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Abstract

The vortex wake characteristics of aircraft during landing and take-off are of interest in

connection with both the safety of following aircraft penetrating the vortex and the

dispersion of engine exhaust plumes. A series of measurements were carried out in an

Atmospheric Boundary Layer Wind Tunnel (ABLWT) to identify and characterise both

the mean and turbulent flow field of a pair of wake vortices in ground proximity. The

ABLWT simulation at 1:200th scale utilised a flat plate delta plan-form wing to produce

a wake vortex system with an initial vortex core separation (b0) consistent with that

expected for the DLR VFW614 ATTAS aircraft during the final stages of the approach

and flare prior to landing in order to aid possible future full scale validation. Evaluation

of the mean flow field was obtained in vertical planes downstream of the model 0.18Bs

< x < 7.48Bs (Bs is the wing span) using a traversing 5-hole pressure probe. Vortex

trajectory, circulation decay, vorticity decay and core radius evolution were tracked at

wing heights 0.93Bs < H < 2.24Bs within the wind tunnel working section, showing the

ground proximity effect on the vortex system. The vortices were seen to sink behind the

wing and diverge moving downstream, as expected. The rate of descent was shown to

decrease as the wing model approaches the ground. The circulation was fitted to a

straight line with enough accuracy for all the wing heights investigated. An inviscid

model for the prediction of the trajectory of a vortex pair was developed. It uses an

infinite vortex sheet to simulate the interaction between the vortices and the ground

when these are in the ground effect region. The experimental results were compared to

the model showing good agreement. Measurements of the instantaneous flow field were

acquired by means of a Stereo Particle Image Velocimetry (SPIV) system and were

used to investigate the effect of turbulence on the vortex system. The mean field was

compared to the fluctuating field showing the random and intermittent nature of the

turbulence. Turbulence intensity, Reynolds stresses, spatial velocity correlations and

correlation lengths were calculated and discussed. However further work is needed to

acquire a more comprehensive set of PIV data in the ABLWT to draw stronger

conclusions.
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Notation

a core radius

AB characteristic area Greene’s model

Aij deviatoric Reynolds stress tensor

B wing span

b vortex separation

c wing chord length

C Sarpkaya’s model constant (C=0.45)

CD drag coefficient Greene’s model

Cpstatic static pressure coefficient
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Cpθ   pitch coefficient

Cpφ   yaw coefficient

d separation between a pair of co-rotating vortices

D (Dx, Dy, Dz) physical particle displacement

d (dx, dy, dz) particle image displacement

e ratio tanα/tanδ Smith’s model

f scale factor (1/200)

fc Coriolis force parameter ( ݂ = 2Ω sin߶ )

Fc Coriolis force

g acceleration of gravity

h atmospheric boundary layer height

H wing model height

I (Iu, Iv,Iw) turbulence intensity

J angular momentum

k turbulent kinetic energy

ka Von-Karman constant

L lift generated by a generic aircraft

L’ lift per unit span

LB characteristic length Greene’s model

LT turbulence correlation length
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M magnification factor

n Vatistas model coefficient

N Brunt–Väisälä frequency

N* non-dimensional Brunt–Väisälä frequency

p0 centre hole pressure

p1 bottom hole pressure

p2 right hole pressure
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q turbulence parameter Greene’s model

Q* non-dimensional turbulence parameter Greene’s model

r radial distance from the vortex centre

Re Reynolds number

ReL turbulence Reynolds number

Rij two-point spatial velocity correlation

R(t)
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RT
ij Reynolds stress tensor

ss wing model thickness

Sത୧୨ mean rate of strain

t time
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Te evaluation time
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Tτ correlation time

T* vortex lifespan

u* skin friction velocity

uref reference velocity for time-space conversion

V(u, v, w) velocity vector
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V0.107 velocity at 0.107 m height within the scale model of the ABL

Vθ   vortex tangential velocity
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Γ   vortex circulation 
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Θ   potential temperature 

Λ   delta wing sweep angle 
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µ dynamic viscosity

ν   cinematic viscosity 

νT turbulent cinematic viscosity
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ρij non-dimensional two-point velocity correlation

ρij
(t) non-dimensional temporal velocity correlation

σ   standard deviation 

τ   shear stress 
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Introduction

In the past thirty years many theoretical and experimental studies, together with

numerical simulations have been carried out to investigate the behaviour of aircraft

vortex wake systems. This interest is associated primarily with air traffic and airport

efficiency because of the potentially dangerous wake vortex encounter for aircraft

during landing or take-off. As a consequence the FAA (Federal Aviation Administration

of the USA) and ICAO (International Civil Aviation Organization) have established four

different aircraft categories depending on the weight, and established safe separation

distances and time intervals between following aircraft (ICAO [26]). More recently

airport local air quality issues have become of interest and studies have been carried out

in relation to the modelling of an aircraft wake vortex interacting with the jet engine

exhaust plume. The complex vortical wake generated by aircraft is considered to be an

important factor when considering the dispersion of pollutants in proximity to airports.

Few of the previous studies took account of the interaction between the vortex

wake in ground proximity and a complete representation of the atmospheric boundary

layer. The vertical velocity profile and turbulence characteristics of the atmospheric

boundary layer are thought likely to influence both the decay and trajectory of the

vortex wake. These factors were considered by Bernon [6] and shown to be potentially

significant.

The aim of the current research is to extend the initial simulation study to

include near ground effect, i.e. heights associated with the final stages of the approach

to land and first stage climb. It is intended to establish the feasibility and validity of

modelling experimentally a trailing vortex wake at the scales normally used in an

atmospheric boundary layer wind tunnel. In this initial simplified model the interaction

between the trailing vortices and the jet exhaust plume is neglected as are the vortices

associated with the aircraft high lift systems. The study is split in two parts. The first

one will show the results concerning the mean flow obtained using a five-hole probe.

The data are then compared to theoretical/empirical models for wake vortex decay, and

a model for the trajectory of the vortex wake in ground effect is presented. The second
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part shows the properties of the fluctuating/instantaneous flow field due to turbulence,

using data collected by means of a SPIV system.
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1 Literature Review

In this first chapter key concepts and definitions will be given and discussed.

This will include the theoretical base of the experimental data processing, interpretation

and discussion which will be presented in the next sections. Definition and

characteristics of aircraft wake vortices will be given as well as a description of the

ambient wind profile and atmospheric turbulence in which airplane wakes naturally

generate. A description of the Cranfield Atmospheric Boundary Layer Wind Tunnel

(ABLWT) used to carry out the measurements will also be included in a dedicated

section. In addition, ATTAS aircraft characteristics flow over delta wings as well as

measurement techniques used within this project will be discussed.

1.1 Wake vortex system

Before proceeding with the description of wake vortices generation and

characteristics, it is necessary to define the reference coordinate systems that will be

used to refer the flow variables in this work. Three different coordinate systems are used

in the present study, all of them are orthogonal Cartesian and normal: (i) wing reference

system, (ii) ground reference system and (iii) vortex reference system, see Figure 1.

 The wing reference system (x, y, z), one of the most common in literature, is a

normal orthogonal Cartesian system with origin located at the centre line of the

wing trailing edge, x axis points downstream along the centre-line, y axis is

along the wing-span and z axis points upward and is orthogonal to the wing plan

at zero incidence.

 The vortex reference system (xv, yv, zv,) origin is the mid-point of the initial

vortex spacing. The axis directions are obtained by a 180° rotation of the y-z

plane of the wing reference system about x. Thus z points downward and y

points the opposite side with respect the wing reference system.

 The ground reference system (xG, yG, zG) origin is obtained translating the

vortex reference system origin to the ground along z, the x axis points

downstream along the main flow direction, y axis points in the wing span-wise
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direction and z is orthogonal to the plane defined by x and y (the ground)

pointing upward.

Figure 1 Schematic of the main reference systems used in this work

1.1.1 Vortex characteristics and parameters

A vortex is a complex three-dimensional flow characterised by a distribution of

vorticity (ω), which is the curl of the velocity and is defined by:

 = સ × ܄ (1.1)

The strength of a vortex is identified as its circulation which is defined (Anderson [1]),

by:

߁ = ර ࢂ ∙ ࢊ (1.2)

The above integral is calculated over a closed line c which is usually placed at a cross-

section of the stream tube. Since the stream-wise component of the vorticity and

circulation is of primary interest in the study of wake vortices (Rossow [41]), applying

the Stokes theorem to the previous formulation, the expression for the circulation which

we will refer up to the end is obtained:
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߁ =  ߱௫݀ܵ=  ൬
ݓ߲

ݕ߲
−
ݒ߲

ݖ߲
൰݀ݖ݀ݕ (1.3)

where the integral is calculated over an area A enclosed by the line c.

The vortex flow structure is made up of two regions: (i) the core and (ii) the outer part

of the vortex. The core is the region in which most of the vorticity is concentrated,

where velocity and vorticity gradient are intense and characterised by a relatively low

average velocity. On the contrary in the external region, much larger than the first one,

low vorticity and lower gradients are found. Vortex core radius is defined by the

location of maximum tangential velocity (Vθ), (Schell et al. [43], Gerz et al. [21]).

According to Meunier et al. [32], it also can be defined using the angular momentum (J)

by the following relation:

ܽଶ =
1

߁
 −ݕ)] )ଶݕ + −ݖ) )ଶ]߱௫݀ܵݖ (1.4)

In the above formulation yc and zc are the coordinates of the vortex centre. Those can be

determined whether by searching the peaks of maximum vorticity magnitude or

computing the centroids of vorticity (Gerz et al. [21]), as follow:

ݕ =
1

߁
න න ݖ݀ݕ௫݀߱ݕ ݖ =

1

߁
න න ݖ߱ ௫

ஶ



ݖ݀ݕ݀

ஶ

ିஶ

ஶ



ஶ

ିஶ

(1.5)

Vortices, due to viscous effect, dissipate and increase in core at the same time according

to the following low (Meunier et al. [32]):

ܽଶ = ݐߥ4 (1.6)

Finally when considering a vortex, one parameter of absolute importance is the vortex

Reynolds number which, as explained in the next sections, greatly affects the vortex

time and space evolution. It is defined by:

ܴ݁=
߁

ߥ

(1.7)
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1.1.2 Vortex formation

Wake vortices may be considered as a ‘dissipative structure’ that is, an energetic

and self-organized pattern which develops temporarily while the flow returns to

equilibrium, (Jacquin [27]). Wake vortices formation is a result of the lift generation by

a finite wing. G

flow is driven by

the lower and up

generate areas w

transfer from the

of vorticity are f

wing. This resul

of the flow struc

well-shaped vor

wing geometry a

wing surface is d

well explained b

best known theo

placed at inciden

which is obtaine

infinitesimal circ

a pair of trailin

Helmotz’s theore

F
igure 2 Schematic of the trailing vortices, taken from Anderson [1]
6

eneration of wake vortices starts at the wing tips (Figure 2) where the

a favourable pressure gradient, due to the pressure difference between

per surface of the wing. The resulting high velocity gradients at the tips

ith a high concentration of vorticity. Furthermore, they result in energy

longitudinal plane (x-z) to the transversal plane (y-z). Although peaks

ound in the tip regions, vortex formation also involves the span of the

ts in a thin vorticity layer that is generated at the trailing edge. Because

ture instability, this trailing edge layer rolls up determining a number of

tices downstream the wing. The number of vortices depends on the

nd configuration (slats, flaps and ailerons). Those regions in which the

iscontinuous can generate vortices. The formation of trailing vortices is

y the Prandtl’s theory. Although it is an inviscid theory, it is one of the

retical methods for predicting the flow characteristics over a finite wing

ce. According to theory a lifting wing can be replaced by a lifting line

d as a superimposition of an infinite number of horseshoe vortices of

ulation (dΓ). Every horseshoe vortex is made up of a bound vortex and 

g vortices which depart at the lifting line tips in agreement with

m which dictates that a vortex filament must extend to infinity or form
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a closed loop. A superimposition of an infinite number of horseshoe vortices determines

a vortex sheet departing from the trailing edge of the wing which due to its instability

rolls up, see Figure 3.

Figure 3 Sketch of the Prandtl's theory for finite wings, taken from Khalifa [28]

Summing the infinitesimal vortex filament circulation in the vortex sheet over half

wing, the wake vortex circulation is obtained. Finally, this circulation equals the wing

root circulation (Γroot). The Kutta-Joukowski theorem asserts that the lift per unit span is

equal to:

=ᇱܮ ஶܸ ஶߩ ߁ (1.8)

Where Γ is the circulation calculated over a closed line around the airfoil. Integrating 

this formulation along the wing span, and assuming that the circulation is a function of

the position along the wing span, the total lift generated by the wing is obtained.

=ܮ ஶܸ ஶߩ න ݕ݀(ݕ)߁


ଶ

ି

ଶ

(1.9)

In conclusion the vortex strength (circulation) is proportional to the lift generated by the

aircraft or to its weight for fly level condition (not accelerating vertically).
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1.1.3 Vortex configuration in the near field of an airplane

The thin vortex sheet at the trailing edge of a lifting surface rapidly rolls up to

reach a stable state at a certain distance from the trailing edge. Roll-up phenomenon

leads to the formation of a certain number of discrete vortex structures. The number and

characteristics of wake vortices in the near field of an airplane depends on the wing

geometry and the horizontal tail. It is possible to deal with wakes that account for one

pair of counter-rotating vortices just downstream the wing, for example as is the case of

a flaps-up configuration. A possible lift distribution over the wing that leads to this

configuration is shown in Figure 4a. Figure 4b shows a typical lift distribution obtained

with all the flaps down. This wing configuration may lead to the formation of two

vortex pairs, co-rotating on each side of the airplane or multiple vortex pairs co-rotating

and counter-rotating per each side of the airplane, Crouch [10]. Every sudden jump in

the lift distribution graph corresponds to the formation of one vortex.

Figure 4 Span-loads for different wing configurations: (a) flaps up, (b) flaps down. (taken from Crouch [10])

1.1.4 Vortex space evolution: decay, merging and breakdown

Trailing edge vortex generation is a continuous phenomenon in time. Vortex

flow is highly three-dimensional and is characterised by spiral streamlines. It may be

sketched as a conical structure flow. A given vortex will dissipate because it is subject

to viscosity, that at the same time makes it both, increase in core radius, involving a

higher mass of fluid and decrease in circulation. This phenomenon also occurs with

multiple vortices, such as when flaps are down. In this case, if two pairs of co-rotating
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vortices form downstream of the wing, the vortices of each pair start rotating around

each other, interacting as the ratio of the core radius to the vortex separation (a/d)

increases (Meunier et al. [32]). As the above ratio reaches a critical value which varies

into the range 0.25-0.3, the vortex wrap around a core area. Following this, the vortex

cores merge generating one single vortex, as shown in Figure 5.

Figure 5 Wake vortex evolution behind an aircraft, taken from Meunier et al. [32]

The vortex merging time, according to Meunier et al. [32], Orlandi [34] and Fonti [20]

strongly depends on the initial vortex separation as well as the vortex Reynolds number.

After merging together, across the wing span, a single pair of counter-rotating vortices

remains in the wake. These vortices move downward as a solid body inducing

downward velocity. During their descent phase they keep dissipating energy and

increasing in core diameter. At this stage these may undergo flow instabilities which

eventually lead to the final breakdown of the vortices with the formation of multiple

vortex rings.

Two well studied and known instabilities are considered in the present work: (i) Vortex

Burst and (ii) Crow instability. Vortex burst is a sudden expansion of the vortex core. It

may be happen to just one or both vortices.

Crow instability causes the vortex cores to draw together in a wavy pattern until they

connect at the nearer points to form a series of vortex rings (see Crow [11]). The study

carried out by Crow led to some theoretical predictions: 1) the trailing vortices distort

into symmetric waves of length 8.6b, for elliptical lift distribution, the instability grows

by a factor e in a time equal to ଶܾߨ2)1.21 ⁄߁ ) and the perturbed vortices are confined

to fixed planes which are inclined to the horizontal of 48°, Crow [11]. Figure 6 shows a

picture of the Crow instability.
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Figure 6 Crow instability, taken from Crow [11]

1.1.5 Wake vortex models

The most common formulations for radial profiles of the tangential velocity (Vθ)

used to model a vortical wake of an aircraft are listed here. These vortex models are

particularly useful to fit the experimental data collected.

 Rankine model

ఏܸ(ݎ) =
߁

ܽߨ2

ݎ

ܽ
≥ݎݎ݂ ܽ (1.10-a)

ఏܸ(ݎ) =
߁

ݎߨ2
<ݎݎ݂ ܽ (1.10-b)

 Lamb-Oseen model

ఏܸ =
߁

ݎߨ2
൬1 − ݁ିቀ



ቁ
మ

൰ (1.11)

 Burnham-Hallock model
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ఏܸ =
߁

ݎߨ2

ଶݎ

ଶݎ + ଶܽ
(1.12)

 Vatistas model

ఏܸ =
߁

ܽߨ2

ݎ
ܽ

൬1 + ቀ
ݎ
ܽቁ

ଶ

൰

ଵ


(1.13)

In Figure 7 the radial profile of the tangential velocity is reported for the four models

here presented.

Figure 7 Vortex models: (red) Burnham-Hallock, (black) Lamb-Oseen, (blue) Rankine and (green) Vatistas

1.2 Atmospheric Turbulence

Atmospheric motions lead to the formation of a turbulent boundary layer

attached to the earth’s surface that is called planetary boundary layer (PBL). The mean

speed profile and the turbulent profile along its height are functions of the earth

morphology (mountains, hills, seas, oceans and so on). In the real case wake vortices

generate and interact in the Atmosphere and in ground proximity (landing and take-off)

they are flooded in the PBL, thus a realistic simulation should account for the effects of

the atmospheric motions. Detailed knowledge and characterisation of the atmospheric
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boundary layer (ABL) is required to assess the eventual effects on the wake vortices,

but before some definitions regarding turbulent flows must be given.

1.2.1 Turbulence: definitions and general information

In analysing turbulence it is found that two flows starting with initial conditions

that are slightly different will eventually become very dissimilar. A turbulent flow is

characterised by random fluctuations so is not possible to predict its detailed evolution

however some of its statistical properties can be predicted. Thus it is useful to consider

averages and probability distributions of flow quantities. Due to the stochastic nature of

turbulent flows under the hypothesis of steady flow, the flow variables are considered to

be made up of two components: (i) a steady component and (ii) a superimposed

fluctuating component. The steady component is the temporal average over some period

of time Te of the instantaneous quantities, which is defined by (Mathieu & Scott [31]):

పഥݑ =
1

ܶ
න ݐ݀(ݐ)ݑ

்



(1.14)

where ui is a generic velocity component. The fluctuation of velocity is defined by:

=′ݑ −ݑ పഥݑ (1.15)

and is usually interpreted as representing the turbulence, whose intensity in different

directions is measured by the non-dimensional standard deviations:

௨ܫ =
௨ߪ
|ഥࢂ|

=
൫ݑ′పଶതതതത൯

ଵ/ଶ

|ഥࢂ|
(1.16)

Another way to evaluate the overall turbulence intensity is by means of the turbulent

kinetic energy (TKE) per unit mass which is defined by:

݇=
1

2
 =పଶതതതത′ݑ

1

2

ଷ

ୀଵ

௨ߪ)
ଶ + ௩ߪ

ଶ + ௪ߪ
ଶ) (1.17)

Furthermore turbulence contains a wide range of different scales. Different scales of

motion coexist and are superimposed in the flow, with smaller ones living inside larger

ones. A measure of the large scales of turbulence is given by means of the characteristic
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length scale, or correlation length (LT). This quantity provides a measure of the distance

over which the velocity fluctuations differ significantly. Although the measurements of

fluctuations from two spatially separated points, within the same flow, seem unrelated, a

proper statistical analysis reveals that they are correlated. The degree of statistical

correlation is measured using the velocity spatial correlations calculated by:

ܴ(࢞,࢞ᇱ,ݐ) = തതതതതതതതതതതതതതതതതതതതത(ݐ,ᇱ࢞)ᇱఫݑ(ݐ,࢞)ᇱపݑ (1.18)

Rij forms a 3x3 matrix of correlations between different velocity components, that is a

tensor. As the distance of the two points considered increases, velocity correlations

approach to zero, indicating that velocities de-correlate more and more the more they

are separated (Mathieu & Scott [31]). Assuming a homogeneous turbulent flow

characterized by having velocity fluctuations whose statistical properties do not depend

on position, Rij should not change if both x and x’ are shifted by the same vector which

implies that Rij is a function of the only vector r = x-x’:

=തതതതതതതതതതതതതതതതതതതതത(ݐ,ᇱ࢞)ᇱఫݑ(ݐ,࢞)ᇱపݑ ܴ(ݐ,࢘) (1.19)

Where the de-correlation condition is defined by:

ܴ(ݐ,࢘) → 0 ݏܽ |࢘| → ∞ (1.20)

Typical trend of an element of the two point velocity correlation tensor is shown in

Figure 8. It has to be borne in mind that similar trends are for the other components that

together form a three-dimensional field.

Figure 8 Sketch of the spatial velocity correlations as a function of the radial distance (r), taken from Mathieu [31]
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Non-dimensionalising the velocity correlations by means of the standard deviations of

the velocity components, and integrating this new variable along one of the three

possible directions, a quantity with the dimensions of length is obtained.

்ܮ
[]

= න ݎ݀(ݐ,ݎ)ߩ = න
ܴ(ݐ,ݎ)

ߪߪ

ஶ

ିஶ

ݎ݀

ஶ

ିஶ

(1.21)

All the quantities Lij
[k] are supposed to be of the same order of magnitude and provide a

quantitative measure of the correlation length scale or integral scale, which characterises

the largest scales of turbulence (Mathieu & Scott [31]). In addition to spatial velocity

correlations it is useful to define temporal velocity correlations, at a single point and

two different times:

ܴ
(௧)(ݐ,ݐ,࢞ᇱ) = തതതതതതതതതതതതതതതതതതതതത(ᇱݐ,࢞)ᇱఫݑ(ݐ,࢞)ᇱపݑ (1.22)

Following the same non-dimensionalisation procedure as for the spatial correlation and

under the hypothesis of steady flow, which implies that the correlations become

function of the time delay ߬= −ݐ ,ᇱݐ the correlation time is defined by:

ఛܶ
= න ߩ

(௧)

ஶ



,࢞) )߬݀߬ (1.23)

and represents the order of magnitude of the time needed for temporal de-correlation.

Turbulent flows are highly rotational and vorticity has intense small-scale

random variation in space and time. The magnitude of these vorticity fluctuations is

much larger than the mean vorticity and they are randomly orientated. Velocity

derivatives are dominated by the smallest scales of turbulence. This scale is known as

the Kolmogorov length scale and viscosity, which has little influence on the larger

scales, become decisive at this scale, where dissipation of mechanical energy to heat

occurs. Indeed when a turbulent flow is established, flow instabilities are responsible for

keeping generation of turbulence, producing large-scale eddies which being unstable,

give rise to smaller ones inside them and so on until the smallest scales are reached

(Kolmogorov scale) where energy is dissipated via the viscosity effect. This process of

transferring energy from the larger scales to smaller and smaller ones is known as the
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Richardson cascade of energy. Since turbulence is a highly dissipative phenomenon it

must be continuously supplied with energy to keep high the turbulent Reynolds number

ReL which is defined by:

ܴ ݁ =
்ܮߪ
߭

(1.24)

where LT is the correlation length scale and σ is the intensity of one of the turbulent 

components. Turbulence is guaranteed if the above quantity is high enough. If the

turbulent Reynolds number drops too low the energy cascade cannot longer operate and

only the larger scales remain in the flow which, when affected by viscous action, decay

progressively. Turbulence cannot longer exist without a source of energy that keeps

active the energy cascade.

Finally turbulence is intrinsically three-dimensional. In two-dimensional flows

that start with random initial conditions, the flow tends to coalesce to form larger

structures. In this case, the energy cascade will not take place and the flow behaves in

an opposite sense to three-dimensional turbulent flows in which large scales produce

smaller ones (Mathieu & Scott [31]).

1.2.2 Atmospheric Boundary Layer

Atmospheric motions are slowed down in the lowest 1-2 km layer of the

Atmosphere, due to the shear stress caused by viscosity, which is maximum at the

ground where the wind velocity approaches to zero, creating a velocity profile function

of the height. This layer is called planetary boundary layer (PBL) and is typically

turbulent. Its height generally depends on wind strength and surface topography. The

lowest part of the PBL, approximately the first 10% of its height is called the surface

layer (SL) and is most relevant to this thesis, because aircraft land and take-off in this

region.

1.2.2.1 Mean wind speed profile in the Surface Layer

In the surface layer all the vertical fluxes of momentum, heat and moisture are

negligible, assumption that makes the equations of motion and the correspondent

solution simpler. Its height depends on wind strength, Coriolis force and shear stress at
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the ground, which is maximum and is equal to the drag force per unit surface area as

defined by, (ESDU [16]):

߬ = ∗ݑߩ
ଶ (1.25)

where u* is the skin friction velocity, which is proportional to the wind speed, is a

function of the surface characteristics and is defined by:

∗ݑ =
ଵܸ

2.5 ݈݊ ቀ
10
ݖ
ቁ

(1.26)

In this formulation z0 is the surface roughness parameter and takes account of the

ground morphology. It is a measure of surface roughness and represents eddy size at the

surface. It is dependent on height, shape and distribution of the surface features

(Panofsky & Dutton [36]). Table 1 gives a list of the roughness length over uniform

terrains.

Ground Cover Roughness parameter (m)

City centres

Forests
0.7

Small town

Wooded country
0.3

Villages

Countryside
0.1

Farmland 0.03

Fairly level grass plains 0.01

Runway area of airports

Flat area with short grass
0.003

Flat desert

Snow covered farmland

Rough sea in storms

0.001

Table 1 Roughness parameter for different terrains
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The Coriolis force per volume unit is defined by:

ܨ = ߗܸߩ2 ߶݊ݏ݅ = ܸߩ ݂ (1.27)

Where Ω=72.9∙10-6 [rad/s] is the angular velocity of the Earth and  is the local latitude.

According to ESDU [16] a particular solution of the full equations of motion

returns the following relations in terms of velocity profile, thickness of the Atmospheric

Boundary Layer (h) and mean wind speed at the gradient height (h):

௭ܸ

∗ݑ
= 2.5 ݈݊൬

ݖீ

ݖ
൰+ ଵܽ

ݖீ

ℎ
+ ቀ1 −

ଵܽ

2
ቁቀ
ݖீ

ℎ
ቁ
ଶ

−
4

3
ቀ
ݖீ

ℎ
ቁ
ଷ

+
1

4
ቀ
ݖீ

ℎ
ቁ
ସ

൨ (1.28)

ܸ

∗ݑ
= 2.5 ݈݊൬

∗ݑ

݂ݖ
൰− ൨ܣ (1.29)

ℎ =
∗ݑ
ܤ ݂

(1.30)

The constants A=-1 and B=6 were established empirically by analyzing measured wind

profile data, while a1 is given by the following relation:

ଵܽ = 2(݈݊ ܤ − (ܣ +
1

6
≈ 5.75 (1.31)

Ignoring all the terms of order greater than one, the non-dimensional mean wind profile

in the Atmospheric Boundary Layer is given by:

௭ܸ

∗ݑ
= 2.5 ݈݊൬

ݖீ

ݖ
൰+ 34.5

݂ீݖ

∗ݑ
൨ (1.32)

This relation can be used up to zG=300 m, so it well represents the wind profile within

the Surface Layer. Also up to 30 m above the ground the first order term in the last

expression can be neglected making the wind profile exactly logarithmic.

The above description of the PBL and SL is valid as long as the boundary layer

is in equilibrium which means that the wind has blown over a fetch of at least 100 km

over uniform terrain (ESDU [16]). If the boundary layer is in equilibrium its profile

does not change as the fetch increases. If the wind blows over grounds with roughness

changes, the boundary layer, being directly dependent on the roughness length,

undergoes modifications in terms of shape and height. Downwind of a roughness
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change, a new layer starts growing within the previous one. This new layer is not in

equilibrium, thus it grows as x increases. When a fetch of at least 100 km away from the

place in which the wind experienced the terrain change is reached, the boundary layer is

again in equilibrium and will keep its features as long as the reference wind speed and

the terrain roughness are fixed, see Figure 9.

Figure 9 Developing wind profile, taken from ESDU [16]

1.2.2.2 Turbulence profile in the Surface Layer

According to ESDU [18], manipulating the definition of turbulence intensity in x

direction, we can express Iu as follow:

௨ܫ =
௨ߪ
∗ݑ

∗ݑ

௭ܸ
(1.33-a)

where

௨ߪ
∗ݑ

=
ቂ0.538ߟ7.5 + 0.09 ݈݊ ቀ

ݖ
ݖ
ቁቃ


1 + 0.156 ݈݊ ൬
∗ݑ
݂ݖ

൰
(1.33-b)

=ߟ 1 −
6 ݂ݖ

∗ݑ
ܽ݊݀ = ଵߟ (1.33-c)

V u∗⁄ is given in the previous paragraph. These expressions are valid if the terrain is

uniform upwind of the site in analysis for at least 30 km. It is interesting to notice that

near the ground the ratios σ୴ σ୳⁄ and σ୵ σ୳⁄ are generally constant irrespective of the

nature of the terrain, and their value is given by:
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௩ߪ
௨ߪ

= 1 − 0.22 ସቀݏܿ
ߨ

2

ݖ

ℎ
ቁ (1.34-a)

௪ߪ
௨ߪ

= 1 − 0.45 ସቀݏܿ
ߨ

2

ݖ

ℎ
ቁ (1.34-b)

This means that turbulence intensity in y and z directions are functions of the turbulence

intensity along x and can be obtained by evaluating Iu.

1.2.3 Vortex decay in the Atmosphere

Aircraft move within the Planetary Boundary Layer, and as a result, the wake

vortex systems they generate, naturally develop in a stratified ambient, with vertical flux

of momentum and energy, where shear stress and turbulence intensity are increasingly

strong as the ground is approached. Turbulence is a highly dissipative phenomenon so

every flow structure dissipates energy much faster compared to the laminar case so do

wake vortices. Turbulence accelerates the onset of Crow instability and vortex burst

which destroy the coherence of vortex systems that eventually dismiss. The vortex

lifespan is a function of the vortex strength, Reynolds number and turbulence intensity

through a turbulence parameter defined by Crow & Bate [12]:

∗ߝ =
ߝܾ) )

ଵ
ଷ

ܸ

(1.35)

where b0 and V0 are respectively the vortex spacing and initial descent speed defined

by:

ܸ =
߁

ߨ2 ܾ
(1.36)

and ε is the turbulence dissipation rate given by (Mathieu [31]): 

=ߝ
1

2
߭ቆ

ప′ݑ߲
ఫݔ߲

+
ఫ′ݑ߲

పݔ߲
ቇቆ

ప′ݑ߲
ఫݔ߲

+
ఫ′ݑ߲

పݔ߲
ቇ

തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത
(1.37)

Greene [22] introduced a model for the prediction of vortex circulation decay and

vortex descent that under the hypothesis of constant vortex separation, takes account of

the viscous effects, atmospheric stratification effects and turbulent effects. Its model
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considers the wake as a descending solid body that experiences equivalent viscous force

as the real wake, see Figure 10, and states that the rate of change of impulse per unit

length of wake is equal to the sum of the viscous drag force supposed acting on the solid

body, the buoyancy force due to the Atmosphere stratification and a turbulent viscous

force that is expressed in terms of vortex system descent as:

݀ଶ ௩ܼ

݀ܶଶ
+
ܮܥ
ܾߨ4

൬
݀ ௩ܼ

݀ܶ
൰
ଶ

+ 0.82ܳ∗ ൬
݀ ௩ܼ

݀ܶ
൰+

ܰ)ܣ ∗)ଶ

ߨ2 ଶܾ ௩ܼ = 0 (1.38)

where the above formulation is in non-dimensional form and all the variables and

parameters are non-dimensionalised using vortex spacing (considered constant) and

initial descending velocity (V0), see Table 2.

Variable Symbol Value

Descent Zv ௩ݖ ܾ⁄

Time T ݐܸ  ܾ⁄

Stratification parameter N* ܰ ܾ ܸ⁄

Turbulence parameter Q* ݍ ܸ⁄

Table 2 Variables and parameters non-dimensionalisation

CD is the drag coefficient of the solid body which is considered to replace the wake in

the model and is 0.2 for Re > 600,000 and 1.4 for Re < 400,000 but its validity must be

evaluated experimentally. LB and AB are respectively the characteristic length of the

solid body and its area, see Figure 10.

Figure 10 Sketch of the wake and the solid body which is considered to replace the wake, taken from Greene [22]
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Sarpkaya [42], proposed a new model which states that the rate of change of

impulse per unit length is equal to the sum of the buoyancy force due to the atmospheric

stratification and the force due to the rate of change of circulation. The viscous drag

coefficient in Greene’s model is eliminated because it is not hydro-dynamically

defensible. The relation for the descent is given by the following ordinary differential

equation:

݀ଶ ௩ܼ

݀ܶଶ
+ ߱ଶܰ ∗ଶ

௩ܼ +
ܥ

ܶ∗
݁ି


்∗
் = 0 (1.39)

whereas the circulation decay is given by:

߁

߁
= ݁ି


்∗
் (1.40)

where C and ω are constants and T* is the time at which a “catastrophic demise event” 

occurs (Crow instability or core bursting). T* appears to be a function only of the

turbulence parameter ε* and is expressed in various intervals by the following relations: 

For T* < 2.25 or ε* > 0.2535 

∗ܶ∗ߝ
ସ
ଷ = 0.7454 (1.41-a)

For 2.25 < T* < 7 or 0.0121 < ε* < 0.2535 

∗ߝ = ܶ∗
ଵ
ସ݁ି.்∗ (1.41-b)

For 7 < T* < 9 or 0.001 < ε* < 0.0121 

ܶ∗ = ∗ߝ180− + 9.18 (1.41-c)

And T* = 9 for all values of ε* < 0.001. 

In Figure 11 the vortex lifespan versus turbulence parameter is shown. The predictions

based on the Sarpkaya [42] and Crow & Bate [12] models are compared to some

experimental and numerical data.
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Figure 11 Vortex lifespan versus turbulence parameter, taken from Sarpkaya [42]

The model takes also in account the ground effect. Sarpkaya defined the ground effect

region as the region between the ground and a height equal to 1.5 times the initial vortex

separation. When the vortices reach a height of 1.5b0 they continue to decay at a

constant rate equal to that at zG=1.5b0. As a result the circulation decay and vortex

descent in ground effect are given by:

߁݀

݀ܶ
= −

ܥ

ܶ∗
݁߁

ି

்∗
்ಸ (1.42-a)

݀ଶ ௩ܼ

݀ܶଶ
+ ߱ଶܰ ∗ଶ

௩ܼ +
ܥ

ܶ∗
݁ି


்∗
்ಸ = 0 (1.42-b)

Where TG is the non-dimensional time at which the vortices enter in the ground effect

region.

By having knowledge of all the parameters involved in these two models for

vortex decay in the Atmosphere, it is possible to integrate numerically the relevant

differential equations to obtain point by point, the descent profile of a pair of aircraft

wake vortices.

1.2.4 Vortex in ground effect: Vortex rebound

When a system of wake counter-rotating vortices is close enough to the ground,

the vortices start diverging progressively while descending at the same time. Each

vortex induces a cross-flow which has its velocity peak somewhere beneath the vortex.
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This cross-flow at the interface with the ground determines a boundary layer which

encounters an adverse pressure gradient outboard the peak of velocity. As the vortex

system approaches the ground the pressure gradient increases and eventually the

boundary layer separates creating a “bubble” of opposite vorticity (Figure 12). This

secondary vortex quickly grows pushing up the primary vortex. This phenomenon

called rebound for the first time was observed by Harvey & Perry [23]. Vortex rebound

was also observed by Barker & Crow [4] in 1977 carrying out flow visualisations in

water tank. In the latter case, they found vortex rebound occurring after the wake vortex

spacing has reached four times the initial spacing. They also found the vortex trajectory

in ground effect diverging from the prediction given by the vortex line theory given by

Lamb [29]. This was confirmed by the study carried out by Atias & Weihs [3], who

developed a new model for vortex rebound. They built an inviscid model using infinite

vortex sheets to simulate the boundary layer at the ground and vortex images. In this

way they could model the phenomenon by obtaining the secondary vortex rotating

around the primary one but the results correspondent to the looping phase were not in

agreement with the experimental studies. However the vortex rebound appears to be far

more complex than what at the beginning was found. Indeed, according to Orlandi [35]

that carried out 2D numerical simulations in 1990, the primary vortex after the first

rebound from which a secondary vortex is created and after a loop might undertake

several successive rebounds that lead to creation of tertiary vortices that slow down the

lateral translation of the main vortex. Unfortunately these results were not compared to

experimental results that show a quicker dissipation of the vortices before the multiple

rebounds occur.

Figure 12 Sketch of vortex rebound, taken from Puel [39]
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1.3 ABLWT

1.3.1 Simulating the ABL

The structure of the wind within a few hundred meters above the ground is

highly complex and an adequate simulation of it would require knowledge of some key

parameters: mean velocity profile, turbulence intensity along the three main directions,

integral scales of turbulence, micro-scales of turbulence and velocity correlations. A

wind tunnel simulation of the Atmospheric Boundary Layer requires equality of the

turbulent Reynolds number which assures flow dynamic similarity. To achieve this

condition it is necessary to scale by the same factor all the lengths involved, which

means, once a desirable scale factor is chosen, the height, the characteristics lengths of

turbulence and the roughness parameter must be scaled by the same factor. Making the

ABL develop naturally generally implies prohibitively long wind tunnels (Armitt &

Counihan [2]). As a consequence to reproduce the ABL at great scale factors it is

necessary to accelerate its development. This is achieved using a number of roughness,

barrier and mixing devices (Armitt & Counihan [2] and Cook [8]).

1.3.2 Cranfield ABLWT

The Atmospheric Boundary Layer Wind Tunnel (ABLWT) at Cranfield, Figure

13, has a 2.4m wide and 1.2m high test section downstream a 14.5m long flow

development section in which a combination of ground roughness elements, turbulence

grids and elliptical vortex generators are to create the 1/200th scale model of the

atmospheric boundary layer which develops in typical open pastureland (roughness,

z0=0.03). Refer to Bernon [6], for a full description of the tunnel.

The longitudinal turbulence intensity profile and mean wind speed profile within

the ABLWT are compared with those given by ESDU [16-19] in Figure 14.

Figure 13 Representation of the Cranfield ABLWT, taken from Bernon [6]
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The boundary layer results to be compressed along its height in the tunnel with a 1/200th

scale factor. The mean speed profile and turbulence profile are in good agreement with

the ESDU model up to 120 m of the full scale model. However, the turbulent dissipation

rate, which depends on the velocity gradients within the flow in the region close to the

ground (if it is assumed that the production and dissipation of turbulent kinetic energy

are almost equal), is not simulated. As a result the scaled model obtained is 5-6 times

more dissipative than the real one. Thus this is a key point for analysing, interpreting

and eventually comparing the experimental results and must not be neglected. Also it

should be emphasised that the relative movement between the wing and the ground and

boundary layer is not simulated in this quasi-static experiment. In the real case the wing

moves at a certain speed within the ABL therefore the entire flow field in the wing

reference system is a superimposition of the uniform flow dependent on the wing speed

and the ABL profile. A moving-model simulation would be required for a more realistic

representation of full scale.

Figure 14 Mean velocity profile and turbulence profile within the ABLWT, taken from Bernon [6]



1 Literature Review

26

1.4 Experimental Test Case – ATTAS Aircraft

1.4.1 General Information

The VFW 614 ATTAS (Advanced Technologies Testing Aircraft System)

owned by the DLR (German Aerospace Center) was designed to serve as an in-flight

simulator for a wide range of different experiments. It is based on the 44-seater, twin-

engine VFW 614 developed by Bremen-based VFW Fokker (DLR [14]). Figure 15

shows a picture of the ATTAS while in Table 3 a detailed description of the aircraft

characteristics and performance is outlined.

Figure 15 ATTAS aircraft

1.4.2 ATTAS wake: previous wake measurements

In landing and take-off the aircraft uses high-lift systems including flaps and as

consequence generates a wake, that in the region close to the wing trailing edge, is made

up of a number of vortex pairs depending on its exact wing configuration. Moreover,

the horizontal tail surface generates further vortices so in the vicinity of the aircraft the

wake is complex and it is difficult to model. However, after a number of spans

downstream, the wake can be modelled by a pair of counter-rotating vortices. Within

the S-Wake research programme (2000-2003), in-flight measurements of the ATTAS

wake were carried out both in cruise and in landing phase. During the S-Wake project

evaluation of the ATTAS wake was taken using the Do128 as wake encounter. In Figure

16 some results from the S-Wake programme are reported: circulation, core radius,
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vortex spacing and maximum tangential velocity trends versus non dimensional time,

are found.

1.4.3 Reproducing the ATTAS wake within the wind tunnel

To reproduce the wake of an aircraft within a wind tunnel it is necessary to scale

it in terms of geometry and strength. If dynamic similarity (same Reynolds number as

the full scale flow) were assured a geometric scale model of the aircraft would be

needed. In our case due to constraints imposed by the scale model of the Atmospheric

Boundary Layer, and the quasi-static nature of the experiment (model fixed within the

working section of the tunnel) a geometric scale model of the ATTAS aircraft would

not return a realistic scale model of the wake. Because of this, a flat plate delta wing

placed at incidence will be used to achieve this aim. The delta will be designed to obtain

a geometric scale model of the wake. The scale factor used is 1/200 because a well

established simulation of the Atmospheric Boundary Layer is available for the ABLWT

in Cranfield University [1.3]. The key parameters to be scaled to obtain a 1/200th

geometric scale model of the ATTAS wake are: (i) initial vortex spacing (b0), (ii) initial

vortex circulation (Γ0) and (iii) initial vortex core radius (a0). The 1/200th scale model of

the wake is characterised by the following parameters:

ܾ௦ = ݂ ்்ܾௌ (1.43-a)

ܽ௦ = ݂ ்்ܽௌ (1.43-b)

௦߁ = ்்ௌ߁݂ (1.43-c)

where f is the scale factor which in the present case is equal to 1/200. The values

correspondent to the ATTAS wake, were extrapolated from Figure 16 at non-

dimensional time 1.
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Figure 16 ATTAS wake vortex characteristics fitted to two different vortex models. (Lamb-Oseen, Burnham-
Hallock). The measurements were taken by flight test using the Do128 as wake encounter within the S-WAKE

project, taken from de Bruin [13]

Technical Data ATTAS

Length 20.60 m (24.39 m with nose boom)

Height 7.84 m

Wingspan 21.50 m

Wing area 64 m2

Cabin width 2.66 m

Cabin height 1.92 m

Seats
Three seats for crew members and up to seven

seats for scientists.

Empty mass 14.9 t (with permanent test equipment)

Total mass 20.8 t max

Engines Two Rolls-Royce M45 H engines

Thrust 2 x 32 kN (no reverse thrust)

Range 1800 km

Flight altitude 7600 m max

Speed 700 km/h

Fuel tank capacity 6224 l

Original use Short-haul commercial aircraft

DLR flight facility Brunswick

Table 3 ATTAS aircraft characteristics
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1.5 Flow over delta wings

Simulating the ATTAS wake will be achieved using a correctly scaled delta

wing. Therefore it is useful to revise the flow characteristics for this wing configuration.

1.5.1 General flow characteristics

According to Smith [44], the flow past a delta wing, placed at incidence,

separates from the leading edges forming a pair of spiral vortices as a result of the

vorticity in each shear layer. As the angle of attack is increased, the primary attachment

lines on the upper and lower surfaces of the wing move to the axial centre-line (Figure

17). The boundary layer formed in the flow outboard from the upper surface attachment

line separates along a line from which a further shear layer originates. This secondary

separation leads to the formation of a secondary vortex, of opposite sign to that of the

primary vortex, which lies close to the wing surface and nearer to the leading edge

(Figure 18). According to Taylor et al. [46], the primary vortex is much bigger than the

secondary vortex and contains the majority of the vorticity. This secondary separation

must happen as a consequence of the non-slip condition at the surface of the wing

(Honkan & Andreopoulos [25]).

Figure 17 Sketch of the flow over a delta wing, taken from
Smith [44]

Figure 18 Schematic of the flow along a delta wing's
leading edge

The general delta wing flow field described above is affected by: (i) Reynolds

number, (ii) wing geometry and (iii) leading edge profile. To assess the effect of the
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Reynolds number two cases are distinguished: flow over low sweep angle delta wings

and flow over slender delta wings (high sweep angle). In the first case the formation of

the vortices is strongly Reynolds number dependent. As Reynolds number is reduced

the trajectory of the primary vortex moves toward the centre-line (Taylor et al. [46]).

For slender wings, according to Smith [44], the entire flow is steady and stable as long

as free-stream speed and angle of attack are fixed. The main features are almost

independent of Reynolds number in the large scale. It is important to recognise that in

both cases the local flow may be affected by changes in Reynolds number, particularly

in the boundary layer transition region. In terms of the strength of the vortices there is a

proportionality relation (Hemsch & Luckring [24]), that connects vortex circulation (Γ) 

over a slender wing to the sweep angle (Λ) and the chord length (c):  

߁

ஶܸ
=

ܿ

(tan߉).଼ (1.44)

Relatively few studies have been conducted on the effect of leading edge profile

on the flow over a delta wing. Miau et al. [33], present the results of a flow visualization

study which suggests that a sharp leading edge bevel is favourable to the formation of

well-organized vortex structures.

Finally, under certain conditions, the vortices might be affected by instabilities

before reaching the trailing edge. One of the best known and most studied is vortex

breakdown (also called vortex burst). Vortex breakdown is a sudden expansion of the

core as a consequence of a sudden decrease in longitudinal speed of the flow on the

upper side of the wing. Many studies have been carried out concerning this

phenomenon. In Figure 19, vortex breakdown location versus incidence, for different

leading edge sweep angle, is reported, (Thomson [47]).
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Figure 19 Vortex breakdown position for a series of slender delta wing models, taken from Thomson [47]

1.5.2 Smith’s theory

Smith [44], proposed a theory for the prediction of the flow over slender delta

wings (Λ > 60°). The theory is based on some important hypothesis on the wing model

and the flow which it is subject. Those are subsequently reported.

 Viscosity neglected

Viscosity was observed to be important only in the boundary layers on the wing

surface and in a small vortex ‘sub-core’ which is found in the spiral vortex. Out

of these regions the flow was found to be Reynolds number independent, thus

an inviscid model well describes the large-scale features of the separated flow.

 Representation of rotation

The vortex sheet is divided into an inner and an outer part. The inner part is

represented by an isolated potential vortex joined by a cut to the “free” end of

the outer part. The entire flow is considered irrotational except for the vortex

sheet and a velocity potential exists but it jumps across the sheet.

 Conical flow
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 Slender body approximation

The stream-wise gradient of the stream-wise component of velocity is small

compared with the gradients normal to the main flow direction.

 Flat-plate wing

A comprehensive description of the calculation involved in the development of

the theory is found in Smith [44]. The theory gives a prediction of the vortex position

over the wing and shape and strength of the vortex sheet, parameters in which we are

interested to achieve the delta wing model design.

The predictions are in good agreement with experimental results: position and

shape of the primary vortex are predicted successfully (see Figure 20-Figure 21).

The model appears to work well for:

 thin and slender wing (from hypothesis)

 for relatively high Reynolds number

 for ݁≅ 1 where e is the ratio
௧ఈ

௧ఋ
(at low values of e the primary separation is

affected by the secondary one). The best results are obtained for e = 0.91.

Figure 20 Vortex lateral position predicted by theory against the ratio between wing incidence and wing apex
angle The theory is compared to experimental and computational data. Figure taken from Lowson [30]
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Figure 21 Non-dimensional vortex height above the wing. The theory prediction is compared to experimental and
computational data. Taken from Lowson [30]

1.6 Measurement techniques

To measure the flow field behind the wing model within the wind tunnel

working section two measurement techniques were used: (i) Five-hole probe and (ii)

Particle Image Velocimetry. The five-hole probe was used initially to locate the vortices

into the wake over several vertical planes. Also having knowledge of the vortex location

provided a-priori information for the PIV set-up such as camera position and imaging

area.

1.6.1 Five-hole probe

1.6.1.1 General overview

The five-hole probe technique is an intrusive measurement technique made up of

five pressure sensing holes arranged in a cruciform configuration (Figure 22). The

central hole takes evaluation of the local total pressure whereas the four holes around it

provide measures of the static pressure. These measurements are time-average

measurements over a time which depends on frequency and number of cycles (number

of evaluations) that the system adopts. Thus a 5-hole probe system is not able to give

detailed characterization of highly turbulent/fluctuating flows: it provides evaluation of
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the time-average flow field. The pressures recorded by the probes are processed in

velocity along the three main directions (x, y, z). Known relationships between the

static pressures and the total pressure yield the three velocity components. These

relationships must be expressed as functions of the flow angularity so that calibration of

the system and consequently measurements in specific experiments are independent on

the flow velocity and the Reynolds number.

Figure 22 Sketch of a five-hole probe

1.6.1.2 Calibration

Although for some probe geometries (for example spherical geometry) a

potential flow solution can predict the pressure distribution and corresponding

calibration characteristics, due to manufacturing inaccuracies a calibration of the system

is required. This is made by setting up the probe in a known flow field, for example a

uniform flow field and see how it responds changing its orientation with respect the

main flow direction (Treaster [50]). Two ways can be adopted to calibrate a 5-hole

probe system: (i) yaw-pitch mode and (ii) pitch-yaw mode. In the first case the probe is

fixed at one of the predetermined yaw angle within the flow and moved in prescribed

increments trough the pitch angle range. In the pitch-yaw mode instead for each

predetermined pitch angle the probe is moved along its yaw angle range. In both cases

the pressure of each individual tube is calculated for each probe position (calibration

point) and the non-dimensional coefficients functions of the flow angularity are derived

according to the following relations:

 Pitch coefficient:
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ఏܥ =
−ଵ ଷ
− ̅

(1.45)

 Yaw coefficient:

ఝܥ =
−ଶ ସ
− ̅

(1.46)

 Total pressure coefficient:

=௧௧ܥ
− ௧௧
− ̅

(1.47)

 Static pressure coefficient:

௦௧௧ܥ =
−̅ ௦௧௧
− ̅

(1.48)

where

=̅
ଵ + ଶ + ଷ + ସ

4
(1.49)

These coefficients together with pitch and yaw angles form a series of calibration maps

(or 3D surfaces) which report yaw angle and pitch angle as functions of yaw coefficient

and pitch coefficient and static pressure coefficient and total pressure coefficient as a

function of yaw angle and pitch angle (see Figure 23).

1.6.1.3 Application: data processing

The calibration maps are used to evaluate the flow properties (velocity

components along x, y, z, total and static pressure) in specific experiments according to

the following steps:

 The five pressures are provided by the probe and pitch and yaw coefficients are

evaluated according to the formulations.

 Pitch angle (θ) and yaw angle (φ) are evaluated from a calibration map of the 

type presented in Figure 23.

 From θ and φ static pressure coefficient and total pressure coefficient are 

evaluated by the calibration data.

 Total pressure and static pressure are evaluated using the respective coefficients.
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 Velocity magnitude is evaluated by:

ܸ = ඨ
2

ߩ
−௧௧) (௦௧௧ (1.50)

 The three components of the velocity along x, y and z, namely u, v and w are

calculated depending on the calibration mode; for yaw-pitch mode, which is

adopted in this study, the velocity decomposition in the probe reference system

(Figure 24) is given by:

ݑ = ܸ ߮ݏܿ ߠݏܿ (1.51-a)

=ݒ ܸ ߮݊ݏ݅ (1.51-b)

ݓ = ܸ ߮ݏܿ ߠ݊ݏ݅ (1.51-c)

Even for the most accurate instrumentation, uncertainties exist so a measurement

uncertainty is expected to affect the results provided by a 5-hole probe. For the system

used this was assessed by Dockrill [15] and corresponds to +/-0.2° for angles and 2%

for velocity magnitude.

Figure 23 An example of calibration map is given: yaw angle
and pitch angle are expressed as functions of Cpyaw and Cppitch.
Taken from Treaster [50]

Figure 24 Velocity decomposition in 5-hole
probe data, taken from Stein [45]
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1.6.2 Particle Image Velocimetry (PIV)

1.6.2.1 PIV Vs Stereoscopic PIV

Particle image velocimetry (PIV) is a non-intrusive technique to measure

components of flow velocity. The seeded flow region of interest is illuminated by

means of a pulse source of light and pairs of images are taken with a known time delay

Δt using a digital camera which is placed orthogonally to the light sheet. Using 

particular algorithms, based on statistical analysis, the images are correlated to return a

velocity vector plot. During the correlation the image at time t is compared to that at

time t+Δt and the displacement of the tracing particles which scatter the light is 

estimated and by means of the time interval between each frame (Δt) the local flow 

velocity is calculated. Defining d the particle image displacement between a pair of

images with components dx, dy, dz, and D the particle displacement in the physical space

with components DX, DY, DZ, the velocity magnitude is evaluated by:

|ࢂ| =
|(ݐ∆)ࢊ|

ܯ ݐ∆
=

|(ݐ∆)ࡰ|

ݐ∆
(1.52)

where M is the magnification factor of the camera lens. After the correlation the vectors

are validated and a velocity vector plot output. The system so described, which is

illustrated in Figure 25, allows measurement of two components of the velocity that lie

in the plane of the light sheet. The out of plane component cannot be evaluated. This

component evidently affects the particle image displacement, adding an out-of-plane

displacement that cannot be measured. This effect introduces an uncertainty in

measuring the in-plane velocity components. Indeed, the image displacement d

corresponding to a certain particle displacement is given by (Raffel et al. [40]):

௫݀ = ݔ
ᇱ− =ݔ ܯ− ቆܦ + ܦ

ݔ
ᇱ

ݖ
ቇ (1.53-a)

௬݀ = ݕ
ᇱ− =ݕ ܯ− ቆܦ + ܦ

ݕ
ᇱ

ݖ
ቇ (1.53-b)

where M is the magnification factor (Refer to Figure 26). As clear from the

formulations the higher the out-of-plane displacement the bigger is the error made on

the in-plane particle image displacements. According to Raffel et al.[40] this uncertainty
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turns into a systematic error, a perspective error, which in certain situations can reach up

to 15 % of the mean flow velocity

Figure 25 Sketch of a PIV system, taken from Dockrill [15]
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Figure 26 Imaging of a particle within the light sheet on the recording plane. Physical explanation of the
perspective error. Taken from Raffel et al [40]

This limit of a classic PIV system (one recording camera) is overcome with a

Stereo PIV (SPIV) system which adopts two recording cameras (see Figure 27). This

system is able to evaluate the three components of the velocity u, v, w, eliminating the

perspective error, but introduces a perspective distortion which must be calibrated.

Figure 27 SPIV system configuration, taken from Raffel et al [40]

In a SPIV system each camera takes a pair of images from the region of interest with a

Δt time delay. Each image pair then is correlated using correlation algorithms to return a 

2D velocity vector plot. The three velocity components can be reconstructed, from the

2D vector plots obtained by the two cameras, using the following expressions:

ݑ =
ଵݑ ݐܽ ଶߙ݊ + ଶݑ ݐܽ ଵߙ݊
ݐܽ ଵߙ݊ + ݐܽ ଶߙ݊

(1.54-a)
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=ݒ
ଵݒ ݐܽ ଶߚ݊ + ଶݒ ݐܽ ଵߚ݊
ݐܽ ଵߚ݊ + ݐܽ ଶߚ݊

(1.54-b)

ݓ =
−ଵݑ ଶݑ

ݐܽ ଵߙ݊ + ݐܽ ଶߙ݊
(1.54-c)

where

ݐܽ ଵ,ଶߙ݊ =
భ,మݔ

ᇱ

ݖ
(1.55-a)

ݐܽ ଵ,ଶߚ݊ =
భ,మݕ

ᇱ

ݖ
(1.55-b)

u1, v1 and u2, v2, are the velocity components measured respectively by the left camera

and the right camera.  is the angle between the z axis and the ray from the tracer

particle through the lens centre to the recording plane xz of each camera. β is defined 

accordingly in the yz plane per each camera (see Figure 28). According to the previous

formulations the left side vector plot and right side vector plot are correlated to give

back a 3D velocity vector plot.

Figure 28 SPIV velocity reconstruction, taken from Raffel et al [40]

An accurate evaluation of highly three-dimensional flows, like vortex flow

which is the object of the present study, where an intense out-of-plane velocity

component is present requires use of SPIV devices otherwise a lack of precision will be

in the evaluation of the velocity vector.
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Since SPIV is able to evaluate the instantaneous velocity vectors, this technique

is particularly suitable to the measurements of transient and/or turbulent flows, the latter

being our case.

1.6.2.2 Characteristics of a PIV/SPIV system

In the previous section an overview of PIV was given. Finding velocities,

perspective error and the need for a SPIV system for measuring highly 3D flows were

discussed. In this section some technical aspects of a generic PIV measurement are

given.

Two aspects are considered of great importance in a PIV measurement: (i)

choice of seeding particles and (ii) light source.

 Seeding Particles

Tracer particles are needed to evaluate the flow velocity. Since the flow velocity

in a specific point is measured from the particle displacement within the flow, it

is clear that the tracers must faithfully follow the motion of the fluid elements

requiring small particles. The better the particles mix with the fluid the better

they will follow the flow, thus is clear that small particles will follow the flow

better. In contrast the particle image intensity and therefore the contrast of the

PIV recordings is directly proportional to the scattered light power. In general it

can be said that this quantity is a function of the particles size, shape and

orientation (Raffel et al. [40] ). Thus a compromise has to be found for the

particles size. Also the density of the particles is of great importance and must

be carefully chosen. It affects the way the images are processed.

 Light Source

The region of interest must be illuminated by a high power light source, to catch

the scattered light by the particles. Lasers are used for this purpose. They emit a

monochromatic light beam with high energy density, which can be easily

converted into light sheets for illuminating and recording the tracers, using

lenses. Moreover the laser must be a pulse laser with short enough duration of

the illumination pulse to “freeze” the motion of the particles, in order not to have

strakes in the images recorded by the camera/cameras (Raffel et al. [40] ). The
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time delay between illumination pulses is also important, must be short enough

to retain the seeding particles within the light sheet between pulses, but long

enough to be able to evaluate the displacement between the particle images.

1.6.2.3 Processing the images

Processing the particle images is made breaking each image into small regions

called interrogation regions. The size of these regions depends on the optical set-up and

the spatial resolution required but is typically 32 x 32 pixels. Each Interrogation box is

then processed into a velocity vector. The final result is a vector plot based on regularly

or irregularly spaced data points.

Processing each interrogation region is made using algorithms which are based on one

of the following approaches: particle tracking and spatial correlation analysis.

Particle tracking methods are based on locating every particle in the PIV images and

paired up the particles. In this way the particle image displacement is calculated and

from this the actual velocity vector. To do this with high accuracy the tracing particle

density must be low so that the particles are correctly matched. Obviously this results in

velocity data with low spatial resolution. In Figure 29a) shows a low image density

requirements for processing by particle tracking methods.

a) b)

Figure 29 Different particle image densities are presented: (a) typical image density for PTV; (b) typical required
density for PIV correlation analysis. Taken from Raffel et al [40]

Spatial correlation analysis, involves finding a statistical pattern in the particle image

displacement, in each interrogation region. As a result this method requires higher

image density with respect tracking methods. One consequence is that the size of the

resolution of the interrogation grid can be refined to obtain higher resolution velocity
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data. For this reason these methods are the most used for PIV images processing. Figure

29b) presents a typical image density required for correlation analysis.
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2 Methodology

There are three chronological steps that produce the research methodology: wing

model design, experimental setup and data processing. Each of them is treated in a

dedicated section in this chapter.

2.1 Model design

A flat plate delta wing was used as vortex generator [1.4.3]. The Smith theory

was inversely applied to define the wing geometry from the ATTAS wake

characteristics. Unfortunately the theory does not include prediction of the core radius.

Also the vortex circulation, which could be estimated, strongly depends on the flow

velocity, which under the constraint due to the ABL depends on the wing height within

the wind tunnel. Thus the design is completely based on the initial vortex separation

(b0). The method for designing the delta planform follows the steps presented below:

 The sweep angle was arbitrarily fixed at 70° to satisfy the Smith’s theory

hypothesis (slender wing) and to avoid vortex breakdown over the wing at

relatively high incidence (Thomson [47] and Traub et al. [49]). As a result an

apex angle of 40° was obtained (2δ). 

 A bevelling angle of 30° was arbitrarily chosen because sharp leading edge

condition ensures the best and the “cleanest” vortex generation.

 The ATTAS wake parameters were scaled with a scale factor (f) of 1/200 using

the formulations presented in [1.4.3]. For an initial vortex separation of 17 m

taken from Figure 16, is obtained a scaled value (b0s) of:

ܾ௦ = ݂ ்்ܾௌ = 0.085 ݉ (2.1)

 The ratio ݁=
௧ఈ

௧ఋ
was fixed at 0.91 since the experimental data appear to have

the best agreement with the theory for this value (Smith [44]).

 From Figure 20 a ratio between the vortex lateral position and the half span of

0.7382 corresponds to e=0.91. From the known vortex separation the wing span

is calculated by:
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௦ܤ =
ܾೞ

0.7382
= 0.115 ݉ (2.2)

 The chord is immediately found by:

௦ܿ =
௦ܤ
2

tanΛ = 0.158 ݉ (2.3)

 Finally a thickness of 3mm was established.

Thus the wing geometry was completely characterised and ready to be manufactured. It

was made in the Cranfield University workshop from a 3 mm thick aluminium plate.

The delta wing model design is presented in Figure 30.

It has to

kept at 1

condition

Parameter Symbol Value

Chord cs 158 mm

Span Bs 115 mm

Thickness ss 3 mm

Sweep Angle Λ 70° 

Bevelling Angle β 30°

Table 4 Wing model characteristics
Figure 30 Wing model design
46

be borne in mind that for a=0.91 and δ=20° the angle of attack (α) must be 

8.5° and only if this is satisfied then the flow approximates the required

. In Table 4 the wing parameters are summarised.
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2.2 Experimental Setup

2.2.1 Five-hole probe

Measurements of local flow velocity components were taken over several

transversal planes (y-z) downstream of the wing at three different wing heights. A five-

hole probe, mounted on a traverse system able to move the probe in a way to design

measurements grid fine up to 2 mm step in both directions, was used. The probe was

connected to five differential pressure transducers (Furness Controls FC044, ±100

mmH2O) which were interrogated by a computer via an A-D converter. The whole

system included also a barometer for the evaluation of the atmospheric pressure, a

thermometer and a Pitot-static tube, fixed at the wing height. For a finer characterization

of the instruments used refer to Bernon [6]. In Figure 31 a sketch of the five-hole probe

system is presented.

Figure 31 Sketch of the five-hole probe system

The computer controlled the data acquisition using software written in Labview running

under Microsoft Windows. The program wrote the five readings of the pressure

transducer, position of the probe and temperature in a .txt output file. To achieve

maximum accuracy in the evaluation of the time average flow characteristics, the
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system was set at 30 seconds sampling time and 500 Hz. Working in this way a

relatively large amount of time would have been needed to acquire pressure data from a

full plane (30 seconds per point plus 2-5 seconds to move the probe to the next

measurement point). To reduce the overall measurement time, only the flow behind the

left wing side was investigated, assuming symmetry with respect the centreline of the

wing.

Grids with square cells were adopted with step size and number of points

dependent on the plane location. The closer the region being investigated was to the

wing the smaller the grid size needed to capture the wake vortex, the finer the grid that

could be adopted. Obviously, the number of grid points must be kept small enough not

to increase significantly the evaluation time of the entire plane. Two cell sizes were

used: 10x10mm (for the planes closer to the wing) and 20x20mm (for the planes farther

from the wing). All the measurements were carried out running the wind tunnel at 400

RPM to obtain the required ABL profile [1.3.2]. The measurements taken with

acceptable vortex capture and used in the present analysis are reported in Table 5.

N°
࢚ࢎࢍࢋࡴ

࢙

࢞

࢙
Grid size (mm) Step size (mm)

1 0.93 0.18 70x70 10x10
2 0.93 1.50 80x80 10x10
3 0.93 2.62 100x180 20x20
4 0.93 3.74 120x180 20x20
5 0.93 5.61 120x180 20x20
6 0.93 7.48 120x180 20x20
7 0.93 9.35 140x160 20x20
8 1.50 0.18 70x70 10x10
9 1.50 1.50 80x80 10x10
10 1.50 2.62 100x180 20x20
11 1.50 3.74 140x200 20x20
12 1.50 5.61 140x200 20x20
13 1.50 7.48 140x200 20x20
14 2.24 -0.02 140x50 10x10
15 2.24 0.02 70x70 10x10
16 2.24 0.18 70x70 10x10
17 2.24 1.50 80x80 10x10
18 2.24 2.62 100x140 20x20
19 2.24 3.74 140x200 20x20
20 2.24 5.61 140x200 20x20
21 2.24 7.48 140x200 20x20

Table 5 Measurements taken with good vortex capture
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2.2.2 PIV

Figure 32 shows the stereoscopic particle image velocimetry (SPIV)

arrangement used to record the particle images. A Litron Nano 200mJ double pulsed

Nd:YAG laser was used with a -25mm single light sheet optic in conjunction with a pair

of TSI Powerview 4MP cameras. Seeding was provided by injection of Di-2-

Ethylhexyl-Sebacat (DEHS) oil particles into the flow development section of the

tunnel. This injection point provided sufficient time for the particles to mix adequately

for high quality PIV images in the working section.

Figure 32 Schematic of the SPIV set-up in the ABLWT

The wing was fixed within the working section at the same angle of attack as for

the five-hole probe measurements (α=18.5°). The flow field was investigated over three

planes at one fixed wing height. Planes position and wing height were chosen

coincident with previous five-hole probe measurements so comparison is possible (see

Table 6).

PIV Laser

C1 C2

Black screen

~6.5 m/s

ABLWT
2.4m x 1.2m
working section

1/200th scale
delta wing

T.E. datum

x1

x2

x3

C1/C2:
TSI 4MP
CCD PIV
cameras

200mJ
Nd:YAG laser

Light Sheet Posn:
x1 = 21 mm
x2 = 430 mm
x3 = 860 mm

T.E. Ht =172 mm
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Height (H) Plane position (x)

1.5Bs 0.18Bs

1.5Bs 3.74Bs

1.5Bs 7.48Bs

Table 6 Schedule of the PIV measurements

Per each run (measurement) 50 image pairs were taken (number of instantaneous

flow evaluations). All the SPIV apparatus was controlled by TSI Insight 3G which then

was used to process and post process the images in 3D velocity vector plots. A number

of parameters have to be set up within the software regarding the camera setup, laser

setup and timing setup. The timing setup parameters have a great importance in

analysing the experimental data because they regard the way (timing) the flow is

evaluated. Some of those parameters are reported with explanation below:

 PIV Frame Mode: defines the number of frames the camera captures when it

receives a trigger from the synchronizer. Two modes are available:

o single: the camera acquires a single frame image

o Straddle: the camera acquires two consecutive single exposure images

 Pulse Rep Rate (Hz): it specifies the timing from the start of one laser pulse

sequence to the start of the next laser pulse sequence.

 Laser Pulse Delay: pulse delay time is the amount of time to wait from the start

of a laser pulse sequence to until the first laser pulse.

 Delta T (μs): pulse separation time

Refer to the Insight 3G user manual for a full description of all the parameters [52].

Table 7 below shows the values used for this study.

Parameter Value/mode

Pulse Rep Rate 7.25 Hz

Laser Pulse Delay 305

Delta T 200 μs 

Table 7 Timing parameters in the images capturing setup
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2.3 Data processing

2.3.1 Five-hole probe data processing

The five-hole probe data were processed using a dedicated MATLAB program

made up of three main sections.

1. The first part processes the five pressures collected by the five-hole probe in

velocities by means of the method and formulations presented in [1.6.1.2-

1.6.1.3]. It uses a calibration .m file containing the calibration data collected by

Dockrill [15].

2. The second part calculates vorticity from the velocity data previously obtained.

By means of the vorticity map, some vortex parameters are evaluated: maximum

and minimum vorticity, location of maximum and minimum vorticity (y, z

coordinates), centroid of vorticity (vortex centre), circulation and core radius

(using the angular momentum definition). All of these parameters were

calculated according to the formulations presented in [1.1.1].

3. The third section fits the velocity data to three different vortex models (refer to

[1.1.5]): Vatistas, Lamb-Oseen and Burnham-Hallock.

The algorithm of the program is presented in flowchart form in Figure 33.

2.3.1.1 Evaluation of the integrals

Some of the calculations the code performs involve the evaluation of surface

integrals. Since all flow variables are discrete functions (defined per points) of the

position all the integrals require a numerical solution. In the present case four quantities

require the solution of a double integral and these are the circulation, the core radius and

the two vortex position coordinates, expressed respectively by formulas (1.3-5). The

surface over which the integral is performed is considered to be made up of a number of

cells. Each cell has an area (ΔS) equal to the product of the spatial step along y and 

along z (ΔS=ΔyΔz) of the grid where all the flow variables are defined. The integral is 

then converted into is numerical image which is the sum over the surface elements of

the variable times the surface element itself. Below the numerical expressions for the
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circulation and vortex centre position are reported; the core radius is calculated in the

same manner.

Circulation

߁ =  ߱௫݀ܵ=  ߱௫∆ܵ



(2.4)

Vortex centre

ݕ =
1

߁
 ௫݀ܵ=߱ݕ ߱ݕ ௫

∆ܵ



(2.5)

ݖ =
1

߁
 ݖ߱ ௫݀ܵ= ߱ݖ ௫

∆ܵ



(2.6)

The vorticity map used to perform those calculations was obtained by interpolating the

vorticity matrix directly calculated from the experimental velocity data over a grid with

1 mm step in both the plane directions no matter the initial spatial step of the

measurements grid. When reducing the cell size the accuracy of the numerical solution

increases. The interpolation was performed using a Matlab cubic interpolation function.

2.3.1.2 Data fitting

Fitting experimental data means to find those coefficients that make the fitting

functions best approximate the data. The parameters that have to be determined in

fitting vortex velocity data are the circulation (Γ) and the core radius (a). The best fitting 

parameters are found by means of an iterative method. The two fitting parameters are

initialised to a reasonable value: the core radius is set to zero and the circulation is set to

a fifth of the circulation directly calculated in the previous section. Then the initial

values are increased by an increment to an upper limit that for the core radius is the

length of the grid and for the circulation is twenty-five times the starting value. The

increments were set to 0.1 mm for the core radius and 0.001 m2/s for the circulation. For

every iteration a function (χ) is calculated as: 
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߯ =  ቆ
ఏܸ

( )݅ − ఏܸೣ
( )݅

)ߪ )݅
ቇ

ଶே

ୀଵ

(2.7)

where N is the number of grid points and σ is the standard deviation of the tangential 

velocity over the ith point given by:

)ߪ )݅ = ඨ
∑ ൫ܸ ఏ( )݆ − ఏܸ( )݅൯

ଶே
ୀଵ

ܰ
(2.8)

Minimizing function χ, the best fitting to the experimental data is obtained. 
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Figure 33 Algorithm of the code used to process the five-hole probe data
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2.3.2 PIV data processing

The particle images were processed into 3D velocity vector plots with TSI

Insight 3G using iterative grid FFT algorithms. The data was validated using a local

median validation method of Insight 3G. The method consists in evaluating a reference

vector as the median value of all vectors in the neighbourhood and comparing each

vector of the same neighbourhood with the reference one. The dimension of the

neighbourhood must be setup as well as the tolerances (maximum difference between

the current vector and the reference vector) generally based on the flow characteristics.

The invalid vectors are replaced by the local median vector. The 3D velocity data first

visualised with Tecplot is then imported in an .m file used as input by two dedicated

Matlab programs which further process the data.

1. Average Field Processing Code

First, the program reads from an .m file time average velocity data and mesh.

Second, it fills the eventual gaps present in the velocity field, with linearly

interpolated values (this step is a further validation at the beginning of the program).

Then it processes the velocities in vorticity and calculates the vortex parameters

(maximum and minimum vorticity, and their position within the computational grid,

vortex and box circulation, centroid of vorticity and core radius). Finally, if needed,

it performs data fitting to Vatistas, Lamb-Oseen and Burnham-Hallock models. The

structure of the code is very close to that of the five-hole probe data processing code

(Figure 33) except for the section reading from the input file. Figure 34 shows the

procedure in flowchart form for processing PIV data.

2. Turbulence Statistics Code

Similarly to above it reads from an .m file the velocity data and mesh, but in this

case the input file contains every instantaneous field obtained by SPIV measurement

within the same experiment. Each instantaneous field is placed in a matrix which

represents the flow field at a specific time. All the matrices form a three-

dimensional array where the third dimension is time. After reading this “large” input

file the program re-organizes the data in a suitable way to be analysed and then

checks each realization of the flow against possible points in which the velocity is

not defined. If it finds gaps or non-real values those are replaced with linearly
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interpolated values. Then it performs calculation of the turbulence statistics

variables of the flow field. It computes the turbulence velocity fluctuations using

formula (1.15), the three components of turbulence intensity (Iu, Iv, Iw) according to

formulation (1.16), the turbulent kinetic energy (k) using formula (1.17) the

correlation lengths (formula (1.21)) and the six independent components of the

Reynolds stress tensor which is given by:

்ܴ(࢞) = തതതതതതതതതതതതതതതതതതതത(ݐ,࢞)ఫ′ݑ(ݐ,࢞)ప′ݑ (2.9)

Since the Reynolds stress tensor is symmetric, it is necessary to calculate only six of

the nine components it is formed by. The average used to calculate all the turbulence

statistics is the time average defined by formula (1.14). The integral is evaluated by

the program using the well established trapezium rule using as time step the time

interval elapsed between each evaluation of the instantaneous field by the SPIV

system. At the time of capturing the particle images some important parameters

have been fixed. One of these is the “pulse rep rate”. Because within each laser

pulse sequence a pair of images per each camera is collected which after correlation

returns one 3D vector field the frequency of laser pulse sequence equals the number

of flow field evaluation per second. Inverting this frequency the time step is

obtained. Finally the program plots all the statistic quantities and then performs

calculations over the mean flow field following the same procedure as the previous

program (Average Field Processing Code).
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Figure 34 PIV average field processing algorithm
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3 Five-Hole Probe Results

This chapter shows the five-hole probe measurements results. Those are used to

discuss three main subjects: vortex structure and characteristics, Smith’s theory

validation and wake vortices dynamics in ground effect. Each one is treated in a

dedicated paragraph.

3.1 Data presenting

All the results presented within the present chapter are cubic interpolated using a

built in Matlab function. Since the grids used to carry out the measurements have

relatively large spatial steps (10 or even 20 mm) the results would have an angular

aspect which does not correspond to the reality of the analysed phenomenon. In contrast

the actual flow is characterised by continuous and regular variables. To aid

understanding, Figure 35 shows a comparison between the cubic interpolated vorticity

map and the correspondent vorticity map not interpolated for the wing height

H=1.5Bs=172mm over the plane located at x=2.62Bs=301mm. This measurement was

arbitrarily chosen as an example.

Experimental Interpolation

Figure 35 Comparison between not interpolated results (left) and cubic interpolated results (right)
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3.2 Wake configuration: Smith’s theory validation

The wake obtained at the trailing edge of the wing is made up of two pairs of

counter-rotating vortices, (one each side of the wing). Each one contains a primary

vortex and a secondary vortex. Figure 36 shows the left side of the flow 2 mm outboard

the trailing edge: the negative vortex (on the top) is the primary vortex, the positive one

(bottom) is the secondary that will rapidly dissipate leaving in the wake only a pair of

counter-rotating vortices which we are interested in studying.

Figure 36 Vorticity map 2 mm outboard the wing

This result in conjunction with a full measurement of the flow 2 mm inboard the trailing

edge (Figure 37) was used to compare with the prediction of the theory given by Smith

[44]. Neither plane corresponds exactly to the wing trailing edge, but it is assumed that

the vortices do not change significantly when moving 2 mm downstream so the mean

position can be compared with that predicted by theory. Figure 37 shows the whole flow

field over the delta wing; the negative vorticity region (on the left hand side) and

positive vorticity region (on the right hand side) correspond to the primary vortices. The

flow field appears to be asymmetric about the wing axial centre line (y=0). It is

assumed that this asymmetry is due to a slight mis-alignment of the wing with the free
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stream flow direction. Also the vortices appear to be cut over the wing surface, this is

due to the impossibility of investigating the flow too closely to the wing model to avoid

the probe could touch its upper surface. Correlating this data gives an initial vortex

spacing (b0) of 78-80 mm. The error made in the prediction with respect the ATTAS

scaled vortex separation (b0s = 85 mm) is then 6 - 8 %.

Figure 37 Vorticity map 2 mm inboard over the wing

3.3 Vortex structure and characteristics

An assessment of the vortex characteristics was made using data taken over the

plane located at x=0.18Bs=21mm for a wing height of 0.93Bs=107mm. Typical and

expected vortex structure was obtained, characterised by high concentration of vorticity

(Figure 38-top left) and high gradients in the core region which induce a region of

recirculation (Figure 38-top right) that affects the whole flow field even relatively far

away from the vortex centre. The vorticity plot shows two discrete vortex structures of

opposite sign. The larger and stronger (blue) is the primary vortex, whereas the other

(dark red) weaker and compressed just beneath the first one is assumed to be what

remains of the secondary vortex. The latter, due to its weakness, dissolves quickly and

is undetectable farther downstream. The vortex structure is then characterised by a drop

in pressure and out of plane velocity (u) in the core region due to the partial transfer of

the fluid motion and energy from the x-z plane to the y-z plane. This is presented in

terms of static pressure coefficient (Figure 38-down left) whereas Figure 38-down right

shows the distribution of out-of-plane velocity.
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Vorticity map Velocity vector plot

Static pressure coefficient Out-of-plane velocity (u)

Figure 38 Vortex characteristics. H=0.93Bs plane located at x=0.18Bs

The vector plot also shows a strong asymmetry mainly with respect to the vertical plane.

This is assumed to be due to the presence of the primary vortex, of opposite sign

generated by the right side of the wing with which it interacts. A weaker asymmetry is

evident with respect to the horizontal plane possibly due (at this stage) to the secondary

vortex. The overall strong asymmetry affects the possibility of successfully fitting the

experimental data to well established vortex models. Indeed those are based on

functions with radial symmetry. As a result the data points which do not follow a radial

symmetry appear to be spread over the plane r- Vθ (radial distance-tangential velocity)

and the models cannot realistically fit the data. Figure 39 shows an example of data

fitting.
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Figure 39 Data fitting to three vortex models. Black points correspond to experimental data points; the green line
is the Vatistas model; the red line corresponds to Lamb-Oseen model; blue line is the Burnham-Hallock model

3.4 Wake vortices in ground effect

This 5-hole probe data set was used to investigate the dynamics and space

evolution of the mean flow in ground proximity within a scaled model of the ABL.

Therefore some conclusions will be drawn.

The vortices are seen to sink behind the wing as expected due to the mutually

induce downward velocity. The secondary vortex initially present in the region close to

the trailing edge has disappeared one and half wing span downstream. The maximum

vorticity dramatically reduces as the vortex system moves downstream of the wing due

to viscous effects and at the same time the core radius linearly increases. As the wing

height approaches the ground the vortex evolution is not seen to change significantly.

Only the initial values of circulation and maximum vorticity change due to the different

freestream velocity fields. In particular the closer the wing to the ground the lower its

maximum vorticity and circulation, as consequence of the velocity decrease due to the

boundary layer profile. Table 8 shows the vorticity space evolution for two wing

heights: H=0.93Bs, and H=2.24Bs.
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H=0.93Bs=107mm H=2.24Bs=258mm
x

=
0.

18
B

s
=

21
m

m

Γ = -0.31 m2/s    |ω|max = 453.1 s-1 Γ = -0.37 m2/s    |ω|max = 672.5 s-1

x
=

1.
50

B
s
=

17
2

m
m

Γ = -0.23 m2/s    |ω|max = 132.4 s-1 Γ = -0.27 m2/s    |ω|max = 251.6 s-1

x
=

2.
62

B
s
=

30
1

m
m

Γ = -0.21 m2/s    |ω|max = 55.2 s-1 Γ = -0.29 m2/s    |ω|max = 114.5 s-1
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x
=

3.
74

B
s
=

43
0

m
m

Γ = -0.18 m2/s    |ω|max = 32.8 s-1 Γ = -0.23 m2/s    |ω|max = 64.2 s-1

x
=

5.
61

B
s
=

64
5

m
m

Γ = -0.15 m2/s    |ω|max = 20.4 s-1 Γ = -0.19 m2/s    |ω|max = 33.8 s-1

x
=

7.
48

B
s
=

86
0

m
m

Γ = -0.12 m2/s    |ω|max = 17.0 s-1 Γ = -0.17 m2/s    |ω|max = 21.1 s-1

Table 8 Vorticity evolution for two initial wing heights: H=0.93Bs and H=2.24Bs. Flow field over six different
vertical planes is shown up to a distance downstream equal to 7.48Bs
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From Table 8 two aspects have to be stressed:

(i) The vortex remains coherent as it moves downstream for wing height

H=2.24Bs than for H=0.93Bs (see last two planes). At x=7.48Bs for

H=0.93Bs the vortex almost reaches the ground and it distorts possibly due

to the presence of an opposite vorticity distribution consequence of the

boundary layer separation at the ground. However no vortex rebound,

mentioned by Harvey & Perry [23] was observed.

(ii) The vortex for H=0.93Bs starts progressively diverging just after its

formation whereas for H=2.24Bs the diverging phase begins some spans

downstream.

According to Sarpkaya [42] a system of wake vortices is in ground effect when

its height above the ground is equal or less than 1.5b0, Proctor [38] suggests that the

critical height is less than 1.0b0. Thus for the wing fixed at H=0.93Bs the vortex system

can be considered in ground effect whereas for the other two heights the vortex system

at the formation time is not in ground effect yet. The results show that the ground

proximity strongly affects vortex descent and lateral position. Figure 40 shows the

vortex centre lateral displacement.

Figure 40 Vortex flight path along y in the wing reference system for three different wing heights
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It seems from Figure 40 that the smaller the vortex system initial height the greater is

the displacement of the vortex core from the axial centre line (y=0). This may be due to

the relatively high lateral velocity components (v) in the region between the vortex core

and the ground (Figure 41).

x = 3.74Bs x = 5.61Bs

Figure 41 Velocity component along y (v) over two planes for the case H=0.93Bs

The distribution of lateral velocity component (v) should ideally be symmetric with

respect the y axis translated in the vortex reference system in free air. This phenomenon

leads to the possibility of the formation of a concentration of opposite vorticity over the

ground: a secondary opposite vorticity distribution has to exist to verify the no-slip

boundary condition at the ground. This new vorticity distribution eventually would

increase the local velocity beneath the primary vortex. Unfortunately it was not possible

to verify this as the minimum height achievable by the probe was 7 mm.

As previously stated the vortex system is seen to descend downstream of the

wing. The rate of descent appears to decrease as the initial height of the vortex system

approaches the ground. The descent tends to flatten over the x axis but vortex rebound
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was not observed. The location of the vortex core relative to the wing trailing edge with

distance downstream (x) is shown in Figure 42.

Figure 42 Vortex descent in the wing reference system for three different wing initial heights

In terms of circulation and vorticity decay ground effect appears less clear. It

seems that the maximum vorticity, as the vortex is moving downstream, is not affected

by ground proximity. It is to be expected that the lower the initial height the lower the

maximum vorticity and the faster it decays. This is a combined effect of the Reynolds

number and the turbulence profile the vortex is subject to, within the atmospheric

boundary layer, see Figure 43.

Figure 43 Maximum vorticity decay (vortex reference system)
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On the other hand circulation was recognized to have a linear trend in the ground

effect region (H=0.93Bs) in agreement with Sarpkaya’s model ([42]) as well as out of

ground effect (H=1.50Bs and H=2.24Bs). In Figure 44 circulation is interpolated to a

straight line for different heights. The best fitting is for the data set correspondent to the

height H=1.50Bs however the other two data sets are well represented by a straight line.

Figure 44 Circulation decay for three wing initial heights (vortex reference system)

The straight lines are given by the following equations:

߁ = +ݔ0.024− 0.280 → ܪݎ݂ = ௦ܤ0.93 (3.1-a)

߁ = +ݔ0.024− 0.321 → ܪݎ݂ = ௦ܤ1.50 (3.1-b)

߁ = +ݔ0.025− 0.338 → ܪݎ݂ = ௦ܤ2.24 (3.1-c)

Apparently the circulation decays with approximately the same slope for the three cases

analysed whereas we would expect the decay be enhanced moving the initial vortex

system toward the ground due to the higher turbulence intensity, being represented by

the following general expression:

(ݔ)߁ = − +ݔ(∗ߝ݂) ߁ → ܪݐݑ ≅ 3 ܾ (3.2)
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where f(ε*) is a function of the turbulence parameter introduced in [1.2.3]. This result is

in contradiction with the definition of ground effect region given by Sarpkaya [42] and

Proctor [38]. Based on the circulation data obtained, this region seems to extend up to

3b0 for the model studied.

The last topic to discuss is the core radius evolution with distance downstream

(x) for the three wing heights (Figure 45).

Figure 45 Vortex core radius against distance downstream for three wing initial height (Vortex reference system)

The core radius in all of the cases studied increases as normally does due to the

diffusive effect of the viscosity. In general it can be said that the core radius grows as a

function of the vortex Reynolds number as previously analysed by Fonti [20] and

Orlandi [34]. The Reynolds number can be explained as the ratio between the Inertia

force and the viscous force acting on the fluid elements. As a result at higher Reynolds

number the system tends to keep its condition of motion longer than at low Reynolds

numbers in which cases the viscous force is dominant and makes the system dissipating

its energy faster. In our cases (three wing heights) the initial vortex circulation slightly

changes and so the Reynolds number does. As consequence it is not possible to clearly

understand the core radius evolution against the Reynolds number variation, but

apparently something can be said about the ground effect on its behaviour. For the wing

height H=2.24Bs the vortex system is out of the ground effect region and it never enters
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in this region at least in our range of measurements (flow field investigated up to

x=7.48Bs). In this case the data points appear to be well fitted to a straight line and its

equation is reported in Figure 45. On the other hand for the other two heights the core

radius initially increases quickly then its rate of growing progressively decreases

tending to flatten in the x axis direction. This effect is thought to be due to the ground

proximity but more measurements are needed to confirm this preliminary interpretation.

Further Five-hole probe results (velocity components plots and pressure plots)

are discussed in Appendix A.
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4 Results Comparison

The present chapter is divided in two distinct sub-sections. The first one

introduces an inviscid model for vortex trajectory in ground proximity, the second

shows a series of results comparison with theoretical/empirical models and further

experimental data found in literature.

4.1 Vortex sheet approximation of the ground

After analysing the five-hole probe data presented in the previous chapter it was

intended to model the motion of a generic pair of vortices in ground proximity. Thus the

aim was to find a mathematical expression able to describe, with good accuracy, the

trajectory of any possible pair of vortices. Few models addressing this problem were

found in the literature and all of them appear to be particularly complex to implement,

see for example Atias & Weihs [3], although the results compared to the experimental

data appear to be accurate. The present study points to model the problem of motion of

vortex systems in the early stages of the ground effect (highest layer of the ground

effect region).

4.1.1 Model structure

The first stage in building the model was to make some assumptions over the

flow structure. A pair of wake vortices can be seen either as a three-dimensional steady

flow or as a two-dimensional unsteady flow (Puel [39]). In the present case the complex

three-dimensional flow is considered as unsteady two-dimensional in the transversal

plane (y-z) downstream the wing. Thus the time evolution of the flow over a section

orthogonal to the axis of the wake is considered. The wake is assumed to be symmetric

with respect the centreline of the wing and made up of two counter rotating vortices that

descend due to the mutual induced velocity. Each vortex is assumed to have two distinct

regions: inner region (core) and outer region. The inner region is the region where most

of the vorticity is concentrated and where the viscous effects are dominant. The outer

region, much larger than the first one, is almost irrotational and can be well
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approximated with an inviscid flow solution. As a result the flow in the outer region is

considered to behave as a point vortex.

As previously analysed, in ground effect region the wake interacts with the

ground and over the ground a cross-flow boundary layer creates and eventually

separates generating a region of opposite vorticity, a secondary vortex. The formation of

the boundary layer is connected to the generation of a layer of opposite vorticity lying

over the ground. The present approach is based on simulating the vorticity layer on the

ground with an infinite vortex sheet. The wake vortex flow is then built as follow. The

ground is replaced by an infinite vortex sheet of intensity γ(y) (which must be 

evaluated) and the real viscous descending vortices are replaced by infinite long straight

vortex filaments. Figure 46 shows a schematic representation of the flow.

Figure 46 Sketch of the inviscid flow structure correspondent to the real vortex flow

Each section orthogonal to the vortex filament presents the same flow and is identical to

the flow field induced by a point vortex (Lamb [51] - Anderson [1]). Thus we consider

the flow in the y-z plane. Refer to Figure 46 for the notation used in following

calculations and velocity decomposition.
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 The vortex sheet intensity γ(y) must verify the condition of zero velocity normal 

to the ground:

ீݓ = 0 (4.1)

This means that no fluid particles can cross the ground, which would be physically

impossible, and that the ground line is a streamline, which is compatible with an

inviscid model.

If the vortex sheet strength is known it is possible to evaluate the velocity

induced by the vortex sheet on the descending vortices and so calculate the trajectory of

the vortices from the following first order differential system:

൞

ܻ݀ீ

݀ܶ
= ൫ܻݒ ீ(ܶ), ீܼ(ܶ)൯

݀ ீܼ

݀ܶ
= ൫ܻݓ ீ(ܶ), ீܼ(ܶ)൯

→����������൜
ܻீ (0) = ܻ

ீܼ(0) = ܼ
(4.2)

v and w are functions of the vortex sheet strength so first of all the procedure to

calculate it must be explained.

The ground is subject to the vortices induced velocity and the vortex sheet self-

induced velocity: these are functions of the point considered on the ground. Since (4.1)

must be verified, the sum of the orthogonal components of the velocities induced by the

sheet and vortices must equal zero:

ீݓ = ௩௧ଵିீݓ + ௦௧ିݓ+௩௧ଶିீݓ ீ = 0 (4.3)

where the velocity component induced by the vortices on the ground and that one

induced by the vortex sheet on the ground itself are respectively:

௩௧ଵିீݓ =
Γ

ߨ4 ீܼ(ܶ)
sin 2 ଵߴ (4.4-a)

௩௧ଶିீݓ = −
Γ

ߨ4 ீܼ(ܶ)
sin 2 ଶߴ

(4.4-b)

and
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ீ_௦௧ݓ = න
(′ݕ)ߛ

−ݕ)ߨ2 (ᇱݕ

ஶ

ିஶ

′ݕ݀ (4.5)

canߴ be expressed as function of YG and ZG. Thus by means of (4.4-5) and expressing

ଵߴ and ଶߴ by:

ଵߴ = tanିଵቆ
−ݕ ܻீ (ܶ)

ீܼ(ܶ)
ቇ (4.6-a)

ଶߴ = tanିଵቆ
+ݕ ܻீ (ܶ)

ீܼ(ܶ)
ቇ

(4.6-b)

equation (4.3) becomes:

න
(′ݕ)ߛ

−ݕ) (′ݕ
′ݕ݀

ஶ

ିஶ

= −
Γ

2 ீܼ(ܶ)
[sin 2 −ଵߴ sin 2 [ଶߴ (4.7)

This is a Volterra integro-differential equation of the first kind (Tricomi [51]). Since

this equation depends on the vortex position which is time-dependent it is clear that the

vortex sheet intensity must be re-evaluated at each time step. Indeed the condition (4.1)

must be verified at each time. Once evaluated γ(y) the velocity induced by the entire 

vortex sheet on the right side descending vortex can be calculated as:

௦௧ିݒ ௩௧ଵ = − න
(ݕ)ߛ cosଶ ଵߴ

ߨ2 ீܼ(ܶ)
ݕ݀

ஶ

ିஶ

(4.8)

and

௦௧ିݓ ௩௧ଵ = − න
(ݕ)ߛ sin 2 ଵߴ

ߨ4 ீܼ(ܶ)
ݕ݀

ஶ

ିஶ

(4.9)

The component along z of the vortex sheet induced velocity is expected to be small

whereas the main contribute to the descending velocity is due to the opposite side

vortex. By hypothesis the two vortices behave in the outer region like point vortices so

the velocity induced by the left side vortex on the right side one and vice versa is given

by:



4 Results Comparison

77

ଶଵݓ = ଵଶݓ = ௗݓ = −
Γ

ߨ2 (ܾܶ)
= −

Γ

ீܻߨ4 (ܶ)
(4.10)

The differential system (4.2) becomes:

൞

ܻ݀ீ

݀ܶ
= ௦௧ିݒ ௩௧ଵ

݀ ீܼ

݀ܶ
= ௗݓ + ௦௧ିݓ ௩௧ଵ

(4.11)

The system (4.11) has to be integrated numerically and at each time step the vortex

sheet strength has to be re-calculated integrating equation (4.7).

4.1.2 Model validation

To validate this vortex sheet model the differential system was solved by a

dedicated Matlab program which uses the Euler’s method for solving the time

integration. All the integrals are evaluated using the trapezium rule.

First the model was solved for the wing height H=0.93Bs. In this case the vortex

system initial height is equal to 1.07Bs≈1.57b0 thus the vortices are about to enter the

ground effect region which according to Sarpkaya [42] begins at zG/b0=1.5. The model

was solved in non-dimensional form using as initial condition the following values:

൜
ܻீ (0) = 0.50

ீܼ(0) = 1.57
(4.12)

All the variables were non-dimensionalised according to Table 9 below.

Variable Symbol Value

Descent ZG ݖீ ܾ⁄

Lateral Displacement YG ݕீ ܾ⁄

Time T ݐܸ  ܾ⁄

Circulation Γ* ߁ ܸ ܾ⁄

Table 9 Non-dimensionalisation procedure
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In Table 9 V0 is the initial descending velocity of the vortex pair (see formula (1.36))

Figure 47 Predicted vortex trajectory versus experimental results

Although the model predicts the diverging and descending motion of the

vortices, it fails in predicting their exact position as shown in Figure 47, which shows

the right side vortex path. In particular except for the first two experimental points the

predicted trajectory (green line in the graph) is considerably far from the other

measurements. The model overstates the descent and understates the lateral

displacement.

Figure 48 shows the vortex sheet intensity profile versus the span-wise direction

(y). The graph exhibits two relatively high and sharp peaks exactly beneath the vortices

which are responsible for the vortices lateral displacement. In fact these peaks induce a

relatively strong velocity field just beneath the vortices recreating that region of flow
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acceleration which is characteristic of the real viscous flow, as analysed in Chapter 3.

The vortex sheet keeps the same shape as the solution marches in time but its peaks

move following the vortices in their lateral shifting. At each time iteration γ(y) is 

recalculated and its peaks (negative and positive) are always found under the vortices.

Figure 48 Vortex sheet intensity for H0=1.57b0 at T= 1.5

However as seen in Figure 47 the vortex sheet simulation does not agree with the

experimental results. Two reasons can be identified as responsible for the disagreement.

First the simulation does not take into account the boundary layer profile and

distribution of vorticity associated to it. Second and main reason, the model is made

using the superimposition principle starting from basic inviscid flow structures that are

the vortex filament and the vortex sheet. In this way we are assuming that the flow is

mainly dominated by linear effects. Evidently the real viscous flow is governed by

highly non linear phenomena. But this is not surprising since it is well known that the

equations of fluid dynamics, namely the Navier-Stokes equations, are highly non-linear.
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4.2 Sarpkaya’s model

Comparing the experimental results to the Sarpkaya’s model (section [1.2.3])

required some reasonable assumptions over the flow in the ABLWT working sections.

Those hypotheses, discussed below, are needed to solve the model equations and

overcome the absence of some key parameters.

1. The stratification parameters (N*) or Brunt–Väisälä frequency is a function of the

potential temperature (Θ) and is given by: 

ܰ ∗ = ඨ
݃

Θ

݀Θ

ݖீ݀
(4.13)

Since the scale model of the ABL is considered not to have a temperature profile

along z the partial derivative in (4.13) equals zero so does N*. As consequence the

equation for the vortex descent (formula (1.39)) becomes:

݀ଶ ௩ܼ

݀ܶଶ
+
ܥ

ܶ∗
݁ି


்∗
் = 0 (4.14)

This is a second order ordinary differential equation that can be easily solved and

this is the equation we refer to until the end of this section.

2. The calculation of the turbulence dissipation rate given by (1.37) requires the

knowledge of the turbulence fluctuations throughout the flow field. Since this data

was not available for the tunnel used in this study we assumed the 1/200th scale

model of the ABL to equal the correspondent model given by ESDU. Assuming the

production of turbulence kinetic energy (TKE) in the region near the ground equal

to the dissipation of energy via viscosity effect (Townsend [48]) the dissipation rate

(ε) can be expressed as function of the velocity gradient along z by (Counihan [9]): 

=ߝ
߬

ߩ

ݑ߲

ݖீ߲
=

ଷ∗ݑ

݇ீݖ
(4.15)

The skin friction velocity (u*) can be evaluated according to formulation (1.26)

where in this case V10 is the reference velocity at an height of 0.05 m, being the
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ABL geometrically scaled. Thus V10 becomes V0.05 and the roughness parameter z0

consequently scaled becomes z0s=z0/200. The reference speed was calculated

according to:

ܸ.ହ = ܸ.ଵ

݈݊
0.05
௦ݖ

݈݊
0.107
௦ݖ

= 5.86 ݉ ݏ/ (4.16)

where V0.107 is the measured velocity using a Pitot tube at 0.107 m. From this

reference velocity a skin friction velocity of 0.404 m/s was obtained. Using formula

(4.15) the dissipation rate of turbulence at the required heights was calculated.

3. The vortex system is considered to be initialised in a strong turbulent environment

characterised by a turbulence dissipation rate calculated at the wing height which is

approximately the initial height of the vortex system.

Based on these hypotheses the turbulence dissipation rate was calculated for

each wing height tested, and from this value the turbulence parameter (ε*), which 

appears in Sarpkaya’s model, was evaluated according to the formulation below:

∗ߝ =
ߝܾ) )

ଵ
ଷ

ܸ
=

ߨ2 ܾ(ܾߝ )
ଵ
ଷ

߁
(4.17)

Three values of the turbulence parameter were calculated and are reported in Table 10

together with the estimated values for ε and the values of circulation and vortex 

separation used to perform the calculations.

Height b0 (mm) Γ0 (m2/s) ε (m2/s3) ε* T* 

H=0.93Bs 78 0.30 1.54 0.81 0.94

H=1.50Bs 80 0.33 0.96 0.65 1.11

H=2.24Bs 78 0.37 0.64 0.49 1.37

Table 10 Parameters used for integrating the Sarpkaya's model

Table 10 also contains the vortex lifespan, defined in section [1.2.3]. This was

calculated based on knowledge of the turbulence parameter according to the empirical
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relations given by Sarpkaya. Since all the three turbulence parameter values verify the

condition ε* > 0.2535, the vortex lifespan (T*) was calculated by: 

ܶ∗ = ൬
0.7454

∗ߝ
൰

ଷ
ସ (4.18)

Before integrating equation (4.14) it is necessary to distinguish two different

cases: vortex in ground effect and vortex out of ground effect. In fact the differential

equation (4.14) changes depending on the case studied as explained in section [1.2.3].

4.2.1 Wake vortex in ground effect

In ground effect (zG/b0 ≤ 1.5) the circulation decay is assumed to be linear and is 

obtained integrating equation (1.42-a):

(ܶ)߁ = −൬߁
ܥ

ܶ∗
݁ି


்∗
்ಸ൰ܶ+ 1൨ (4.19)

Now if the time TG that is the time the wake vortex enters into the ground effect region

is our time zero then (4.19) becomes:

(ܶ)߁ = −൬߁
ܥ

ܶ∗
൰ܶ+ 1൨ (4.20)

which is the equation we consider for our application within this study. Indeed, the

wake vortex system is considered to be initialised (T = 0) at x = 0.18Bs down-stream the

wing where the vortices are well-shaped the roll-up is complete and the effect of the

secondary vortices is negligible. At this stage the wake vortex has a height of about

1.57b0 which allow us to say with good approximation it is in ground effect.

The equation for the descent of the vortex system is then given by:

݀ଶ ௩ܼ

݀ܶଶ
+
ܥ

ܶ∗
= 0 (4.21)

This equation has a close well known quadratic solution given by:

௩ܼ(ܶ) = −
ܥ

2ܶ∗
ܶଶ + ܶ (4.22)
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Figure 49 Vortex descent for wing height H=0.93Bs

Figure 49 shows the vortex descent predicted by the model the actual

experimental results and quadratic fitting performed using a built in Matlab function. In

the graph the descent is expressed as a function of the distance in the x direction but the

model gives a time-dependent solution. Thus a reference velocity was used to convert

the time-dependent solution given by the model into the space-dependent solution

needed to compare with the experiments. The equipment used to carry out the

experiments does not facilitate time-dependent data. The reference velocity used to

convert the data, namely circulation and descent, was the velocity measured by a Pitot

tube placed at the wing trailing edge height (uref = 6.63 m/s). This choice seemed

reasonable from a physical point of view. Unfortunately although the model predicts the

trend of the descent, which is evidently parabolic (red line in Figure 49), it fails in

predicting the vortex position. This partial failure might depend on the coefficient –

C/2T* in the descent equation (4.20) which depends on both, the constant C assumed to

be 0.45 (Sarpkaya [42]) and the vortex lifespan (T*). Thus the way the turbulence
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parameter was evaluated could be the real explanation of this partial failure in

conjunction with the value assigned to C.

Figure 50 Circulation trend for wing height H=0.93Bs

The circulation decay appears to be better described by the model (Figure 50).

The red line is a fitting to a straight line obtained using the method explained in

[2.3.1.2] while the green line is the model prediction fitted to the data. The initial

circulation that appears in the linear equation of the circulation was recalculated to fit

the experimental data. The two fittings are very close to each other demonstrating the

circulation is well described by the model.

4.2.2 Wake vortex out of ground effect

When the wake vortices are out of ground effect their vertical displacement is

described by equation (4.14) and their circulation decay by equation (1.40). The results

related to the wing height H=1.50Bs are presented in this section.
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Figure 51 Vortex descent at wing height H=1.50Bs

In this case the model was first tried with a reference velocity for time/space

conversion equal to the velocity measured by a Pitot-static tube at the same height as the

wing trailing edge (uref=7.6 m/s). An effort was then made to improve the fit both of the

descent and the circulation to the experimental data, and a velocity of 5.5 m/s was

finally chosen. It is interesting to see from Figure 51 and Figure 52 the improvement of

the fit to the experimental data using this new reference velocity (red line in both

graphs). However it should be noted that although the overall trend of the descent is

well represented by the model the circulation is not so good. In fact Figure 52 shows

that the actual trend of the circulation is linear and not exponential (the purple line that

fits the data to a straight line). The pale blue line instead fits the data to an exponential

function of the form predicted by the model.

In conclusion from analysing the data against the model presented here it is not

possible to determine its absolute validity for this kind of experiment. More data and
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better knowledge of the turbulence characteristics in the wind tunnel are required to

draw stronger conclusions. Also significant is the problem connected to the choice of

the reference speed which, as observed, strongly affects the comparison between space-

dependent evaluations of the flow and time-dependent model solution. This velocity

must be matched to the flow characteristics, representing a kind of characteristic

parameter for the flow. This aspect requires much deeper investigations.

Figure 52 Circulation decay at wing height H=1.50Bs. Comparison with model, fitting and experimental results
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4.3 Further comparisons

Barker [4] shows the trajectory of a vortex pair in proximity of the ground

within a water tank. The vortices were initialised with a separation of 150 mm and a

circulation of 0.075m2/s. It is clear that these flow conditions are very different from

those experienced in an ABLWT where turbulence is strong and inhomogeneous but

due to absence of more similar experiments freely available in the literature, it is

considered interesting to analyse the results obtained. In the same article the

experiments results are compared to the solution given by Lamb [29] for a pair of

straight line vortices interacting with an image pair (four vortex model) (Figure 53).

Referring to Figure 53 the trajectory of the top right vortex is obtained using the

superimposition principle and it is expressed by:

ீܼ =
ܻீ

ඨቀ
1
ܪ
ቁ
ଶ

+ 4൨ܻ ீ
ଶ− 1

(4.23)

where all the variables are in non-dimensional form. This equation is obtained from a

re-elaboration of the solution given by Lamb [29].

Figure 53 Sketch of the four point vortex system
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Figure 54 shows a comparison between the experimental data taken from [4], the

data collected in ABLWT within this study, the vortex sheet model presented in section

[4.1] and the four vortex model just discussed.

Figure 54 Comparison between the four vortex model, the experimental data obtained by Barker [4], the
experimental data obtained in the ABLWT and the vortex sheet model presented in section [4.1]

It is interesting to notice that the four vortex model solution coincides with the vortex

sheet solution given previously. This is actually expectable because the image pair in

the Lamb’s model is placed to nullify the velocity component along z (w) at the ground,

just like the vortex sheet, since no particles can physically cross the ground. So, the only

difference between the two models is the distribution of circulation placed to verify the

boundary condition. In one case (Lamb’s model) all the circulation is concentrated in a

pair of counter rotating vortices (image pair) in the other case (vortex sheet model) the
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circulation is distributed over the ground with a function of time. Since the problem is

governed by the Laplace equation and the boundary condition on the ground is the same

in both the models the results have to be the same as shown in Figure 54. Therefore,

these models are two different ways of solving the same problem. Of course they are

built in different ways and involve (as shown) different mathematics but at the end they

are just two different images of the same problem which admits just one unique

solution. However Figure 54 also shows there is a slight difference between the two

solutions, but this depends on the numerical approach used to solve the system (4.11).

In fact the reader has to bear in mind that the Lamb’s model was solved analytically

whereas the vortex sheet model was solved numerically and in the numerical solution

lies the error.

Furthermore both models fail in predicting the vortex trajectory for the two sets

of data here presented. And the two sets of data themselves show different trends which

might be due to the initial flow condition (grade of turbulence) which eventually affect

the space evolution of the flow. Also the difference might be due to a different

definition of vortex centre (which in our case was defined as the centroid of circulation).
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5 SPIV Results

The mean flow field was analysed in Chapter 3. The vortex time-average

position was tracked making it possible to establish the trajectory of one vortex (left

side) assuming symmetry with respect to the centreline. The vortex was seen to diverge

and decay quickly and eventually to lose coherence over the farther planes investigated.

In this chapter the real nature, fluctuating and intermittent, of the flow is analysed, using

the SPIV data collected. The present chapter is divided in two main sub-sections. The

first section will give a qualitative analysis of the fluctuating flow field against the time-

average flow field. In the last part, a quantitative study of the turbulent field will be

given, by showing the turbulence statistics throughout the complex vortex flow field

and analysing the energy dissipation within the vortices.

5.1 Fluctuating flow Vs average flow

Particle Image Velocimetry makes it possible to evaluate the instantaneous flow

field. For steady laminar flows, evaluations of the instantaneous flow field are all equal

to each other and equal to the time averaged flow. On the contrary turbulence means

that every evaluation of the flow field is different from another and as a consequence

different from the mean flow. Also due to the random nature of the phenomenon each

realization of the flow will eventually differ from the others. A statistical description of

the flow is then required. Assuming an experiment can be repeated many times, keeping

as much as possible identical, the initial conditions, ensemble averages of the flow

variables can be introduced depending on the position and time in the flow

development. However if the flow is statistically steady, which means that its statistical

quantities do not change with time, and is not possible to reproduce many times the

experiment, then the ensemble averages can be replaced with the time averages defined

by Formula (1.14) (Casciola [7]). If the evaluation time (Te) is much greater than the

correlation time of the flow, then we can consider different realizations of the flow field

within the same run of the experiment. Since the wake vortex flow can be assumed to be

a three-dimensional statistically steady flow, all the averages within the present chapter

were calculated using the time average, Formula (1.14)
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The stochastic and fluctuating nature of the flow is shown in Table 11 below.

Velocity Vector Plot Vorticity
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Table 11 Time evolution of the velocity field (left) and vorticity field (right) due to the turbulence fluctuations

In the first column of Table 11 instantaneous field evaluation number is found. It is

useful to remind that within this study 50 pairs of particle images were taken for each

run with a time interval of about 0.14 s between each pair, which means that 50

evaluations of the flow field were available for analysis. Looking at the data two aspects

of the instantaneous field have to be stressed. First, the vortices undergo to a continuous

deformation and motion with time. Eventually they lose coherence as shown by the

vorticity maps. In most of the plots instead of a single high peak of vorticity it is

possible to identify multiple peaks of vorticity for each side of the flow. Both vortices

appear to have a dynamic structure that breaks and reform in time due to the intense

y (mm)

-100 -50 0 50 100

z
(m

m
)

-50

0

50

y (mm)

z
(m

m
)

-100 -80 -60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20

40

60

80

-1000

-800

-600

-400

-200

0

200

400

600

800

y (mm)

-100 -50 0 50 100

z
(m

m
)

-50

0

50

y (mm)

z
(m

m
)

-100 -80 -60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20

40

60

80

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

y (mm)

-100 -50 0 50 100

z
(m

m
)

-50

0

50

y (mm)

z
(m

m
)

-100 -80 -60 -40 -20 0 20 40 60 80

-60

-40

-20

0

20

40

60

80

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400



5 SPIV Results

93

fluctuations. Second, the flow loses its symmetry and again this is explained by the

randomness of the turbulence fluctuations. The flow eventually becomes strongly

asymmetric and the vortices differ from each other in both dimension and intensity

(circulation). The total circulation behind the wing should be nominally zero if the flow

was exactly symmetric with respect to the centreline. This circulation fluctuates and

eventually can reach relatively high peaks (Figure 55) with respect the average value

(~0.02 m2/s) obtained for the mean flow.

Figure 55 Total circulation Vs time at wing height H=1.50Bs, over the plane located at x=0.18Bs

Finally, the last aspect to be stressed is that the elongated region of relatively

high mixed vorticity present in each vorticity plot of Table 11 beneath the vortices is

most likely due to the support bar used to fix the wing model in the wind tunnel

working section.

Since the flow is statistically steady the mean field does not change in time.

Thus averaging in time the instantaneous fields the time-average field is obtained

(Figure 56).
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Figure 56 3D velocity vector plot for wing height H=1.50Bs at x=0.18Bs

Figure 57 Vorticity map for wing height H=1.50Bs at x=0.18Bs

The velocity field was averaged over a period of about Te = 6.8 s with an estimated time

step (Δt) of 0.14 s. As expected the average flow field regains symmetry with respect

the centreline. The remnant asymmetry might be due to a slight misalignment of the

wing that was fixed manually within the wind tunnel, with respect to the freestream, or

might depend on an axial asymmetry in the flow itself at the inlet of the wind tunnel
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working section or a combination of these factors. A region of relatively low mixed

vorticity beneath the vortices corresponding to the support bar is still present in the

average flow, but it will soon dissipate.

5.2 Turbulence Statistics

This section illustrates the turbulent field from a quantitative point of view and

eventually the mechanism of energy dissipation the vortices undergo due to turbulence

action. After a discussion on the turbulence field in the last part of the present section

the Boussinesq hypothesis will be introduced and investigated against this particular

flow field. Most of the results presented here refer to the closest plane to wing

(x=0.18Bs). This is because at this stage the vortex system is well defined in terms of

circulation and concentrated in small a region, thus all the flow properties are well

defined and easily recognised. In contrast the plane located at x=3.74Bs shows the

vortex flow losing its coherence and appearing to be spread over a large region of space,

being difficult to be clearly recognised.

5.2.1 Turbulence intensity

The three components of the turbulence intensity namely Iu, Iv and Iw that

represent the intensity of the turbulent fluctuations with respect the mean flow velocity

were calculated by means of Formula (1.16). As we know the vortex system is

initialised in a highly turbulent ambient. At the wing height H=1.50Bs, which we refer

within this section, the ambient turbulence is about 13% and this contributes as

previously analysed to speed up the vortex decay and eventually breakdown. However

this turbulence level is subject to increase in the wake due to the high shear stresses

within the vortex flow. It also depends on the Reynolds number. Therefore the

turbulence field in the wake vortex within the ABL can be seen as made up of two

components: ambient turbulence and vortex self-induced turbulence. Obviously the

problem is highly non-linear so it is not possible practically to evaluate separately these

two components. This is just a simple method to model this complex problem justified

by the experimental observations.
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Turbulence Intensity

Table 12 Turbulence intensity: x component (top), y component (middle) and z component (bottom)

As is clear from Table 12 the turbulence field is not homogeneous in any of the

three directions (x, y and z). The three components of the turbulence intensity show

similar behavior: all the turbulence components reach their peaks in the vortex cores.
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Also these peaks are very intense: turbulence in the x direction (out-of-plane) reaches

80% whereas in the y and z directions respectively, 70% and 45%.In contrast, in the

outer regions of the vortex system the turbulence tends to the ambient turbulence. This

phenomenon can be analysed using the generic equation for the evolution of turbulent

kinetic energy (k) given by (Bernard [5]):

߲݇

ݐ߲
+ ఫഥݑ

߲݇

ݔ߲
= −

1
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(5.1)

The penultimate term expresses the production of turbulent kinetic energy (k). It

represents the amount of energy subtracted to the mean flow. Thus it is the source of the

turbulence. It depends on the Reynolds stresses and on the mean velocity gradients,

namely పഥݑ߲ ⁄ݔ߲ where పഥݑ is the ith mean velocity component. The core of a vortex is

characterised by a high mean velocity gradient and high viscous stresses as previously

analysed. Its outer region can be considered quasi-inviscid since the velocity gradients

are lower and the viscous effect less significant. At this point it is clear that the vortex

core acts as a source of turbulent kinetic energy, so the highest turbulence intensity is

found in this region. It is clear as well that in the outer region of the wake vortices the

turbulence intensity tends to the ambient turbulent since the velocity gradients relative

to the vortex flow decrease with distance from the vortex centres. It is then clear that the

trend of the turbulent kinetic energy in the flow field must be similar to that of the

turbulence intensities (Table 13).

Finally the energy subtracted from the mean flow in favour of the turbulence

fluctuations is dissipated by viscosity effects at the smallest scales of turbulence. The

energy dissipation is given by the last term in equation (5.1) that was already introduced

in section [1.2] with the name of turbulence dissipation rate (ε). Since the flow is 

statistically steady the statistical quantities do not change with time so they are fixed

over each slice of the wake. However as we get farther from the wing trailing edge we

find the wake less and less energetic until it eventually dissolves tending to the

upstream flow condition. As the mean flow loses energy due to conversion into heat the
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amount of energy transferred to the turbulent field (production of TKE) reduces as well.

As consequence the vortex self-induced turbulence (dependent on the vortex flow itself)

will tend to end. Thus the flow will tend to the upstream condition. This concept is well

explained by the TKE plot over the plane located at x=0.18Bs compared to that over the

plane located at x=3.74Bs (Table 13).

TKE
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Table 13 Turbulent kinetic energy over two planes

As evident the peak of TKE over the farther plane is almost half of that over the first

plane. Also it appears that the flow field (turbulent field) is not as coherent as the flow

field in the region closer to the wing and this is due to the quick dissipation the vortex
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system undergoes. Refer to Appendix B.1 for the turbulence intensity along the three

main directions over the second plane (x=3.74Bs).

5.2.2 Velocity correlations and correlation lengths

In section [1.2.1] the concept of velocity correlation two point one time was

introduced. By means of Formula (1.18) six main velocity correlations were calculated

and non-diemensionalised using the correspondent component of the Reynolds stress

tensor. Those are given below:

Correlation along y:

[ଶ]ߩ
ଵଵ

(ݐ,ᇱ࢞,࢞) =
+࢞)′ݑ(ݐ,࢞)′ݑ തതതതതതതതതതതതതതതതതതതതതതതത(ݐ,ଶݎ

்ܴଵଵ(ݐ,࢞)
(5.2-a)
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்ܴଶଶ(ݐ,࢞)
(5.2-b)
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்ܴଷଷ(ݐ,࢞)
(5.2-c)

Correlation along z:
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்ܴଵଵ(ݐ,࢞)
(5.3-a)
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்ܴଶଶ(ݐ,࢞)
(5.3-b)

[ଷ]ߩ
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்ܴଷଷ(ݐ,࢞)
(5.3-c)

r2 and r3 stand respectively for a displacement along y and along z with respect the

initial point x. Again the apex above the non-dimensional correlation symbol (ρ) states 

the direction in which the correlation is calculated. Those calculations were performed

within Matlab for each grid point identified by the coordinates x=(x,y,z). Thus for each

grid point the trend of the six evaluated correlations was available. In Table 14 a

comparison between the longitudinal correlations along y and along z, namely ρ[ଶ]
ଶଶ and

ρ[ଷ]
ଷଷ for two points are shown. The two points considered are respectively into the
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vortex core region of the left side vortex and the other just above the vortex in the outer

region of the vortex itself.

Inner Region Outer Region

ૉ
[

] 


ૉ
[

] 


Table 14 Longitudinal spatial velocity correlation for two points

All the correlations show, as expected, a globally decreasing trend with the

radial distance. However the velocity fluctuations tend to de-correlate faster in the inner

region of the vortex with respect the outer region. The de-correlation is much faster in

all the directions. This was confirmed analysing the correlations in other points of the

domain. Having knowledge of the velocity correlations point by point it was possible to

evaluate in each point of the domain the correlation lengths from Formula (1.21). The

six correlation lengths were plotted into maps as fractions of the vortex separation

assumed b0=80 mm. Figure 58 and Figure 59 show the longitudinal correlation lengths

all over the flow domain measured.
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Figure 58 Longitudinal correlation length along y

Figure 59 Longitudinal correlation length along z

In agreement with the trend of the velocity correlations along the two main

directions y and z both correlation lengths reach their minimum values in the region of

the wake vortices and of the wing support bar. This is especially evident in Figure 58

where the blue region recalls the shape of the mean vorticity distribution. Therefore

where the production and dissipation of turbulent kinetic energy is maximum, in the

vortex cores the turbulence tends to de-correlate faster. If the correlation lengths are
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measures of the largest scales of turbulent flows then it means the energy extracted from

the mean flow goes quickly at smaller scales in the inner region of the vortices respect

to the outer region of the flow where larger scales form. The lateral correlation length

which present many similarities with those analysed here, are available for comparison

in Appendix B.2.

5.2.3 Turbulent viscosity as a possible second order tensor

The last aspect it is intended to discuss regarding the turbulence field into the

wake vortices is the turbulent viscosity (νT). This concept was introduced by Boussinesq

for the first time in 1877. According to the hypothesis, all the dissipative effects of the

turbulence can be taken into account by a single scalar variable that he called turbulent

viscosity. This scalar property of the flow would add to the kinematic viscosity

characteristic of the fluid resulting in an effective viscosity that accounts for both the

dissipative effects due to the viscosity and the dissipative effects due to turbulence.

Since the energy dissipation in the mean flow due to turbulence depends on the

Reynolds stress tensor (RT
ij) the mathematical formulation of the hypothesis is given by

(Pope [37]):

ܣ = ܴߩ
் −

2

3
ߜ݇ߩ = ߥ்ߩ2− ܵ̅ (5.4)

where Sത୧୨is the mean rate of strain tensor given by:

ܵ̅ =
1

2
ቆ
పഥݑ߲

ݔ߲
+
ఫഥݑ߲

ݔ߲
ቇ (5.5)

and k is the turbulent kinetic energy per unit of mass. Expressing the turbulence

quantities, namely the Reynolds stresses as function of the mean rate of strain, the

equation of motion of the mean flow can be closed and solved. A number of

computational models for solving turbulent flows are based on this hypothesis, (k-ε, k-ω 

and so on...). However, even though the hypothesis models the turbulence as dissipative

agent and surely has a strong physical meaning, even in simple turbulent flows it fails.

In fact defining νT as a scalar parallelism between the deviatoric Reynolds stress tensor

(Aij) and the mean rate of strain tensor (Sത୧୨) is assumed, but unfortunately this is not the
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case in most of the flows. Within this study three out six independent components of the

rate of strain tensor were calculated namely Sതଶଶ, Sതଷଷ and Sതଶଷ, and compared to the

correspondent components of the deviatoric Reynolds stress tensor (Table 15). From a

qualitative point of view the plots should have strong resemblance and it should

theoretically be possible to superimpose component by component the plots being Aij

just scaled with respect Sത୧୨ by the turbulent viscosity νT.
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Table 15 Rate of strain (left) Vs deviatoric Reynolds stress (right)

As expected, no resemblances are between the tensors components. The best similarities

are obtained for the lateral components Sതଶଷ - A23. However the ratio component by

component of the two tensors should return the turbulent viscosity proposed by

Boussinesq, as follow:

ߥ் = −
ܣ

2ܵ̅
(5.6)

and this value should be equal along each component being by hypothesis a scalar.

Three plots for the turbulent viscosity were obtained but unfortunately they are all

different from each other. Due to the difficulties in reading those plots they are not

reported here. This led us to conclude that based on the data collected, for this kind of

problems the Boussinesq hypothesis in the version it was first presented by Boussinesq

is not valid. However the results suggest that the hypothesis might be reformulated

defining the turbulent viscosity as a second order tensor instead of a scalar value. In this

way the problem related to the parallelism between the deviatoric Reynolds stress tensor

and the mean rate of strain tensor is overcome. Mathematically this is expressed by:

ܴߩ
் −

2

3
ߜ݇ߩ = ߥ்ߩ2−

ೕ
ܵ̅ (5.7)

Verification of this hypothesis however requires more experimental data and a deeper

analysis of the Reynolds stress tensor, and goes beyond the aim of the present work.

In conclusion the SPIV results presented within this chapter made it possible to

clarify quantify and characterise the generation of turbulence in a system of wake

vortices within a scaled model of the ABL. Furthermore it can be preliminarily

concluded that if the turbulent viscosity has a real physical meaning in the description

of turbulence then for this class of problems it must be a tensor at least of the second

order. Finally it means that attempts in simulating the turbulent wake of an aircraft with

the classical turbulence viscosity models will eventually fail.
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Conclusions

Measurements of simulated aircraft wake vortices in ground proximity were

carried out within a 1/200th scale model of the atmospheric boundary layer in the

ABLWT at Cranfield University. A flat plate delta wing was used as a vortex generator

since this wing geometry is known to generate a well defined vortex configuration even

at low Reynolds numbers. It was designed to obtain a 1/200th scaled model of the

ATTAS VFW614 aircraft wake vortex system based on a well established method for

the prediction of the flow over delta wings, Smith [44]. Two different analyses were

carried out: (i) a study of the mean flow field and mean motion and decay of the vortex

wake, using a five-hole probe and (ii) a study of the fluctuating and intermittent nature

of the flow due to turbulence, using a SPIV system.

Concerning the mean flow, Smith [44] was shown to predict the vortex

separation with an acceptable error in the range 5-8%. It was not possible to conclude

anything about the vortex core radius and the circulation, which depends on the

upstream flow velocity, limited by the boundary layer profile. A typical vortex flow

structure was obtained; the vortex was characterised by a concentrated core of high

vorticity, high velocity gradients, where pressure and out-of plane velocity drop, which

induces a large region of recirculation. A secondary and opposite vorticity distribution

was recognised in the regions close to the wing trailing edge. This is probably what

remains of the small secondary vortex that naturally develops over delta wings.

Moreover the main vortex was shown to present strong asymmetry with respect to both

the y axis and the z axis: this was attributed to the interactions with the opposite side

vortex and the secondary vortex which lies just beneath it. Because of this, poor results

were obtained fitting the experimental data to three vortex models, Vatistas, Lamb-

Oseen and Burnham-Hallock (Gerz et al. [21]). The wing was then fixed at three

different heights, 0.93Bs, 1.50Bs and 2.24Bs and the left-side of the flow was

investigated over six vertical planes downstream the wing, assuming symmetry with

respect the wing centre-line. The wake vortex was shown to sink behind the wing. The

rate of descent was seen to decrease as the initial height of the vortex system approaches

the ground. While for H=1.50Bs and H=2.24Bs the descent is quasi-linear for H=0.93Bs
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it eventually becomes parabolic. At the same time the vortex wake was seen to

increasingly diverge. This is assumed to be due to a region of flow acceleration beneath

the vortices just above the ground. No vortex rebound was observed, probably due to

the rapid decay of the vortices. The circulation and vorticity quickly decay due to the

diffusive effects of viscosity and to turbulence. The decay was observed to be

approximately linear for all the wing heights tested with a relative high slope which

makes it decrease about 50 % or more in less than eight wing spans downstream.

Finally the rate of increase of the core radius was found to be approximately constant at

the beginning to reduce and eventually flatten over the x axis for the last planes

investigated.

An attempt to model the mean motion of a pair of wake vortices in ground

proximity was made by adopting a vortex sheet approximation of the ground. The

model replaces each real viscous vortex with a straight infinite vortex filament and the

ground with an infinite vortex sheet. The model has shown the descending and

diverging motions of the vortex system however it failed in returning the vortex

trajectory. The failure was explained by the high non-linearity present in the real

viscous flow. The results were compared to Sarpkaya [42] which in ground effect

(zG/b0<1.5) successfully predicts the circulation trend (linear) and the descent trend

(parabolic) but fails in returning the exact vertical position of the wake vortex. In

contrast out of ground effect, the descent predicted by the current model was

successfully fitted to the experimental results better than the circulation. However in

both cases a problem related to the definition of the reference velocity for time-space

conversion of the model results was identified. Establishing criteria for choosing this

parameter, which evidently is connected to a flow characteristic velocity, requires a

deeper analysis of the problem. Finally the experimental data was compared to the four

vortex model (a pair of straight line vortices interacting with an image pair). As

previously shown by Barker [4] this model is not able to return an acceptable

characterisation of the motion of the vortex wake in ground proximity.

Using SPIV data the instantaneous and fluctuating flow field was analysed. It

differs from the mean flow which is assumed to be statistically steady. In the

instantaneous field no coherent vortex structure was found but multiple peaks of
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vorticity were detected in the vicinity of each vortex. The vortices were found to have a

dynamic and intermittent structure that continuously breaks and reforms. The

production of turbulent kinetic energy was shown to reach its peak in the vortex core

and that is explained by the high velocity gradients in that region. Turbulence intensity

was shown to reach up to 80 % in the x direction in the inner region of the vortices and

this is eventually the reason for their enhanced decay. It was also observed that

turbulence de-correlates faster in the vortex cores meaning that in those regions the

turbulent kinetic energy goes faster to the smallest scales. Finally by analysing the

Reynolds stresses it was observed that, as expected, the turbulent viscosity hypothesis,

as introduced by Boussinesq (Pope [37]), is not verified for this kind of problem. This

led to propose a turbulent viscosity as a second order tensor. This hypothesis seems

reasonable but a complete validation requires a much deeper analysis of the turbulent

field and further measurements.

Future work

Even though it was not possible to compare the experimental data collected with

flight test results in terms of wake evolution the vortex decay obtained appears to be

much faster with respect to the wake of a generic commercial aircraft in landing or take

off. In fact in the present study the wing model was designed to generate a 1/200th

geometrically scaled model of the ATTAS aircraft (experimental test case). In this way

it was not possible to adequately scale the wake vortices circulation, because of the

constraint imposed by the realisation of the Atmospheric Boundary Layer. Even more

important, the turbulence parameter (ε*), which depends on the vortex spacing, the 

vortex circulation and the turbulence dissipation rate, was relatively high and this is the

key factor in wake vortex systems decay. Some of these problems could be overcome in

future work by using two different approaches.

1) Utilise a delta wing able to generate a geometrically scaled model of the wake

vortex system as done in the present work. But instead of fixing the model

within the wind tunnel, this should be launched, with an appropriate system,

within the wind tunnel working section at a certain speed so to take into account

the relative velocity between the wing and the ground and to obtain the right
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value for the circulation. Finally the boundary layer and its dissipation rate

should be scaled so to obtain the same turbulence parameter as the full scale

wake. In this way the wake model will decay in a similar manner as the real one.

2) Another possible and less expensive way to simulate the wake of a specific

aircraft is to design a wing model to obtain circulation and vortex spacing that

satisfy the equality between the turbulence parameter in the wind tunnel and in

the full scale model. In this way the wake will not be geometrically scaled with

respect the real one but the decay of the wake which is dominated by the

turbulence parameter should eventually be similar to the full scale one. Even in

this case it could be necessary to put in motion the model to have the required

value for the circulation.

In conclusion it appears clear that developing a system able to put in motion the

wing model used to generate the wake is a requirement for a realistic simulation of this

complex phenomenon.
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Appendix A - Further Five-Hole Probe Results

A.1 Velocity components
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Table 16 Out-of-plane velocity (u) for three wing heights over several planes downstream the wing

Table 16 shows the distribution of the velocity component along x (u) over six vertical

planes downstream the wing for three wing heights. It is clear from the plots how the vortex

structure deforms the Atmospheric Boundary Layer profile in the x direction. A region of low

speed correspondent to the core region of the vortex creates. As we move downstream along

the vortex stream-tube (looking at the vortex as a three-dimensional steady flow) the vortex

decays under the action of the shear stress due to the viscosity. So the whole flow tends to a

stable condition it has upstream the wing. Since upstream the flow presents a velocity profile

along z (the ABL) it will tend to the same condition. As the vortex decays the gap in velocity

between the vortex core and the outer flow decreases until under the action of the shear stress

in x direction the region of low velocity disappears leaving a region of highly stratified flow.

The main observable difference between the three wing heights is that the vortex lasts longer

at higher heights so does the region of low speed. In any case downstream x=3.74Bs no a clear

vortex structure is observable anymore.

Table 17 shows the velocity component in span-wise direction (v) for the three wing

heights tested. As analysed in Chapter 3 the flow shows acceleration in the region beneath the

vortices. A relatively high speed compared to the other regions is found between the vortex
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and the ground. Eventually this region is the engine of the vortex lateral displacement.

Interesting to notice is that the same asymmetry is present for all the heights tested, so is a

significant diverging phase in the vortex trajectory which violates the definition of ground

effect given by Sarpkaya and Proctor.
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Table 17 Velocity component along y (v) for three wing heights over six different planes
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A.2 Static pressure

Table 18 presents the static pressure coefficient map over six planes downstream the

wing for the three wing heights tested. Again the vortex well marked by a peak of low Cpstatic

in the near field of the wing, for instance see plane x=0.18Bs for all the heights, becomes

difficult to be recognized as the planes get further from the wing trailing edge, eventually

impossible. Although a clear region of low pressure, correspondent to the vortex core, quickly

disappears, the plots of Table 18 show an elongated region of high Cpstatic starting from the

ground and approximately linking to the descending vortex. This region, again, might be a

clear explanation of the vortex diverging in close ground effect and might be the primary

cause of the formation of a secondary vortex of opposite vorticity over the ground.
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Table 18 Static pressure coefficient for three wing heights over several vertical planes downstream the wing
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Appendix B - Further SPIV Results

B.1 Turbulence intensity: x=3.74Bs

Turbulence Intensity

Table 19 Turbulence intensitiy along x (top), along y (middle) and along z ( bottom)
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B.2 Lateral correlation lengths: x=0.18Bs

Lateral Correlation Lengths

y direction z direction

Table 20 Lateral correlation lengths for wing height H=1.50Bs over the plane located at x=0.18Bs
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B.3 Reynolds stresses: x=0.18Bs

Reynolds Stress Tensor

Longitudinal Components Lateral Components

Table 21 Reynolds stresses for wing height H=1.50Bs over the plane located at x=0.18Bs
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