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Abstract

Molecular Dynamics is a very powerful technique for the investigation of matter at nanoscopic

level. However, it’s application in many fields, such as the investigation of many relevant

processes of cell biology, is restricted by issues of computational cost. Therefore, in re-

cent years, a growing interest has been generated by the introduction of Coarse-Grained

(CG) models, that allow the investigation of bigger systemsfor longer timescales.

In this thesis, Molecular Dynamics was used in order to gain aquantitative under-

standing of mechanical and diffusive processes of DNA molecules in solution, and in

order to parametrise a Coarse Grained model of DNA capable ofa qualitative description

of the mechanical behaviour of the all-atom model at equilibrium.

A software package for the computation of Coarse-Grained interaction force-fields,

making use of the recently developed Multiscale Coarse-Grained Method (MSCG) by

Izvekov and Voth [1] was implemented.

We tested and validated the method by performing a one-point-per-molecule coarse

graining of TIP3P water. The resulting model was able to reproduce the fluid structure

(its radial distribution function) in a satisfactory and nearly quantitative way.

Finally, we applied the MSCG method to a more demanding problem, namely the

parametrisation of a 3-point-per-residue coarse-grainedmodel of double-stranded DNA.

As a consequence, the agreement of the obtained CG model withthe atomistic struc-

ture was still not quantitative. In particular, the helicalgeometry was qualitatively pre-

served and the Root-Mean-Square Displacement (RMSD) of thecoarse-grained model

was stable over the trajectory, but higher than its all-atomcounterpart.

We suggest several possible routes for future improvements. In particular, the explicit

modeling of torsional degrees of freedom of the DNA backbone, and the use of recently

introduced methods for the refinement of the MSCG estimationof force-field parameters,

and a more accurate treatment of Coulombic interactions.
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1
Introduction

Molecular dynamics has evolved over the last five decades as auseful tool for the inves-

tigation of matter at nanoscopic level but its applicability is severely conditioned by the

available computational power. In particular, the investigation of cell biology by means

of molecular simulations has encountered a major obstacle in comparatively large length

scale and timescale over which many important biochemical phenomena take place. A

typical example is the challenge offered by protein-folding processes and DNA hybridis-

ation, whose description by means of a purely “brute-force”approach would require the

simulation of millions of atoms for a time ranging from microseconds to seconds [6].

The timescale accessible to MD simulations keeps growing ata steady pace, from the

sub-nanosecond simulations of the 1980s, to the nanosecondbarrier in the early 1990s,

up to the over 100ns we can afford today. However, despite the enormous growth of the

available computational power offered by modern high-performance parallel computing

facilities, the timescale of most biological processes remains out of reach by a factor of

several order of magnitude, a gap that all-atom simulationswill not be able to bridge in

the foreseeable future.

Because of the above mentioned limitations, the last decadehas seen a growing interest

2



Introduction 3

in coarse-grained (CG) models of biomolecular systems. Theidea behind coarse-grained

models is that not all the molecular motions reproduced by standard MD are actually

relevant, and that a simplified model with lower resolution and fewer particles could be

able to simulate the system with sufficient accuracy to retain the necessary structural and

dynamic information. Such a system would be much cheaper to simulate, thus increasing

the accessible length- and timescale [7].

Another potentially attractive side of CG models is their capability of exploring the phase

space of the represented systems, a task that has been shown to be extremely problematic

for all-atom simulations of biomolecules [8, 9]. The removal of many degrees of freedom

makes the energy landscape smoother, a situation that facilitates the crossing of energy

barriers between metastable states [10]. On the other hand,this implies an alteration in

the system dynamics, which can be non-trivial to assess [11].

The coarse graining process takes place in two main steps: first, the topological map-

ping of all-atom models onto simplified CG models, where one single interaction site or

“superatom” corresponds to a group of atoms; secondly, the determination of physically

consistent force-field for the resulting system of CG “sites” [12, 13].

There exist several methods for the extraction of CG pairwise potentials from AA sys-

tems. The first systematic attempts at coarse graining were aimed at fluid systems, such

as water, leading to the development of the Boltzmann Inversion technique, which was

also fruitfully applied to polymers [13, 14]. However, for the parametrisation of more

complicated systems, the method that has probably receivedthe most attention is the

force-matching approach.

The first instance of this modeling strategy can be found in the work Ercolessi and Adams

[15], and was then reprised, adapted and expanded by Izvekovand Voth [1, 16]. Further

contributions were made by Noid,who also gave the method a more detailed theoretical

footing [17, 18]. The force-matching was the method chosen for our study.

The exploration of the potential of CG simulations has only started, and the possibility to

break the nanometer/nanosecond barrier opens interesting horizons and a set of possible

applications for many previously unfeasible systems: for example, Arkhipov and cowork-

ers have managed to produce a model of bacterial flagellum, whilst Freddolino produced

a CG model of a viral capside after simulating a whole virus with atomistic detail [19, 20].

The emphasis that the MSCG method has put on the physically consistency of the result-

ing CG force-fields is remarkable, because it addresses one of the major weaknesses of

coarse-graining methods so far, namely the fact that the simulated dynamics and timescale
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of the CG system can be different from the atomistic one. This happens mainly because

of the geometrical simplification and the smoothing of the energy landscape due to the

removal of many degrees of freedom. [11]. However, the number of developments pro-

posed in recent years seems to hint at a very promising futurefor the rapidly evolving

field of multiscale simulations.

1.1 Aims and objectives

The purpose of this thesis is twofold. First, we have used all-atom Molecular Dynam-

ics simulation in order to gather a quantitative understanding of molecular motions and

diffusive properties of DNA molecules. Secondly, we have implemented and tested the

Multiscale Coarse-Graining method in a flexible and easily extendable software package,

with the purpose of developing coarse-grained models of DNAthat can capture basic

mechanical properties and allow the simulation of bigger systems for longer timescales.

1.2 Thesis Structure

The thesis is organised as follows.

The first chapter gives an overview of Molecular Dynamics, the available methods for the

simulation of biomolecules, and current issues and challenges as well as recent develop-

ments. It also introduces the basic concepts behind coarse graining and the most widely

adopted methods for the parametrisation of CG force fields. Amore detailed section is

dedicated to the Multiscale Coarse Graining method [1], on which much of the work of

this thesis is based.

The second chapter gives a brief summary of the numerical methods used for the postpro-

cessing of our simulations, the related issues and the adopted solutions.

The chapters 4,5 and 6 present the results of all-atom studies of diffusive properties of

DNA molecules in solution. In particular, chapter three focusses on the properties of the

water model used for our simulations; chapter four uses the gathered information (es-

pecially about model water viscosity at different temperatures) in order to simulate and

quantify the diffusion of short DNA strands. Chapter five uses the parameters thus quan-

tified in order to test how much of the atomistic behaviour canbe captured in a simplified

implementation of diffusion in fluid-particle models.

Chapter 7 is dedicated to the mapping of atomistic structures onto reduced coarse-grained
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systems, with particular regard to the molecules studied inthis thesis.

Chapter 8 and 9, finally, present the results obtained applying the Multiscale Coarse-

Graining method to a test-case system of double-stranded DNA in solution. A discussion

of the adopted hypotheses and modeling strategies is given.The behaviour of the coarse-

system when freely fluctuating at equilibrium is compared with that of the fine-grain

all-atom simulations.

Chapter 10 provides a summary of the obtained results and a concise discussion of future

developments that can be beneficial for the application of the Multiscale Coarse-Graining

method to biomolecular systems.



Part II

Theory
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2
Theoretical Background

This chapter gives a summary of the theoretical aspects of atomistic and coarse-grained

molecular simulations. At the same time, is gives an overview of the extensive literature

search undertaken, with particular regard to the availablemethods for the calculation of

potentials of mean force and coarse-grained molecular interactions. Not all methods de-

scribed in the following have proven suitable of useful for our purposes, however, they

are presented for completeness and for their relevance in many other applications.

2.1 Principles of classical statistical mechanics

This section will concisely outline the general theoretical principles that underlie all meth-

ods illustrated in the later chapters of this thesis. Statistical mechanics is a branch of

Physics whose goal it to explain the properties of macroscopic (thermodynamic) systems

from the motion the nanoscopic particles of which they are made. Historically, it was

the results of a long effort to reduce thermodynamics to the laws of mechanics. Classi-

cal Molecular Dynamics is essentially a computational toolto investigate the statistical

mechanics of molecular systems [21], ideally by simulatingthe motion of their particles

7
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for a time sufficiently long to ensure stable estimates of observable physical properties.

An MD code integrates the system’s equations of motion and generates its “trajectory”

in time, i.e. the time evolution of all particles’ positionsand velocities (or momenta).

This information is then fed into statistical mechanical equations, in order to calculate

structural and thermodynamic properties.

2.1.1 Basic assumptions

Hamiltonian mechanics states that the dynamical properties of a system can be calculated

from the knowledge of its total energy, or “hamiltonian”,H , expressed as a function of

general coordinatesqi and their so-called “conjugate momenta”pi. Once the Hamiltonian

H(pi , qi) is known, the equations of motion for positions and momentacan be expressed

as:

∂pi

∂t
= −∂H

∂qi
(2.1)

∂qi

∂t
=
∂H
∂pi

(2.2)

In general we will deal with a system of N particles (mass points), which possesses 3N

degrees of freedom; for such a system, the indexi will go from 1 to 3N. The general

coordinatesqi will be the particles’ Cartesian coordinates and the conjugate momenta

pi will simply be the “usual” particles’ momenta. The total energy will be the sum of

potential energyU (which is only a function of the positions) and kinetic energy K (which

is only a function of the momenta):

H = K(pi) + U(qi). (2.3)

In principle, these equations contain all the information needed for the computation of

the time evolution of the system. However, thermodynamic systems contain an immense

number of atoms, and the direct calculation of all atomisticequations of motions will

never be possible.

It is useful at this point to introduce the idea ofensemble, an alternative representation

of a thermodynamic system first used by Gibbs [22]. Instead ofa mechanical system

evolving in time, Gibbs suggested to picture it as a collection of copies of itself, where

each copy is in a different microstate (i.e. a set of allowed positions and velocities).
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The probability with which the system visits its microstates determines the macroscopic

properties of the system. It is useful, at this point, to introduce the concept ofphase space.

The mechanical configurationx of the system of N particles in a three-dimensional space

is univocally determined once the 3N coordinates and 3N velocity components are known:

x = [pi , qi], i = 1 . . .3N (2.4)

Mathematically, we can either describe the system as a collection of N points in a three

dimensional space, or as a single point in a 3N-dimensional space. When a many-body

system is left free to evolve in time, we can visualising it asa point moving in its phase

space, “visiting” different states. Macroscopic bodies, made of many moles of atoms,

constantly change their nanoscopic configuration: atoms vibrate (solids) or diffuse (flu-

ids), and it’s not improper to say that an object is never, strictly speaking, in the same

configuration twice. Nevertheless, observable properties(density, temperature, viscos-

ity) are constant at the macroscale. Boltzmann’s great achievement was the proof that

the probability with which a system visits a microstate is proportional to the microstates

energy, through a term called the Boltzmann factor:

P(x) ∝ exp

(

−E(x)
T

)

. (2.5)

WhereE is the energy,T the absolute temperature, andkB the Boltzmann constant. The

absolute value of the probability would be:

P(x) =
exp(−E(x)/kBT)

∫

Γ
exp(−E(x)/kBT) dx

(2.6)

WhereΓ indicates the whole set of possible configurations. The denominator in Eq. 2.6

is called “partition function”, usually indicated asZ. The knowledge of the partition

function is usually not achievable in practice, but as it will be seen in later sections, there

are usually ways around this apparent difficulty [23].

For MD simulations, the three most important ensembles are the microcanonical

(NVE), canonical (NVT) and isothermal-isobaric (NpT):

• NVE: constant particle number (N), volume (V), and total energy (E); it’s the most

“natural” ensemble for MD.

• NVT: constant particle number (N), volume (V), and temperature (T), requires a
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thermostatting algorithm that simulated the contact with aheat reservoir at temper-

ature T.

• NpT: constant particle number (N), pressure (p), and temperature (T), requires a

thermostatting algorithm and a barostatting algorithm that controls the pressure.

2.1.2 Setup of a typical simulation

When a simulation is started from scratch, the time integrator needs a set of starting

velocities for the system’s particles. The most natural choice is to assign random velocities

sampled from a Maxwell-Boltzmann probability distribution for a given temperature,

p(viα) =

√

mi

2πkBT
· exp

(

−1
2

mi
v2

iα

kBT

)

, (2.7)

wherei identifies the i-th particle,mi is the corresponding mass,vi is the velocity,α =

x, y, z, kB is the Boltzmann constant andT the absolute temperature. However, a simpler

option is to initialise the system using a uniform distribution, and the velocity distribution

will quickly converge to a Maxwell-Boltzmann by effect of molecular collision [23]. The

initial configuration of the simulation box may contain artifacts such as strongly overlap-

ping atoms, which generate high repulsive forces and unphysically high atomistic veloc-

ities that can cause the time integrator to break down. This quickly leads to computation

errors. In order to get rid of the overlapping atoms, all MD codes include a minimization

algorithm, that works by minimising the potential energy ofthe system in the parame-

ter space defined by the particles position. Most commonly used algorithms are steepest

descent, conjugated gradient or Levenberg-Marquard [24–26]. The obtained minimised

configuration is a safer starting point for a simulation. Theminimised box must then be

allowed to fluctuate and (hopefully) find a good energy minimum. At the macroscale, this

happens spontaneously as the system has plenty of time so sample its configuration space

and even fluctuate enough to jump out of unwelcome basins of local energy minimum

[27–29]. At the nanosecond timescale, however, the system can easily remain trapped

into metastable states and not be able to leave them spontaneously during the simulated

time.
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2.1.3 Calculation of mechanical and thermodynamic quantities

The simulation of matter at atomistic level gives us access to the “observation” of a length

and timescale which is out of reach for experimental methods. At his level of detail, all

properties of a system in conditions of thermodynamic equilibrium happen to be con-

tinuously fluctuating; this is also true for macroscopic bodies, but in the case of exper-

imental observation, the fluctuations are extremely small in comparison to the average

value. Therefore, when considering any property, we have todistinguish between its in-

stant value and its ensemble average over a trajectory, which is the quantity truly related

to what is observable in the macroscopic world. It must be further noted that the instant

value is properly defined for energetic and mechanical properties, such as potential and

kinetic energy, and ill-defined forthermodynamicproperties, such as temperature and

pressure, which are intrinsically statistical in nature, and denote properties of the system

in terms of ensemble averages [23, 30]. The energy equipartition theorem allows us to

relate the macroscopic absolute temperature with the nanoscopic average kinetic energy.

From the generalised equipartition theorem for Hamiltonian systems, which for practical

purposes is valid in any ensemble,

〈pk · ∂H/∂pk〉 = kBT (2.8)

〈qk · ∂H/∂qk〉 = kBT, (2.9)

we can derive, for a system of 3N point particles of massmi and momentumpi, the so

called instant “kinetic temperature”, defined as:

T =
1

3NkB

N∑

i=1

|pi |2/mi , (2.10)

which will fluctuate in time but whose average will be the system temperature. The cal-

culation of pressure is slightly more troublesome. The mostwidely used method makes

use of Clausius virial theorem, which follows from 2.9, and yields, for a system of N

particles,

〈
N∑

i=1

r i · fTOT
i 〉 = −1

3
NkBT = −PV, (2.11)
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wherefTOT
i is the total force on the i-th particle. If we consider only internal forces, we

can define what is called the “internal virial”W,

W =

N∑

i=1

r i · f INT
i =

N∑

i=1

r i · ∇r i V(r i), (2.12)

which can be evaluated from the molecular trajectory, and leads to the relation

PV = NkBT + 〈W〉, (2.13)

from which the instantaneous pressure of the system can be calculated. Again, the instan-

taneous value has no macroscopic significance and can fluctuate heavily (typically even

by hundreds of atmospheres during a simulation), and the thermodynamic pressure can

only be recovered as an ensemble average. In recent years, some authors have disputed the

soundness of this approach, proposing additional corrections; however, such arguments

have in turn been disputed [31]. A physically sound MD code must ensure that statistical

ensemble is correctly “sampled”, or, in other words, that the microstates are generated

with the correct probability. This is particularly important when simulating more compli-

cated ensembles, such as the canonical and the isothermal-isobaric. The development of

sound methods to simulate the effect of a thermostat and barostat on a MD simulation has

been (and still is) a very active field of research in the last 30 years, as it will be discussed

in later sections.

2.2 Brief introduction to Classical Molecular Dynamics

“Classical” MD relies on the hypotheses that the correct behaviour of the system, which

is described by quantum mechanics, can be well approximatedby the far simpler Newto-

nian mechanics. Of course the accuracy of the approximationgets worse as the quantum

effects become relevant. A criterion commonly used to evaluatethe applicability of the

newtonian approach is given by thethermal DeBroglie wavelength, Λ, of the particles

involved [21]:

Λ =

√

2π~2

mkBT
(2.14)

where

~ = Planck constant
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kB = Boltzmann constant

T = temperature

m=mass of the particle.

The applicability of the newtonian approximation is considered legitimate whenΛ ≪ a,

wherea is the mean nearest neighbour distance of the system. The approximation is rather

poor for very light elements like H or He: their small massmcauses the wavelength to be

larger.

The basic elements of a molecular dynamics code are:

A physical model of the system: this is contained in the function and the parameters that

define the interaction potential, as well as in the boundary conditions used for the

simulation box. The function and the parameters are usuallyreferred to as “force

field”.

A time integration algorithm that, given the positions, velocities and forces, at the cur-

rent timestep, calculates the new values at the following timestep.

A statistical ensemblewhere the thermodynamic properties of the system are calculated.

An example is the canonical ensemble NVE, where the conserved quantities are

number of particles (N), Volume (V) and Energy (E).

They will be discussed separately in the following sections.

2.2.1 Interaction potentials and force calculation

Modelling the physics of a set of particles is essentially modelling their interactions. The

approach commonly used is to define apotential, a functionU(r1, . . . , rn) that gives the

potential energy of the system depending on the relative position of the atoms. The cor-

responding force on the i-th particle is computed as

f i = ∇r i U(r1, . . . , rn), (2.15)

which is the gradient of the potential with respect to the spatial position of the particle.

In biomolecular system and fluid mixtures, a very convenienthypothesis is that the inter-

actions are pairwise additive, which allows the total potential on a particle to be written a
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sum of (comparatively simple to compute) pairwise interactions

Ui =

n∑

i

n∑

j>i

Ui j (|r i − r j |) (2.16)

Where the conditionj > i provides that every pair is not counted twice. (This approach

fails when three-body forces become relevant, as in the caseof metals or semiconductors,

were entirely different potentials are required [21, 32]). Historically speaking, the first

potential to be implemented was the Lennard-Jones. A Lennard Jones potential mimics

the interactions due to Van der Waals forces between atoms. This model was able to

reproduce quantitatively the properties of gaseous Argon.Its functional form is:

ULJ = 4ǫ
[(σ

r

)12
−

(σ

r

)6]
(2.17)

The term∼ r−12 models the repulsion at short distances, while the term∼ r−6 is the “at-

tractive tail” at longer distances. The parametersǫ andσ can be fitted on the behaviour of

the substance under examination. This potential reproduces a Van der Waals-like interac-

tion (weak attractive forces caused by temporary dipole moments in the electronic cloud

of the atoms). It’s suitable for noble gasses, but not for structurally complex systems,

which require more sophisticate formulations.

When the system contains several different atom types, pairwise interactions should in

principle be parametrised for every different pair. This would require tens of different

LJ potentials. Instead, the route commonly followed is to determine the interaction of a

certain atom type with itself, and then use extrapolations (“mixing rules”) to guess the

interaction potential for heteroatomic pairs. Several mixing rules have been investigated

by White and Al-Matar [33, 34]. The force decreases quickly with distance. Therefore,

it is reasonable to assume that only neighbouring particlesexert a remarkable effect. It

is then possible to introduce a “cut-off distance”, over which the force is zero. It can be

done keeping a list of every particle’s “neighbours”, and updating it every few timesteps

[35]. This saves a great amount of computational resources,approximately halving the

time required for the calculation of pairwise interactions[23].

Anyway, the drawback is that when a particle crosses the cutoff radius, the energy makes a

little jump (because of the small effect of the attractive tail) that can jeopardize the energy

conservation. The problem can be solved using a potential that goes smoothly to 0 at the
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cutoff distanceRc, for example biasing the (2.17), as illustrated in fig. 2.1:

U(r) =






ULJ − ULJ(Rc) if r < Rc

0 if r ≥ Rc

, (2.18)

or using a “switching function” that smoothly takes the potential to 0 at the cutoff, as in

the case of the CHARMM potential as implemented in the LAMMPSMD code [25, 36].

Once the potential is chosen, the force exerted on particlei by particle j is calculated as:

r r
Vc

Rc

V V

Rc

Figure 2.1: Biased Lennard-Jones potential

f i j = −
∂Ui j

∂r i j
, (2.19)

Creating empirical potentials from scratch is an enormous task. A force field for biomolec-

ular simulations of proteins, lipids and nucleic acids mustcontain a collection of param-

eters that describe the pairwise interactions of all atoms types, as well as the mechani-

cal properties of all the bonds, angles, and dihedral torsional angles that can be found

in the complex network of covalent bonds biomolecules are made of. Currently two

potentials are the most widely used and validated for nucleic acids: AMBER [37] and

CHARMM [36], named after the simulation packages where theywere first implemented.

The CHARMM potential has been used for all the atomistic simulations described in this

thesis.
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2.2.2 Integration of the equations of motion

A time integrator is a numerical scheme that integrates the equations of motions, propa-

gating the trajectory of the system in the time. The most commonly used time integrator

in MD is still the Verlet algorithm, which is fairly simple toimplement [35]. Its basic

form can be easily derived from a forward and backward Taylorexpansion of the position

vector:

r (t + ∆t) = r (t) + ∆t · v(t) +
∆t2

2
· a(t) +

∆t3

6
· b(t) +O(∆t)4 (2.20)

r (t − ∆t) = r (t) − ∆t · v(t) +
∆t2

2
· a(t) − ∆t3

6
· b(t) +O(∆t)4 (2.21)

Summing the two equations, the odd derivatives cancel out; rearranging, we get

r (t + ∆t) = 2r (t) − r (t − ∆t) +
∆t2

2
· a(t) +O(∆t)4 (2.22)

The acceleration can be calculated easily as

a =
f
m

It is remarkable that this comparatively cheap scheme achieves an error∼ O(∆t)4. The

drawback is that velocities are not calculated explicitly.They are not needed for the

calculation of the trajectory, but they are necessary to calculate the kinetic energyK. The

conservation of the total energyE = K+V is an important validity check for a simulation.

Extrapolating the velocity from the positions at two different timesteps, for example as a

central difference

v(t) =
r (t + ∆t) − r (t − ∆t)

2∆t
(2.23)

would introduce an error∼ O(∆t)2. For this reason, the integrator usually implemented

(i.e. in LAMMPS) is the so-called Velocity Verlet Algorithm[38]; position and velocities
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for every particle are calculated as follows:

r (t + ∆t) = r (t) − ∆t · v(t) +
∆t2

2
· a(t) (2.24)

v(t +
∆t
2

) = v(t) +
∆t
2
· a(t) (2.25)

a(t + ∆t) = − 1
m
∇v(r (t + ∆t)) (2.26)

v(t + ∆t) = v(t +
∆t
2

) +
∆t
2
· a(t + ∆t) (2.27)

Another algorithm that can handle velocities is theleap-frogscheme, here omitted for

brevity and described for example in [23, 39]. Its accuracy is the same as the Velocity

Verlet and should hence produce the same trajectories.

2.2.3 Energy conservation issues: timestep length and constraining

of fast degrees of freedom

As mentioned in earlier paragraphs, the generation of a MD trajectory is performed by

a “time marching” numerical integration of newtonian equations of motion in time. The

physical goodness of the chosen simulation parameters, in terms of energy conservation,

is usually assessed by monitoring the behaviour of the system total energy over time,

during a (suitably long) simulation in the NVE ensemble. We recall here that an NVE

ensemble mimics an adiabatic system where no mass exchange take place. In absence

of dissipative effects, the time evolution of the system is completely determined by a

conservative force field generated by the chose pairwise interaction potential. Therefore

the particles of the system continuously exchange energy (which constantly but the total

energy must be a conserved quantity, with the exception of small fluctuations due to nu-

merical and round-off errors [23, 24]. The choice of the timestep is crucial in order to

ensure correct energy conservation. Empirically, a good conservation is achieved when

the timestep is about 1/10 of the shortest oscillation period found in the system. For

biomolecules in aqueous environment, the fastest motion isthe stretching of the covalent

bonds involving H atoms, which vibrate very fast because of Hsmall mass. The oscilla-

tion period is about 10 fs [40], which would limit the timestep to approx. 1fs. However,

for practical purposes, a shorter timestep is a big inconvenience, because it implies that

the simulation of the same physical amount of time requires ahigher number of steps, and

therefore a higher computational cost. Therefore it has become common praxis to apply
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holonomic constrains the the bonds involving hydrogens, making them rigid. The first

numerical algorithm to successfully implement rigid bondswas SHAKE [41], usually in

combination with a Verlet integration scheme, which is alsothe approach used in all the

simulations mentioned in this thesis. After the constraining bonds and angles involving

hydrogens, the timestep can be increased up to approx. 2fs, still maintaining good energy

conservation. Some authors have also suggested the possibility to further increase the

timestep by artificially increasing the mass of H atoms, but this approach has not been

widely adopted [40].

2.2.4 Avoiding surface effects: periodic boundary conditions

The well-known high computational cost of MD simulations limits the size of tractable

systems to the nanometric scale [23, 24]. For such small systems, the surface effects

would be enormous. In order to investigate bulk phenomena and avoid surface effects,

it would be necessary to build systems too large to be computationally affordable. This

problem is circumvented by using Periodic Boundary Conditions (PBC). The simulation

box is surrounded in every direction (or some specific direction) by an infinite array of its

mirror images, as depicted in fig. 2.2.4.

LRc

Figure 2.2: Periodic images of a solvated biomolecule (left) and anillustration of the Minimum
Image Criterion (right).

A particle that leaves the box is replaced automatically by its image entering from the

opposite side. In other words, upon crossing of a boundary, the coordinates of the particle
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are modified by adding or subtracting the linear size of the box along the axis perpendic-

ular to the crossed boundary surface. When computing forceson thei-th particle, care

must be taken to include the interactions coming from particles that belong to the periodic

images [42]. This would apparently need to a infinite increase of the involved particles,

and hence of the complexity. It is easy to demonstrate that ifthe smallest dimension of

the simulation box is> 2Rc, every particle will interactat mostwith one periodic im-

age [24]. This rule is called “Minimum Image Criterion” and ensures that the impact of

PBC on system complexity is limited. Usually, the periodicity is enforced along 2 or 3

dimensions, depending on the type on conditions one wants tosimulate.

2.2.5 Treatment of long-range electrostatics

The definition of “long range” in MD refer to those interactions that decay with distance

as 1/rd−1, whered is the number of dimensions of the system [24]. The comparatively

slow decay rate implies that, unlike the case of Lennard-Jones interactions, the use of

truncated potentials is not adequate, because each chargedparticle is actually interacting

with many of its periodic images. The calculation of the electrostatic forces acting on the

particles requires the solution of the Poisson equation:

∇2E(r ) = −ρ(r )
ǫ0

, (2.28)

whereE(r ) is the electric field,ρ(r ) is the charge density andǫ0 is the dielectric constant

of the void. For a simulation box with periodic boundary conditions, however, the prob-

lem is not simple, because all mirror images generate their own contribution to the total

field. The resulting field is that generated by a periodic 3D lattice having the box as el-

ementary cell. However, the theoretical tools for the calculation of the total electrostatic

field were already available thanks to the work of Ewald and Madelung [43, 44]. Their

methods were adapted to MD simulations under the name of “Ewald summation”, and

subsequently modified for better numerical efficiency, under the name of Particle-Mesh

Ewald (PME) [45], and Particle-Particle Particle-Mesh (PPPM) [46]. The success of the

Ewald summation and related methods was crucial in allowingthe simulation of highly

charged molecules, such as nucleic acids, where the contribution of electrostatic interac-

tions is relevant.
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2.2.6 Simulation of different ensembles: thermostatting and barostat-

ting

The most “natural” ensemble for a MD simulation is the NVE, with constant number of

particles, constant volume and constant energy, This is equivalent to an adiabatic system

where no mass exchange takes place. In this ensemble, however, the systems samples an

isoenergetic surface of its phase space, where all states have the same energy and there-

fore, according to the Boltzmann equation, the same probability [30]. This is however, a

rather irrealistic situation in comparison to the conditions under which most macroscopic

experiments are performed (typically, at constant temperature and pressure). The correct

simulation of ensembles different from the microcanonical is non trivial, and required a

considerable amount of research effort to be tackled with success. The first temperature

control, and a rather crude one, was a velocity rescaling where every particle’s velocity

was modified in order to achieve an average which was consistent with Eq. 2.10. Ander-

sen was the first to develop a method of pressure control wherethe velocity corrections

were performed sampling random values from a prescribed distribution [47], a route also

followed by Berendsen some years later in order to control temperature [48]. All these

methods, however, suffered from a major drawback: while they were very efficient in

steering the system to the desired levels of temperature andpressure, they altered the

original Newtonian (or Hamiltonian) equations of motion, producing an unknown bias in

the statistical ensemble. Therefore, the only statistically sound use of these thermostats

and barostats was to drive the system to the desired state, and then switch them off and run

a NVE simulation [21]. The first solution to this problem camewith an entirely different

and deterministic approach, developed by Nose and then perfected by Hoover [49, 50].

The main advantage of their method, suitable for NVT and NpT ensemble simulations,

is the correct reproduction of the system partition function, which makes them suitable

for simulations that aim at the calculation of thermodynamic properties for which correct

phase space sampling in relevant.

The Nose-Hoover thermostat

The original work by Nose [49] was highly praised by Hoover, who was probably the first

to understand its potential, and went on the develop and simplify the original thermostat-

ted equations of motion [51]. Nose, in turn, credited Andersen ([47]) with the idea of
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controlling the thermodynamic state of the system by using adeterministicfeedback con-

trol, generated by a modified Hamiltonian. Two additional artificial conjugated degrees

of freedom (s, ps) are added to the system. The variables acts as (in Nose’s words) “an

external system for the physical system of N particles”, whose energy is related to the

conjugated momentumps, and a particular choice of the potential energy function for s,

Φ(s) = NdkBT ln s. The extended Hamiltonian has the form:

HNose=

[

p2
s

2M

]

+

N∑

i=1

[

p2

2ms2

]

+ Φ(q) + NdkBT ln s (2.29)

where the terms (p2
s/2M) and (NdkBT ln s) can be interpreted as the kinetic and potential

energy associated to the additional external system. The parameterM has the dimensions

of energy· (time)2, and behaves as a “mass” for the motion ofs,Φ is the potential energy,

kB is the Boltzmann constant,T is the absolute temperature andNd the number of degrees

of freedom of the physical system. The resulting equations of motion are:

∂q
∂t
=

p
ms2

(2.30)

∂p
∂t
= F(q) (2.31)

∂s
∂t
=

ps

M
(2.32)

∂ps

∂t
=

∑
[

p2

ms3
− kBT

s

]

. (2.33)

Nose intepreteds as a “time scaling factor”. However, in this case it’s physical meaning

becomes rather elusive, as pointed out by Hoover ([50]). Nose was able prove that set

of equations given above can correctly sample the Canonicalensemble NVT, assuming

that the system is ergodic and the times averages keep into account the time rescaling
1[49]. The crucial part of his approach was the choice of the added potential termΦ(s) =

NdkBT ln s. Hoover’s contribution was the realisation thats is actually decoupled from

the dynamics, and it is therefore possible to derive a set of equations of motion equivalent

to Nose’s, where the “obscure” time scaling factors does not appear [52]. Hoover’s

version of the thermostatted equations of motion, which is clearer and had a pivotal role

1A system is called “ergodic” when it can sample all the microstates of its phase space. Since this
is usually not feasible, what is sought for practical purposes is the “quasi ergodicity”, where a system’s
trajectory will be reasonably close to any given microstate. See for example [30] for a thorough discussion
of ergodicity and its implications for statistical mechanics.
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in popularising the method, is the following:

m
∂p
∂t
= F(q) − ζp (2.34)

∂ζ

∂t
=

(

K
K0
− 1

)

/τ2 (2.35)

K0 = Nd · kBT (2.36)

ζ = ps/(Nd · kBTτ2) (2.37)

M = Nd · kBTτ2 (2.38)

whereM is the “mass” of the external system,K andK0 are the current and target kinetic

energy, andτ is a relaxation time (a bigger relaxation time decreases thetime derivative

of the friction coefficient, i.e. the system will be steered to the target temperature more

slowly 2). The time derivative∂ζ/∂t of the friction coefficientζ, driven by the dicrepancy

between the current and target values of the system’s kinetic energy, implements a nega-

tive feedback that stabilises the temperature. A decade later, Hoover and Dettmann [53]

discovered that such equations could also be derived from the Hamiltonian:

HDettmann= s · HNose (2.39)

= s ·
[

p2
s

2M

]

+ s ·
N∑

i=1

[

p2

2ms2

]

+ s · Φ(q) + s · NdkBT ln s. (2.40)

Over the years, the Nose-Hoover equations were generalisedfor systems of changing size

and shape in the isothermal-isobaric NpT ensemble, [51, 54]and also for system that

include holonomic constraints, such as rigid bonds [52]. LAMMPS’ thermostatting and

barostatting algorithms incorporate such developments.

2.2.7 Coarse-Graining: principles and methods

The purpose of this section is to illustrate the general principles and ideas behind the con-

struction of coarse-grained models. The process of coarse-graining has the goal of reduc-

ing the level of detail at which the system is simulated, but retaining a correct description

of some properties of interest. In molecular simulations, this is usually performed by

representing whole groups of atoms with a single point mass,or “site”, equipped with

2For biomolecular simulations, we empirically found that, for effective thermostatting, a sound value of
τ is usually in the order of 100 timesteps.
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its own interaction potential. The description of this “global” interaction potential is the

main difficulty of the modelling process. This section illustrated some of the ideas and

methods which have been used in this area. Eventually, a moredetailed treatment is re-

served to the Multiscale Coarse-Graining method (MSCG), which has been adopted and

implemented in this thesis.

Helmholtz free energy

The concept of free energy has had a central importance in thetheoretical fundamentals

of coarse-graining (as well as in other fields, not treated here). For a purely mechanical

system, the external workL done by the system is given only by the opposite of the

corresponding change of internal energy∆U,

L = −∆U

In the case of thermodynamic systems, the relation must takeinto account the heat ex-

change, and we get, according to the first law of thermodynamics

L = −∆U + Q, (2.41)

If we consider now a transformation between two states 1 and 2, for a system that ex-

changes heat with a source at constant temperature T, we knowfrom the second law of

thermodynamics that the corresponding change of entropy can be calculated as

∫ 2

1

δQ
T
≤ S(1)− S(2), (2.42)

where the equality holds in case of reversible process. Being the temperature constant,

Q =
∫ B

A
δQ ≤ T[S(2)− S(1)], (2.43)

Combining this expression with equation 2.41 and defining

∆U = U(2)− U(1)

we get

L ≤ U(1)− U(2)+ T[S(2)− S(1)] or L ≤ −∆U + T∆S (2.44)
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This inequality sets theupper boundaryto the work that can be extracted from the trans-

formation 1-2. We can define a quantity

A = U − TS, (2.45)

which is calledHelmholtz free energy, and see that, at constant temperature

L ≤ A(1)− A(2) = −∆A, (2.46)

Which means that in the case of an isothermal reversible transformation, the work equals

the opposite of the change of the internal energy. If the process is irreversible,the free

energy change is the upper limit for the exchanged work. This extremely general result of

classical thermodynamics has been exploited for the modelling of molecular systems. In

particular, the free energy difference between states can be used (although with some lim-

itations) to estimate thepotential energy changeassociated with a conformational change

of the system, as explained in the next section.

Potential of Mean Force

The Potential of Mean Force (PMF) is a concept first introduced by Kirkwood [55]. The

idea is to extract the dependency of the distribution function from a certain coordinate by

integrating the probability distribution over all remaining coordinates. From this relation,

properties that depend on the configuration integral can be extracted, as a function of the

same generalized coordinate.

As seen in the previous chapter, the Helmholtz free energy change is associated to the re-

versible work done on the system during a transformation between two equilibrium states.

A popular approach is to use it in order to estimate the potential energy associated with

a conformational change. Early examples of this kind of study can be found for example

in the work by Norberg [56–59]. It must noted however, that the Helmholtz energy is a

freeenergy and not a potential energy, as it embeds entropic effects and interactions with

the environment (for instance with the solvent). The approximation, in principle, is only

correct when the entropic contribution is negligible. For instance, when coarse graining a

bead-rod polymer model, the free energy typically works well for estimating the effective

bond stretching, but less well for torsional or bending degrees of freedom; however, many

authors have pursued this route [6, 60], for example fitting aLennard-Jones-like potential
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on the free energy profile, as for example in [19].

Harmonic approximation for bonded interaction

This alternative route to the parametrization of bonded interactions from all-atom simula-

tions has been exploited recently by Arkhipov and coworkers, for a very coarse model of

a bacterial flagellum [19]. First, the position of the CG beads is mapped on the all-atom

model. Secondly, the assumption is made that CG bonds behaveas independent harmonic

oscillators. The basic example is the monodimensional oscillator, whose potential energy

can be written as

U(x) =
1
2

Kx(x− x0)
2, (2.47)

and the two parameters,Kx andx0 can be estimated from atomistic simulations as

Kx =
RMS D(x)

kBT
,

and

x0 = 〈x〉,

The first relation, the estimation of average lengthx0 by means of〈x〉, is trivial. The

derivation of the second comes from the theory of Brownian motion in a harmonic po-

tential, and can be found for example in [61]. These relations can be extended to the

case of bonds and angles. This approach requires however careful consideration when the

number of backbone bonds per Kuhn step is low3, according to some observations on the

statistical mechanics of entropic springs, as discussed byLarson, and later by Underhill

[62–66]. Moreover, the structural equilibration of very flexible biomolecules like ssDNA

can be non-trivial to assess, as pointed out by [8, 9, 28, 67].

2.3 Computation of effective potentials from all-atom sim-

ulations

This section presents a concise review of some popular methods for PMF calculation.

They can be divided into two main categories, equilibrium and non-equilibrium methods.

3The Kuhn step is defined as twice the persistence length of thepolymer chain, which is in turn the
length scale over which the tangent vector’s autocorrelation function decays to zero. It’s a very important
parameter in bead-rod and bead-spring models of polymers, and it’s related to the stiffness of the chain [61]
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Most non-equilibrium methods are based on the so-called Umbrella Sampling (US), by

Torrie and Valleau ([68], and the Bennet Acceptance Ratio method (BAR). Over three

decades, much effort has been put into the refinement of the statistical estimators used to

quantify the interaction parameters, which led, for the US,to the introduction of the his-

togram method by Ferremberg [69], followed by the popular Weighted Histogram Analy-

sis Method (WHAM) proposed by [70]. The approach was then extended to multidimen-

sional energy profiles (along more than one coordinate) by subsequent work by Roux [71]

and Souaille [72]. A similar route was followed for the BAR method, expanded twenty

years later by Shirts and Chodera [73] into the Multistate BAR (MBAR), again by es-

sentially refining the statistical treatment of the samplescollected from equilibrium MD

simulations.

For what concerns non-equilibrium methods, the Steered Molecular Dynamics ap-

proach (SMD) was made possible by the discovery of the Jarzynski equality [74], for the

free energy difference over non-equilibrium processes. There exist two main approaches

to SMD, developed by Hummer and Szabo [75] and by Izrailiev, and Park and Schulten

[76].

The main downside of both US and SMD methods, is that they calculate a PMF over

a specific interaction coordinate (usually a distance between two molecular sites). There-

fore, characterising the interactions of complicated molecules would require a very high

number of simulations.

More recently, however, a force-matching equilibrium method have been introduced

by Izvekov and Voth [1, 11], building upon a previous work by Ercolessi [21] for the con-

struction of MD potentials from ab-initio Molecular Dynamics data. This work was then

further refined by Noid [17, 18], who gave the method a more solid theoretical footing.

He also demonstrated that, under a certain set of hypotheses(which will be discussed

later on), the calculated PMF is optimal with respect to the available simulated data. The

force-matching approach is by far the more practical when numerous parameters of the

CG potential are to be parametrised simultaneously, and it’s the method that has been

chosen and implemented for the CG model developed in this work.

2.3.1 Boltzmann inversion

The Boltzmann inversion is a technique that allows the extraction of effective interaction

potentials for coarse grained models, from a radial distribution function. The final output

is an effective tabulated potential (not an analytical one). The drawback of numerical
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potentials is the lack of parameters to which we can associate a physical interpretation

[13].

The prerequisite is the availability of a real RDF usually obtained by simulation, and in the

case of ssDNA this issue will be addressed in the last sectionof this report. The method

is derived observing that, if we use the distance between twoparticles as the reaction

coordinate, the expression of the Helmholtz free energy in terms of ensemble average (up

to an arbitrary additive constant) becomes [77]

A(r) = −kBTln[g(r)] + const, (2.48)

whereg(r) is the radial distribution function (RDF). The potential of mean force alongr

can be expressed as

A1(r) − A0(r) = −kBTln

[

g0(r)
g1(r)

]

. (2.49)

Initially developed in the case of fluid particle distributions [14], the method has been

then applied to polymer coarse graining, for example by [13], with the name ofiterative

Boltzmann inversionfor the purpose of polymer coarse graining. The coarse-grained (and

hence computationally cheap and rapidly converging) simulation starts with first-guess

potentialV0(r) that generates a startingRDF0(r).

V1(r) = V0(r) + kBTln
RDF0(r)
RDFtarget

(2.50)

and then proceeds with further optimization steps

Vn+1(r) = Vn(r) + kBTln
RDFn(r)
RDFtarget

(2.51)

This approach assumes uses as correction factor the PMF between the current correlation

function and the target one. The convergence criterion, assuming that the desired RDF is

computed up to certain cutoff rc, is defined by means of a penalty function, usually the

integral square error [6]:

p =
∫ rc

0
w(r)(RDFtarget− RDFn)

2dr (2.52)

The convergence is usually achieved in about ten steps [13].The biggest issue with Boltz-

mann inversion is that it requires the knowledge of the radial distribution function, which
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is not always available. However, the method has been successfully used by Trovato and

Tozzini [10, 78] for a “on bead per residue“ model of DNA, exploiting a collection of

DNA structures available in the Protein Data Bank.

2.3.2 Umbrella Sampling

In molecular dynamics simulations of biomolecules, it happens very frequently that the

energy landscape presents local minima, that corresponds to what we can call preferential

configurations. Such configurations may be separated by energy barriers high enough to

"trap" the system thus preventing an effective exploration of the phase space within the

accessible simulation timescale. This can be better understood considering the expression:

A(r) = −kBTlnC+ const, (2.53)

where we can see the logarithmic relation between the free energy and the radial distribu-

tion function. Typically, the free energy change is the order of severalkBT, and this means

that a very thorough sampling of the phase space (which wouldensure reliable results)

would require a change of several orders of magnitude in the configurational integral.

On the affordable simulation timescale it is extremely unlikely (practically, impossible)

that this will happen spontaneously by letting the system fluctuate freely. The system

would spend most of the simulated time in high-probability microstates, and the resulting

estimates of the ensemble averages would be poor.

The most immediate solution would be to use external forces to actively steer the

system into a desired configuration (or series of configurations), recover good estimates

for each small portion of phase space, and then piecewise reconstruct the whole energy

profile. However, the introduction of external forces (e.g.harmonic springs that actively

pull the system into the desired conformation) introduce anextra (non-physical) potential

energy term in the Boltzmann factor of the system, producinga bias in the probability

distribution, and therefore generating a different ensemble, thus invalidating the resulting

statistics. One may ask if it’s not somehow possible to manipulate the perturbed ensemble

averages in order to recover the properties of the unperturbed system.

The answer is affirmative, and a solution to this problem was devised by Torrieand

Valleau [68], in a pioneering work that has had a lasting influence. The key idea behind

their method is to use a clever and straightforward analytical manipulation, in order to re-

cover the correct unbiased statistics for a biased simulation. Bex the configuration of the



2.3 Computation of effective potentials from all-atom simulations 29

system within a phase spaceΓ, and beA(x) a property that depends on the configuration

(positions and velocities). The ensemble average〈A〉 is given by definition by:

〈A〉 =
∫

Γ
A(x) · exp(−U(x)/kBT)dx
∫

Γ
exp(−U(x)/kBT)dx

, (2.54)

which indicates a weighted average of the ”instant“ value ofA for a given statex, weighted

with the probability of the statex. Where as usualT is the absolute temperature andkB the

Boltzmann constant. Now we assume to have a desired perturbing potentialw(x) that con-

strains the system in a close neighbourhood of the region of phase space we are interested

in. Eq. 2.54 can be rewritten as

〈A〉 =
∫

Γ
(w(x)/w(x)) · A(x) · exp(−U(x)/kBT)dx
∫

Γ
(w(x)/w(x)) · exp(−U(x)/kBT)dx

, (2.55)

and the terms can be rearranged as (omitting the dependency on the configuration, to make

the notation lighter)

〈A〉 =
〈A

w〉w
〈 1

w〉w
, (2.56)

where the〈·〉w indicates the ensemble average over the perturbed system, with an extra

non-Boltzmann weighting factorw(x): that is to say, the average of the values “as we get

them” from our biased simulation. The problem of recoveringthe unperturbed ensemble

average is solved, at least in principle.

Operatively, assuming that we have taken N snapshots from the biased simulation, the

ensemble average of any function A of the coordinates, described in equation 2.56, is

computed as:

〈A〉0 =
∑N

i=1 Ai/wi
∑N

i=1 1/wi

, (2.57)

where the biasing probability factorwi can be derived from the constraining potential.

Assuming that we have constrained a reaction coordinateξ (function of the system’s co-

ordinates) to a certain valueξ0 by means of a harmonic potential

V(r) =
1
2

k(ξ − ξ0)
2,

this potential will be added to the system Hamiltonian and will influence the energy and
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hence the probability distribution. The new probability density in the constrained ensem-

ble will be

p(xw) =
1
Z

exp

(

−U(x) + V(ξ)
kBT

)

=
1
Z

exp

(

−U(x)
kBT

)

exp

(

−V(ξ)
kBT

)

(2.58)

where the termexp(−V(ξ)/kBT) = wi is the sought statistical bias introduced by the con-

straining potential. The original Umbrella Sampling was devised for trajectories produced

by Markov chains, i.e. Monte Carlo simulations, but the sameformalism remains valid

in the case of snapshots taken from a Molecular Dynamics run,provided that the sam-

pled timesteps are sufficiently far apart to be considered uncorrelated (see section 2.3.6).

The aforementioned approach has paved the way to a number of further studies, many of

which are essentially a numerical refinement of the originalidea. Since the introduction

of the Umbrella Sampling approach, one problem became immediately apparent, namely

the proper choice of the biasing potential [79]. The US method performs at its best when

the biased energy profile is flat, so that all biased microstates have the same probability.

In this situation all microstates would have the same probability resulting in a uniform

sampling of the phase space. However, this would require a biasing potential which is

exactly the opposite of the sought PMF along the investigated coordinate, which is (un-

fortunately) precisely the unknown of the problem. A possible iterative solution can be

found in the work of Mezei [80], who introduced the Adaptive Umbrella Sampling tech-

nique, where an initial guess for the biasing potential is iteratively refined.

The second operative problem of the US method is how to optimise the energy profile

reconstruction from simulating narrow “windows” of the desired reaction coordinate. A

successful a widely used solution is described in the next section.

2.3.3 The Weighted Histograms Analysis Method (WHAM)

The WHAM algorithm is an extension of the umbrella sampling approach that optimizes

the averages obtained by a series of runs. It was initially proposed by Kumar [70], who

reprised the work of Ferrenberg and Swensen [69, 81], and further developed over the

years by other authors [72, 82]. In order to sample over a certain excursion of the reaction

coordinate, it is useful to split the simulation into partially overlapping "windows", with

different biasing potentials that restrict the conformation tospecific positions along the

reaction path. This allows a "piecewise" sampling of the conformational change, that

facilitates the exploration of the corresponding phase space regions of interest [71]. The
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WHAM method was conceived as a sensible procedure for the reconstruction of the whole

energy profile. If we perform a set of biased simulations witha perturbed potential

V0(r ) + wiξ(r ),

wherewi is the usual perturbing potential, andξ = ξ(r ) is a scalar variable defined as

a function of the configuration of the system (for simple cases, it could be a distance

between two specific atoms, or the radius of gyration of a set of atoms, etc.). From these

simulations a set of (biased) probability densitiesρ
(b)
i (ξ) can be obtained constructing

an histogram of the values taken byξ during the simulations, with "bins" (width of the

histogram bars) of opportune size. The unbiased distribution is recovered by "removing"

the non-Boltzmann part of the probability factor [70]:

ρ
(u)
i (ξ) = exp(β[wi(ξ) − fi)]) ρ

(b)
i (ξ), (2.59)

where fi is the free energy contribution coming from the introduction of the perturbing

potential,ρ(b)
i andρ(u)

i are the biased and unbiased probability densities, respectively. The

final goal is to recoverρ0 having at our dispositionρ(u)
0 . The key idea behind WHAM is

to writeρ0 as a linear combination of the unbiased "window" distributionsρ(u)
i (ξ) ,

ρ0(ξ) = C
N∑

i=1

ciρ
(u)(ξ), (2.60)

where C is a normalization constant andci a set of normalized weights, so that

N∑

i=1

ci = 1.

The WHAM equations are then recovered byminimizing the variance of the total proba-

bility distribution i.e. looking for a stationary point

∂σ2[ρ0(ξ)]
∂ci

= 0, (2.61)
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The minimum of the constrained function can be found for example with the method of

Lagrangian multipliers [71]. The resulting equations are:

ρ0(ξ) = C
N∑

i=1

ni · exp(−β[wi (ξ) − fi])
∑N

j=1 ni · exp(−β[wi(ξ) − f j])
ρ

(u)
i (2.62)

= C
N∑

i=1

ni
∑N

j=1 ni · exp(−β[wi(ξ) − f j])
ρ(b)(ξ) (2.63)

for the probability density, and

exp(β fk) =
∫

exp

(

−wi(ξ)
kBT

)

ρ0ξdξ (2.64)

for the free energy. The arbitrary constantC can be dropped if we assume the probability

distribution to be normalised. The unknowns in Eq. 2.62 areρ0(ξ) and fi. The set of

non-linear equations can be solved iteratively as shown by Roux [71]: starting from an

initial guess for theN free energiesfi, equation 2.62 is used to estimate the unbiased

distribution, this distribution is then used in Eq. 2.64 to generate the next approximation

for the fi, that are in turn fed back into equation 2.62. The iteration loop is repeated until

satisfactory convergence is achieved [72].

Although the presented approach is the one for free energies, it must be noted that

no assumption is made about the nature of the reaction coordinateρ(ξ(r )), so that the

same relations hold also in the case ofρ = (r), which is useful for computing averages

of arbitrary quantities from the same biased simulations [72]. Currently, several different

implementations of WHAM are freely available in the public domain. A general remark

for PMF calculations is that most methods assume that the simulations are performed

in the NVT ensemble. In such cases where it is mandatory to control the temperature

by means of a Nose-Hoover thermostat, as a Berendsen thermostat (or worse, velocity

rescaling) wouldn’t produce the correct ensemble [49].

2.3.4 The Multistate Bennett Acceptance Ratio method

This method, introduced only very recently, generalizes the Bennett Acceptance Ratio

method [83]. It is deemed by its authors to be more efficient than WHAM, removing the

necessity of histograms and allowing a straightforward estimation of the uncertainties on
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the computed averages.

Our observations (or snapshots of a simulation) behave as a random variable, and we re-

cover expected values and variance by means of opportune averages over the samples we

have at hand. However, these averages are sums of random variables, and thereforebe-

have as random variables themselves, with their own mean and variance. The mean value

is our target, and the variance is the uncertainty (dispersion of measurements around the

mean value). The MBAR method constructs estimators with thelowest asymptotic vari-

ance (variance in the large sample limit), therefore more accurate, borrowing from recent

developments in the field of inferential statistics: the work by Kong [84] has tackled the

issue of a systematic analysis of the construction of optimal estimators, while Tan [85]

demonstrated that the derived estimators were “optimal” interms of variance (i.e., they

had the lowest variance or all other known estimators).

The starting problem is how to estimate a free energy difference between different molec-

ular configurations, from the data generated by the simulations of multiple equilibrium

states. Let’s assume we have simulatedK different states, and for the i-th state (i = 1..K)

we have sampledNi statistically independent snapshots. The configurations{xin}Ni
n=1 are

sampled from an ensemble where the probability distribution ρi of a statei is given by

ρi(x) =
ρ̂i(x)
Zi

, (2.65)

whereqi is the unnormalised probability density, andZi is the normalisation factor, which

is the partition function for the statei:

Zi =

∫

Γ

dxρ̂i(x), (2.66)

whereΓ is the phase space of the system (positions and momenta). It is easy to recognise

that the unnormalised would be equal to the Boltzmann factoras defined by Eq. 2.5. The

goal is to produce an estimator of the dimensionless free energy f = A/(kBT). Shirts and

Chodera [73], following the approach outlined by Tan [85], have derived the following

equations for the dimensionless free energy, calledextended bridge sampling estimators,

for the dimensionless free energy, calculated from a canonical ensemble:

f̂i = −ln
K∑

k=1

Nk∑

n=1

exp[−Vi(xkn)]
∑K

k′=1 NK′exp[ f̂k′ − Vk′(xkn)]
(2.67)
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wherek = 1 . . .K is the number of simulated states (“windows”) andn = 1 . . .Nk the

number of uncorrelated snapshots (configurations) stored for thek− th state. The system

of Eq. 2.67 can be solved iteratively as illustrated by Shirts and Chodera [73]. The free

energy is determined up to an additive constant so that only the difference between two

energies is physically meaningful.

The uncertainty on the calculated values of the adimensional free energy can be quantified

as follows. BeN =
∑K

k=1 Nk the total number of snapshots; the covariance matrix is given

by

Θ̂ =WT(I N −WNW T)+W (2.68)

where: the superscript “+” indicates a generalized inverse, as the matrix might be singular;

I N is aN × N identity matrix;N = diag(N1N2...NK) andW is aN × K matrix of weights,

whose terms are defined as

Wnk =
ĉ−1

k qk(xn)
∑K

k′=1 Nk′ ĉ−1
k′ ρ̂k′(xn)

, (2.69)

where the subscriptn runs from 1 to N and the parameters ˆck′ can be calculated self-

consistently from the taken snapshots [73].

The covariance of two arbitrary functionsφ(θ1...θK), ψ(θ1...θK) can be calculated as:

Cov(φ̂, ψ̂) =
K∑

i, j=1

∂φ

∂θi
Θ̂i j

∂ψ

∂θ j
, (2.70)

and this relation can be used for the computation of the uncertainties: in the large sample

limit, the errors can be assumed to be Gaussian-distributed, therefore their dispersion

about the mean value is well estimated by their variance. Remembering that for a random

variableX, Cov(X,X) = Var(X), we can write the variance of the free energy difference

between two states as

Var(∆ fi j ) = 〈(∆ f̂i j − 〈∆ f̂i j 〉)2〉 (2.71)

= Cov

(

−ln
ĉi

ĉj
,−ln

ĉi

ĉj

)

(2.72)

= Θ̂ii − 2Θ̂i j + Θ̂ j j , (2.73)
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which provides a convenient way to estimate the accuracy of the computed values and

therefore the extent to which the results can be trusted.

2.3.5 Steered Molecular Dynamics (SMD) and Jarzynski equality

The method of PMF calculation through SMD has been reviewed,among others, by Hum-

mer and Szabo [32, 75] and by Park and Schulten [76] to whose approach the following

section refers. The evolution of the system is steered alongthe desired reaction coordinate

by an external force, usually large, that allows to overcoming energy barriers easily. Or

in other words, the conformational change is enforced by means of opportune harmonic

potentials, that quickly bring the system in the desired configuration. At first sight, what

described in the previous lines may sound very similar to theuse of perturbing poten-

tial in equilibrium Umbrella Sampling simulations. Care must be taken to notice that

US simulations use harmonic forces toconstrainthe system in a certain configuration,

around which the system is allowed to fluctuate by effect of thermal agitation, whilst

SMD uses perturbing potentials in order tosteerthe system, rapidly, thorugh a desired

configurational change. The result is that US simulation areperformed in conditions of

thermodynamic equilibrium, whilst SMD simulations are not. The steering force used in

SMD makes the simulation an intrinsically non-equilibriumprocess, but the PMF is in

itself an equilibrium property, associated to a state function (the free energy). The theo-

retical bridge required to overcome this apparent contradiction has become available only

in recent times (1997) with the discovery of Jarzynski equality (JE), which has brought

a significant progress in the field of non-equilibrium statistical mechanics, providing an

“exact” (on average!) relation between the free energy difference and the work done by a

non-equilibrium process. The Jarzynski equality has the form

〈e−βW〉 = e−β∆F , (2.74)

whereβ = kBT is the reduced temperature and the brackets〈·〉 denote an average taken

over many independent repetitions of the same process. Eq. 2.74 is known in the lit-

erature with several alternative names, such as “Jarzynskinon-equilibrium work theo-

rem”. In comparison to other methods, SMD allows larger conformational changes on the

nanosecond timescale, and requires less computation [32].The analysis method devel-

oped by Hummer [75] for the calculation of multidimensionalPMF profiles from atomic

force microscopy experiment, can be directly applied to extend SMD, as shown by Minh
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[86, 87], who also demonstrated the superior efficiency of non-equilibrium methods in

comparison to equilibrium ones. The Jarzynski equality, initially derived for canoni-

cal ensemble (NVT), has been generalized to isothermal-isobaric ensemble (NpT). It’s

derivation has been given for both Hamiltonian systems (as in the case of MD simula-

tions) and Markovian processes (Monte Carlo simulations) [76].

Application of SMD and JE to the computation of PMF

Here we follow the description of the SMD method for free energy calculation in the

canonical NVT ensemble, as given by Park and Schulten [76]. Given a classical system

of N particles, in contact with a thermal bath at temperatureT, the phase is defined by 3N

positionsq and 3N momentap. We define our reaction coordinate as a suitable function

of the position, and we call itξ(q). In SMD, a time-dependent driving potentialhλ is

applied to the unperturbed HamiltonianH(p, q):

H̃(p, q) = H(p, q) + hλ, hλ =
k
2

(ξ(q) − λ)2, (2.75)

and the coupling parameterλ is changed with a certain constant velocityv,

λ(t) = λ(0)+ vt, (2.76)

over the desired range ofξ, during a time interval from 0 toτ. In other words, we apply a

time dependent sequence of harmonic potentials that rapidly pull the scalar variable into

a series of valuesλ(t), steering the system into a predetermined conformationalchange,

easily overcoming whatever energy barrier thanks to the magnitude of the perturbation.

From the JE we can easily derive that the free energy difference for the state for the initial

an finalξ is given by:

Fλ(τ) − Fλ(0) = −
1
β
= log〈exp[−βW(τ)]〉, (2.77)

where the work over one repetition of the process can be calculated as

W(τ) =
∫ τ

0
dt

[

∂

∂t
H̃(q(t), p(t))

]

, (2.78)

by numerical integration of the time derivative of the Hamiltonian over the trajectory

steered by the perturbing potential. However, in this way wehave calculated the PMF
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for theperturbedsystem. The recovery of the original PMF is obtained by meansof the

so-called "stiff spring approximation": the idea is to choose a very large spring constant

for the harmonic driving potential, minimizing the fluctuations of the reaction coordinate

among different runs below a certain desired resolution. Several trajectories are then

calculated (with different initial configurations but always within a NVT ensemble), the

free energyFλ is calculated as a function ofλ. For largek, the PMF alongξ can be

calculated, according to [76], as a Taylor expansion aroundλ,

Φ(λ) = Fλ +
1
2k

(
∂Fλ

∂λ
)2 − 1

2βk
∂2Fλ

∂λ2
+O(

1
k2

). (2.79)

Thermostatting the system

The Jarzynski equality applies to system at constant temperature, i.e. in contact with a

heat bath. In MD simulations, the effect of a bath is reproduced consistently by widely

applied thermostat algorithms. Jarzynski himself [74] verified the applicability of Nose-

Hoover thermostat.

Cumulant expansion

The computational downside of the bare Jarzynski equality is the average〈eβW〉, where the

exponential causes the value to be strongly influenced by those rare repetitions of the pro-

cess that yield a very small workW. Therefore, the direct calculation of the exponential

average tends to give inaccurate results. The problem can bealleviated rewriting equation

2.77, expanding the logarithm of the exponential average asa sum of its cumulants [74]:

log〈ex〉 = 〈x〉 + 1
2

(〈x2〉 − 〈x〉2) + ..., (2.80)

Where only the first two terms are shown. This formula is, in general, affected by a

truncation error. However, when the work distribution is Gaussian, the terms beyond the

second order vanish (a general property of all Gaussian-distributed quantities), the for-

mula becomes exact, and the only remaining source of uncertainty is the finite number of

sampled values. As noted by Park and Schulten, the conditionof Gaussian work distribu-

tion can be satisfied by applying a stiff driving potential (hence the name of “stiff-spring”

approach)[76].



2.3 Computation of effective potentials from all-atom simulations 38

2.3.6 Subsampling and statistical inefficiency

When averaging a quantity over the snapshots of a MD trajectory, we assume that we are

averaging over a certain statistical ensemble, i.e. a set ofmicrostates whose probability

(usually dependent on the energy) is defined by a known statistical law.

Moreover, we assume the snapshots to be independent on each other. Strictly speaking,

this is of course not the case for neighbouring timesteps of aMD run: at every given

timestep, the time integration algorithmdeterministicallycalculates the next timestep

from the information contained in the present one. However,if the timesteps are suffi-

ciently "far apart" in time, we can expect their properties to be decorrelated, and this is

what actually happens.

The question is, of course,how far the sampled microstates must be: we have to choose a

length of the sampling step which is longer than the correlation time, but the correlation

time is in general not knowna priori.

A formal treatment of this issue is given below, closely following the formulation given

by [23].

If we want to compute a certain property A, the average of A is given by:

〈A〉run =
1
τrun

τ=τrun∑

τ=1

A(τ), (2.81)

If the sampled values were statistically independent, the variance of the computed mean

value over the trajectory would be:

σ2(〈A〉run) = σ
2(A) · 1

τrun
, (2.82)

where

σ2(A) =
1
τrun

τ=τrun∑

τ=1

(A(τ) − 〈A〉run)
2, (2.83)

(The variance gives, by definition, the expected value of thesquared error in the mean;

We can see that the variance is inversely proportional to thelength of the run). In order to

estimate the correlation time, we can proceed as follows.

The run is first broken down intonb series of lengthτb, so thatnbτb = τrun. Now let’s
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consider the average taken on a certainτb chunk. The mean value over this chunk is:

〈A〉b =
1
τb

τ=τb∑

τ=1

A(τ), (2.84)

and these averages are used to compute the variance::

σ2(〈A〉b) =
1
nb

nb∑

b=1

(〈A〉b − 〈A〉run)
2, (2.85)

We expect this variance to decrease for longerτb, until it goes to 0 in the limit case of

τb = τrun.

The aim is to find the proportionality constant that allows the calculation ofσ2(〈A〉b) for

the whole trajectory. The "statistical efficiency" is defined as:

s= lim
τb→∞

τbσ
2(〈A〉b)
σ2(A)

, (2.86)

which is the limit for largeτb of the ratio between theobservedvariance, and the variance

in the hypothesis of statistical independence of the sampled values. This limit can be

computed from the available samples, calculating the valueof s for increasingly largeτb,

until we reach a plateau. The calculated value tells us that only a snapshot everys adds

new information to the average.

The statistical inefficiency sets therefore the upper limit to the “useful” sampling density.

2.4 Coarse-graining by force-matching

All the methods presented so far have proven successful in dealing with the determination

of energy profiles for one or few reaction coordinates, as in the field of protein-docking.

However, the coarse graining of more complicated systems, such as biomolecules, re-

quires the determination of many interaction parameters. An alternative route, first ex-

plored by Ercolessi and coworkers [21], is to perform a so called “force-matching”, i.e.

parametrise a coarse-grained potential by minimising the discrepancy between the forces

measured by an all-atom simulation, and the forces generated by the CG force field, whose

parameters will be the unknowns of the problem.
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2.4.1 The Multiscale Coarse-Graining Method

The CG models addressed by the MSCG method are made of classical point masses,

called sites, which correspond to one or more atoms in the atomistic representation (e.g.

the center of mass of a group of atoms), and interact by means of an opportune CG

potential [12]. The goal is the derivation of a CG system which behaves consistently

with the underlying all-atom system. What do we mean byconsistency? The atomistic

system is described by classical Hamiltonian equations of motions; the coarse graining

procedure involves opportune operators in order to map the coordinates (positions and

momenta) of the atoms, onto a reduced set of coordinates of CGsites. The dynamics

of the reduced system will then be described by classical Hamiltonian equations for the

coordinates (positions and momenta) of the CG sites. It mustbe noted that the reduced

equations of motion are entirely determined by the initial atomistic equations and by

the mapping operators [17]. The CG model is calledconsistentif the joint probability

distribution function of the reduced positions and momentais the same as the joint PDF

implied by the atomistic PDF and the mapping operators. More formally: the state of

the atomistic system ofn atoms is univocally determined by the vectors of positions and

coordinates:

r = {r1 . . . r3n} and p = {p1 . . . p3n} , (2.87)

the corresponding Hamiltonian is given by:

H(r , p) =
3n∑

i=1

1
2mi

p2
i + u(r ), (2.88)

whereu(r ) is the potential energy. In a completely analogous fashion, the state of the CG

system ofN sites is univocally determined by the vectors of site positions and coordinates:

R = {R1 . . .R3n} and P = {P1 . . .P3n} , (2.89)

the corresponding Hamiltonian is given by:

H(R,P) =
3n∑

i=1

1
2mi

P2
i + U(R), (2.90)

whereU(R) is the CG potential energy.
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The link between the two representations is given by the mapping operators for posi-

tions and momenta, namely:

MRI(r ) =
3n∑

i=1

cIi r i (2.91)

MPI(r ) = MI

3n∑

i=1

cIi pi/mi, (2.92)

for i = 1 . . .3N, which means that every coarse grained coordinate is expressed as a

weighted average of the atomistic coordinates, with weights cI i. A condition is imposed

on the weighting coefficients of the mapping operators, which makes sure that if the

atomic system undergoes a translation, the CG sites will undergo the same translation:

3n∑

i=1

= 1. (2.93)

A simple and intuitive mapping, that satisfies the conditions listed above, is the one that

divides the atomistic models intodisjoint sets of atoms, and places the CG sites on the

centres of mass of the sets, provided that no constraints areapplied between two atoms

that belong to different groups. Without loss of generality, atoms within the same group

can be linked by rigid bonds, which is very convenient in mostbiomolecular simulations,

where actually all the fast-moving hydrogen atoms are constrained [17]. The resulting

coefficients in the linear mapping operator become, for atoms involved in theI -th group,

cIi = mi MI (2.94)

MI =
∑

i

mi (2.95)

and the total force acting on the correspondingI − th CG site is simply the sum of the

forces on the single atoms,

f I (rn) =
∑

i

f i(rn), (2.96)

The consistency condition, for positions and momenta, is written as:

PR(RN) = pRRN (2.97)

PP(PN) = pPPN (2.98)
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The above relations mean that the CG system will visit its ownmicrostates with the same

probability that is implied by the partition function of atomistic system and the chosen

mapping. Eventually, the "best fitting" force field is obtained by minimising what we

could call the "merit function" of the force field in the spaceof its parameters. The

quantity to be minimised is that proposed by [1], defined as:

χ2
MS[FMS] =

1
3ntN

nt∑

t=1

N∑

I=1

|f I (rn
t ) − FMS

I (M N
R(rn

t ))|2 (2.99)

where, once the mapping is specified,χ2
MS is a function of all the CG force field parame-

ters. The terms that appear in the equation, and their physical meanings, are:

• nt is the total number of configurations sampled from the atomistic simulation;

• N is the number of sites in the CG model;

• f I is the total force, as computed in the atomistic model, on theatoms involved in

the I-th CG site;

• rn
t is the t-th configuration sampled from the atomistic simulation;

• FMS
I is the force on the I-th CG site, as a function of the CG sites (this term is a

function of the FF parameters to be optimised).

• M N
R(rn

t ) = RN is the configuration of the CG model;

all above quantities are known or easy to compute from the atomistic simulation; the

crucial modelling step is writing the termFMS
I (RN). Schematically, the multiscale Coarse-

Graining process can be divided into the following steps:

1. Define a mapping that assigns all atoms of the atomistic model to the appropriate

sites of the coarse-grained model;

2. Perform the atomistic simulations, and storent snapshots, positions and forces on

each atom);

3. Then, for every stored configuration:

(a) Translate atomistic configurations into CG configurations
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(b) Calculate the forces acting on the CG sites, as sum of the atomistic forces

acting over all atoms involved in each site.

(c) Calculate the forces acting on the CG sites, as predictedby the CG potential

(this will be a function of the unknown CG-FF parameters).

4. Write the resulting residualχ2 as a sum, over all configurations and all sites, of the

squared differences between the CG forces calculated from the atomisticdata, and

those predicted by the CG-FF.

5. Minimiseχ2, with respect to the force-field parameters.

The problem is recast in terms of least-square minimisationin the parametric space of

the CG force field [18]. This method has already been successfully applied to a peptide

model [88].

2.4.2 Equations of the MSCG problem

The purpose of the atomistic simulation and the CG-mapping is the construction of the

overdetermined linear problem of Eq. 2.99 [18]. The possible strategies for the solution of

the systems 2.99 have been extensively discussed by Izvekovand Noid [1, 16, 18]. Since

the matrix for the whole system trajectory is usually too big, an alternative is a block-

averaging approach, where thent sampled configurations are divided into disjointed sub-

sets, which are used to calculate separate residuals, solving the resulting (much smaller)

set of equations [18]. The force-field parameters are then recovered by averaging over the

estimates obtained from each block. Other numerical developments are being pursued,

e.g. combining the MSCG method with techniques of of Bayesian inference, in order to

improve the reliability of the parameter estimation [89]. The details on the implementa-

tion a possible routes for the numerical solution of the least-squares problem will be given

in the next chapters of this thesis.

2.5 Implementation of a generic interaction potential

For the least-squares problem to become an overdetermined linear system, the analytical

form of the interaction forces must be linear in the unknown force-field parameters. This

is not the case for any of the terms that usually model biomolecular interactions, which

are:



2.5 Implementation of a generic interaction potential 44

• Lennard-Jones potential, that models Van der Waals forces;

• Coulombic potential, that models electrostatic interactions;

• Harmonic bonded potential, that models bond-stretching forces;

• Angular potential, that models angle stretching;

• Dihedral potential, that model dihedral torsional forces.

Since the geometry of the CG system is much more simple than the AA counterpart,

the inclusion of improper dihedrals is not necessary. In addition, Forces are calculated

as derivatives of the potential energies with respect to theparticles’ coordinates, and the

corresponding expressions can be quite complicated, especially for angles and dihedrals.

Let’s summarise how the forces on the atoms are computed. Every term of the interaction

potential is characterised by an interaction coordinate, which is a function of the positions

of two or more atoms:

• Lennard-Jones potential: interatomic distance,r;

• Coulombic potential: interatomic distance,r;

• Harmonic bonded potential: bond length (interatomic distance of the bonded pair),

r;

• Angular potential: angle width,θ;

• Dihedral potential: torsional angleφ;

The force on the atom is computed as the sum of forces coming from all potential terms.

The force associated with a potential term is computed as thenegative gradient of the

potential function with respect to the position of the atom.For pairwise interactions (LJ,

Coulombic and bonds) the force on each atom of a pairi j is a vector acting along the

interatomic distance vectorr i j , and whose norm is the negative derivative of the potential

energy with respect to the distance. For angles and dihedrals, however, the associated

linear algebra is less straightforward.

For computational purposes, it is convenient to represent the computed force, which is a

function of the interaction coordinate, as a sum of weighteddelta functions centred on the

discretised values that the scalar variable can take. The weight for each delta function will

be one of the parameters to be optimised. The consequence of this approach is that the
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functional form becomes very general and formally simple, and most importantly,linear,

but the number of parameters to fit increases. The actual numerical implementation will

be described in the next chapter.

2.5.1 Computation of Lennard-Jones interactions

The pairwise Lennard-Jones (LJ) potential mimics the effect Van der Waals forces. The

analytical form is:

ULJ = ǫ

[(
σ

r

)12

−
(
σ

r

)6
]

, (2.100)

Wherer is the interatomic distance andǫ andσ represent respectively the depth of the

attractive energy well, and what is commonly called "collision radius", i.e. the approxi-

mative distance where the potential changes from attractive to repulsive.

2.5.2 Computation of Coulombic forces

Electrostatic interactions are represented by the classical Coulombic potential

UC =
1

4πǫ

qiq j

r
(2.101)

whereC is the Coulomb constant,qi andq j are the atomic charges,r is again the inter-

atomic distance, and theǫ constant represents the dielectric constantin vacuo(not to be

confused with the constant in the LJ potential). The resulting forces can be computed

either by solving the Poisson equation with a long-range scheme (Ewald summation) or

using a cutoff approach, whose usage has recently seen a resurgence [90, 91].

2.5.3 Computation of bond forces

CHARMM represents covalent bonds as harmonic springs, withpotential:

Ub = Kb(r − r0)
2. (2.102)

whereKb is the spring constant,r0 is the rest length, andr the interatomic distance. Note

that is the CHARMM potential the usual factor 1/2 (which is seen in most textbook when

discussing harmonic potentials) is usually included in thespring constantKθ and does not
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appear explicitly. The same applies to all harmonic potentials used for angles, dihedrals,

etc.

2.5.4 Computation of angle forces

In biomolecular simulations, an angle is univocally determined by three bonded atoms.

The scalar variable associated with the bending potential is the angleθ. The expression

of the potential energy is:

Ua = Ka(θ − θ0)
2, (2.103)

whereKa is the angular spring constant,θ0 is the rest width, andθ the angle width. The

computation of forces arising from the harmonic bending potential can be computed by

the general method suggested by [92] and also presented by [24].

2.5.5 Computation of dihedral forces

A dihedral angleφ is defined by four atomsh, i, j, k. The dihedral potential adopted in the

CHARMM force field used for the atomistic simulations has theanalytical form:

Uφ = Kφ[1 + cos(mφ − δ)], (2.104)

Wherem is the multiplicity andδ the phase angle. The calculation of the forces on the

four atoms implies some very long and rather tedious linear algebra. The interested reader

can find an exhaustive derivation of the numerical method in references [23, 24].



3
Numerical Background

The purpose of this chapter is to briefly outline the nature ofthe main numerical calcula-

tions required for the work carried forward for this thesis,and the methods and strategies

used to tackle them.

3.1 Numerical implementation of interaction potentials

The choice of the interaction potential is of paramount importance in molecular dynamics,

because it defines the physical model of the simulated system. The implementation of

interatomic forces is given in the following.

47
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3.1.1 Pairwise non-bonded interactions: Lennard-Jones and Coulom-

bic interactions

For pairwise Lennard-Jones potentials, the interaction between atomi and j produces a

contribution to the potential energy :

vLJ(r i j ) = 4ǫ





(

σ

r i j

)12

−
(

σ

r i j

)6
 (3.1)

wherev is the potential energy,r i j = |r i − r j | is the interatomic distance,σ is the collision

radius andǫ is the depth of the energy well.

The corresponding pairwise forceFi on atom thei can be calculated as:

f i = −∇r i vLJ(r i j ) (3.2)

where∇r i must be interpreted as a partial gradient of the potential with respect to the

coordinates of the atomi. The resulting force components are (dropping the potential’s

dependency onr i j , for brevity):

fix = −
∂vLJ

∂xi
= −dvLJ

dri j
·
∂r i j

∂xi
(3.3)

fiy = −
∂vLJ

∂yi
= −dvLJ

dri j
·
∂r i j

∂yi
(3.4)

fiz = −
∂vLJ

∂zi
= −dvLJ

dri j
·
∂r i j

∂zi
(3.5)

The derivative with respect tor i j is immediately evaluated as:

dvLJ

dri j
= −48ǫ





σ12

r13
i j

− 1
2
σ6

r7
i j



 , (3.6)

whilst the terms containing the partial derivatives are:

∂r i j

∂xi
=

(xi − xj)

r i j
(3.7)

∂r i j

∂yi
=

(yi − yj)

r i j
(3.8)

∂r i j

∂zi
=

(zi − zj)

r i j
, (3.9)
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which result in the following expressions:

fix = 48
ǫ

σ2





(

σ

r i j

)14

− 1
2

(

σ

r i j

)8
 (xi − xj) (3.10)

fix = 48
ǫ

σ2





(

σ

r i j

)14

− 1
2

(

σ

r i j

)8
 (yi − yj) (3.11)

fix = 48
ǫ

σ2





(

σ

r i j

)14

− 1
2

(

σ

r i j

)8
 (zi − zj). (3.12)

for the three force components. The derivation of the Coulombic forces is analogous, with

the potential function given by

vC(r i j ) = C
qiq j

r i j
, (3.13)

whereC = 1/4πǫ, with ǫ being the dielectric constantin vacuo, andqi , q j the charges of

the atomsi anf j. Again the force can be computed from the general principle expressed

in Eq. 3.2, as:

fix = −
∂vC

∂xi
=

dvC

dri j
·
∂r i j

∂xi
(3.14)

fiy = −
∂vC

∂yi
=

dvC

dri j
·
∂r i j

∂yi
(3.15)

fiz = −
∂vC

∂zi
=

dvC

dri j
·
∂r i j

∂zi
, (3.16)

The partial derivatives are exactly the same as in the case ofthe Lennard-Jones potential,

and the derivative with respect to the interatomic distanceis trivial. The resulting forces

are:

fix = C
qiq j

r3
i j

(xi − xj) (3.17)

fiy = C
qiq j

r3
i j

(yi − yj) (3.18)

fiz = C
qiq j

r3
i j

(zi − zj), (3.19)

The implementation is slightly more complicated when the implementation includes a

switching function that brings the potential smoothly to 0 at the cutoff distance. This

eliminates the discontinuity produced by the truncation ofthe potential function at the
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cutoff distance.

3.1.2 Bond stretching

The computation of the internal forces arising from bond stretching closely resembles the

case of the pairiwise potential. For biomolecular simulations, the energy of the bonds is

usually modelled by a harmonic potential:

vb(r i j ) = K(r i j − r0)
2, (3.20)

which after a derivation that closely resembles the one in the previous section, yelds the

following force contributions:

fix = −2(r i j − r0)
(xi − xj)

r i j
(3.21)

fiy = −2(r i j − r0)
(yi − yj)

r i j
(3.22)

fiz = −2(r i j − r0)
(zi − zj)

r i j
, (3.23)

for the atom i, and force components of opposite sign for the atom j.

3.1.3 Angle bending

In a molecular simulation of a systems that contains covalent bonds, and "angle" is indi-

viduated by three mutually bonded atoms i, j, k (here we will assume that the bonds are

i-j and j-k). The potential energy associated to angle bending is also usually a harmonic

relation,

vθ(θi jk ) = K(θi jk − θ0)
2. (3.24)

Defining the two vectorsb1 = r i − r j andb2 = r k − r j, the angleθ can be calculated from

the relations

θ = cos−1(cosθ) (3.25)

cosθ =
b1 · b2

|b1||b2|
. (3.26)
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and the corresponding forces can be calculated again by means of Eq. 3.2. The analytical

route suggested by [23] is to use the chain rule of derivationto rewrite Eq. 3.2 as:

f i = −
dv(θ)

d(cosθ)
· ∇r i cosθ, (3.27)

In comparison to the pairwise and the bonded potentials, however, the computation of the

atomic forces requires some extra linear algebra.

First, we notice that for a sistem of three atoms the forces arising from the angle

bending potential are internal, therefore the total force on the three atoms must be zero

along the three directions. It is enough to compute the components on atomsi andk, and

the forces on atom 2 can be calculated by difference. This saves us the effort of computing

all derivatives explicitly, and the resulting equations for the force components are:

f ix = −
dv(θ)

d(cosθ)
· ∂
∂xi

cosθ (3.28)

f iy = −
dv(θ)

d(cosθ)
· ∂
∂yi

cosθ (3.29)

f iz = −
dv(θ)

d(cosθ)
· ∂
∂zi

cosθ (3.30)

fkx = −
dv(θ)

d(cosθ)
· ∂
∂xk

cosθ (3.31)

fky = −
dv(θ)

d(cosθ)
· ∂
∂yk

cosθ (3.32)

fkz = −
dv(θ)

d(cosθ)
· ∂
∂zk

cosθ (3.33)

f jx = −f ix − fkx (3.34)

f jy = −f iy − fky (3.35)

f jz = −f iz − fkz (3.36)

The first derivative with respect to the cosine, for the harmonic potential given by Eq. 3.24,

is easily evaluated as:
dv(θ)

d(cosθ)
=

2K(θ − θ0)
sinθ

. (3.37)

It is possible to derive simple relations for the partial derivatives of the numerator and

denominator of the cosine in Eq. 3.25, with respect to the coordinates of atomsi andk.
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For the numerator (b1 · b2) we get:

∂

∂xi
(b1 · b2) = (xk − xj) (3.38)

∂

∂yi
(b1 · b2) = (yk − yj) (3.39)

∂

∂zi
(b1 · b2) = (zk − zj) (3.40)

(3.41)
∂

∂xi
(b1 · b2) = (xj − xk) (3.42)

∂

∂xi
(b1 · b2) = (yj − yk) (3.43)

∂

∂xi
(b1 · b2) = (zj − zk), (3.44)

and for the denominator|b1| · |b2| we get:

∂

∂xi
(|b1| · |b2|) = (xi − xj)

|b2|
|b1|

(3.45)

∂

∂yi
(|b1| · |b2|) = (yi − yj)

|b2|
|b1|

(3.46)

∂

∂zi
(|b1| · |b2|) = (zi − zj)

|b2|
|b1|

(3.47)

(3.48)
∂

∂xk
(|b1| · |b2|) = (xk − xj)

|b1|
|b2|

(3.49)

∂

∂yk
(|b1| · |b2|) = (xy − yj)

|b1|
|b2|

(3.50)

∂

∂zk
(|b1| · |b2|) = (zk − zj)

|b1|
|b2|

(3.51)

Now if we define:

b1 · b2 = A (3.52)

|b1| · |b2| = B (3.53)
|b2|
|b1|

= C (3.54)

|b1|
|b2|

= D, (3.55)
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the partial derivatives of the cosine can be calculated as:

∂

∂xi
cosθ =

(xk − xj)B− (xi − xj)A

B2
C (3.56)

∂

∂yi
cosθ =

(yk − yj)B− (yi − yj)A

B2
C (3.57)

∂

∂zi
cosθ =

(zk − zj)B− (zi − zj)A

B2
C (3.58)

(3.59)
∂

∂xk
cosθ =

(xi − xj)B− (xk − xj)A

B2
D (3.60)

∂

∂yk
cosθ =

(yi − yj)B− (yk − yj)A

B2
D (3.61)

∂

∂zk
cosθ =

(zi − zj)B− (zk − zj)A

B2
D. (3.62)

Furthermore, if the width of the angle is expected to deviateconsiderably from the

equilibrium valueθ0, a harmonic potential is added between atomsi andk to keep into

account the increase in angular spring stiffness caused by the collision between the elec-

tronic shells of finite-sized atoms. This corrective term usually goes under the name of

Urey-Bradley potential, and is implemented as a additionalharmonic bond as described

in the previous section. However, it is only computed when the bond is "compressed", i.e.

when the bond length is lesser than its rest length.

3.1.4 Dihedral torsion potential

The derivation of the forces arising from dihedrals is extremely cumbersome and omitted

for the sake of brevity. A very accurate derivation is detailed in Ref.[23].
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3.2 Force-matching equations

The calculation of the pairwise interactions is performed using the MSCG method, min-

imising the merit coefficientχ2
MS as written in Eq. 2.99.

If we rewrite Eq. 2.99 as follows:

χ2
MS = (f − Gφ)T(f − Gφ), (3.63)

whereG is a matrix of 3ntN × ND elements, andf is a vector of 3ntN known terms,

andφ is the vector ofND unknown force-field parameters, it becomes apparent that the

set of parameters that minimiseχ2
MS can be calculated as a least-squares solution of the

overdetermined linear system:

f − Gφ = 0, or Gφ = f , (3.64)

with 3ntN equations andND unknowns [18].

The system in Eq. 3.64 has 3ntN equations andND unknowns. We require such system to

have more equations than unknowns, therefore the conditionon the minimum number of

configurations that we must postprocess is:

nt >
ND

3N
. (3.65)

This condition must be satisfied for each block in case a Block-Averaging technique [18]

is used.

3.2.1 Pre-calculation of bonded interactions using a harmonic ap-

proximation

In our CG force field we have decided to neglect the torsional degrees of freedom of the

polymer backbone, as their energy contribution is usually more limited than for bonds

and bending angles [13]. The chosen analytical form for CG bonds and angles was that

of a harmonic potential,

Ub = Kb(r − r0)
2 (3.66)

Ua = Ka(θ − θ0)
2 (3.67)
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WhereUb,Ua, are the potential energies,Kb,Ka the spring constants, andb0, θ0 the rest

length and rest angle width, respectively. The force-field parameters were obtained from

the equilibrium fluctuations of the atomistic system, following the method suggested by

Zhou and coworkers [88]. At equilibrium, the probability distribution of the energy asso-

ciated with one bonded degree of freedom must obey Boltzmannstatistics, and therefore

the probability density of the associated scalar variablex must be

P(x) = C · exp(−U(x)/kBT), (3.68)

wherex is the appropriate scalar variable that depends on the type of potential (i.e. bond

length or angle width),T is the absolute temperature,kB is the Boltzmann constant,U(x)

is the potential energy andC a normalisation constant to ensure the the integral of over all

possible values of x is equal to 1, i.e. ensure sure that P(x) is actually a probability distri-

bution. The empirical probability histograms for each CG bonded degree of freedom were

generated from the all-atom simulations, using the appropriate topological mapping. The

parameters were then determined by fitting Eq. 3.69 onto the empirical distribution. This

approach has the downside of requiring a starting assumption for the analytical shape of

the potential energy. However, harmonic potentials seem towork well with most systems

[18, 88]. If we substitute a harmonic potential in Eq. 3.69 wecan see that the resulting

probability density ofx has the form:

P(x) = C · exp

(

−Kx(x− x0)2

kBT

)

= C · exp

(

−1
2

(x− x0)2

kBT/2Kx

)

, (3.69)

which is a Gaussian distribution with meanx0 and variancekBT/2Kx. Therefore, after

checking that the shape of the distribution is actually Gaussian, the parameters could also

be estimated as:

x0 = 〈x〉 (3.70)

Kx =
kBT

2〈(x− x0)2〉 (3.71)

where〈·〉 represents the averaging over the available samples. The possibility to determine

bonded interactions in the comparatively simple way described above, can help simplify

the complexity of the more demanding least-squares problemassociated with the deter-

mination of the non-bonded pairwise potential between eachpossible pair of CG sites.
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Namely, the forces contribution arising from bonds, anglesand dihedrals can be com-

puted separately andsubtractedfrom the vector of known terms (i.e. known forces on

the sites, according to the atomistic model and the chosen mapping). The advantage of

precalculating the bonded interactions, instead of leaving them as unknowns and comput-

ing them along the pairwise interactions from the general MSCG least-squares problem,

is that the new system has about only half of the original unknowns. In the CG study

presented in later sections, about 1000 unknowns out of over2000 were removed in this

fashion.

3.2.2 Solution of the least-squares problem

The original formulation of the least-squares problem associated with the MSCG method,

(Eq. 3.64) [18]. can be cumbersome and can lead to very big matrices. In particular,

several factors can cause a rapid increase in size of the matrix G, beyond the size that can

be directly addressed with the available memory and storagespace.

The first is the necessity to determine explicitlyall pairwise interactions between different

types of CG sites, can be problematic in systems with many different types of sites: with

three site types, the possible combinations are only 6, whilst with 5 site types (as in the

case of the solvated DNA double strand) the combinations arealready 15. With a cutoff

distance of 10Å and a grid step of 0.1Å, every type of pairwiseinteraction contributes

with 100 further unknowns to the complexity of the problem. Therefore a simple system

of 2000 sites and 5 site types, even using a block averaging approximation with a conser-

vative block size of 10 configurations, would generate a matrix 60000×1500, which uses

about 1GB of memory (storing elements in double precision).We are therefore already

close to the upper limit of complexity that can be dealt with using an average desktop

computer.

A possible way to circumvent this problem, suggested by Noidand coworkers, is to

rewrite the system in the following form, equivalent to Eq. 3.64:

χ2
MS = φ

TGφ − 2bTφ + fTf , (3.72)

Whereb = GT f , andG = GTG. The suggested route to solve this problem is look for the

stationary point ofχ2
MS(φ), zeroing all partial derivatives∂χ2/∂φi, for i = 1...ND, obtaining
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the system ofND equations andND unknowns

Gφ = b, (3.73)

that can be attacked directly using standard methods for linear systems (as the size of the

coefficient matrix will be typically in the order of about 1000× 1000). This formula-

tion has the disadvantage that the condition number of theG matrix is the square of the

original condition number ofG, and therefore the corresponding linear system requires

preconditioning in order to yield accurate results; on the other hand, the size of the matrix

is greatly reduced (ND ×ND) and consequently the memory requirements are much lower

[18].

The strategies for the solution of the linear system 3.64 will be discussed further in

the last chapters of this thesis, dedicated to the coarse graining of DNA molecules.



Part III

Simulation of the diffusive properties of

DNA oligomers
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4
Viscosity of Price-Brooks TIP3P model

water

In this chapter we present the results of a parametric study of the effect of different tem-

peratures and salt concentrations on the dynamic viscosityof a specific type of water

model, the Price-Brooks TIP3P water [93].

This kind of water model is a refinement of the original TIP3P water model [94], and is

optimised for MD simulations performed with Periodic Boundary Conditions and long-

range solvers for electrostatic interactions, such as Ewald summation, and particle-particle

particle-mesh (PPPM) [46]. The necessity of this study arises because a reliable knowl-

edge of the solvent viscosity is crucial in the estimation ofmolecular diffusion coefficients

from MD simulation. Moreover, the data available from the literature did not take into

consideration the effects of temperature and salt concentration on the viscosity.

Like most empirical models, the Price and Brooks TIP3P is parametrised for pure water

at 298K, and its behaviour under different conditions is not known a priori. We have in-

vestigated the effects of different temperatures and salt concentrations on the viscosity of

the Price-Brooks variety of TIP3P (which we will call PB-TIP3P), in order to quantify the

59
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deviation from the behaviour in standard conditions. This is important for any simulation

performed at non-standard temperature and ion concentrations.

4.1 Introduction

The existence of a large number of water models implicitly underlines the difficulty to

capture all water properties with only one parametrisation[95]. The usage of a model

is therefore limited to the set of properties that it can reproduce within an acceptable ac-

curacy level. Simple models such as the 3-point TIP3P and itssubsequent modifications

have encountered success, because they are computationally less demanding than more

sophisticated ones, such as the TIP5P [95]. Further interest in the TIP3P arose from the

fact that the widely used CHARMM force field for biomolecularsimulations was param-

eterised using TIP3P, and it was unclear whether the solvation properties would be pre-

served when using a different water model [96]. Only recently, a study performed by Nutt

and Smith using the CHARMM potential has shown that the behaviour of biomolecules

in solution is fairly similar when other water models are adopted: this applies to several

versions of TIP3P, TIP4P, and to a lesser extent to TIP5P [96]. Despite of this, TIP3P

still remains the most widely adopted water model. One of thereasons is that not all

MD packages implement the numerical optimisations that allow to compensate most of

the additional computational cost of TIP4P and TIP5P [97]. Well-known limitations of

the TIP3P model include its poor structure, high self-diffusion coefficient [95], and low

viscosity [98]. A modified set of parameters (PB-TIP3P) was proposed a few years ago

by Price and Brooks that improves the structural propertiesof the model and its suitability

in simulations with periodic boundary conditions and long-range electrostatics [93].

4.2 Methods and simulated cases

The PB-TIP3P has the same rigid 3-point geometry of the original TIP3P model, and

the same stiffness for the O-H bonds and the H-O-H angle (see Tab. 4.2), but it modi-

fies the fixed electrical charges on the atoms, as well as the parameters of the pairwise

Lennard-Jones interactions for oxygen and hydrogen atoms.The interaction parameters

are summarised in Tab. 4.1. For biomolecular simulations the molecule is usually kept

rigid applying holonomic constraints by means of algorithmsuch as SHAKE [41]. Con-

straining all bonds and angles involving the fast-vibrating H atoms is common practice,
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Figure 4.1: Geometry of TIP3P (a), TIP4P (b) and TIP5P (c) water models. TIP4P and TIP5P
add extra massless charges in order to better reproduce the charge distribution around the molecule.

in biomolecular simulations, in order to allow a the use of a longer timestep and reduce

the computational cost.

The PB-TIP3P model has a good capability to reproduce the radial distribution func-

tion of oxygen atoms which is found in real water, as shown in Fig. 4.2.

Molecular dynamics (MD) [23] was used to simulate cubic domains (60x60x60Å)

filled with PB-TIP3P water in a NPT ensemble that was controlled by a Nose-Hoover ther-

mostat and barostat [51, 99]. Periodic boundary conditionswere applied in all directions

and a particle-particle particle-mesh (PPPM) solver was used for calculating the long-

range electrostatics forces. Bonds and angles involving hydrogen atoms were constrained

with the SHAKE algorithm. The simulations were performed for all combinations of the

temperatures 298K, 323K and 348K; and the ions molar concentrations (total moles of

Na+ and Cl− ions per liter water) of 0M , 0.1M, and 1.0M. The target pressure was 1atm

for all simulations. An overview of the composition of the simulated systems is presented

in Tab. 4.3. After assigning the initial positions and velocities, the potential energy of

each system was minimised before equilibrating the systemsto the target temperature and

pressure for 1ns with a timestep of 0.5fs. The equilibrated systems were then used for

the production runs of 4ns with a timestep of 2fs. Every combination of temperature and



4.2 Methods and simulated cases 62

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

gH
H

(r
)

r(A)

PB-TIP3P
Experimental

(a) RDF for H-H pairs

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

gO
H

(r
)

r(A)

PB-TIP3P
Experimental

(b) RDF for O-H pairs

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10

gO
O

(r
)

r(Angstrom)

PB-TIP3P
Experimental

(c) RDF for O-O pairs

Figure 4.2: Radial distribution functions of PB-TIP3Pwater, compared with experimental val-
ues [2]

.
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Table 4.1: Atomic charges and
Lennard-Jones parameters for TIP3P
and PB-TIP3P water models

Parameter TIP3P PB-TIP3P

qO -0.8340 -0.8300

qH 0.4170 0.4150

ǫOO 0.1521 0.1020

σOO 3.1507 3.1880

ǫOH 0.0460 0.0000

σOH 0.4000 0.0000

ǫHH 0.0836 0.0000

σHH 1.7753 0.0000

Table 4.2: Geometry and mechanical parame-
ters for TIP3P models.

Symbol Value

Bond stiffness K 450

Bond length r0 0.9572

Angle stiffness Kθ 55

Angle width θ0 104.52

salt conditions was simulated in three independent runs with randomised initial condi-

tions, in order to increase the number of samples to average over. Pressure, temperature

and volume were stored at every timestep. The fluid viscosity, η, was calculated with the

Green-Kubo relations [100, 101] from the time integral of the autocorrelation function of

the off-diagonal components of the pressure tensor,

η =
〈V〉

kB〈T〉

∫ ∞

0
〈Pi j (0)Pi j (t)〉dt , (4.1)

where〈V〉 and〈T〉 are the run averages of temperature and pressure,kB is the Boltzmann

constant andPi j one of the off-diagonal components of the pressure tensor. The autocor-

relation function (ACF) was computed using a window-averaging procedure analogous
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Table 4.3: Number of molecules
used in the simulations at different
salt concentrations

Ion conc. H2O Na+ Cl−

0M 7224 0 0

0.1M 7210 7 7

1.0M 7088 68 68

to that described by Nevins and Spera [102] with a time windowof 2ps and integrated

numerically using the trapezoid rule with a step of 2fs. Through the noisy tail of the ACF,

the integral function reaches a plateau after about 1.5ps, but is then subject to fluctuations.

Therefore, the limit value was estimated by averaging the value over the last 0.5ps of the

time window.

An example of the pressure ACF and its integral function is given in Figs. 4.3(a) and

4.3(b). For every simulation, the procedure was performed for the three independent

pressure componentsPxy,Pxz andPyz. Since every condition was simulated three times,

each reported value is the average of nine independent estimates. All 27 independent runs

were performed using LAMMPS [25], and the results were post-processed using custom

C and Octave scripts.

4.3 Results

The results obtained for water viscosity are summarised in Tab. 4.4 and compared with

available experimental data for both pure water and saline mixtures. In particular, accurate

measurements at 298.15K have been produced for pure water and saline solution by Zhang

[5]. For several different conditions of temperature and salt concentration, further data

could be found in the papers by Kestin and coworkers [103]. However, for some of the

simulated conditions, we were not able to locate suitable experimental values and we have

relied on extrapolation. The available measurements were reported to be accurate within

1% of their absolute values [3, 5, 103].

As we can see from Tab. 4.4, the viscosity of the PB-TIP3P model is consistently

lower than that of real water and higher than the TIP3P model [98, 104]. The absolute

values are about half of the experimental ones. This discrepancy is partly due to the
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tions.Experimental datapoints were taken from [3].
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Table 4.4: Results for PB-TIP3P water viscosities and
comparison with experimental values

T(K) M(ions) η(mPa· s) ηexp(mPa· s) η/ηexp

298 0 0.43±0.02 0.890a 0.48

298 0.1 0.45±0.03 0.893a† 0.50

298 1.0 0.48±0.03 0.914a† 0.53

323 0 0.31±0.01 0.547b 0.57

323 0.1 0.31±0.02 0.550c† 0.56

323 1.0 0.34±0.02 0.576c† 0.59

348 0 0.22±0.01 0.379c† 0.58

348 0.1 0.24±0.01 0.381c† 0.63

348 1.0 0.25±0.02 0.403c† 0.62
a
Experimental value, from [5]

b
Experimental value, from [3]

c
Experimental value, from [103]
† Extrapolated values

simplifications of the model. In particular, the charge distribution of the electron cloud

cannt be accurately represented by three point charges whose positions are fixed relative

to the atoms. Models like TIP4P and TIP5P, while still rigid and therefore incapable of

reproducing polarisation effects, add extra massless charges which mimic the charge dis-

tribution more accurately, and are (almost) always more successful in reproducing a wider

range of water properties, although greater complexity is not always associated with bet-

ter results [97].

In addition, the empirical and simplified nature of the modelimplies a poor predic-

tive capability for those properties that, like viscosity,were not included in the original

parametrisation [94]. Nevertheless, by comparison with the experiments [5], the PB-

TIP3P model is able to reproduce at least qualitatively the trend of the the viscosity in-

crease due to ions in solution, as shown in Fig. 4.4. For the simulated conditions, the

effect of temperature is much more visible than that of the salt concentration.

The viscosity decreases considerably at higher temperatures: at 348K its absolute value

is nearly half of the value measured at 298K. For pure water, experimental data are avail-

able for a range of temperatures and a comparison is plotted in Fig. 4.5 showing that the

viscosity of the PB-TIP3P model follows the same trend as theexperimentally obtained
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values.

The discrepancy between the results for real water and TIP3Pwater, shown in Fig. 4.5

is due to two main reasons: first, the model is geometrically simplified, rigid and non-

polarisable, which limits its capability to reproduce the correct charge distribution around

the molecule; secondly, theempiricalnatural of this class of models means that their pa-

rameters are “fitted” in order to reproduce a given set of structural or thermodynamical

properties. This implies however that no warranty is given that properties not introduced

in the original parametrisation will be reproduced correctly (and this was indeed the case

with the viscosity of TIP3P).

It is worth mentioning that our results for TIP3P viscosity in salf-free conditions are in

excellent agreement with the values given by both Yeh and Hummer (0.31± 0.01Mpa· s)
and Gonzalez and Abascal (0.321MPa · s, although no standard deviation was given in

their paper) [98, 105]. Amongst the available models, the best overall performance seems

to belong to the TIP4P/2005 model by Abascal and Vega, but it’s use has been somewhat

limited, at least in part for the reasons outlined in the introduction of this chapter [106].

Summarising, he presented results can be useful in simulations that aim at the extraction

of quantitative information about the diffusive properties of small molecules in aqueous

saline solution: if the deviation from the behaviour of realwater is known, the too low

viscosity can be kept into account and the unrealistically high diffusion coefficients can

be rescaled accordingly, thus recovering good estimates ofthe real values.



5
Diffusion coefficients of ssDNA oligomers

5.1 Introduction

The aim of the work presented in this chapter was to evaluate the effect of salt concen-

tration on the diffusive properties of DNA oligomers of different sequence. Salt con-

centration plays a double role, modifying the carrier fluid viscosity and the mechanical

properties of the ssDNA chain [5, 107]. This interplay determines the resulting diffusive

behaviour. The effect on the conformation has been investigated calculating the equiva-

lent hydrodynamic radius of the strands. The way the salt concentration affects the solvent

viscosity wa kept in to account thanks to the results obtained in the previous chapter. The

averaged properties of short oligomers can be used as constitutive elements of a finely dis-

cretised model of ssDNA for implementation in particle-fluid models for the simulation

of transport phenomena in DNA biosensors.

69
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5.2 Method and simulated cases

All simulations have been carried using the LAMMPS parallelMD simulator using the

CHARMM27 force field [25, 36]. All bonds and angles involvingH atoms were con-

strained with SHAKE. The cutoff for non-bonded interactions was set to 10 Angstrom

and long-range electrostatics were computed by PPPM methodusing a grid space of 1

Angstrom. The 3’ and 5’ ends of the nucleic acid chain were capped with hydroxyl

groups. The tetramers (pA)4 and (pT)4, and the octamers (p8)4 and (p8)4 were solvated

in cubic boxes of explicit TIP3P water, modified according tothe parametrization sug-

gested by Price and Brooks in order to reproduce the solvent structure more accurately

[93].

The systems have been neutralized with 3 (for tetramers) and7 (octamers)Na+ions and

NaCl was added up to two different concentrations, 0.1M and 1.0M respectively.

5.2.1 Simulation boxes

The boxes for (pA)4 in 0.1 and 1.0M solutions included 6755 waters, 8Na+ and 5Cl− and

6631 waters, 65Na+ and 62Cl− respectively. The boxes for (pT)4 contained 6761 waters,

8Na+ and 5Cl−, and 6646 waters, 65Na+ and 62Cl−. The boxes for (pA)8 contained

6431 waters, 10Na+ and 3Cl−, and 6646 waters, 66Na+ and 59Cl−. The boxes for

(pT)4 contained 6761 waters, 8Na+ and 3Cl−, and 6646 waters, 66Na+ and 59Cl−. The

composition of the simulation boxes is summarised in Tab. 5.1.

All runs were performed at 298K and 1 atm in the NpT ensemble using Nose-Hoover

thermostat and barostat [54]. The systems have been minimized and then equilibrated for

1ns with a timestep of 0.5fs, and then run for 4 more nanoseconds to allow ion equili-

bration around the molecule [108]. Each of the 8 cases has been run in 3 independent

simulations with randomized initial configurations, for a total simulated time of 600ns.

The position of the ssDNA centre of mass was stored every 0.2 ps.
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Table 5.1: Composition of the simulation boxes.
All runs were performed at 298K and 1atm.

Seq. C(NaCl) Atoms H2O Na+ CL−

4A 0.1M 20409 6755 8 5

4A 1.0M 20181 6631 65 62

4T 0.1M 20423 6761 8 5

4T 1.0M 20195 6646 65 62

8A 0.1M 20305 6678 10 3

8A 1.0M 20081 6566 66 59

8T 0.1M 20317 6682 10 3

8T 1.0M 20093 6570 66 59

5.2.2 Calculation of the diffusion coefficient

The diffusion coefficients were calculated from the random fluctuations of the molecule

centre of mass using the well-known Einstein relation for diffusion in three dimensions,

D = lim
t→∞

∂

∂t
〈MS D(t)〉

6
(5.1)

The slope of a linear fitting of the Mean Square Displacement (MSD) over a time window

∆t was evaluated after computing the MSD by window-averaging over the production run,

as illustrated for example by [102]. The chosen window length was∆t = 100ps, while

the spacing between the time origins of the windows was 10ps.The MSD converges very

neatly to the expected linear behaviour, and the uncertainty on the slope is several orders

of magnitude smaller than the absolute value, thus providing a solid estimat, as shown in

Fig. 5.1.

5.2.3 Correction for finite-size effects

A suitable treatment for keeping account of the effect of PBC and the limited size of the

simulation box was developed by Yeh and Hummer, based on an empirical correction of

the original theoretical analysis for point-like particles by Dünweg and Kremer [98, 109].

The simulated diffusion coefficientDs computed by means of Eq. (5.1) is first corrected
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Figure 5.1: Summary of corrected hydrodynamic radiuses at different salt concentrations.

for finite-size effects as:

D = Ds+
kBTξα
6πηL

, (5.2)

WherekBT is the reduced temperature,η is the dynamic viscosity of the used water model,

ξ = 2.873 is a constant that synthetises the correlation effect summed over all periodic

images of a cubic lattice,α = 0.76 is an empirical correction for finite-size molecules,

andL is the linear size of the box [98, 109].

5.2.4 Correction for low solvent viscosity

Assuming that viscosity alone doesn’t have a remarkable effect on the hydrodynamic

radius of the molecules, the Stokes-Einstein equation provides the scaling relationship for

diffusion in two solvents of different viscosity (in our case, real and model water), as

ηwDw = ηD, or Dw =
η

ηw
D, (5.3)

whereDw is the estimated diffusion coefficient in real water. The dynamic viscosity of

TIP3P water is known to be very low, and it has been reported bysome authors to be 0.31±
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0.01mPa· s [98]. However, as shown in the previous chapter, the Price-Brooks TIP3P

water model has a comparatively higher viscosity. The experimental values for water

viscosity in no-salt, 0.1M, and 1.0M NaCl solutions are respectively 0.89± 0.02mPa· s,
0.90± 0.02mPa· s and 0.97± 0.02mPa· s. [5]. The comparison with model water in

similar conditions, and the corresponding correction factors as summarized in Tab. (5.2).

For the solutions at 0.1M and 1.0M NaCl the solvent viscositycorrection factorsη/ηw

are respectively 0.50 and 0.49. The corrected diffusion coefficients are summarised in

Tab. (5.3).

5.2.5 Correction for constant drift

Every simulation was initialised with randomised atomic velocities; however, numerical

errors can cause the center of mass of the simulation box to possess a small residual

velocity. The result is a system slowly drifting in space, and the resulting motion of the

molecule in solution is the sum of a random brownian motion and a translation at constant

velocity. It is known that, in the case of brownian motion with drift, the MSD becomes

quadratic instead of linear [110]; moreover, no simple analytical relation exists between a

quadratic MSD and the corresponding diffusion coefficients. Therefore it was necessary

to correct the drift artifact by subtracting the total velocity of the system’s centre of mass.

This way we were able to recover the expected linear shape of the window-averaged MSD.

5.3 Results

Salt concentration is known to have an effect on both fluid viscosity [5] and ssDNA per-

sistence length [107], which influences the chain persistence length and therefore its con-

formation in solution and, potentially, its hydrodynamic radius. We have used molecu-

lar dynamics simulations to investigate the effect of salt concentrations on the diffusive

properties of ssDNA oligomers. Finite-size effects have been taken into consideration by

means of opportune correction coefficients. The discrepancy between the viscosity of real

and model water has also been considered.

The nucleotide sequences of the simulated ssDNA strands were chosen as two limit cases,

polyadenine and polythymine, which show respectively the maximum and minimum base

stacking tendency and therefore the maximum and minimum expected persistence length.
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Table 5.2: Viscosity of real water, (extrapolated from [5])
and Price-Brooks TIP3P water at 298K and 1 atm at different
NaCl molar concentrations (values inmPa· s).

C(NaCl) ηPB−T IP3P ηH2O(exp.) ηPB−T IP3P/ηH2O

0 0.43± 0.02 0.89 0.48

0.1M 0.45± 0.01 0.90 0.49

1.0M 0.48± 0.01 0.97 0.50

Table 5.3: Computed (Ds) and corrected (Dw) diffusion coefficients (in
10−5cm2/s) and corrected hydrodynamic radiusRh (in nm)

Seq. C(NaCl) Ds Dw Rh

4A 0.1M 0.394± 0.025 0.285± 0.012 1.779± 0.008

4A 1.0M 0.319± 0.020 0.237± 0.010 2.045± 0.088

4T 0.1M 0.431± 0.015 0.303± 0.008 1.674± 0.043

4T 1.0M 0.382± 0.025 0.268± 0.012 1.809± 0.082

8A 0.1M 0.253± 0.003 0.214± 0.002 2.371± 0.019

8A 1.0M 0.197± 0.020 0.177± 0.009 2.745± 0.148

8T 0.1M 0.233± 0.011 0.204± 0.005 2.488± 0.066

8T 1.0M 0.217± 0.008 0.187± 0.004 2.597± 0.055

The lack of experimental data for short oligonucleotide doesn’t allow a direct valida-

tion of the simulation results. However, experimental measurements have been performed

by Nkodo and coworkers for slightly longer strands [4], at higher salt conditions, as shown

in Fig 5.4. Our results in high-salt conditions are very close to the values extrapolated

from the experiment, whose least-square fitting gives:

D = 5.525· N−0.585 (5.4)

whereD is the diffusion coefficient andN the number of nucleotides. Although the solvent

conditions are not exactly the same, our results can be compared quantitatively, with

decent accuracy, with values extrapolated from Eq. 5.4, because over 1.0M the viscosity

of the solvent can be assumed not to be massively affected by higher salt concentration [5].
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Figure 5.4: Least square fitting of the experimental results by Nkodo and coworkers, for ssDNA
in high-salt conditions [4].

The surprisingly good agreement shown in Fig. 5.5 suggests that the method described in

this chapter can actually be used for the quantitative calculation of diffusion coefficients in

saline solution. The same approach, in principle, can be fruitfully applied to other small

molecules (i.e. drugs).
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Figure 5.5: Comparison between the diffusion coefficient predicted by a least-square fit of
experimental results, and the results of our simulations inhigh-salt conditions
.

(a) (b)

Figure 5.6: An example of configurational fluctuation of ssDNA in solution: initial orderly
configuration of a polyadenine tetramer, (left), and configuration after 10ns equilibration, with
unstacking of one of the terminal residues (right).



6
Implementation of brownian perturbations

for isolated particles

6.1 Introduction

Modelling the brownian motion is and important part of a mesoscopic simulation of par-

ticles and polymer transport, because random agitation is the physical mechanism that

triggers diffusive processes.

The explanation and description of Brownian motion was studied and formalized by the

likes of Einstein, Langevin, Smoluchowski [61]. Langevin’s approach is to include ex-

plicitly the random force in the hamiltonian equations of motion of the colloid particle

(assumed to be spherical) thus obtaining a stochastic ordinary differential equation which

can be solved formally using the boundary conditionv(0) = v0,

dv
dt
= −βv + A(t)⇒ v − v0e

−βt = e−βt

∫ t

0
eβτA(τ)dτ (6.1)

78
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whereβ = 6πRη/M is the friction coefficient, m andR are the mass and the equivalent

hydrodynamic radius of the particle,η is the newtonian viscosity of the solvent, andA(t) is

the stochastic acceleration, that needs to be characterised for Eq. 6.1 to be of any practical

use. Given a certain simulation timestep∆t, what we need to know is thecumulativeeffect

of all the random accelerations caused by collisions occurred in the interval [t, t + ∆t], on

the resulting position and velocity. When the “random flight” condition∆t ≫ β−1 doesnot

apply, the displacement over the timestep is no longer purely random, but it’s affected by

the velocity at the previous timestep, which must be calculated as well. This can be often

the case in mesoscopic fluid-particle simulations [111]. Ifwe call r andr0 the particle’s

position vector and initial position, under the hypothesesthat

• the timescale of the random force variation is much faster than any other physical

quantity in play;

• energy equipartition will hold for both solvent molecules and particles, so the par-

ticle velocity distribution will also converge to a Maxwellian curve

the joint probabilty distribution function (PDF)f (d, u) for the vectors

d = r − r0 − β−1v0(1− e−β∆t) (6.2)

u = v + v0e
−β∆t, (6.3)

(from which displacement and velocity can be readily obtained) over a timestep∆t, is

given by [112]:

f (d, u) =
1

(2π)3( f g− h2)3/2
exp

[

−g|d|2 − 2hd · u + f |u|2
2( f g− h2)

]

, (6.4)

where the coefficients f , g, h are given by

f =
1
β2

kBT
M

(2β∆t − 3+ 4e−β∆t − e−2β∆t) (6.5)

g =
kBT
M

(1− e−2β∆t) (6.6)

h =
1
β

kBT
M

(1− e−β∆t)2 (6.7)

where T is the absolute temperature andkB the Boltzmann constant. Modelling brownian

fluctuations involves sampling six random numbersdx, dy, dz, ux, uy, uz, from the joint PDF
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given by Eq. 6.4. In the following, a numerical implementation is described.

6.2 Method

For numerical implementation, Eq. 6.4 must first be recast inthe canonical form of a

Gaussian multivariate.

When the vector of mean values is0 (as in brownian fluctuations) its general form is:

f (w) =
1

(2π)n/2|C|1/2exp

[

−1
2

wC−1wT

]

(6.8)

wherew is an n-dimensional row vector of random variables with zeromean, andC is the

n× n covariance matrix, simmetric and positive definite.The off-diagonal terms ofC are

responsible for the mutual correlations between the stochastic variables. If we write the

vectorw as:

w =
[

d u
]T
=

[

dx dy dz ux uy uz

]T
(6.9)

the exponent in Eq. 6.4 can be rewritten as:

wTC−1w,

where the inverse matrixC−1 and the covariance matrixC are found to be

C−1 =
1

f g− h2





g 0 0 −h 0 0

0 g 0 0 −h 0

0 0 g 0 0 −h

−h 0 0 f 0 0

0 −h 0 0 f 0

0 0 −h 0 0 f





(6.10)

and

C =





f 0 0 h 0 0

0 f 0 0 h 0

0 0 f 0 0 h

h 0 0 g 0 0

0 h 0 0 g 0

0 0 h 0 0 g





(6.11)
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The covariances (i.e. off-diagonal terms) are non-zero only between components of po-

sition and velocity along the same cartesian direction. Components along different direc-

tions are non correlated, and actually independent, their joint PDF being Gaussian [113].

Consequently, the distribution in Eq. 6.4 can be factorizedinto three identical distribu-

tions:

f (di, ui) =
1

(2π)2( f g− h2)
exp

[

−
gd2

i − 2hdiui + f u2
i

2( f g− h2)

]

, i = x, y, z. (6.12)

Now if we splitw into three vectors

wi =
[

di ui

]

, i = x, y, z, (6.13)

the Eq. 6.12 can be rewritten as canonical Gaussian bivariate (consisting of a displacement

and a velocity component each)

1
(2π)2|B|exp

[

−1
2

wT
i B−1wi

]

, i = x, y, z, (6.14)

where the covariance matrix and its inverse are:

B =





f h

h g



 , B−1 =
1

f g− h2





g −h

−h f



 , (6.15)

and their coefficients are already known. A common method for the implementation of

Gaussian multivariates requires the Cholesky factorization of the covariance matrix [23].

Namely, ifx = [x1, x2]T is a vector of independent normal variables, andL a lower trian-

gular matrix such thatLL T = B, with B positive definite, then the vectory = Lx follows

a Gaussian multivariate with 0 mean vector and covariance matrix B [113]. The matrixL

is the so-called Cholesky factor ofB.

Our bidimensional case is quick to derive, and we get:

L =





√

f 0

− h√
f

√

g− h2

f




, (6.16)
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that yelds the recipe for each of the component of displacement and velocity, fori = x, y, z:

di = xi1

√

f (6.17)

ui = xi1



−
h
√

f



 + xi2

√

g− h2

f
, (6.18)

wherexi1 andxi2 are independent normal variables that can be generated for example by

a Box-Muller or Marsaglia polar algorithm [114], provided that a good-quality random

generator is available [115].

The definition of the two random vectorsd, u, and the knowledge of their PDF, provide

the numerical scheme for the generation of a brownian trajectory. Be∆t the timestep

length, andr t andvt position and velocity at the timestep t, rearranging the terms in the

Eq. 6.2 we get:

r t+∆t = r t + β−1(1− e−β∆t)vt + dt (6.19)

vt+∆t = (e−β∆t)vt + ut, (6.20)

wheredt andut are correlated random vectors whose components are generated as de-

scribed above.

6.3 Calculation of relevant parameters from all-atom sim-

ulation

The model described in the previous section was implementedin a custom C code using

the WELL random number generator [115], and parametrised according to the data col-

lected from an all-atom 40ns molecular dynamics MD simulation of a ssDNA polyadenine

tetramer in saline water at 1.0M ion concentration, with timestep 1fs in order to allow a

comparison between the predicted diffusion coefficients. The resulting model parameters,

in SI units, are summarised in Tab. 6.1.

The resulting elements of the covariance matrix

B =





f h

h g



 (6.21)

are respectively:
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Table 6.1: Summary of brownian motion parameters for a
particle simulated at 298K and 1atm.

Parameter Symbol value Units

Hydrodinamic radius Rh 0.818· 10−9 m

Particle mass M 2.108· 10−24 Kg

Temperature T 298.0 K

Friction coeff. β 7.095· 10−12 s−1

Solvent viscosity η 0.97 · 10−3 Pa·s.

• f = 5.601· 103pm2

• g = 1.473· 103pm2ps−2

• h = 7.075· 101pm2ps−1

The diffusion coefficient predicted by the all-atom simulation wasD = (0.275± 0.003)·
10−9m2s−1.

The decorrelation time of the displacement vector autocorrelation wasτ = 1.2ps.

The decorrelation time and the diffusion coefficient from the MD simulation have been

used to validate the model.

First, the autocorrelation function (ACF) for the displacement vector was computed. The

resulting decay curve has a time constant of 0.136ps, very close to the value of 0.122ps

given by the all-atom simulation, as shown in Fig. 6.1.

Secondly, the diffusion coefficient of the brownian particle was calculated from the slope

of the window-averaged the mean square displacement (MSD) of a trajectory of 106 steps,

applying Einstein’s relation:

D = lim
t→∞

〈|r (t) − r0|2〉
6t

, (6.22)

and validated against the results from the all-atom simulation, again with good agreement

(Fig. 6.2).

6.4 Notes on the simulation of diffusing particles

The model here described is could be defined as purely kinematic, because apparently no

numerical integration is performed on the newtonian equations of motion of the particle.



6.4 Notes on the simulation of diffusing particles 84

0 0.2 0.4 0.6 0.8 1
t (ps)

0

0.2

0.4

0.6

0.8

N
or

m
al

is
ed

 d
is

pl
ac

em
en

t A
C

F
(t

)

MD simulation (exp. fitting)
simulated Brownian displacements

Figure 6.1: Computed autocorrelation (solid line) and exponential fitting of the ACF from MD
simulation (dotted) for the brownian displacements calculated with a timestep of 0.001ps= 1 f s.

In fact, the brownian perturbation applied at every timestep ∆t mimics the total effect of

a large number fluctuations (collisions) over a span of time equal to the timestep itself.

The Chandrasekhar model is an analytical integration of thestochastic Langevin equa-

tions of motion, which yelds the resulting displacements and velocity perturbations for a

given timestep. The solution of a stochastic differential equation is not a function, but a

probabilty density. Therefore, the resulting brownian displacements and velocity pertur-

bations are opportune random variables, whose probabilty density is a function of several

parameters (fluid viscosity particle diameter, and timestep). In this respect, the model

can be seen as a direct implementation of an analytical solution, rather than a numerical

integration. Now if we take a closer look at the shape of Eq. 6.19

r t+∆t = r t + β−1(1− e−β∆t)vt + dt

vt+∆t = (e−β∆t)vt

︸                    ︷︷                    ︸

“DET ERMINIS T IC′′

+ ut
︸ ︷︷ ︸

RANDOM

we can see that for timesteps comaprable with 1/β, the perturbations are not purely ran-

dom, but is the sum of two contributions: a random one, and onethat depends on the
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Figure 6.2: Window-averaged MSD (solid line) and linear fitting (dotted) for a trajectory of
105 timesteps of 10ps each. The slope of the line is proportionalto the diffusion coefficeint. The
theoretical diffusion coefficient, 0.275· 10−9m2/s is correctly reproduced.

velocity at the previous timestep. That implies that the particle partially remembers its

previous velocity, but this effect decays rapidly (exponentially) as the timestep becomes

longer (and therefore we integrate in time over a larger timestep, where more collisions

happen with solvent molecules). When the timestep length increases, the exponential

terms become very small and we reach the random flight regime.As a result, trajectories

simulated with very short timesteps look much more like regular lines, whereas for longer

timesteps the trajectory becomes extremely noisy, as shownin Fig. 6.4.

It can be noted that the necessity to include the perturbations on the velocity only

arises when the timestepping in comparable with the characteristic time. When the timestep

gets “long enough”, the exponential in Eq. 6.19 decay to zero, i.e. during the timestep the

particle undergoes enough collision to lose memory of the initial velocity, the random

flight condition holds and the velocity at each timestep becomes purely random. In order

to quantify the timestep length that ensures random-flight conditions, we propose to use

the comparison between two estimates of the diffusion coefficient D. On on hand we have

the Stokes-Einstein formula:

D =
kBT

6πηRh
, (6.23)

and on the other hand, we can use the Einstein relation, whichis only correct under the
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Figure 6.3: Effect of the timestep on the level of correlation for brownian perturbation: a
trajectory generated with short timestep of 1fs, (left) andanother generated with a longer timestep
of 2500fs (right). In both cases the characteristic time of the motion of the brownian particle was
1/β = 0.12ps.

assumption that the random-flight condition holds:

DER = lim
t→∞

〈|r (t) − r0|2〉
6t

. (6.24)

The idea is that the two estimates will agree in random-flightconditions, i.e.DER/D ≃ 1,

and disagree otherwise. The results are shown in Fig. 6.4. The empirical rule is that the

random flight hypotheses is satisfied for∆t ≥ 20τ. The results obtained for timesteps

much shorter than the characteristic time, curiously, showa good agreement with the cor-

rect value. However, this is more an insight in the mathematical behaviour of the chosen

model, rather than a physically meaningful result: timesteps so short would contradict the

hypotheses under which the equations used here were derived.
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Figure 6.4: Plot of the ratioDER/D between the diffusion coefficients predicted by the Einstein
relation and the Einstein-Stokes formula, for different timesteps.



Part IV

Multiscale modelling of nucleic acids
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7
Mapping atoms onto coarse-grained sites

The coarse graining procedure can be divided into two main steps. First, the atomistic

model is mapped topologically onto a reduced set of CG "sites" (or superatoms). Sec-

ondly, the interaction potentials are determined for the reduced model in terms of bonded

and non-bonded interactions. In the following we describe the approach we have used to

model water and DNA.

7.1 Definition of the reduced model

A very straightforward method for the choice of the CG sites position is to locate them

onto the centre of mass of a molecule or chemical group. In this way, the "mapping

operator", i.e. the function that links the atomistic coordinates the the coarse-grained co-

ordinates, is linear (more precisely, it’s a weighted average of the atomistic positions).

Nucleic acids are biopolymers whose monomers, called nucleotides, are made of a phos-

phate group, a ribose or deoxyribose, and a nitrogenous base. DNA is a polymer of

adenine, guanine, cytosine and thymine; RNA replaces thymine with uracil. Here we will

focus on DNA only.
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Figure 7.1: Schematic representation of DNA double strand structure, and base pairing. URL:
http://rh.healthsciences.purdue.edu/vc/theory/dna/index.html

Phosphate and sugar build the polymer backbone, whilst the bases are lateral groups.

Each base can interact in a highly specific way with its complementary, forming hydrogen

bonds that act as a “glue” between the single strands to form adouble helix. Complemen-

tary base pairs are Adenine - Thymine, (A-T) and Guanine - Cytosine (G-C). A schematic

representation of a DNA double strand is given in Fig. 7.1

The sugar ring is made of four carbon atoms and one oxygen atom. The carbons are

usually labelled as C1’-C2’-C3’-C4’. A fifth carbon bound toC4, and called C5’. (The

apostrophes are not a standard chemical notation, but are used in the CHARMM notation

to distinguish sugar atoms from the others). All sugar groups along a single strand are

always aligned along a specific direction, identified by the position of C3’ and C5’ carbon

atoms; the direction can be either 3’-5’ or 5’-3’. The two strands of a double helix are

always antiparallel, i.e. one is always a 3’-5’ and the othera 5’-3’ type [116].

The most spontaneous starting point for the coarse-graining of a polymer is, of course,

the modelling of its monomers. In the case of DNA, usually themost widely adopted CG

schemes have 1,2, or 3 points per nucleotide [117].

For our CG model, we have chosen a 3 point mode, where phosphate, deoxyribose and

nitrogenous base are modelled by one site each, as illustrated in Fig. 7.1.

A further consideration is needed when coarse-graining an atomistic model such as



7.1 Definition of the reduced model 91

(a) (b)

Figure 7.2: Example of three-point-per-residue model of a nucleotide (here, Adenosine): the
atomistic structures of phospate, deoxyribose and nitrogenous base (left) are mapped onto one
bead each (right).

those produced for the CHARMM atomistic force field. It is customary, in such cases, to

"patch" (modify) the terminal monomers of the chain, namely"capping" the (3’) and (5’)

ends (that would normally be bonded to the neighbouring residues) with hydroxyl groups

(O-H) after removing the phosphate at the 5’ end of the chain.In the present work, for the

parametrisation of the CG interaction sites, no distinction was made between the terminal

and non-terminal residues along the DNA chains. Water molecules were modelled with

1 site per molecule, located in the centre of mass. The all-atom DNA chains used in this

work were created using the MakeNA server, based on the NAB language for molecular

manipulation [118].

7.1.1 Calculation of atomic groups’ centres of mass

In the computation of the group centre of mass, every atom coordinate is weighted by the

atom mass. Luckily, like most biomolecules, nucleic acids are also made of few elements

(in this case carbon, nitrogen, oxygen, hydrogen, and phosphorus), which simplifies the

computation. All four nucleotides share two common groups,phosphate and deoxyribose,

and are characterised by the third, the nitrogenous base. The atomic masses and the

resulting masses of the CG sites obtained using a 3-point-per-residue mapping are listed

in Tab 7.1 and Tab. 7.2. Sodium ions were modelled explicitly, and clearly the only option

was a 1-point-per-atom map.
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Element Symbol Mass (g/mol)

Carbon C 12.0107
Hydrogen H 1.0079
Nitrogen N 14.0067
Oxygen O 15.9994
Phosphorus P 30.9737
Sodium Na 22.9897
Chlorine Cl 35.4532

Table 7.1: List of elements that form nucleic acids, water and the most common ions used in
MD simulations. Masses are expressed in g/mol.

CG site Symbol Mass (g/mol)

Adenine A 134.122
Thymine T 125.108
Guanine G 150.121
Cytosine C 112.101
Deoxyribose SUG 116.117
Phosphate PHO 62.973
Water WT3 18.05
Sodium SOD 22.990

Table 7.2: List of coarse-grained sites for the CG model, and theirmasses in g/mol.

7.1.2 Topology of the CG model

The term “topology”, when applied to particle models such asthose used in molecular dy-

namics, refers to the way particles are interconnected by covalent bonds. The mechanical

properties of the bonds are modelled as opportune “springs”(e.g. harmonic potentials)

between pairs of bonded atoms. Likewise, angular and torsional rigidity are described by

angular springs, involving triplets of atoms (necessary tounivocally identify a bending

angle), and torsional springs, involving quadruplets of atoms (to identify two planes and

the corresponding torsion angle).

If we see the molecule as a “graph”, it is easy to notice that whilst the identification of

bonds and angles is quite straightforward, the identification of dihedrals becomes more

and more demanding as the topological complexity increases, because of the high num-

ber of possible combinations of quadruplets of consecutively bonded atoms. This task is



7.2 Implementation 93

usually carried forward with the help of dedicated softwarelibraries, such as the Psfgen

package available in VMD [119].

An example: a single adenine nucleotide on a ssDNA chain is represented in an all-atom

simulation as a set of 30 atoms, whose bonded interactions are modelled by 33 bonds, 57

angles and 92 dihedrals. In the case of a 3-point coarse grained models,reducing the num-

ber of particles leads to a great topological simplification. The topology recognition is

more conveniently performed in three steps: first, a bond list is generated from the known

residue list; secondly, the bond list is used to generate an angle list (every angle can be

seen as formed by two distinct bonds sharing one atom); thirdly, the angle list is used to

generate the list of dihedrals (every dihedral can be seen asformed by two distinct angles

sharing two atoms).

7.2 Implementation

In practical application, the coarse-graining procedure takes as input the atomistic data,

in terms of sets of trajectory snapshots, each containing the coordinates of the atomistic

system, the forces acting on each atom, and some other thermodynamic parameters, such

as temperature. The output is a reduced system of CG sites, and their mutual interaction

potentials. The MD software used in this work (LAMMPS, by Sandia National Laborato-

ries, USA) is open-source, constantly updated and rather mature, having been developed

for over a decade. It is designed to be easy to modify, but it’salready extremely flexible

"as it is". For the purposes of this work, almost all needed simulation capabilities were al-

ready available. However, LAMMPS only comes as a highly efficient parallel simulation

engine, with no building, pre- or post-processing capability whatsoever. A considerable

effort was hence devoted to the development of the required pre-and post-processing

tools.

7.2.1 Estimation of datafile size

Our simulation scenario comprised long atomistic trajectories, in the order of tens of

nanoseconds, performed with timesteps of 1-2 femtoseconds, with snapshots taken with a

sampling stride in the order of 1 picosecond. The resulting datafiles contained in the order

of approx. 105 configurations, for a total file size up to few tens of Gigabytes, which can

be cumbersome to handle but does not cause any serious feasibility problem.
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7.2.2 Format conversion

LAMMPS’ output routines are very flexible, and allow the dumping of prescribed subsets

of system particles and their properties. This is extremelyuseful to define a taylor-made

output that only stores what is strictly necessary. This flexibility also implies that a dump

file can only be parsed in a context-dependent way, and post-processing routines must take

into account the chosen format for each simulation. The output can be in binary or text

format, the former being much faster, but also prone to compatibility problems because of

the possible architecture differences between the CPUs of HPC supercomputers, used for

the simulation, and desktop PCs,used for the post-processing. Because of such problems

we have used text output only for the dumping of simulation snapshots. Appropriate tools

have been implemented in Python and C for the conversion fromLAMMPS data files to

the commonly used PDB and PSF file formats for molecular coordinates and topology,

which can be read by VMD.

7.2.3 Physical units

For biomolecular simulations, LAMMPS operates with a peculiar set of physical units.

We have used such units for all the quantities computed by ourcode, and presented in the

remaining chapters of this thesis. The units are summarisedin Tab. 7.2.3.

Quantity Units
Distance Angstroms
Time femtoseconds
Mass grams/mole
Energy Kcal/mole
Velocity Angstroms/femtoseconds
Force Kcal/mole-Angstroms
Temperature Kelvin
Pressure atmospheres
Charge proton chargee

Table 7.3: Summary of physical units used by LAMMPS and also adopted for the simulations
performed in this thesis.



8
Coarse-Graining of Water

In this chapter we describe the modelling of the coarse-grained solvent, generated from

the initial all-atom simulation of the Price-Brooks TIP3P model that was described and

studied in the previous parts of this thesis.

8.1 Coarse-Grained mapping of water onto a one-point

model

The triatomic, rigid TIP3P water molecule was mapped onto a single CG site situated in

its centre of mass. The electrostatic charges were not included explicitly in the CG model,

and their effect was therefore implicitly incorporated in the overall pairwise potential to

be determined. Other authors have pursued a different route and located the geometric

center of the molecule, in order to account for the unbalanced mass distribution within a

water molecule’s atoms (an oxygen atom is about 16 times heavier than a hydrogen). As

it will be shown in the next sections, however, our approach is nevertheless effective in

reproducing the fluid structure.
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8.2 Method and simulated cases

The all-atom simulations were performed using the LAMMPS MDcode by Sandia Na-

tional Laboratories (USA) in combination with the CHARMM force field. Pressure and

temperature were controlled using a Nose-Hoover thermostat and barostat. Long-range

electrostatic interactions were calculated with a PPPM algorithm, whilst the cutoff radius

for Lennard-Jones interactions was set at 10.0Å.

8.2.1 All-atom simulation

The all-atom simulations were performed using the LAMMPS MDcode by Sandia Na-

tional Laboratories (USA) in combination with the CHARMM force field. Pressure and

temperature were controlled using a Nose-Hoover thermostat and barostat. Long-range

electrostatic interactions were calculated with a PPPM algorithm, whilst the cutoff radius

for Lennard-Jones interactions was set at 10.0Å. A cubic water box of 40Å, containing

5943 atoms (1981 molecules), was equilibrated for 1ns in theNpT ensemble at 298K and

1 atm, with a timestep of 0.5 fs,and then simulated for 4ns in the NVT ensemble at 298K,

with a timestep of 2 fs. Configurations and atomistic forces were saved every 2ps, for a

total of 2000 configurations.

8.2.2 Coarse-graining procedure

Mapping molecules onto 1-point models implies that the resulting CG system contains

no bonded interactions, and its physical behaviour dependsuniquely on the non-bonded

pairwise interactions. We have used our implementation of the MSCG method in order

to parametrise the resulting interaction potential for CG water molecules. The chosen

cutoff radius was 10.0Å, and the interactions were discretised on agrid with step 0.01Å,

for a total of 1000 unknowns. Notice that in this case, havingonly one possible type

of pair interaction (water-water) greatly reduces the number of unknowns. The MSCG

problem was solved using a block-averaging approach as described by [18]. The 2000

configurations were partitioned into 200 blocks of 10 configurations each, and the size of

the matrix associated with each block’s linear system was 178290× 1000. The overde-

termined system associated with each block was solved in theleast-squares sense using

the solver provided by the Linalg package in the Python numerical module Numpy. The

resulting solution vectors were then averaged over all blocks.
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(a) (b)

Figure 8.1: A snapshot of the all-atom (left) water box used for the atomistic simulations, and
the resulting 1-point coarse grained water box (right).

8.2.3 Validation of the coarse-grained potential

The output of the MSCG method is a tabulated distance-dependent force that models the

CG sites interactions by trying to reproduce the overall force arising from the underlying

all-atom interactions. The computed tabulated force was then fed back into a LAMMPS

simulation of a CG water box of 40× 40× 40Å, which was then simulated at 298K in

the NVT ensemble with a timestep of 2fs in order to allow an easier comparison with

the atomistic simulation. LAMMPS has the capability to takeas input a force table and

then perform cubic spline interpolation in order to calculate forces at distances comprised

between two grid points. The original tabulated potential and the resulting interpolation

are shown in Fig. 8.2.3.

The shape of the force-distance relation shows one apparently curious feature. The re-

pulsive force becomes very strong approaching an intersitedistance of 2Å, but then drops

considerably for even shorter values ofr. This is clearly unphysical, as we would expect

the finite size of the molecules to cause even greater repulsion once the electronic shells of

the atoms are close enough to collide. The reason can be readily seen in Fig. 8.2.3, where

the empirical density function ofr has been computed over all molecules and sampled

configurations. Values ofr which are smaller that 2Å, i.e. the position of the “colli-

sion peak” in the force table, almost never occur. Thereforethe corresponding regions of
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Figure 8.2: Tabulated force as computed using the MSCG method, and as interpolated by
LAMMPS; the constant extrapolation to the core region is indicated with a dashed line.

force-field parametric space are very poorly guessed. On onehand, this is an unavoid-

able limitation of the force-matching approach: the centres of mass of the coarse-grained

chemical groups will never spontaneously sample those regions of phase space where

their positions are strongly overlapped, because of the huge repulsive forces and the steric

hindrance caused by the finite size of the molecules in the underlying all-atom model. On

the other hand, however, the problem can be easily solved by “manually” patching the

computed force table with highly repulsive short-distanceforces. This is for example the

course of action suggested by Noid and coworkers [18]. The parameter chosen for the

validation of the model is the radial distribution function(RDF) of water’s oxygen atoms.

The radial distribution function has been chosen because it’s been a long-standing tradi-

tion to use it as the “structural fingerprint” for fluid systems [2, 120, 121]. As discussed

previously, in Chapter 4,the RDF of particular atoms is a distinctive property of a fluid.
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Figure 8.3: probability density function of a certain intersite distance to occur between two
coarse-grained water molecules.

Moreover, experimental data are available for comparison,although it is also well-known

that TIP3P models fail to perfectly reproduce water structure, characterised by a RDF with

three characteristic peaks of decreasing height [97]. Being simpler than the atomistic rep-

resentation, a CG model cannot hope to improve over the limitations of the underlying

all-atom model. However, as shown in Fig 8.2.3, the resulting RDF approximates very

well the structure of Price-Brooks TIP3P, which is in turn a reasonable approximation of

real water.

8.3 Results and discussion

The overall agreement between the structure of the all-atomand CG water models is good,

with a good positioning of the first peak and a loss of the second and third peak that can
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Figure 8.4: radial distribution function of all-atom and coarse-grained water models

be considering acceptable, considering that even some all-atom models cannot capture

these features [95]. The resulting water model has been usedfor the simulation of coarse-

grained models of DNA. The characterisation of the interactions of water sites with other

CG sites of the DNA model will be discussed in the next chapter.



9
Coarse-Graining of DNA

In this chapter we describe the coarse-graining strategy adopted for DNA molecules. In

the case of nucleic acids, the structural complexity is clearly much greater than for simple

water molecules. Several have been exploited in order to reduce the computational cost

required for the parametrisation of the coarse-grained force field. In particular, the expen-

sive MSCG approach has only been used for pairwise interactions; Bonded interactions

(bond stretching, angle bending and dihedral torsional forces) have been parametrised

separately according to the method previously described inChapter 3. With this (rea-

sonable) simplifying hypothesis, the number of unknowns inthe least-squares problem

(Eq. 3.64 was reduced to half of the original value.

9.1 Method and simulated cases

All-atom simulations for the present chapter have been performed using the LAMMPS

molecular simulator [25] and the CHARMM force-field [36]. For all simulations, the

cutoff for the pairwise interactions was set at 10Å, and the long-range electrostatic forces

were solved using a Ewald summation, and bonds containing hydrogens were constrained
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with SHAKE [41]. The resulting trajectories were postprocessed using custom C and

Octave scripts, and the VMD visualisation software [119]. The Force-Matching technique

was applied using our in-house implementation of the MSCG method, written in Python,

making extensive use of the Numpy and SciPy numerical libraries [17, 18]. Numerically

demanding subroutines, such as the loops for the calculation of pairwise interactions, were

implemented in C and linked to the Python code using the Weavesubpackage contained

in SciPy.

All-Atom simulation of dsDNA

For this study, a decamer of double-stranded B-DNA made of Adenine-Thymine base

pairs was minimised and equilibrated in a rectangular box of40×40×60Å, containing

3487 PME-TIP3P water molecules [93] and 18 Na+ ions. The inclusion of sodium ions is

absolutely necessary in order to neutralise the high negative charge of the DNA molecule.

The downside is the introduction of one additional site typein the system, which causes

the number of possible heteroatomic pairs to raise from 15 to21. The number of un-

knowns in the linear system described by Eq.3.64 grows accordingly. The system was

then simulated for 10ns at a constant temperature and pressure of 298K using a Nose-

Hoover thermostat, with a timestep of 1fs. Atomistic forcesand positions were stored

every 2ps, for a total of 5000 configurations.

9.1.1 Coarse-Grained mapping of DNA onto a 3-point-per-residue

model

For the coarse grained solvent, we decided to use a 1-point model with a single interac-

tion site for the whole molecule, located in its center of mass, as discussed in the pre-

vious chapter. It must be noted that the results of the previous chapter are not sufficient

for the parametrisation of the solvent: all pairwise interactions between water sites and

coarse-grained DNA sites had also to be determined. However, the pre-parametrisation

of water-water interactions allowed a great simplificationin the numerical solution of

the least-squares problem, because the contributions of all those water molecules that

were only interacting with other water molecules (which were the vast majority) could

be excluded. The possibility to use the geometric center instead was discussed for exam-

ple by Noid [18]. The pairwise interaction potential was determined by force matching.

Coulombic interactions were not included explicitly in theCG potential. For the DNA,
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the choice was a 3-point per residue model, where the interaction sites model respectively

the phosphate group, the ribose rings and the nitrogenous bases. Other authors have pur-

sued different routes, for example 1-point-per-residue models. However in such cases

the drastic geometrical simplification requires ad-hoc adjustments in order to mimic the

base-pairing interaction, which is highly directional in nature, and cannot be captured by

radial interactions in a 1-point model (and actually, it proves a challenge even for 3-point

models) [78].

(a) All-atom DNA model (b) 3-point-per-residue CG model

Figure 9.1: Comparison between the All-Atom and Coarse-Grained DNA models

9.1.2 Parametrisation of bonded interactions

All bonded interactions were parametrised in advance from their equilibrium fluctuations,

assuming a harmonic functional form for both bond-stretching and angle-bending poten-

tials, as explained in Chapter 3. As a first approximation, the contribution of backbone

dihedral angles was neglected, since the involved forces are usually less relevant than for
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bonds and angles [13]. The resulting probability distribution and least-squares fitting for

each bond and angle are shown in Fig. 9.2 and 9.3. The overall good agreement demon-

strates the validity of the harmonic approximation, as already pointed out by [88]. The

numerical values for the parameters are summarised in Tab 9.1 and Tab 9.2 . One observa-

tion is that in some cases the probability distribution deviates from the expected Gaussian

behaviour and shows two peaks instead of one. This can be explained with the fact that

the underlying atomistic structure is fluctuating aroundtwo possible metastable configu-

rations, which correspond to two (slightly) different positions for the centres of mass of

the involved atomic groups.
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Figure 9.2: Empirical probability distribution for the bonds of a coarse-grained 3-point-per-
residue model of DNA.

9.1.3 Solution of the least-squares problem

The cutoff radius for the pairwise interactions was set to 10.0Å, with agrid step of 0.2Å.

The 6 different types of sites generate 21 possible pairwise interactions and the resulting
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Figure 9.3: Empirical probability distribution for the angles of acoarse-grained 3-point-per-
residue model of DNA.

system of MSCG equations had 1050 unknowns. Each site generates 3 independent equa-

tions, one for each Cartesian direction. However, it is useful to note that nearly 99% of

the system’s sites are CG waters, and most of them are only interacting with other CG

waters. The situation is depicted more clearly in Fig. 9.4. Since most water molecules

only interact with other water molecules, the corresponding matrix rows would contain

non-zero coefficients only for that (small) portion of theφ vector that contains the param-

eters of the water-water intersite forces, which are the parameters wealreadyknown from

the separate parametrisation of the solvent performed beforehand in the previous chapter.

The adopted approach removes “redundant” equations, but greatly reduces the number of

equations that each saved configuration can contribute. Theminimum number of config-

urations per block must be increased accordingly, in order to ensure overdetermination of

the linear system of Eq. 3.64.
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ID Bond type Kb r0

1 SUG-A 25.539264 5.144872

2 SUG-PHO 5.426890 3.999550

3 SUG-T 18.627567 4.625684

Table 9.1: Bond parameters for the CG DNA model;Kb is in Kcal/(mol · Angstrom2), r0 in
Angstroms.

ID Angle type Ka θ0

1 A-SUG-PHO 8.296963 1.935816

2 SUG-PHO-SUG 38.551760 1.633703

3 PHO-SUG-PHO 15.942489 2.092407

4 T-SUG-PHO 3.603392 1.881817

Table 9.2: Angle parameters for the CG DNA model;Ka is in Kcal/(mol · rad2), θ0 in radiants.

Once we excluded water sites, the resulting system had only 76 sites (58 for the DNA

and 18 for sodium ions), therefore each snapshot generated 228 equations. The 5000

configuration were partitioned into 125 blocks of 40 configurations each. Each block

of 40 timesteps contained 9120 equations in 1050 unknowns, enough to make the linear

system overdetermined. The 5000 configurations were partitioned into 125 blocks of

40 configurations each. After the exclusion of the matrix rows corresponding to water

molecules, each block contained 10120 equations in 1050 unknowns. It must be noted

that we only excluded theequations(matrix rows) generated by water molecules, but their

contributions to the forces on all remaining CG sites were computed as usual. Therefore

this apparent simplification doesn’t cause any loss of physical consistency.

The forces associated with CG bonded interactions (alreadyparametrised as explained

in the previous section) were precomputed for each timestepand subtracted from the

vector of known terms. Each of the 125 blocks was solved independently and the results

were averaged over all blocks. The resulting potential of mean force are summarised in
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(a) DNA decamer surrounded by water (b) Water molecules actually interacting
with the DNA

Figure 9.4: Portion of water box which is within 1 cutoff radius from the DNA decamer

Figg. 9.5, 9.6, 9.7, 9.8, 9.9. One final remark is that all discretised pairwise forces were

represented as arrays of opportune delta functions. The resulting profile of the force table

is a stepwise continue function. Other authors produced tabulated potentials using spline

interpolations, but we discarded this option for practicalreasons related to the MD code

we used for all simulations: LAMMPS only supports tables of discretised values and

automatically produces its own spline interpolation.

9.2 Simulation of the CG system

The CG system, mapped and parametrised as described in the previous sections, was

simulated for 1ns at 298K in the NVT ensemble, with a timestepof 1fs. The temperature

was controlled using a Nose-Hoover thermostat. The obtained configurations were used

to calculate the molecule’s Root-Mean-Square-Displacement (RMSD) over time. Usually

the RMSD is commonly used as a measure of the level of equilibration reached by a

molecule [23]. A stabilised value for the RMSD is related to the molecule’s capability to

fluctuate around an equilibrium configuration. We have decided to use the RMSD value

over time in order to compare the equilibrium behaviours of the CG and AA systems over

a time window of 1ns, and the results are shown in Fig 9.11. Thehelical geometry is at

least qualitatively preserved as shown in Fig. 9.12.
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Figure 9.5: Potentials of mean force for pairwise interactions of the coarse-grained system

9.3 Discussion

The results for the CG system show that the equilibrium configuration is still not com-

pletely stable and tends to unzip after about 1ns. At the nanosecond timescale, the CG

structure preserves its helical shape but it tends to be farther away from the initial crystal

structure in comparison to the all-atom model (the RMSD stabilised on a higher value).

This can be explained by the higher flexibility of the coarse-grained chain due to the ex-

clusion of torsional dihedral potentials, which were excluded on the ground of the low

energy associated with polymer torsional degrees of freedom [13, 122]. They should be

included in future improvements of this model.

However, our approach succeeded in his main task, i.e. proving capable of handling a

structurally complex system and generate a plausible forcefield for bonded and pairwise
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Figure 9.6: Potentials of mean force for pairwise interactions of the coarse-grained system

interactions. The comparative stability of the double helix is remarkable especially be-

cause the MSCG was capable of generating the expected attractive potential for Adenine-

Thymine interactions at short range, without relying on anyad-hoc hypotheses of sort,

unlike other models [78]. In particular, for systems in the order of 10000-20000 parti-

cles, which are big enough for the simulation of many small biomolecules (DNA strand

and small proteins), the postprocessing of tens of thousands of configurations can be per-

formed in a matter of hours even on a normal desktop PC.

Moreover, DNA can be considered as a particularly hard molecule to coarse-grain,

and the method can be much easier to apply to other types of biomolecules. Nitrogenous

bases (in our model, Adenine and Thymine) are planar chemical groups, and therefore

the loss of geometrical detail, when replacing them with spherical beads, is considerable.

Furthermore, the two strands of the double helix are hold together by highly directional
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Figure 9.7: Potentials of mean force for pairwise interactions of the coarse-grained system

hydrogen bonds between complementary bases, which are replaced in the CG model by

much simpler radial interactions. Therefore, base-pairing interactions are not easy to

reproduce accurately in a CG system.

Taking into account the above mentioned difficulties, the CG DNA model performs

promisingly, especially because it’s possible to see room for improvement in several re-

spects. The explicit modelling of the torsional degrees of freedom of the DNA backbone

will help keep the alignment of the complementary bases and stabilise the base pairing

and therefore the double helix.

Further refinement of the interactions can be achieved by processing more atomistic con-

figurations. The upper limit is set by storage space and processing speed: with our setup,

for the system investigated in this chapter, 1000 configurations take approx. 1GB of stor-

age space and can be processed in about 1h.
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Figure 9.8: Potentials of mean force for pairwise interactions of the coarse-grained system

In addition, other authors have recently proposed a method based of Bayesian inference

for the refinement of the force-field produced by the MSCG method, which can improve

the physical consistency of the CG model [91].
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Figure 9.9: Potentials of mean force for pairwise interactions of the coarse-grained system
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(a) (b)

Figure 9.10: Comparison between the all-atom and the CG simulationboxes. The number of
particles was reduced from over 15000 to about 5000.
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Figure 9.11: Comparison between the RMSD for the atomistic and CG system, over a time
window of 1000ps.
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(a) Initial configuration (b) (c)

Figure 9.12: Equilibrium fluctuation of the CG DNA model. The helical geometry is at least
qualitatively reproduced.
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10
Concluding remarks and suggestions for

future work

The work described in this Thesis can be divided in two parts.

First, we have used Molecular Dynamics in order to gain a quantitative understanding

of diffusive processes at the nanoscale, focusing on DNA in aqueoussolution, using the

widely adopted CHARMM potential in combination with the TIP3P-PME water model

[36, 93].

In particular, the properties of model water in MD simulations in different simulation

conditions were studied. Furthermore, the results obtained from the study of the wa-

ter model were used for the simulation of diffusion coefficients of single-stranded DNA

molecules.

As demonstrated by the good quantitative agreement betweenthe computed diffu-

sion values and the empirical values predicted by availablemodels, the techniques imple-

mented and tested in this thesis establish a reliable computational methodology for the

study of fluid viscosities and the diffusive properties of small biomolecules. Such meth-

ods would be readily applied to other biomolecular systems of small diffusing organic

117



Concluding remarks and suggestions for future work 118

molecules, such as drugs.

The second part of this thesis focussed instead on the implementation and testing of

a recently developed method for the parametrisation of coarse-grained force fields from

atomistic simulations, called the Multiscale Coarse-Graining Method, or MSCG [17].

The idea behind the method is to parametrise coarse-grainedinteractions by matching the

total force on the coarse grained sites, as predicted by the underlying fine grained all-atom

model.

The method was implemented in an object-oriented software toolkit written in Python.

Where possible, all subroutines dealing with numerically intensive tasks where re-written

in C, in order to optimise performance. The toolkit was designed to be used with the

LAMMPS molecular dynamics code by Sandia National Laboratories (USA) [25], but it

can be expanded very easily in order to be interfaced with other softwares.

We tested and validated the method by performing a one-point-per-molecule coarse

graining of TIP3P-PME water. The resulting model was able toreproduce the fluid struc-

ture (its radial distribution function) in a nearly quantitative way.

Finally, we applied the MSCG method to a more demanding problem, namely the

parametrisation of a 3-point-per-residue coarse-grainedmodel of double-stranded DNA.

DNA is probably one of the most difficult biomolecules to coarse-grain, for several rea-

sons. Its nitrogenous bases are chemical groups with a planar structure, which is not

well approximated by spherical CG sites. Furthermore, the DNA double helix is made

of two complementary strands which are not covalently bonded, but interact instead

through highly specific and directional hydrogen bonds between complementary base

pairs (Adenine-Thymine and Cytosine-Guanine), a situation that is rather difficult to re-

produce by means of spherical interaction sites and radial pairwise potentials. In synthe-

sis, the complexity of DNA internal interactions suffers the great geometrical simplifica-

tion of the coarse-graining.

As a consequence, the agreement of the obtained CG model withthe atomistic struc-

ture was still not quantitative. In particular, the helicalgeometry was qualitatively pre-

served and the RMSD of the coarse-grained model was stable over the trajectory, but

higher than its all-atom counterpart.

The parameter estimation is therefore promising but still improvable. In particular, the

MSCG method relies on the quality of the phase-space sampling of the atomistic system’s

simulated trajectory, which is well-known for being difficult to achieve even on the longest

simulation runs.
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On the other hand, the MSCG method is very effective in systems of almost spherical

molecules, where radial interactions are a good approximation and all the grid points of

the discretised potential (outside the repulsive core region) can be sampled abundantly.

The method described in Chapter 8 for the coarse-graining ofwater can be easily adapted

to other fluid systems, such as CO2 or methane, as long as all-atom models are available.

10.1 Evaluation of computational cost

The lower computational cost of CG simulations is due to two main factors: first, the

number of atoms decreases; secondly, the greater mass of theresulting particles allows

the use of larger timesteps without jeopardising the energyconservation.

It must also be noted that water is a rather unfavourable case, because even a 1-point

model can only reduce the number of particles by a factor 3, compared to the factor 10

for the 3-point model of the DNA chain.

This is all the more relevant considering that the vast majority of atoms in a biomolecular

simulation (around 90%) belong to water molecules, and in actual simulations, almost

80% of the CPU time is spent calculating pairwise interactions.

As a benchmark, we have clocked the required CPU time for 1000iterations on a single

core (AMD Turion TL-52 1900 Mhz). Unfortunately, when the original simulation were

performed, we didn’t systematically store information about CPU time for the all-atom

parallel runs. However, LAMMPS is a software specifically designed to run on large

clusters. Therefore, it’s performance scales nearly linearly for a number of processors up

to a few hundreds [25]. On Cranfield University’s HPC supercomputer, equipped with

Intel EM64T Xeon 51xx (Woodcrest) 3.0 GHz CPUs, an all-atom biomolecular simula-

tion of a system of 15503 particles took 25893 seconds (a little more than 7 hours) to

complete 106 iterations (roughly one nanosecond of simulated time), on 16 cores. As

shown in Tab. 10.1 the computational cost of the benchmark CGsimulation was much

lower than its all-atom counterpart, roughly by a factor 20.Since the particles involved

in the CG simulation are also considerably heavier, the timestep length can also be ex-

tended. The longest achievable timestep depends on the system being simulated, and it

was found to be approximately four times longer than the all-atom simulation timestep,

according to Zhou and coworkers [88]. The combination of reduced computational cost

and extended timestep implies a possible 80-fold gain for the longest feasible simulation

timescale. This can push the timescale limit from the current hundreds of nanoseconds to
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Table 10.1: Comparison of required computa-
tion time for the calculation of 1000 timesteps, on 1
CPU, for the atomistic system and the correspond-
ing CG representation of a cubic box of water of
40× 40× 40 Angstrom. For comparison purposes,
both simulations used the same timestep of 2fs.

System # Particles CPU time (s)

All-Atom 5943 323.965

Coarse-Grained 1981 16.348

the milliseconds, which is for example the folding timescale of some small proteins [88].

10.2 Future work

Room for improvement in the modelling of DNA can be seen in twomain respects.

First, our model did not include explicitly the torsional degrees of freedom of the DNA

backbone, which were initially neglected because they involve energies and forces lower

than angle-bending and bond-stretching interactions [13]. Their inclusion would stiffen

the backbone and prevent it from fluctuating too far from the configuration predicted by

the all-atom system, increasing the alignment of complementary bases and stabilising the

base-pairing interaction.

Secondly, several authors have recently proposed various refinements that may im-

prove the parameter estimation, for example using statistical Bayesian inference tech-

niques, and including a more accurate treatment of Coulombic interactions [89, 91].

Therefore, the methodology described in this thesis, and the developed tools, can

offer a very promising platform upon which future work on multiscale modelling of

biomolecules can be built.
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