lit tle ref'lexion rd.l l ehcw that t he eurf'ace S can

be chosen in the way described whenever- the body i s s lender , or

when its local t hl.cknes s is amall and o( t ) , or for combinations

of t hes e . But in t he case of the external f lO'll p as t quasi-
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c y l indric al b odie s, f or example , S cannot be chosen in t his

wa:y , and (15) i s n ot true in gener al for b odies of this kind.

The r e su I ts of' the previous s ec t i on can now b e used

to ob t ain the drags of bodies f or which ( 15 ) i s true, byaJ.louing

Q to b ecome very large inside t hin layers of s ources l ocated. on

the body surf'ace s and t o vanish ou t s i de t hese l ayers, and then

proceeding t o the limit of a ~ace dis tribution of sources \T.Lth

density Un, The volume integrals then b ecome surface integrals,

and if dE deno t es an e lemen t of t he b ody surface , then Q dV

i s t o b e replace d by Un d.S . If the body i s closed , then it

follows from (15 ) t hat the t otal source s trength i s zero.

4 . The drag of thin bodies

In the case of a thin (.,'i ng- like) body, t he e xpressi on

( 10) c an be modifie d directly, b ecaus e dif'ferentiution ~rlth

r e spect t o Z An the body surface i s the same , within a f actor

1 + OCt) , as partial differenti ation with r e spect t o z , and

Q 'dV in ( 10) can be replaced directly by U,, ' dS . The expression

for 'the drag then b eccmea

D =

•••••••••••• (16)
where the integrations are over those parts of the b ody surf ace

for whfch Iz1- Z2' ~ BU:1 - £ 21.

and. the

surface can be canbincd

sur-race" , L ,

If TQV i s the tbiok­

Ii- on the me an surface , measured

then, s ince the actual and me an

Such a b ody possesse s a mean

s au-ce distri but i ons on t he actual b ody

t o g i ve a s ource distri but i on on ~ •

n e s s of the b ody a t any point

nonnally t o the mean surface ,

• The mean surfac e i s a deve lopable surface , \'lith gener a t ors
p arall el to the a-axts , t o whfch the body reduces as t ~ O;
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surfaces are eepar-a'ted by a distance of' magnitude OCt) , and the

sum of the s lopes of the body surfaces on the tvro sides of L is

T ' (IV , (16) can be replaced by

D = - poU2JJT " (R )T " (R) cosh- 1 (IZ
1 - Z21)dS dS (17)

4~ -1 "'2 B 1!:1 - ~\ 1 2""

where the integration is over those parte of ~ f'or ,.moh

\"1-z217p Blr1- r 21.

In general , 'l') and T ' are discontirnlous fUnctions of'

Z (for example , at leading edges of f'inite angle) , and t he inte­

grations in (16) and (17) must be taken in Stieltjes sense . A

very similar result was given by Light hill Cl) f'or the special

case of p lane wings with polygonal abz-eomwi.se sections . The

expr-eaedcns (16) and (17) are not valid when the body has rcunded

l e ading or trailing subsonic edges at which T '~ becomes inf':1nite .

5 . The drag of' slender boddes ,

Ylhen the body under consideration is s lender, so that

all points on its sur-race lie a t distances of'magnitude oCt) !'rem

a mean axis parallel to the a -eod,s , then, aJ.though Q dV may still

be replaced by UTI dS , it is no longer possible to replace Q IdV

in (10) by Un ldS, and an alternative limiting process must be

sought. The simplest procedure in this case i s to express the

inverse cosh in (10) as a l ogari t hm, and to rewrite (10) in the

f'onn

D= - :~ UQ '(E1)Q '~)lOg(lZ1 -Z21J dV1dV2• •

+ f;:Jf Q '(!!1)Q '~)log(~Bkt1 -.r2 1) dV1dV2

PoJf ( ,Z1 -
Z2 1+ ~1 .- 4~ Q '(~1)Q '(~) log 2!Z1- zl "-; dV1dV2,(1 8)

•
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where the integrations arc over the dana i n Iz 1-z2 ' /.; BI~1-.!.21 in

each int egral . Sane of the integrations can now be per-formed

b efor e proceeding to the limiting forms for surface distributions .

In the first integral of (18) , the integrations .lith

respect to x1' y l ' and x2 ' y2 can be made. If" ds i s an
e l e.::::tent of the contour, C, in whi~ t he body surface i s inter­

sec t ed by any plane z = constant, and S( z ) denotes the cr05S­

sect ional area of the b ody by this plane , t hen the transition

fran the volume distributions to the limiting surface distributions

t ake s the foro

where t he terms in the second line d.i:tf er !'ran t hos e in t he first

only by a rececc 1+0 (t) becau s e the sec-race a j ope i s sI:W.ll and

OC t ) ev er-ycher-e , On u sing this l ast resul t , the first integral

in ( 18) becane s

P U
2 fP-1- Is.. (z1)S " (z2) 10g( ~ ) dz 1dz2' ••••• (20)

~ . " \,z1 z21

end, on neglecting a f'urther f nctor 1+0 ( t 210g t) , the integrations

c an be taken over all values of z1 and. z 2 for which S II -I O,

If' S '( z ) is da.econtdr-ccus , then ( 20) i s t o be interpreted as a

Stieltj es integral, but t he se t of points f or wmch z1 ;:: z2 is

to b e exc.Inded f'ran the danAin of integration, o'ther-m.se infinite

'terms occur : this excluded set of points does not occur in the

originaJ. danain of integration. FollO\oiing Lighthill (4 ) , this

integral can be m-itten

limJJQ' Qll dxd,y = lim :iz.JJQ(.!!) dxdy

r ' .
(limJJ Q(E)dx dy) = u :iz. JcTi ds = U S" (e} , •••• (19)

d
=&

'.

••••••• (21)

\-.nere t he s tar denotes the finite part of the double St iel t j e s
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integral, obtained by rejecting the inf'inibe terms for which

z1 = z2 -

In the aecend integral of (18) , the integrations rdth

respect to z1 and. Zz can be made . If' the integrations in this

integroal wer-e CfIler all space , then the integral would vanish

because Q = 0 outside a bounded volume ) hence this integral

can be replaced by another of the same form , but of opposite sign,

for which the drrtegr-atdona are over the danain IZ1-Z2\ <. ' B 1~ -£2\.

The only significant conta-Ibu'tdons fran this new integral ecce

:f"ran discontinuities in Q, or , in the l imit, !"ran discontinuities

in 1\. The ultimate fonn of the final expression depends on the

location of: the contours on the body surface a t 17hich " is

discant1nuous . The simplest case , and the only one considered

in detail here J is when n is disconti.rnIoua on a f'ini te munber

of' contours , C
i

(i;:; 1 ,2 , ••• , n ), lying in planes z;:; constant

end separated by distances of'magnitude 0(1) . In this case ,

if' the d.iB~ontinuity on the contour C. and at distnnce or fran
~ -

the z-axis is denoted by Li" .(r) , t hen, on neglecting a factor
2 ~-

1+0(t l og t) , the contribution frem the second integral is

m-..ere the integrations in each double integral aro both over the

contour Ci • For more general contours of' discontinuity, the

integrations may be over only parts of the contours , and. should

the contours be separated. by distances of mo.gnitudc oCt) " then

tenus involving integrations over more than one contour IllE\Y occur .

These more general results nrc not difficult to '\7I'ite down, but

they can be complicated expressions, so the~.r develop:n.cnt is left

to the reader.

The third integral in (18) can be shown to be less

thnn the fixst by a t'actor of'magnitude OCt) , and so is neg l igible

tit the present order of approximation.

•
-
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Hence , f'rcc (21) and (22) , the expression f'or- t he drag

in t he c ases under considero.t ion i s

1J10gC51 ~ 521) dS '(51) dS '(52)

:2 :, l] ,1 T1;.(t 1) 6"i (::e )log (Blr ~ r \) <ls1<ls2
1::1 v C :<.1 -2 I

i ••••.••••••• (23)
which i s 0. gencr o..lizat ion of Lighthill I S fcrmula for the dr-eg of

a body of r evolution with dd.eccn tdrmcue meridian section <0, t o
'ithich i t reduce s in t hat case . This resul t also applies t o

s lender bodaea with open nose s and b cae a , provided that the b ody

i s considered t o b e continued upstre am. and. downe 'tr-cem by cyl inders

whose generators are pcrnJ.le l to the c- ecda , and the discont in­

uities in " a t t he joints are t aken into eccourrt , Of course ,

t he intenlal and. external f'1Cffi"S IilUst be independen t 7 end only the

external drag i s aiven by (23) ; ~lhen the nose and base ar-eas are

not equal, the total source s trength is not zero, but the extra

t e rm in the drag is part of' the internal drag.

I t i s int eres t ing to notice t hat each double int egral

in (22) has the same f'crtn as t he t energy I of a t wo- dimensional

distri but ion of e'Ie c t c-ac charge on the contour Cp IT.ith density

proportional t o i1"i- Since a given charge distributes itself

over the surface of a f ixed conductor so t hat the ener-gy is a

mi.n:izm.un, i t follmm tha"; , f or a given discontinuity in S '( z)

over a :fixed conteur Cp each ta"U is a r:rl.nimum..men ~~ i s

proportional to the charge densi ty on on i sola t ed to"lO-dimensional.

conductor having C . as its boundary. lis o , f or a given area
1

inside Cp i t is known that t he ' c apaci ty' i s a minimum when

Ci is a circle (j,) , so tha t f or a gi.Yen t otal charge , t he energy

i s a rna.Jd.r.D.1r.l when C
i

is a circle _ Hence , in the present con text ,

a circular cross-section at a sect ion of dis continuous surface

slope is the nors t shape , and t here i s no true rrd.n:1.nJ.un for varia­

t ions of Ci • These r e su l t s have a particular application to
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the design of intakes (or outlets) for slender open-ended bodies

when the area of the intoke and the initial r a t e of change of cross­

sectional area are given.

6. FUselages of m:i.trlm.lm drag

IIi this section, the body under consideration is taken

to consist of a s lender fuselage to which is a ttached a system

of' tlrl.n wings , tail surfaces , ebc , , called the wing-system belovr,

on which there are no local cr-oaa-e'tr-eem forces . The z-ax:i.a is

chosen so that it coincides with the mean axis of the fuselage , and.

S(z) denotes the cross-sectional area of the fuselage . For sim­

plicity, it i s assumed that S(z) is an a.na1ytic !Unction of z

over that part of the s -eeds occupied by the fuselage J the modi­

fications required when S I (z) is discontinuous follow the lines

indicated in 135 , and are very easily made . The wing-system is

taken to have a thickness T(!1> at a:ny point, B, of' ito mean

surface , as in 134. Si.nce the surface of the fuselage is at a

distance of'Dmgni:tude OCt) from the a-exrs , the interference

drag f'oz-ce between the fuselage and the wing-system can be cal­

culated to a sut"f'icient order of approximation by tElking the

sources on tho surface of' the fuselage to be concentrated on the

e-eco,e , The drag force on the canbination can then be written

down at once as

•••••• (24)

- 1cosh

cosh- 1 ('Z1 - Z21)
Blr1J

-p'JJs"(Z1)S " (z2) log( lz1-z21) dz1dz2'

D = - Porl-l'fT " (R )T " III )
41< J -1 '-"2

- porl-J'rT•• (R )S ' , (z )
21< J -1 2

In the following applications , the dr-eg given by (24)

is to be minim1.zed far the restricted class of' problems in which
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t he u1ng- system i s given and the are a- distribution of the fuse lage ,

Sfa}, i s varied. It i s assumed that the variation s of the shape

of the fusela ge do not affec t t he s ource distri bu t ion wtdch r ep­

res ents the wi ng-system} this i s not s trict ly true , and the

analysi s can b e r efined t o t ake the change into account , but the

small gain in accuracy i s unlikely t o justii'y t he e xtra ccmpl ica­

tacn, An appr-oxdmato method of t aking t he change into eccourrt

i s to t ake as part of the fusela ge the small p arts of t he wi ng­

sys t em which are covered or uncovered as the fuselage v ari e s .

These problems can b e c onver ted into s imilar problems

of a t ype already familiar in s lender-body t heory by def ining

a new function, A( z) , sat isfy:ing t he integral. equat i on

This equa tion can be sol ved by s tandard methods to give t he

particular solution

• ••••••••••• (26 )

where t he int egrations are

the VTing-syst ern for which

over t hat part of

Iz- z11~ B I~1 \ ' -

the mean surface of

On using (25) , (21))

• This r e sult can be obtained v ery easi ly if both int egrals in
(25 ) are inte gra t e d by parts ,-nt h r e spec t t o z1 ' and the result is
compared , rith Poisson ' § inte~al connecfing the real and imaginary
parts of the funct ion L(z- z1}2 - B2r~p f or r eal value s of z ,
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f ran which i t follows that the problem of de termining S(z) in

any given problem is equivalent to that of' determining S(z) + A(z)

so that the third int egral i s m.in:f.mizcd. This problem has been

investigat ed in detail by other authors , so i t is not considered

further here J i t i s sufficient to notice a few useful and int er­

esting racts concerning t he fUnc t ion A(z ) .

By drrtegr-atdng (26) wit h respect tc z , and since T(!VdS

i s an e lement of volume of' the wing-system, it f'o llo\fs immediately
t hat

I

•

• • • • •.• . • • • • (28)

where the inte groation i s over that part of' the domain Iz-z11 ~ B~1
which lie s inside t he wing-system. The function A(z) defined

.by (28) is non-zero only over a f inite segment of the z-axis which

i s such t hat t he wing-system is just inc lude d ins i de t he c losed

surface fanned by the Mach ccnea ...·lith vertices a t its ende , If'

A(z) is t he cross-sectional area of' some body by plane s z :; constant ,

t hen this body can be constructed by epr-euddng each e lement of

volume of' the ' wing-sys-f;em over the eegracnt of the z-axis defined

-22 2Jby z1-B\J;:11 " z < z1 + BI:::11 according to the l aY{ dV/1t/~ 41 -(z-z1) ,

and canbining these distributions . I t follows frcm t his construction,

er- directly f'ran (28) by integrating .lith respect to z , that the

volume of t his body is equal to the volume of the , .ing-system .
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Addendum to Col l ege of Aeron&ut i c s Repo r t No. 88,
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7. De t~r~~na t i o~ of the f unc t i on A(z )

If' t he wtIlg- s;ys t cm ooria t at a of' a single wi ng whose mean

sur-ra ce l i e s i n t he pLan e x= 0, t hen A(z ) i s given f rom (2 6)
or (28 ) by

. .. . . . . (29 )=A(z) .1 J'J T (y' , z' )dy ' dz ' ,
"lr2,2 21

~ lB y - {z..~ . ,. J
where t l~,;: Lrr t egr-e t f.on is ov e r tha t par t of the mean wi ng surface

f or whi ch 1z- z "] ~ Ely' l. As it s t and s , t his i s an awk war-d

i nt Egra l t o e v a l uat e numeri ca lly, but by ITlI:lking the s ubst i t ut i on

z ' = z - By ' cos At (30 )

(29 ) b e c omes

A(z) = ~JJ '" (y" Z -BY' c os A)dy'd.\,

. . . . . . . (31 )
where A now v ai-L ee from 0 t o "t , and y' varies over the wing ­

span, and this expression f0~ A(z) can be evaluated by a slm~le

eern.l cgr-ap h LceL method.

Let the w ir~-planf o rm b e divided into Chord-wise s t r ips of

Wi dt h A y' a nd let AmBm b e the c ent r e - line of the mth s trip as

shown in Fjgur c 1 . Al e a :!.. e 'c ·~ he r ang e of >.. be diVided into

equal i ncremen t s 6,1\ , and if tee point z on the axis of t he
fus elag0 at which A (z) is r equired be denoted by P, as in
Figure 1, l et PQn correspond to the c entre of the nth increment

of >-, that is to A = (n - t) 6 " . I1' AmBm and PQ.n intersect .
let them i nt er s ec t in the point Cmn, and let the ~ing-thickne s s



at Cmn b e denot ed by T
mn,

- 2 _

Then, frcm (31) A(z) is gi ve n by

,
, ,
'. 0••

A (a ) . . . ... . (32)

,

wher-e the eurmei't Lon i s over £:.11 va Lue s cf' m and a which

c or-r- e ap ond to po i n t s Ln atde the 'i!ing_planfol"'ffi .

If t r;e ch or d_wise eec t t ona coz-r-e spcndt ng to the lines

AmEm are dr-awn en t he wing-plam'orm, then the value s of T
rnn

can

b e r-ee d ot'£' a t each :Lnterse c tlon, a nd. a dded together t o

"g:l.ve ~ T
~ mn

In pr act i ce, i t wil l b e found co nventcnt to draw the

pencil of lines PQn on transparent pape r so tha t it can ~e

moved t o give A(z ) f or any desired value of z . The pencil
of line s PQn can be const ructed by calculat i on, or by a
geomet rical cone t a-uct Lon a s shown i n the s elf..explana t or y

F ig·o.Jre 2; f or t h e c ase when £J >-. = 'It/6.

Of course , the pr oce ss de s~r ibe d above must b e carried
out ~or both ha lves of the wing7 or if t he wing is symmetrical
about t he axis of the fusel age, the result for the hal f -wing
may be doubled,

Clearly t~e method of eva l ua t i ng (31) descr ibed above i s
onl y on e of m&ny methods which could be used, and in f act is
the crude s ~ ffiethod possible, corresponding as i t does to the
t rape z ium rul e for i~t egration. However it has the merit of
b eing s u i t ab le f or use in a drawir~ of f i ce, and if incr eased
accuracy is r equired, this can be achieved e i t her by decreas ing
the intervals ~ ~" and 61\ , or by u af ng Simpson 's Rule, the
latter pr obab ly being the more economi ca l m0thod.
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