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Abstract

Molecular Dynamics is a very powerful technique for the stigation of matter at nanoscopic
level. However, it's application in many fields, such as tieestigation of many relevant
processes of cell biology, is restricted by issues of coatprtal cost. Therefore, in re-
cent years, a growing interest has been generated by tloeluttion of Coarse-Grained
(CG) models, that allow the investigation of bigger systéongonger timescales.

In this thesis, Molecular Dynamics was used in order to gafjuantitative under-
standing of mechanical andffiisive processes of DNA molecules in solution, and in
order to parametrise a Coarse Grained model of DNA capaladejaglitative description
of the mechanical behaviour of the all-atom model at equilii.

A software package for the computation of Coarse-Grainggtaction force-fields,
making use of the recently developed Multiscale Coarser@daMethod (MSCG) by
Izvekov and Vothlﬂl] was implemented.

We tested and validated the method by performing a one-p&nrmolecule coarse
graining of TIP3P water. The resulting model was able toadpce the fluid structure
(its radial distribution function) in a satisfactory andanlg quantitative way.

Finally, we applied the MSCG method to a more demanding prablnamely the
parametrisation of a 3-point-per-residue coarse-granedel of double-stranded DNA.

As a consequence, the agreement of the obtained CG modeahsittomistic struc-
ture was still not quantitative. In particular, the heligglometry was qualitatively pre-
served and the Root-Mean-Square Displacement (RMSD) otdhese-grained model
was stable over the trajectory, but higher than its all-atoomterpart.

We suggest several possible routes for future improvemangarticular, the explicit
modeling of torsional degrees of freedom of the DNA backhamel the use of recently
introduced methods for the refinement of the MSCG estimatidorce-field parameters,
and a more accurate treatment of Coulombic interactions.
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Introduction

Molecular dynamics has evolved over the last five decadesuasfal tool for the inves-
tigation of matter at nanoscopic level but its applicabiig severely conditioned by the
available computational power. In particular, the invgation of cell biology by means
of molecular simulations has encountered a major obstademparatively large length
scale and timescale over which many important biochemicahpmena take place. A
typical example is the challengéered by protein-folding processes and DNA hybridis-
ation, whose description by means of a purely “brute-fo@jroach would require the
simulation of millions of atoms for a time ranging from miseronds to secondg [6].
The timescale accessible to MD simulations keeps growirg steady pace, from the
sub-nanosecond simulations of the 1980s, to the nanosdxayndr in the early 1990s,
up to the over 100ns we caifferd today. However, despite the enormous growth of the
available computational poweffered by modern high-performance parallel computing
facilities, the timescale of most biological processesas out of reach by a factor of
several order of magnitude, a gap that all-atom simulatwifisiot be able to bridge in
the foreseeable future.

Because of the above mentioned limitations, the last delbadeseen a growing interest
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in coarse-grained (CG) models of biomolecular systems.idéee behind coarse-grained
models is that not all the molecular motions reproduced bynddrd MD are actually
relevant, and that a simplified model with lower resolutiow d&ewer particles could be
able to simulate the system withflgient accuracy to retain the necessary structural and
dynamic information. Such a system would be much cheapemialate, thus increasing
the accessible length- and timeche [7].

Another potentially attractive side of CG models is thepalaility of exploring the phase
space of the represented systems, a task that has been shiogvextremely problematic
for all-atom simulations of biomoleculeg B 9]. The remlavamany degrees of freedom
makes the energy landscape smoother, a situation thatdeesl the crossing of energy
barriers between metastable sta@ [10]. On the other tiaisdmplies an alteration in
the system dynamics, which can be non-trivial to assgslss [11]

The coarse graining process takes place in two main steps; tfie topological map-
ping of all-atom models onto simplified CG models, where dngle interaction site or
“superatom” corresponds to a group of atoms; secondly, ¢tershination of physically
consistent force-field for the resulting system of CG “si{&g, IE].

There exist several methods for the extraction of CG paewistentials from AA sys-
tems. The first systematic attempts at coarse graining weredaat fluid systems, such
as water, leading to the development of the Boltzmann lnwer®chnique, which was
also fruitfully applied to polymersl__[_H;__IM]. However, fdre parametrisation of more
complicated systems, the method that has probably recéheednost attention is the
force-matching approach.

The first instance of this modeling strategy can be foundenitbrk Ercolessi and Adams
[E], and was then reprised, adapted and expanded by Iz\atadVoth B]. Further
contributions were made by Noid,who also gave the method r@ mhetailed theoretical
footing B@] The force-matching was the method chosetr study.

The exploration of the potential of CG simulations has otdyted, and the possibility to
break the nanomet@anosecond barrier opens interesting horizons and a seisesitjle
applications for many previously unfeasible systems: xaneple, Arkhipov and cowork-
ers have managed to produce a model of bacterial flagellumstineddolino produced
a CG model of a viral capside after simulating a whole virugnatomistic detailﬂﬂO}.
The emphasis that the MSCG method has put on the physicailbistency of the result-
ing CG force-fields is remarkable, because it addresses foie onajor weaknesses of
coarse-graining methods so far, namely the fact that thelabed dynamics and timescale
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of the CG system can beftirent from the atomistic one. This happens mainly because
of the geometrical simplification and the smoothing of thergg landscape due to the
removal of many degrees of freedorm[ll]. However, the nurobdevelopments pro-
posed in recent years seems to hint at a very promising fdiourdne rapidly evolving
field of multiscale simulations.

1.1 Aims and objectives

The purpose of this thesis is twofold. First, we have useaitalin Molecular Dynam-
ics simulation in order to gather a quantitative understanof molecular motions and
diffusive properties of DNA molecules. Secondly, we have impleted and tested the
Multiscale Coarse-Graining method in a flexible and easitgedable software package,
with the purpose of developing coarse-grained models of Dh&& can capture basic
mechanical properties and allow the simulation of biggsteays for longer timescales.

1.2 Thesis Structure

The thesis is organised as follows.

The first chapter gives an overview of Molecular Dynamics,dtaailable methods for the
simulation of biomolecules, and current issues and chgdleras well as recent develop-
ments. It also introduces the basic concepts behind coaaggrgg and the most widely
adopted methods for the parametrisation of CG force fieldsnohke detailed section is
dedicated to the Multiscale Coarse Graining metl@)d [1], dicivmuch of the work of
this thesis is based.

The second chapter gives a brief summary of the numericadadstused for the postpro-
cessing of our simulations, the related issues and the edsplutions.

The chapters 4,5 and 6 present the results of all-atom stadidiffusive properties of
DNA molecules in solution. In particular, chapter threeusses on the properties of the
water model used for our simulations; chapter four uses #tkeged information (es-
pecially about model water viscosity affidirent temperatures) in order to simulate and
guantify the difusion of short DNA strands. Chapter five uses the paramétassquan-
tified in order to test how much of the atomistic behaviour lbarctaptured in a simplified
implementation of dfusion in fluid-particle models.

Chapter 7 is dedicated to the mapping of atomistic strustan¢o reduced coarse-grained
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systems, with particular regard to the molecules studigdigthesis.

Chapter 8 and 9, finally, present the results obtained apgplthe Multiscale Coarse-
Graining method to a test-case system of double-strandesliDBolution. A discussion
of the adopted hypotheses and modeling strategies is givenbehaviour of the coarse-
system when freely fluctuating at equilibrium is comparethwhat of the fine-grain
all-atom simulations.

Chapter 10 provides a summary of the obtained results and@aseodiscussion of future
developments that can be beneficial for the applicationeMhltiscale Coarse-Graining
method to biomolecular systems.
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Theory



Theoretical Background

This chapter gives a summary of the theoretical aspectsoatiatic and coarse-grained
molecular simulations. At the same time, is gives an ovenaéthe extensive literature
search undertaken, with particular regard to the availatd@éhods for the calculation of
potentials of mean force and coarse-grained molecularactiens. Not all methods de-
scribed in the following have proven suitable of useful far purposes, however, they
are presented for completeness and for their relevancery other applications.

2.1 Principles of classical statistical mechanics

This section will concisely outline the general theordtpranciples that underlie all meth-
ods illustrated in the later chapters of this thesis. Steismechanics is a branch of
Physics whose goal it to explain the properties of macrasqgipermodynamic) systems
from the motion the nanoscopic particles of which they arelenaHistorically, it was
the results of a longfeort to reduce thermodynamics to the laws of mechanics. lass
cal Molecular Dynamics is essentially a computational toahvestigate the statistical
mechanics of molecular syster@[Zl], ideally by simulatlmgmotion of their particles



2.1 RRINCIPLES OF CLASSICAL STATISTICAL MECHANICS 8

for a time stficiently long to ensure stable estimates of observable palyproperties.

An MD code integrates the system’s equations of motion amebigees its “trajectory”

in time, i.e. the time evolution of all particles’ positioasd velocities (or momenta).
This information is then fed into statistical mechanicali&ipns, in order to calculate
structural and thermodynamic properties.

2.1.1 Basic assumptions

Hamiltonian mechanics states that the dynamical proseofia system can be calculated
from the knowledge of its total energy, or “hamiltoniarft, expressed as a function of
general coordinateg and their so-called “conjugate momeni®” Once the Hamiltonian
H(pi, q) is known, the equations of motion for positions and momeatabe expressed

as:
opi _ OH
5 o 2.1)
g _ oH
A9 2.2)

In general we will deal with a system of N particles (mass ®irwhich possesses 3N
degrees of freedom; for such a system, the indexll go from 1 to 3N. The general
coordinatesy will be the particles’ Cartesian coordinates and the cos@gnomenta
pi will simply be the “usual” particles’ momenta. The total ege will be the sum of
potential energy (which is only a function of the positions) and kinetic enekg(which

is only a function of the momenta):

H =K(p) +U(q). (2.3)

In principle, these equations contain all the informati@eded for the computation of
the time evolution of the system. However, thermodynamstesys contain an immense
number of atoms, and the direct calculation of all atomistications of motions will
never be possible.

It is useful at this point to introduce the ideasfsemblgan alternative representation
of a thermodynamic system first used by Gi [22]. Instead ofechanical system
evolving in time, Gibbs suggested to picture it as a coltetof copies of itself, where
each copy is in a dierent microstate (i.e. a set of allowed positions and vees)i
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The probability with which the system visits its microstatetermines the macroscopic
properties of the system. Itis useful, at this point, toadtrce the concept ghase space
The mechanical configurationof the system of N particles in a three-dimensional space
is univocally determined once th&l2oordinates andi® velocity components are known:

x=[p,q), i=1...3N (2.4)

Mathematically, we can either describe the system as actiolieof N points in a three
dimensional space, or as a single point in a 3N-dimensigredes When a many-body
system is left free to evolve in time, we can visualising iagsoint moving in its phase
space, “visiting” dfferent states. Macroscopic bodies, made of many moles ofsatom
constantly change their nanoscopic configuration: atorsate (solids) or diuse (flu-
ids), and it's not improper to say that an object is neveicthfrspeaking, in the same
configuration twice. Nevertheless, observable prope(tessity, temperature, viscos-
ity) are constant at the macroscale. Boltzmann’s greatsehient was the proof that
the probability with which a system visits a microstate isgmrtional to the microstates
energy, through a term called the Boltzmann factor:

E(X)

P(X) o exp(—?). (2.5)

WhereE is the energyT the absolute temperature, akglthe Boltzmann constant. The
absolute value of the probability would be:

exp(=E(x)/kgT)

Pl = [ exp(—E(x)/ksT) dx

(2.6)

WhereT indicates the whole set of possible configurations. The chemator in Eq.[2.6
is called “partition function”, usually indicated & The knowledge of the partition
function is usually not achievable in practice, but as it ivd seen in later sections, there
are usually ways around this apparerttidulty [E].

For MD simulations, the three most important ensembles la@enticrocanonical
(NVE), canonical (NVT) and isothermal-isobaric (NpT):

e NVE: constant particle number (N), volume (V), and totalrgyegE); it's the most
“natural” ensemble for MD.

e NVT: constant particle number (N), volume (V), and temperat(T), requires a
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thermostatting algorithm that simulated the contact witleat reservoir at temper-
ature T.

e NpT: constant particle number (N), pressure (p), and teatpe (T), requires a
thermostatting algorithm and a barostatting algorithnt doatrols the pressure.

2.1.2 Setup of a typical simulation

When a simulation is started from scratch, the time integrateds a set of starting
velocities for the system’s particles. The most natural@hs to assign random velocities
sampled from a Maxwell-Boltzmann probability distributifor a given temperature,

W) = [= - expl - m Y 2.7
P(Via) = WBT'E p_ékaT’ (2.7)

wherei identifies the i-th particlem is the corresponding masg, is the velocity,a =

X, Y, z, kg is the Boltzmann constant afidthe absolute temperature. However, a simpler
option is to initialise the system using a uniform distribat and the velocity distribution
will quickly converge to a Maxwell-Boltzmann byffect of molecular collisiorﬁs]. The
initial configuration of the simulation box may contain &&tts such as strongly overlap-
ping atoms, which generate high repulsive forces and ungdi)shigh atomistic veloc-
ities that can cause the time integrator to break down. Tiniskty leads to computation
errors. In order to get rid of the overlapping atoms, all MBles include a minimization
algorithm, that works by minimising the potential energytioé system in the parame-
ter space defined by the particles position. Most commonrdy adgorithms are steepest
descent, conjugated gradient or Levenberg-MaquEolﬁél—'Ehe obtained minimised
configuration is a safer starting point for a simulation. Tin@imised box must then be
allowed to fluctuate and (hopefully) find a good energy mimmt the macroscale, this
happens spontaneously as the system has plenty of time gbesiégrconfiguration space
and even fluctuate enough to jump out of unwelcome basinscal Energy minimum
[@]. At the nanosecond timescale, however, the systemeasily remain trapped
into metastable states and not be able to leave them spontEpeluring the simulated
time.
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2.1.3 Calculation of mechanical and thermodynamic quanties

The simulation of matter at atomistic level gives us acce$isd “observation” of a length
and timescale which is out of reach for experimental methédsis level of detail, all
properties of a system in conditions of thermodynamic dopiim happen to be con-
tinuously fluctuating; this is also true for macroscopic ilesdbut in the case of exper-
imental observation, the fluctuations are extremely snmaidmparison to the average
value. Therefore, when considering any property, we hawkstinguish between its in-
stant value and its ensemble average over a trajectoryhvidibe quantity truly related
to what is observable in the macroscopic world. It must beéh&rrnoted that the instant
value is properly defined for energetic and mechanical ptgse such as potential and
kinetic energy, and ill-defined fathermodynamigroperties, such as temperature and
pressure, which are intrinsically statistical in natumed @enote properties of the system
in terms of ensemble averagg[@, 30]. The energy equipartheorem allows us to
relate the macroscopic absolute temperature with the sapasaverage kinetic energy.
From the generalised equipartition theorem for Hamiltorsgstems, which for practical
purposes is valid in any ensemble,

(Px- OH/0p) = ke T (2.8)
(O - OH /o) = ksT, (2.9)

we can derive, for a system of 3N point particles of massnd momentunp;, the so
called instant “kinetic temperature”, defined as:

= 1 \ 2
T = 3Rig 2P/ (2.10)

which will fluctuate in time but whose average will be the systtemperature. The cal-
culation of pressure is slightly more troublesome. The modely used method makes
use of Clausius virial theorem, which follows frdm 2.9, andlgs, for a system of N
particles,

N
1
P .TOT = —— = —
<i§:1 rif197) = —ZNkeT = ~PV, (2.11)
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wherefT©T is the total force on the i-th particle. If we consider onlyeimal forces, we
can define what is called the “internal virigly/,

N N
W = Z r-fINT = Z r- Ve V(). (2.12)
i=1 i=1
which can be evaluated from the molecular trajectory, anddeo the relation
PV = NksT + (W), (2.13)

from which the instantaneous pressure of the system caniddatad. Again, the instan-
taneous value has no macroscopic significance and can fiedteavily (typically even
by hundreds of atmospheres during a simulation), and thenttdynamic pressure can
only be recovered as an ensemble average. In recent yeaues asohors have disputed the
soundness of this approach, proposing additional coargtihowever, such arguments
have in turn been disputed [31]. A physically sound MD codenemsure that statistical
ensemble is correctly “sampled”, or, in other words, that thicrostates are generated
with the correct probability. This is particularly impontavhen simulating more compli-
cated ensembles, such as the canonical and the isothesohalric. The development of
sound methods to simulate thext of a thermostat and barostat on a MD simulation has
been (and still is) a very active field of research in the l@sg&ars, as it will be discussed
in later sections.

2.2 Brief introduction to Classical Molecular Dynamics

“Classical” MD relies on the hypotheses that the correctlbeur of the system, which
is described by quantum mechanics, can be well approxinigtéae far simpler Newto-
nian mechanics. Of course the accuracy of the approximggtsmworse as the quantum
effects become relevant. A criterion commonly used to evaliteapplicability of the
newtonian approach is given by ttieermal DeBroglie wavelength\, of the particles

involved ]:
2nh?
A= ‘/kaT (2.14)

where

fi = Planck constant
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kg = Boltzmann constant
T =temperature
m = mass of the patrticle.

The applicability of the newtonian approximation is corset legitimate when < a,
whereais the mean nearest neighbour distance of the system. Thexpation is rather
poor for very light elements like H or He: their small massauses the wavelength to be
larger.

The basic elements of a molecular dynamics code are:

A physical model of the system: this is contained in the function and the patar that
define the interaction potential, as well as in the boundandtions used for the
simulation box. The function and the parameters are usuvedérred to asforce
field”.

A time integration algorithm that, given the positions, velocities and forces, at the cur
rent timestep, calculates the new values at the followimgstep.

A statistical ensemble where the thermodynamic properties of the system are el
An example is the canonical ensemble NVE, where the condequantities are
number of particles (N), Volume (V) and Energy (E).

They will be discussed separately in the following sections

2.2.1 Interaction potentials and force calculation

Modelling the physics of a set of particles is essentiallydeibng their interactions. The
approach commonly used is to definpatential a functionU(r4,...,r,) that gives the
potential energy of the system depending on the relativéipo®f the atoms. The cor-
responding force on the i-th particle is computed as

fi=V,U(ry,...,rn), (2.15)

which is the gradient of the potential with respect to theigpposition of the particle.
In biomolecular system and fluid mixtures, a very convenimiothesis is that the inter-
actions are pairwise additive, which allows the total pogdon a particle to be written a
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sum of (comparatively simple to compute) pairwise intecarcst

Ui =Zn:Zn:Uij(|ri—fj|) (2.16)

S

Where the conditiorj > i provides that every pair is not counted twice. (This appnoac
fails when three-body forces become relevant, as in theafasetals or semiconductors,
were entirely diferent potentials are requiréﬂﬂ 32]). Historically dpeg, the first
potential to be implemented was the Lennard-Jones. A Lenbhames potential mimics
the interactions due to Van der Waals forces between atorhgs miodel was able to
reproduce quantitatively the properties of gaseous Argeriunctional form is:

o\12 0 \6
Uy = 46[(?) - (?) | (2.17)
The term~ r~12 models the repulsion at short distances, while the term® is the “at-
tractive tail” at longer distances. The parameteasdo can be fitted on the behaviour of
the substance under examination. This potential repredaid@n der Waals-like interac-
tion (weak attractive forces caused by temporary dipole erasin the electronic cloud
of the atoms). It's suitable for noble gasses, but not farcstrally complex systems,
which require more sophisticate formulations.
When the system contains severdfelient atom types, pairwise interactions should in
principle be parametrised for everyfidirent pair. This would require tens offidirent
LJ potentials. Instead, the route commonly followed is ttedwine the interaction of a
certain atom type with itself, and then use extrapolatidnsxing rules”) to guess the
interaction potential for heteroatomic pairs. Severalingxules have been investigated
by White and AI-MatarBSBM. The force decreases quickithwlistance. Therefore,
it is reasonable to assume that only neighbouring partetest a remarkablefiect. It
is then possible to introduce a “cuffalistance”, over which the force is zero. It can be
done keeping a list of every particle’s “neighbours”, andlaging it every few timesteps

]. This saves a great amount of computational resousgg®oximately halving the
time required for the calculation of pairwise interacti¢2s].
Anyway, the drawback is that when a particle crosses thefaatdius, the energy makes a
little jJump (because of the smalffect of the attractive tail) that can jeopardize the energy
conservation. The problem can be solved using a potentiaibies smoothly to 0 at the
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cutaf distanceR, for example biasing thé (2.117), as illustrated inffig] 2.1:

Uy -UuR) ifr<R
u() = , (2.18)
0 ifr>R

or using a “switching function” that smoothly takes the patal to O at the cutfi, as in
the case of the CHARMM potential as implemented in the LAMM®ES code EE].
Once the potential is chosen, the force exerted on partimtgarticle| is calculated as:

\ | \2

!
!
!
!
!
r \/ ) |
!
!
!
!

Ficure 2.1: Biased Lennard-Jones potential

(9Uij

fij = —arij ,

(2.19)
Creating empirical potentials from scratch is an enormasik.tA force field for biomolec-
ular simulations of proteins, lipids and nucleic acids magsttain a collection of param-
eters that describe the pairwise interactions of all atoyped, as well as the mechani-
cal properties of all the bonds, angles, and dihedral toadiangles that can be found
in the complex network of covalent bonds biomolecules arelenaf. Currently two
potentials are the most widely used and validated for na@eids: AMBER [37] and
CHARMM [@], named after the simulation packages where these firstimplemented.
The CHARMM potential has been used for all the atomistic $ations described in this
thesis.
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2.2.2 Integration of the equations of motion

A time integrator is a numerical scheme that integrates ¢juatons of motions, propa-
gating the trajectory of the system in the time. The most comgnused time integrator
in MD is still the Verlet algorithm, which is fairly simple tonplement l[__ak]. Its basic
form can be easily derived from a forward and backward Tagkpansion of the position
vector:

r(t+ At) =r(t) + At-v(t) + A?tz -a(t) + %t?) - b(t) + O(At)* (2.20)
A? At 4
r(t— At) =r(t) — At-v(t) + - -a(t) - - b(t) + O(At) (2.21)

Summing the two equations, the odd derivatives cancel eatranging, we get

r(t+ At) = 2r(t) — r(t — At) + A?tz -a(t) + O(A)* (2.22)

The acceleration can be calculated easily as

f
a=—
m
It is remarkable that this comparatively cheap scheme waehian erro~ O(At)*. The
drawback is that velocities are not calculated explicitiyhey are not needed for the
calculation of the trajectory, but they are necessary toutale the kinetic energht. The
conservation of the total ener@y= K +V is an important validity check for a simulation.
Extrapolating the velocity from the positions at twdtdrent timesteps, for example as a

central diference
r(t+ At) — r(t — At)

2At
would introduce an error O(At)2. For this reason, the integrator usually implemented
(i.e. in LAMMPS) is the so-called Velocity Verlet Algorithif838]; position and velocities

v(t) =

(2.23)
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for every particle are calculated as follows:

2

rit+At) = r(t) - At-v(t) + A% -a(t) (2.24)

v(t+ %) = v(t)+ % -a(t) (2.25)

at+At) = —% Vv(r(t + At)) (2.26)
At At

vit+At) = v(t+ ?) + > a(t + At) (2.27)

Another algorithm that can handle velocities is thap-frog scheme, here omitted for
brevity and described for example E 39]. Its accuracthe same as the Velocity
Verlet and should hence produce the same trajectories.

2.2.3 Energy conservation issues: timestep length and cdrening
of fast degrees of freedom

As mentioned in earlier paragraphs, the generation of a Mi2dtory is performed by
a “time marching” numerical integration of newtonian egoias of motion in time. The
physical goodness of the chosen simulation parametersirimstof energy conservation,
is usually assessed by monitoring the behaviour of the syst¢al energy over time,
during a (suitably long) simulation in the NVE ensemble. Weall here that an NVE
ensemble mimics an adiabatic system where no mass exchakgplace. In absence
of dissipative fects, the time evolution of the system is completely deteeciiby a
conservative force field generated by the chose pairwiseaation potential. Therefore
the particles of the system continuously exchange energictwconstantly but the total
energy must be a conserved quantity, with the exception afl$lactuations due to nu-
merical and round{® errors @54] The choice of the timestep is crucial in orde
ensure correct energy conservation. Empirically, a goatservation is achieved when
the timestep is about/10 of the shortest oscillation period found in the systemr Fo
biomolecules in aqueous environment, the fastest motitreistretching of the covalent
bonds involving H atoms, which vibrate very fast because shtéll mass. The oscilla-
tion period is about 10 f@O], which would limit the timegt® approx. 1fs. However,
for practical purposes, a shorter timestep is a big incoevee, because it implies that
the simulation of the same physical amount of time requitdglaer number of steps, and
therefore a higher computational cost. Therefore it hasieccommon praxis to apply
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holonomic constrains the the bonds involving hydrogenskingathem rigid. The first
numerical algorithm to successfully implement rigid bomgs SHAKE [Aﬂl], usually in
combination with a Verlet integration scheme, which is dleapproach used in all the
simulations mentioned in this thesis. After the constragibonds and angles involving
hydrogens, the timestep can be increased up to approxtiflfsja@ntaining good energy
conservation. Some authors have also suggested the piogsibfurther increase the
timestep by artificially increasing the mass of H atoms, big approach has not been
widely adopted@O].

2.2.4 Avoiding surface #fects: periodic boundary conditions

The well-known high computational cost of MD simulationsitis the size of tractable
systems to the nanometric scaJQ [E, 24]. For such smalésystthe surfacefiects
would be enormous. In order to investigate bulk phenomexaaanid surface féects,
it would be necessary to build systems too large to be cortipotdly afordable. This
problem is circumvented by using Periodic Boundary Coodgi(PBC). The simulation
box is surrounded in every direction (or some specific dioagtoy an infinite array of its
mirror images, as depicted in fig. 2.P.4.

e ©e o
Rc L

(&)

e o £ o

Ficure 2.2: Periodic images of a solvated biomolecule (left) andlastration of the Minimum
Image Criterion (right).

A particle that leaves the box is replaced automaticallyt®ymage entering from the
opposite side. In other words, upon crossing of a boundagycoordinates of the particle
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are modified by adding or subtracting the linear size of thedlong the axis perpendic-
ular to the crossed boundary surface. When computing fandbei-th particle, care
must be taken to include the interactions coming from plagithat belong to the periodic
images @]. This would apparently need to a infinite inceeafsthe involved particles,
and hence of the complexity. It is easy to demonstrate thtaeismallest dimension of
the simulation box is> 2R., every particle will interacat mostwith one periodic im-
age ]. This rule is called “Minimum Image Criterion” andseires that the impact of
PBC on system complexity is limited. Usually, the periotligs enforced along 2 or 3
dimensions, depending on the type on conditions one warsistolate.

2.2.5 Treatment of long-range electrostatics

The definition of “long range” in MD refer to those interacgigthat decay with distance
as 1/r%1, whered is the number of dimensions of the syst [24]. The compeaisti
slow decay rate implies that, unlike the case of Lennarcgonteractions, the use of
truncated potentials is not adequate, because each chzagete is actually interacting
with many of its periodic images. The calculation of the #lestatic forces acting on the
particles requires the solution of the Poisson equation:

V2E(r) = —@, (2.28)
€0

whereE(r) is the electric fieldp(r) is the charge density ang is the dielectric constant
of the void. For a simulation box with periodic boundary ciieths, however, the prob-
lem is not simple, because all mirror images generate their aontribution to the total
field. The resulting field is that generated by a periodic 3fdda having the box as el-
ementary cell. However, the theoretical tools for the dalibon of the total electrostatic
field were already available thanks to the work of Ewald andi®iang ]. Their
methods were adapted to MD simulations under the name of [tEstanmation”, and
subsequently modified for better numericéi@ency, under the name of Particle-Mesh
Ewald (PME) ], and Particle-Particle Particle-Mesh PRB @]. The success of the
Ewald summation and related methods was crucial in allowhegsimulation of highly
charged molecules, such as nucleic acids, where the combmbof electrostatic interac-
tions is relevant.
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2.2.6 Simulation of dfferent ensembles: thermostatting and barostat-
ting

The most “natural” ensemble for a MD simulation is the NVE{hwéonstant number of
particles, constant volume and constant energy, This ivalgnt to an adiabatic system
where no mass exchange takes place. In this ensemble, hpWesystems samples an
isoenergetic surface of its phase space, where all statestiha same energy and there-
fore, according to the Boltzmann equation, the same prdjt;a@]. This is however, a
rather irrealistic situation in comparison to the condiainder which most macroscopic
experiments are performed (typically, at constant tentpegaand pressure). The correct
simulation of ensembles filerent from the microcanonical is non trivial, and required a
considerable amount of researdfoet to be tackled with success. The first temperature
control, and a rather crude one, was a velocity rescalingevleery particle’s velocity
was modified in order to achieve an average which was consisith Eq.[2.10. Ander-
sen was the first to develop a method of pressure control whereelocity corrections
were performed sampling random values from a prescribedlmison @ , & route also
followed by Berendsen some years later in order to contmbmfature@&. All these
methods, however, fiigred from a major drawback: while they were vefliicent in
steering the system to the desired levels of temperaturepessbure, they altered the
original Newtonian (or Hamiltonian) equations of motionpgucing an unknown bias in
the statistical ensemble. Therefore, the only statidyica@und use of these thermostats
and barostats was to drive the system to the desired statéh@mswitch themfdand run
aNVE simulation]. The first solution to this problem cami¢h an entirely diferent
and deterministic approach, developed by Nose and theeqted by Hoove@djw].
The main advantage of their method, suitable for NVT and Np3eenble simulations,
is the correct reproduction of the system partition funttiwhich makes them suitable
for simulations that aim at the calculation of thermodynaprioperties for which correct
phase space sampling in relevant.

The Nose-Hoover thermostat

The original work by NoselﬂQ] was highly praised by Hoovelnowwvas probably the first
to understand its potential, and went on the develop andlgyntipe original thermostat-
ted equations of motiorﬂ%l]. Nose, in turn, credited Ander]) with the idea of
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controlling the thermodynamic state of the system by usidgtarministideedback con-
trol, generated by a modified Hamiltonian. Two additionaifiaral conjugated degrees
of freedom 6, ps) are added to the system. The variablacts as (in Nose’s words) “an
external system for the physical system of N particles”, séhenergy is related to the
conjugated momenturps, and a particular choice of the potential energy functiansfo
®(s) = NgkgT In s. The extended Hamiltonian has the form:

2M mg

i=1

2 N 2
¢Am%:[1514-§1{li— + ®(q) + NgksT In's (2.29)

where the termsp2/2M) and (NgksT In s) can be interpreted as the kinetic and potential
energy associated to the additional external system. Titzen@erM has the dimensions
of energy (time)?, and behaves as a “mass” for the motiorsgb is the potential energy,
kg is the Boltzmann constant, is the absolute temperature aNgithe number of degrees
of freedom of the physical system. The resulting equatiémsation are:

%:%% (2.30)
%?:Fm) (2.31)
gzﬁ (2.32)
ops _ [P keT

ot _Z[ms3 S ] (2.33)

Nose intepreted as a “time scaling factor”. However, in this case it's phgsimeaning
becomes rather elusive, as pointed out by Hoo@ ([50]).eNeas able prove that set
of equations given above can correctly sample the Canoaics@mble NVT, assuming
that the system is ergodic and the times averages keep intwuaicthe time rescaling
]. The crucial part of his approach was the choice of traeddotential tern®d(s) =
NgksT In's. Hoover’s contribution was the realisation thais actually decoupled from
the dynamics, and it is therefore possible to derive a seudttons of motion equivalent
to Nose’s, where the “obscure” time scaling faceodoes not appeaElSZ]. Hoover’s
version of the thermostatted equations of motion, whichaarer and had a pivotal role

1A system is called “ergodic” when it can sample all the mitates of its phase space. Since this
is usually not feasible, what is sought for practical pugsos the “quasi ergodicity”, where a system'’s
trajectory will be reasonably close to any given microst&tee for exampl@O] for a thorough discussion
of ergodicity and its implications for statistical mechami
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in popularising the method, is the following:

b
m-> = F(d) - ¢p (2.34)
a (K 1\ 5
o = (Ko 1) /T (2.35)
KQ = Nd . kBT (236)
£ = ps/(Ng - keT7%) (2.37)
M = Ng - kgT7? (2.38)

whereM is the “mass” of the external systei,andKq are the current and target kinetic
energy, and is a relaxation time (a bigger relaxation time decreasesittie derivative
of the friction codficient, i.e. the system will be steered to the target tempezanore
sIowaH). The time derivativé /ot of the friction codficient/, driven by the dicrepancy
between the current and target values of the system'’s kieragrgy, implements a nega-
tive feedback that stabilises the temperature. A decade ldbover and Dettman@53]
discovered that such equations could also be derived frerhigimiltonian:

Hpettmann= S Hnose (2.39)
=5 == , . .
- [ZM e ;[stg +5-®(Q) + 5 NgkeTIns. (2.40)

Over the years, the Nose-Hoover equations were generétissgistems of changing size
and shape in the isothermal-isobaric NpT ensem@,@laﬁd] also for system that
include holonomic constraints, such as rigid bo [52] MMPS’ thermostatting and
barostatting algorithms incorporate such developments.

2.2.7 Coarse-Graining: principles and methods

The purpose of this section is to illustrate the generalggples and ideas behind the con-
struction of coarse-grained models. The process of caaesaing has the goal of reduc-
ing the level of detail at which the system is simulated, btaining a correct description
of some properties of interest. In molecular simulatiohss ts usually performed by
representing whole groups of atoms with a single point maisSsite”, equipped with

2For biomolecular simulations, we empirically found that; éTective thermostatting, a sound value of
7 is usually in the order of 100 timesteps.
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its own interaction potential. The description of this “igéd” interaction potential is the

main dificulty of the modelling process. This section illustratedhsoof the ideas and

methods which have been used in this area. Eventually, a detaded treatment is re-

served to the Multiscale Coarse-Graining method (MSCG)¢lwhas been adopted and
implemented in this thesis.

Helmholtz free energy

The concept of free energy has had a central importance ithdogetical fundamentals
of coarse-graining (as well as in other fields, not treatee)nd~or a purely mechanical
system, the external work done by the system is given only by the opposite of the
corresponding change of internal energy,

L =-AU

In the case of thermodynamic systems, the relation mustitdkeaccount the heat ex-
change, and we get, according to the first law of thermodyosimi

L=-AU +Q, (2.41)

If we consider now a transformation between two states 1 aridrZa system that ex-
changes heat with a source at constant temperature T, we fkaowthe second law of
thermodynamics that the corresponding change of entrappeaalculated as

2
f Q< s1)-s02) (2.42)
. T
where the equality holds in case of reversible process.¢Bbi@atemperature constant,
B
Q= f 6Q < T[S(2) - S(1)], (2.43)
A
Combining this expression with equation 2.41 and defining
AU = U(2)-U(1)

we get
L<U@L)-U@)+T[S(2)-S(1)] or L<-AU+TAS (2.44)
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This inequality sets thepper boundaryo the work that can be extracted from the trans-
formation 1-2. We can define a quantity

A=U-TS (2.45)
which is calledHelmholtz free energyand see that, at constant temperature
L <A(1l)- A(2) = -AA, (2.46)

Which means that in the case of an isothermal reversiblsfibamation, the work equals

the opposite of the change of the internal energy. If thegssds irreversiblethe free
energy change is the upper limit for the exchanged wdhis extremely general result of
classical thermodynamics has been exploited for the miadedf molecular systems. In
particular, the free energyftierence between states can be used (although with some lim-
itations) to estimate thgotential energy changessociated with a conformational change
of the system, as explained in the next section.

Potential of Mean Force

The Potential of Mean Force (PMF) is a concept first introduze Kirkwood B]. The
idea is to extract the dependency of the distribution fuurctrom a certain coordinate by
integrating the probability distribution over all remaigicoordinates. From this relation,
properties that depend on the configuration integral carxtvacted, as a function of the
same generalized coordinate.

As seen in the previous chapter, the Helmholtz free energyigd is associated to the re-
versible work done on the system during a transformatiowden two equilibrium states.
A popular approach is to use it in order to estimate the ple@bergy associated with
a conformational change. Early examples of this kind of gtteth be found for example
in the work by Norberg @9]. It must noted however, tha Helmholtz energy is a
freeenergy and not a potential energy, as it embeds entrdf@cte and interactions with
the environment (for instance with the solvent). The appnation, in principle, is only
correct when the entropic contribution is negligible. Fwstance, when coarse graining a
bead-rod polymer model, the free energy typically workd veglestimating the ffective
bond stretching, but less well for torsional or bending degrof freedom; however, many
authors have pursued this rOLHe, 60], for example fittihg@nard-Jones-like potential
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on the free energy profile, as for example [19].

Harmonic approximation for bonded interaction

This alternative route to the parametrization of bondeerattions from all-atom simula-
tions has been exploited recently by Arkhipov and coworkersa very coarse model of
a bacterial flagellurrm9]. First, the position of the CG beadmapped on the all-atom
model. Secondly, the assumption is made that CG bonds baekandependent harmonic
oscillators. The basic example is the monodimensionallasmi, whose potential energy
can be written as

U = 2Ku(x o)’ (2.47)

and the two parameteri, andx, can be estimated from atomistic simulations as

K. — RMS OX)
X — kBT )
and
Xo = (X),

The first relation, the estimation of average lengghby means ok x), is trivial. The
derivation of the second comes from the theory of Browniartioman a harmonic po-
tential, and can be found for example B[Gl]. These relatican be extended to the
case of bonds and angles. This approach requires howeeduloawnsideration when the
number of backbone bonds per Kuhn step islfpaccording to some observations on the
statistical mechanics of entropic springs, as discussddabgon, and later by Underhill
[@—@]. Moreover, the structural equilibration of veryxilde biomolecules like SSDNA
can be non-trivial to assess, as pointed OUH)EI [a 8, 67].

2.3 Computation of éfective potentials from all-atom sim-
ulations

This section presents a concise review of some popular metfoy PMF calculation.
They can be divided into two main categories, equilibriurd aan-equilibrium methods.

3The Kuhn step is defined as twice the persistence length gbdhaner chain, which is in turn the
length scale over which the tangent vector’s autocor@idiinction decays to zero. It's a very important
parameter in bead-rod and bead-spring models of polymedst'a related to the sfiness of the chair|1__[$1]
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Most non-equilibrium methods are based on the so-calledrgitabSampling (US), by
Torrie and Valleau @8], and the Bennet Acceptance Ratithote (BAR). Over three
decades, much®rt has been put into the refinement of the statistical estimaised to
guantify the interaction parameters, which led, for the tdShe introduction of the his-
togram method by Ferrembea69 , followed by the populaigived Histogram Analy-
sis Method (WHAM) proposed bJZlL{?O]. The approach was theemd to multidimen-
sional energy profiles (along more than one coordinate) bgesyuent work by ROUE{”.]
and Souaille[[72]. A similar route was followed for the BAR thed, expanded twenty
years later by Shirts and Chode[73] into the MultistateRB(MBAR), again by es-
sentially refining the statistical treatment of the samplaected from equilibrium MD
simulations.

For what concerns non-equilibrium methods, the Steerededlddr Dynamics ap-
proach (SMD) was made possible by the discovery of the Jakzyguality ], for the
free energy dierence over non-equilibrium processes. There exist two ayaproaches
to SMD, developed by Hummer and Szabo [75] and by Izrailiad Bark and Schulten
76

The main downside of both US and SMD methods, is that theytatk a PMF over
a specific interaction coordinate (usually a distance betvieo molecular sites). There-
fore, characterising the interactions of complicated males would require a very high
number of simulations.

More recently, however, a force-matching equilibrium noetihave been introduced
by Izvekov and Vothljﬂl], building upon a previous work hye&essi Ell] for the con-
struction of MD potentials from ab-initio Molecular Dynaesidata. This work was then
further refined by NoidlﬂﬂS], who gave the method a moreddbkoretical footing.
He also demonstrated that, under a certain set of hypotlfetesh will be discussed
later on), the calculated PMF is optimal with respect to tvalable simulated data. The
force-matching approach is by far the more practical whemerous parameters of the
CG potential are to be parametrised simultaneously, asdheé method that has been
chosen and implemented for the CG model developed in thik.wor

2.3.1 Boltzmann inversion

The Boltzmann inversion is a technique that allows the ektya of fective interaction
potentials for coarse grained models, from a radial distigm function. The final output
is an dfective tabulated potential (not an analytical one). Thevbeck of numerical
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potentials is the lack of parameters to which we can assoeigthysical interpretation
e

The prerequisite is the availability of a real RDF usuallyaned by simulation, and in the
case of ssDNA this issue will be addressed in the last seofitims report. The method
is derived observing that, if we use the distance betweenpavticles as the reaction
coordinate, the expression of the Helmholtz free energgrims of ensemble average (up
to an arbitrary additive constant) becor‘r@ [77]

A(r) = —kgTIn[g(r)] + const (2.48)

whereg(r) is the radial distribution function (RDF). The potentidlmoean force along
can be expressed as

Aq(r) = Ao(r) = —kgTIn [90(”] . (2.49)
(1)
Initially developed in the case of fluid particle distributis m,], the method has been
then applied to polymer coarse graining, for exampl [8h the name ofterative

Boltzmann inversiofor the purpose of polymer coarse graining. The coarsexgdijand
hence computationally cheap and rapidly converging) satmun starts with first-guess
potentialVy(r) that generates a startifPFo(r).

RDFo(r)
V =V, keTIN—— 2.50
1) = Volr) + ke Ting e~ (2.50)
and then proceeds with further optimization steps
Vioa() = Va(r) + keT I (2.51)

RD Ftarget

This approach assumes uses as correction factor the PMEdretive current correlation
function and the target one. The convergence criteriomjrasgy that the desired RDF is
computed up to certain cutare, is defined by means of a penalty function, usually the
integral square erro[6]:

l'c
p= f W(r)(RDFizrget — RDF,)?dr (2.52)
0

The convergence is usually achieved in about ten sl@os'[l@]biggest issue with Boltz-
mann inversion is that it requires the knowledge of the fadigdribution function, which
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is not always available. However, the method has been ssfctlgsused by Trovato and
Tozzini ﬂ@] for a “on bead per residue“ model of DNA, exitihg a collection of
DNA structures available in the Protein Data Bank.

2.3.2 Umbrella Sampling

In molecular dynamics simulations of biomolecules, it heqgpvery frequently that the
energy landscape presents local minima, that correspomvdsat we can call preferential
configurations. Such configurations may be separated bgebarriers high enough to
"trap"” the system thus preventing afiieetive exploration of the phase space within the
accessible simulation timescale. This can be better utatetsonsidering the expression:

A(r) = —=kgTInC + const (2.53)

where we can see the logarithmic relation between the fregygrand the radial distribu-
tion function. Typically, the free energy change is the ofeseverakg T, and this means
that a very thorough sampling of the phase space (which wenddire reliable results)
would require a change of several orders of magnitude in dméigurational integral.
On the d@ordable simulation timescale it is extremely unlikely (@really, impossible)
that this will happen spontaneously by letting the systerttdlate freely. The system
would spend most of the simulated time in high-probabiliignostates, and the resulting
estimates of the ensemble averages would be poor.

The most immediate solution would be to use external foroesctively steer the
system into a desired configuration (or series of configomad, recover good estimates
for each small portion of phase space, and then piecewisasgact the whole energy
profile. However, the introduction of external forces (ehgrmonic springs that actively
pull the system into the desired conformation) introducexra (non-physical) potential
energy term in the Boltzmann factor of the system, produeirmas in the probability
distribution, and therefore generating &eient ensemble, thus invalidating the resulting
statistics. One may ask if it's not somehow possible to malaie the perturbed ensemble
averages in order to recover the properties of the unpetisipstem.

The answer is farmative, and a solution to this problem was devised by Tané
Valleau @], in a pioneering work that has had a lasting erflce. The key idea behind
their method is to use a clever and straightforward analytr@nipulation, in order to re-
cover the correct unbiased statistics for a biased sinamaBex the configuration of the
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system within a phase spafeand beA(x) a property that depends on the configuration
(positions and velocities). The ensemble avergiyas given by definition by:

JoAKX) - exp(—U(x)/ks T)dx
Jrexg-U(x)/ksT)dx

(A) = (2.54)
which indicates a weighted average of the "instant” valu& ffr a given state, weighted
with the probability of the state. Where as usudl is the absolute temperature aigthe
Boltzmann constant. Now we assume to have a desired pergupbientiaiv(x) that con-
strains the system in a close neighbourhood of the regiohadg@space we are interested
in. Eq.[2.54 can be rewritten as

Jrw(x)/w(x)) - Ax) - ex~U (x)/ke T)dx

e fr(W(X)/W(X)) -exp(—U(x)/ksT)dx > (2.55)

and the terms can be rearranged as (omitting the dependemicg configuration, to make
the notation lighter)

(B
where the(-),, indicates the ensemble average over the perturbed systémanvextra
non-Boltzmann weighting factaw(x): that is to say, the average of the values “as we get
them” from our biased simulation. The problem of recovetimg unperturbed ensemble
average is solved, at least in principle.

Operatively, assuming that we have taken N snapshots frenbitised simulation, the
ensemble average of any function A of the coordinates, destin equation_2.56, is
computed as:

(A (2.56)

_ Zi’\ilAi/Wi
Zilil 1/wi ’
where the biasing probability factey; can be derived from the constraining potential.

(Ao (2.57)

Assuming that we have constrained a reaction coordififfienction of the system’s co-
ordinates) to a certain valyg by means of a harmonic potential

V(1) = SkE - &

this potential will be added to the system Hamiltonian anlll wmiluence the energy and
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hence the probability distribution. The new probabilityndity in the constrained ensem-
ble will be

1
P(Xw) = exp

. (M) - Eexp(i(x))exp(i(a) (2.58)

ke T Z ksT ks T

where the ternexpg—V(¢)/ksT) = w; is the sought statistical bias introduced by the con-
straining potential. The original Umbrella Sampling wasided for trajectories produced
by Markov chains, i.e. Monte Carlo simulations, but the séommalism remains valid
in the case of snapshots taken from a Molecular Dynamicsprovjded that the sam-
pled timesteps are ficiently far apart to be considered uncorrelated (see SE2IR6).
The aforementioned approach has paved the way to a numbetioéf studies, many of
which are essentially a numerical refinement of the origith@h. Since the introduction
of the Umbrella Sampling approach, one problem became inatedg apparent, namely
the proper choice of the biasing potent@ [79]. The US metberforms at its best when
the biased energy profile is flat, so that all biased micrestaave the same probability.
In this situation all microstates would have the same priibabesulting in a uniform
sampling of the phase space. However, this would requir@sing potential which is
exactly the opposite of the sought PMF along the investihat®rdinate, which is (un-
fortunately) precisely the unknown of the problem. A pokesiterative solution can be
found in the work of MezeiEO], who introduced the Adaptivenbrella Sampling tech-
nique, where an initial guess for the biasing potentialesatively refined.

The second operative problem of the US method is how to opdirthe energy profile
reconstruction from simulating narrow “windows” of the des reaction coordinate. A
successful a widely used solution is described in the neticse

2.3.3 The Weighted Histograms Analysis Method (WHAM)

The WHAM algorithm is an extension of the umbrella samplipg@ach that optimizes
the averages obtained by a series of runs. It was initiathppsed by KumarE]FO], who
reprised the work of Ferrenberg and SwenQ [[Eb 81], antbdefudeveloped over the
years by other authoMSZ]. In order to sample over aireeixcursion of the reaction
coordinate, it is useful to split the simulation into pditiaverlapping "windows", with

different biasing potentials that restrict the conformatiosgecific positions along the
reaction path. This allows a "piecewise" sampling of thefoonational change, that
facilitates the exploration of the corresponding phaseeapagions of interesEJM]. The
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WHAM method was conceived as a sensible procedure for tlamstiaiction of the whole
energy profile. If we perform a set of biased simulations wifterturbed potential

Vo(r) + wié(r),

wherew; is the usual perturbing potential, agd= £(r) is a scalar variable defined as
a function of the configuration of the system (for simple sasecould be a distance

between two specific atoms, or the radius of gyration of a satams, etc.). From these
simulations a set of (biased) probability densitpé@(g) can be obtained constructing
an histogram of the values taken byuring the simulations, with "bins" (width of the
histogram bars) of opportune size. The unbiased distabus recovered by "removing”

the non-Boltzmann part of the probability fact[70]:

pM(&) = expB[wi(€) - f)]) o2 (&), (2.59)

where f; is the free energy contribution coming from the introductad the perturbing
potential o andp! are the biased and unbiased probability densities, resphctThe

final goal is to recovep, having at our dispositiopg‘). The key idea behind WHAM is
to write pg as a linear combination of the unbiased "window" distribusipi(“)(f) :

po€) = C ) cp (@), (2.60)

where C is a hormalization constant ané set of normalized weights, so that

The WHAM equations are then recoveredraynimizing the variance of the total proba-
bility distributioni.e. looking for a stationary point

00Loo(€)] _

i 0, (2.61)



2.3 COMPUTATION OF EFFECTIVE POTENTIALS FROM ALL-ATOM SIMULATIONS 32

The minimum of the constrained function can be found for gxenwith the method of
Lagrangian multlpllerslﬂl] The resulting equations are:

n - eXF( IB[WI (‘f) ]) (u)

=C 2.62
polé) = Zz, - expAw@ - )" (262
N .
L o® 2.63
Zl“ i - exp-plw (§)—f]) © (269
for the probability density, and
exp(/g’fk):fexp( klf)) ofdé (2.64)

for the free energy. The arbitrary const@htan be dropped if we assume the probability
distribution to be normalised. The unknowns in Eq. 2.62@(¢&) and f;. The set of
non-linear equations can be solved iteratively as showndayxR71]: starting from an
initial guess for theN free energied;, equatio 2.62 is used to estimate the unbiased
distribution, this distribution is then used in £q. 2.64 tngrate the next approximation
for the f;, that are in turn fed back into equation 2.62. The iteratamplis repeated until
satisfactory convergence is achlev@ [72].

Although the presented approach is the one for free enerngisgist be noted that
no assumption is made about the nature of the reaction cwigi(£(r)), so that the
same relations hold also in the casepof (r), which is useful for computing averages
of arbitrary quantities from the same biased smulaﬂ@is [Currently, several dierent
implementations of WHAM are freely available in the publmndain. A general remark
for PMF calculations is that most methods assume that thalatirons are performed
in the NVT ensemble. In such cases where it is mandatory ttraothe temperature
by means of a Nose-Hoover thermostat, as a Berendsen thatnf@msworse, velocity
rescaling) wouldn’t produce the correct ensemlb_lgia [49].

2.3.4 The Multistate Bennett Acceptance Ratio method

This method, introduced only very recently, generalizes Bennett Acceptance Ratio
method IL_8}3]. It is deemed by its authors to be mdteient than WHAM, removing the
necessity of histograms and allowing a straightforwarahesdion of the uncertainties on
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the computed averages.
Our observations (or snapshots of a simulation) behave ascdiom variable, and we re-
cover expected values and variance by means of opportunagageover the samples we
have at hand. However, these averages are sums of randablgariand thereforge-
have as random variables themselwegh their own mean and variance. The mean value
is our target, and the variance is the uncertainty (dispersf measurements around the
mean value). The MBAR method constructs estimators witHavest asymptotic vari-
ance (variance in the large sample limit), therefore mooeiigte, borrowing from recent
developments in the field of inferential statistics: the kvoy Kong @1] has tackled the
issue of a systematic analysis of the construction of opteetimators, while Tar@S]
demonstrated that the derived estimators were “optimatéims of variance (i.e., they
had the lowest variance or all other known estimators).

The starting problem is how to estimate a free ener¢fgince between fierent molec-
ular configurations, from the data generated by the sinaratdf multiple equilibrium
states. Let's assume we have simulatedifferent states, and for the i-th state=(1..K)

we have sampledll; statistically independent snapshots. The configuratimin#:'i:l are
sampled from an ensemble where the probability distrilbysj@f a state is given by

pi(X)

A (2.65)

pi(X) =
whereg; is the unnormalised probability density, afids the normalisation factor, which
is the partition function for the state

Z = f dxpi(x), (2.66)

wherel is the phase space of the system (positions and momentsigdsy to recognise
that the unnormalised would be equal to the Boltzmann faatatefined by Eq. 2.5. The
goal is to produce an estimator of the dimensionless fregygrfe= A/(kgT). Shirts and
Chodera], following the approach outlined by T [85yvé derived the following
equations for the dimensionless free energy, cabkdnded bridge sampling estimators
for the dimensionless free energy, calculated from a caabensemble:

. K exd—Vi(Xun)]
fo A 2.67
" ; nZ:;‘ S NivexH fio = Vio (Xkn)] | )
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wherek = 1...K is the number of simulated states (“windows”) amd= 1...N the
number of uncorrelated snapshots (configurations) stanmeithék — th state. The system
of Eq.[2.67 can be solved iteratively as illustrated by Shard Choderﬂjy?;]. The free
energy is determined up to an additive constant so that dwelyliference between two
energies is physically meaningful.
The uncertainty on the calculated values of the adimenkim®energy can be quantified
as follows. BeN = Y ; N, the total number of snapshots; the covariance matrix isgive
by

O =WT(Iy- WNWT)*"W (2.68)

where: the superscript” indicates a generalized inverse, as the matrix might bgudan;
In is aN x N identity matrix;N = diag(N;N,...Nx) andW is aN x K matrix of weights,
whose terms are defined as

_ éﬂlqk(xn)
ZIP((/:l Nk/ é;,l ﬁk/(xn)

Wik (2.69)
where the subscript runs from 1 to N and the parametesg €an be calculated self-
consistently from the taken snapsh@ [73].

The covariance of two arbitrary functiop§; ...0«), ¥(6,...0«) can be calculated as:

R
CO\(¢,w):Z—¢ —‘” (2.70)

and this relation can be used for the computation of the taicsies: in the large sample
limit, the errors can be assumed to be Gaussian-distriptivedefore their dispersion
about the mean value is well estimated by their variance.dRenering that for a random
variableX, CouX, X) = Var(X), we can write the variance of the free energffatience
between two states as

Var(Af;) = (Afi —(Af)?) (2.71)
= Cov(—lng, —Ing) (2.72)
Cj Cj

= éii - Zéij + @Ajj, (273)
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which provides a convenient way to estimate the accuracheitbmputed values and
therefore the extent to which the results can be trusted.

2.3.5 Steered Molecular Dynamics (SMD) and Jarzynski equay

The method of PMF calculation through SMD has been revieasang others, by Hum-
mer and Szab@ﬁS] and by Park and Schu@ [76] to whgseagph the following
section refers. The evolution of the system is steered almngesired reaction coordinate
by an external force, usually large, that allows to overecwr@nergy barriers easily. Or
in other words, the conformational change is enforced bynse& opportune harmonic
potentials, that quickly bring the system in the desiredfigomation. At first sight, what
described in the previous lines may sound very similar toube of perturbing poten-
tial in equilibrium Umbrella Sampling simulations. Care shibe taken to notice that
US simulations use harmonic forcesdonstrainthe system in a certain configuration,
around which the system is allowed to fluctuate Ifieet of thermal agitation, whilst
SMD uses perturbing potentials in orderdteerthe system, rapidly, thorugh a desired
configurational change. The result is that US simulationpaméormed in conditions of
thermodynamic equilibrium, whilst SMD simulations are .ndhe steering force used in
SMD makes the simulation an intrinsically non-equilibriyggrocess, but the PMF is in
itself an equilibrium property, associated to a state fiomcfthe free energy). The theo-
retical bridge required to overcome this apparent conttami has become available only
in recent times (1997) with the discovery of Jarzynski equ&lE), which has brought
a significant progress in the field of non-equilibrium stated mechanics, providing an
“exact” (on average!) relation between the free energigtence and the work done by a
non-equilibrium process. The Jarzynski equality has thafo

(ePWVy = gPAF, (2.74)

wherep = kgT is the reduced temperature and the brackétdenote an average taken
over many independent repetitions of the same process[F4.i2 known in the lit-
erature with several alternative names, such as “Jarzyrmskiequilibrium work theo-
rem”. In comparison to other methods, SMD allows larger oomftional changes on the
nanosecond timescale, and requires less comput@n B.analysis method devel-
oped by HummevIBS] for the calculation of multidimensioRMF profiles from atomic
force microscopy experiment, can be directly applied teedtSMD, as shown by Minh
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[@,@’], who also demonstrated the superifficeency of non-equilibrium methods in
comparison to equilibrium ones. The Jarzynski equalititjaltly derived for canoni-
cal ensemble (NVT), has been generalized to isothermbhrso ensemble (NpT). It's
derivation has been given for both Hamiltonian systemsrfabe case of MD simula-
tions) and Markovian processes (Monte Carlo simulationg). [

Application of SMD and JE to the computation of PMF

Here we follow the description of the SMD method for free gyecalculation in the
canonical NVT ensemble, as given by Park and Schu@n [78ferza classical system
of N patrticles, in contact with a thermal bath at temperaiytée phase is defined by 3N
positionsg and 3N moment@. We define our reaction coordinate as a suitable function
of the position, and we call §(q). In SMD, a time-dependent driving potentia] is
applied to the unperturbed Hamiltoni&\(p, q):

~ k
Hp.a) =HP.a) +he, = 5(E(0) - Ay, (2.75)
and the coupling parameteris changed with a certain constant veloaity
A(t) = 2(0) + v, (2.76)

over the desired range &f during a time interval from O te. In other words, we apply a
time dependent sequence of harmonic potentials that sapidl the scalar variable into
a series of valueg(t), steering the system into a predetermined conformaticimahge,
easily overcoming whatever energy barrier thanks to thenmade of the perturbation.
From the JE we can easily derive that the free enerfjgrdince for the state for the initial
an final¢ is given by:

1
Faw = Fao) = i log(exd—BW(7)]), (2.77)
where the work over one repetition of the process can be leddclias
T a -
W(r) = fo dt[aﬂ (ac), p(t))], (2.78)

by numerical integration of the time derivative of the Haomlian over the trajectory
steered by the perturbing potential. However, in this wayhaee calculated the PMF
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for the perturbedsystem. The recovery of the original PMF is obtained by meduise
so-called "stit spring approximation": the idea is to choose a very largengpronstant
for the harmonic driving potential, minimizing the fluctigats of the reaction coordinate
among diferent runs below a certain desired resolution. Severadi@jies are then
calculated (with dierent initial configurations but always within a NVT enses)bthe
free energyF, is calculated as a function of. For largek, the PMF alongt can be
calculated, according tmm], as a Taylor expansion aroynd

I

( 1 0°F, 1
2k* 04

O(1) = F,+ ﬁ(ﬁ + O(F)

(2.79)

Thermostatting the system

The Jarzynski equality applies to system at constant tesyoey, i.e. in contact with a
heat bath. In MD simulations, thefect of a bath is reproduced consistently by widely
applied thermostat algorithms. Jarzynski himsl& [74]hedt the applicability of Nose-
Hoover thermostat.

Cumulant expansion

The computational downside of the bare Jarzynski equalityd averagés®V), where the
exponential causes the value to be strongly influenced Isethare repetitions of the pro-
cess that yield a very small woll. Therefore, the direct calculation of the exponential
average tends to give inaccurate results. The problem caley@ted rewriting equation
[2.77, expanding the logarithm of the exponential averagesasn of its cumulants [74]:

log(€") = (X) + %(<x2> — (X)) + ..., (2.80)

Where only the first two terms are shown. This formula is, inegal, dected by a
truncation error. However, when the work distribution isuGsian, the terms beyond the
second order vanish (a general property of all Gaussianklited quantities), the for-
mula becomes exact, and the only remaining source of umarta the finite number of
sampled values. As noted by Park and Schulten, the conditiGaussian work distribu-
tion can be satisfied by applying afétiriving potential (hence the name of ‘§tspring”
approachﬂB].
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2.3.6 Subsampling and statistical infficiency

When averaging a quantity over the snapshots of a MD trajgaiee assume that we are
averaging over a certain statistical ensemble, i.e. a seti@bstates whose probability
(usually dependent on the energy) is defined by a known stafiaw.

Moreover, we assume the snapshots to be independent on tach Strictly speaking,
this is of course not the case for neighbouring timesteps MDarun: at every given
timestep, the time integration algorithdeterministicallycalculates the next timestep
from the information contained in the present one. Howevehe timesteps are $ii+
ciently "far apart” in time, we can expect their propertiese decorrelated, and this is
what actually happens.

The question is, of courshpw farthe sampled microstates must be: we have to choose a
length of the sampling step which is longer than the cori@idime, but the correlation
time is in general not knowa priori.

A formal treatment of this issue is given below, closely daling the formulation given

by [23].
If we want to compute a certain property A, the average of Avusmgby:

1 T=Trun
(Arun = — Z A(T), (2.81)
run

If the sampled values were statistically independent, #rexce of the computed mean
value over the trajectory would be:

0'2(<A>run) = G'Z(A) : Tl , (2.82)
where
1 T=Trun
W == Z (A(T) = (Arun)?, (2.83)

(The variance gives, by definition, the expected value ofstingared error in the mean;
We can see that the variance is inversely proportional t¢etingth of the run). In order to
estimate the correlation time, we can proceed as follows.

The run is first broken down intoy, series of lengthr, so thatnyr, = 7yn. Now let’s
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consider the average taken on a certaichunk. The mean value over this chunk is:

T=Tp

1
A = Z A7), (2.84)

and these averages are used to compute the variance::
18
T (A) = = > (A = (Ayun)?, (2.85)
Mo 05

We expect this variance to decrease for longgrmuntil it goes to 0 in the limit case of
Tb = Trun-

The aim is to find the proportionality constant that allows talculation otr?((A)y) for
the whole trajectory. The "statisticafieiency" is defined as:

<= lim 7502 ((A)p)

b T 2R (2:80)

which is the limit for largery, of the ratio between thebservedrariance, and the variance
in the hypothesis of statistical independence of the sainpddues. This limit can be
computed from the available samples, calculating the valisgor increasingly larger,
until we reach a plateau. The calculated value tells us thigta snapshot everg adds
new information to the average.

The statistical infficiency sets therefore the upper limit to the “useful” samgpliensity.

2.4 Coarse-graining by force-matching

All the methods presented so far have proven successfubimdevith the determination
of energy profiles for one or few reaction coordinates, afiénfield of protein-docking.
However, the coarse graining of more complicated systeodd) as biomolecules, re-
quires the determination of many interaction parametens.akernative route, first ex-
plored by Ercolessi and coworkeg[ﬂ], is to perform a steddlforce-matching”, i.e.
parametrise a coarse-grained potential by minimising iberepancy between the forces
measured by an all-atom simulation, and the forces gertkbgtthe CG force field, whose
parameters will be the unknowns of the problem.
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2.4.1 The Multiscale Coarse-Graining Method

The CG models addressed by the MSCG method are made of elageiot masses,
called sites, which correspond to one or more atoms in thaiat@ representation (e.g.
the center of mass of a group of atoms), and interact by mebas opportune CG
potential Eb]. The goal is the derivation of a CG system Wwhiehaves consistently
with the underlying all-atom system. What do we mearcbysistency The atomistic
system is described by classical Hamiltonian equationsaifans; the coarse graining
procedure involves opportune operators in order to map dloedinates (positions and
momenta) of the atoms, onto a reduced set of coordinates o$it@& The dynamics
of the reduced system will then be described by classicalilfaman equations for the
coordinates (positions and momenta) of the CG sites. It inestoted that the reduced
equations of motion are entirely determined by the initi@naistic equations and by
the mapping operator@l?]. The CG model is calbedsistenif the joint probability
distribution function of the reduced positions and momesthe same as the joint PDF
implied by the atomistic PDF and the mapping operators. More fogmdle state of
the atomistic system of atoms is univocally determined by the vectors of positioms a
coordinates:

r={ry...rzx} and p={p;...Pa}, (2.87)

the corresponding Hamiltonian is given by:

3n
H(P) = Y PP U, (2.88)
i=1

whereu(r) is the potential energy. In a completely analogous fashimnstate of the CG
system ofN sites is univocally determined by the vectors of site posg&iand coordinates:

R={R,...Rsm} and P={Pi...Ps}, (2.89)

the corresponding Hamiltonian is given by:

3n

H(R,P) = Z %Pﬁ +U(R), (2.90)

i=1

whereU(R) is the CG potential energy.
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The link between the two representations is given by the mgpgperators for posi-
tions and momenta, namely:

Mai(r) = D cir (2.91)
i=1
3n
Mei(r) = My ) cipi/m, (2.92)
i=1
for i = 1...3N, which means that every coarse grained coordinate is esguiegs a

weighted average of the atomistic coordinates, with weaight A condition is imposed
on the weighting coicients of the mapping operators, which makes sure that if the
atomic system undergoes a translation, the CG sites wikigaithe same translation:

i =1 (2.93)

i=1

A simple and intuitive mapping, that satisfies the condgibsted above, is the one that
divides the atomistic models inatisjoint sets of atoms, and places the CG sites on the
centres of mass of the sets, provided that no constraintapgoieed between two atoms
that belong to dferent groups. Without loss of generality, atoms within thme group
can be linked by rigid bonds, which is very convenient in nimstnolecular simulations,
where actually all the fast-moving hydrogen atoms are caimsd ]. The resulting
codficients in the linear mapping operator become, for atomdwedan thel-th group,

Cii m M, (2.94)

and the total force acting on the correspondingth CG site is simply the sum of the
forces on the single atoms,

firm) = > fiEM, (2.96)
i
The consistency condition, for positions and momenta, igewras:

Pr(RY) = prR" (2.97)
Pp(P") = ppP" (2.98)
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The above relations mean that the CG system will visit its avicrostates with the same
probability that is implied by the partition function of abdstic system and the chosen
mapping. Eventually, the "best fitting" force field is obtihby minimising what we
could call the "merit function" of the force field in the spaskits parameters. The
guantity to be minimised is that proposed EL/ [1], defined as:

1 Wy

aslF"S1 = 5o D D M) = FYSMReD)P (2.99)
t=1 I=1

where, once the mapping is specifigd,s is a function of all the CG force field parame-
ters. The terms that appear in the equation, and their pliysieanings, are:

e n, is the total number of configurations sampled from the atbossmulation;

e N is the number of sites in the CG model;

f, is the total force, as computed in the atomistic model, oratbens involved in
the I-th CG site;

ri'is the t-th configuration sampled from the atomistic simalat

FMS is the force on the I-th CG site, as a function of the CG siteis term is a
function of the FF parameters to be optimised).

e M}(r{) = RN is the configuration of the CG model;

all above quantities are known or easy to compute from theiata@ simulation; the
crucial modelling step is writing the terf"S(RN). Schematically, the multiscale Coarse-
Graining process can be divided into the following steps:

1. Define a mapping that assigns all atoms of the atomisticeinocthe appropriate
sites of the coarse-grained model;

2. Perform the atomistic simulations, and stoyasnapshots, positions and forces on
each atom);

3. Then, for every stored configuration:

(&) Translate atomistic configurations into CG configuragio
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(b) Calculate the forces acting on the CG sites, as sum ofttmaistic forces
acting over all atoms involved in each site.

(c) Calculate the forces acting on the CG sites, as predimtatie CG potential
(this will be a function of the unknown CG-FF parameters).

4. Write the resulting residuaf as a sum, over all configurations and all sites, of the
squared dterences between the CG forces calculated from the atordestia; and
those predicted by the CG-FF.

5. Minimisey?, with respect to the force-field parameters.

The problem is recast in terms of least-square minimisadticthe parametric space of
the CG force fieIdﬂS]. This method has already been suaagbssipplied to a peptide
model @].

2.4.2 Equations of the MSCG problem

The purpose of the atomistic simulation and the CG-mapsrbe construction of the
overdetermined linear problem of E@.@[w]. The posssblategies for the solution of
the systemi 2.99 have been extensively discussed by |zasibMoid BEED&. Since
the matrix for the whole system trajectory is usually too, lag alternative is a block-
averaging approach, where thesampled configurations are divided into disjointed sub-
sets, which are used to calculate separate residualsngdhe resulting (much smaller)
set of equation:l;__L{S]. The force-field parameters are thewvezed by averaging over the
estimates obtained from each block. Other numerical dpwedmts are being pursued,
e.g. combining the MSCG method with techniques of of Bayesigerence, in order to
improve the reliability of the parameter estimatim [89heTldetails on the implementa-
tion a possible routes for the numerical solution of thetlsasiares problem will be given
in the next chapters of this thesis.

2.5 Implementation of a generic interaction potential

For the least-squares problem to become an overdetermivead kystem, the analytical
form of the interaction forces must be linear in the unknowncé-field parameters. This
is not the case for any of the terms that usually model biooubés interactions, which

are:
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Lennard-Jones potential, that models Van der Waals forces;

Coulombic potential, that models electrostatic intexatdi

Harmonic bonded potential, that models bond-stretchincei

Angular potential, that models angle stretching;
¢ Dihedral potential, that model dihedral torsional forces.

Since the geometry of the CG system is much more simple tha# counterpart,
the inclusion of improper dihedrals is not necessary. Intamg Forces are calculated
as derivatives of the potential energies with respect tg#récles’ coordinates, and the
corresponding expressions can be quite complicated, iefigdor angles and dihedrals.
Let’'s summarise how the forces on the atoms are computedy Earen of the interaction
potential is characterised by an interaction coordinakechvis a function of the positions
of two or more atoms:

e Lennard-Jones potential: interatomic distance,

Coulombic potential: interatomic distance,

Harmonic bonded potential: bond length (interatomic diséaof the bonded pair),
r

Angular potential: angle widtl,

Dihedral potential: torsional angle

The force on the atom is computed as the sum of forces conmamg dtl potential terms.
The force associated with a potential term is computed an¢igative gradient of the
potential function with respect to the position of the atdfor pairwise interactions (LJ,
Coulombic and bonds) the force on each atom of a ais a vector acting along the
interatomic distance vectoy;, and whose norm is the negative derivative of the potential
energy with respect to the distance. For angles and diledralvever, the associated
linear algebra is less straightforward.

For computational purposes, it is convenient to representbmputed force, which is a
function of the interaction coordinate, as a sum of weigllelth functions centred on the
discretised values that the scalar variable can take. Thghter each delta function will
be one of the parameters to be optimised. The consequenbs @piproach is that the
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functional form becomes very general and formally simphel eost importantlylinear,
but the number of parameters to fit increases. The actual meathamplementation will
be described in the next chapter.

2.5.1 Computation of Lennard-Jones interactions

The pairwise Lennard-Jones (LJ) potential mimics thiea Van der Waals forces. The

(%)12 _ (2)6] , (2.100)

analytical form is:

ULJZE
r

Wherer is the interatomic distance ardando represent respectively the depth of the
attractive energy well, and what is commonly called "cadisradius”, i.e. the approxi-
mative distance where the potential changes from attetmivepulsive.

2.5.2 Computation of Coulombic forces

Electrostatic interactions are represented by the clalsSmulombic potential

1 a9

Ue- =
C47rer

(2.101)

whereC is the Coulomb constant; andq; are the atomic charges,is again the inter-
atomic distance, and theconstant represents the dielectric constaMacuo(not to be
confused with the constant in the LJ potential). The resglforces can be computed
either by solving the Poisson equation with a long-rangeseh(Ewald summation) or
using a cutf approach, whose usage has recently seen a resur@@][%, 91

2.5.3 Computation of bond forces
CHARMM represents covalent bonds as harmonic springs, patantial:
Up = Ky(r — ro)%. (2.102)

wherekKj is the spring constanty is the rest length, andthe interatomic distance. Note
that is the CHARMM potential the usual factof2(which is seen in most textbook when
discussing harmonic potentials) is usually included ingeng constani, and does not
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appear explicitly. The same applies to all harmonic posstised for angles, dihedrals,
etc.

2.5.4 Computation of angle forces

In biomolecular simulations, an angle is univocally deteed by three bonded atoms.
The scalar variable associated with the bending poterstitda angled. The expression
of the potential energy is:

Ua = Ka(6 — 6p)%, (2.103)

wherekKj is the angular spring consta, is the rest width, and the angle width. The
computation of forces arising from the harmonic bendingpbéal can be computed by
the general method suggested B [92] and also presentediby [2

2.5.5 Computation of dihedral forces
A dihedral anglep is defined by four atomis, i, j, k. The dihedral potential adopted in the
CHARMM force field used for the atomistic simulations has éimalytical form:

Uy = Ky[1 + cogmg — )], (2.104)

Wherem is the multiplicity ands the phase angle. The calculation of the forces on the
four atoms implies some very long and rather tedious linkggataa. The interested reader
can find an exhaustive derivation of the numerical methoéﬁerence@@q.



Numerical Background

The purpose of this chapter is to briefly outline the naturhefmain numerical calcula-
tions required for the work carried forward for this thesisd the methods and strategies
used to tackle them.

3.1 Numerical implementation of interaction potentials

The choice of the interaction potential is of paramount ingoace in molecular dynamics,
because it defines the physical model of the simulated sysfdra implementation of
interatomic forces is given in the following.

a7
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3.1.1 Pairwise non-bonded interactions: Lennard-Jones ahCoulom-
bic interactions

For pairwise Lennard-Jones potentials, the interactidwéen atom and j produces a
contribution to the potential energy :

12 6
VLo(ri) = de [(%) - (%) ] (3.1)

wherev is the potential energy;; = |r; — rj| is the interatomic distance; is the collision
radius andt is the depth of the energy well.

The corresponding pairwise forég on atom tha can be calculated as:
fi = =V, via(rij) (3.2)

whereV, must be interpreted as a partial gradient of the potentiti vaspect to the
coordinates of the atom The resulting force components are (dropping the potiéntia
dependency on;, for brevity):

oV dVLJ Brij

= = (3.3)
- _GHL; _ _‘ZL“LJ_J . ‘ZL; (3.5)
The derivative with respect tg; is immediately evaluated as:
d 12 1 6
%":— 7—113—57—7] (3.6)
whilst the terms containing the partial derivatives are:
Ir: s
a_;/: = (y'r—”y‘) (3.8)
onj _(@-2) (3.9)

07, B Iij ’
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which result in the following expressions:

fi = 48 l(ri)m - (3)8] (% — X;) (3.10)

o ij

14 8
o l(%) B (g)l(yi—y,-) (3.11)

€ o 14
(o rij

for the three force components. The derivation of the Cobiorforces is analogous, with
the potential function given by

8
)kz—a) (3.12)

aidj

F,
whereC = 1/4re, with € being the dielectric constairt vacuq andg, d; the charges of
the atoms anf j. Again the force can be computed from the general princigppeessed
in Eq.[3.2, as:

ve(rij) = (3.13)

e _de iy

foo= - <. 14
B0 dry ax (3.14)
OV dVC 6rij
fo=———=—. 3.15
Y ay,  drj 9y, (3.19)
oVc dVC arij
fo=— e A

The partial derivatives are exactly the same as in the cagedfennard-Jones potential,
and the derivative with respect to the interatomic distaadavial. The resulting forces
are:

fix = C%(m - Xj) (3.17)
ij
e

fiy =C3 0 - ) (3.18)
ij
diq;

fio = C—5(z-2), (3.19)

ij
The implementation is slightly more complicated when th@lementation includes a

switching function that brings the potential smoothly totGlee cutdf distance. This
eliminates the discontinuity produced by the truncationhef potential function at the
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cutof distance.

3.1.2 Bond stretching

The computation of the internal forces arising from bondtstring closely resembles the
case of the pairiwise potential. For biomolecular simolagi the energy of the bonds is
usually modelled by a harmonic potential:

Vo(rij) = K(rij — ro)%, (3.20)

which after a derivation that closely resembles the oneerptievious section, yelds the
following force contributions:

fi = —2(fij - fo) O %) (3.21)
ij

fiy = —2(rij - ro) (yl _yj) (322)
ij

fiz = =2(rij — ro) (- Zj), (3.23)

i

for the atom i, and force components of opposite sign for thma.

3.1.3 Angle bending

In a molecular simulation of a systems that contains covddends, and "angle" is indi-
viduated by three mutually bonded atoms i, j, k (here we vaiane that the bonds are
i-j and j-k). The potential energy associated to angle bemd also usually a harmonic
relation,

V(i) = K(Bij — 00)>. (3.24)

Defining the two vectorb; = r; — rj andb, = r —r, the angle can be calculated from
the relations

>
Il

cos'(co¥) (3.25)

by - b, (3.26)

coy = :
by llb2|
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and the corresponding forces can be calculated again byswéait.[3.2. The analytical
route suggested bﬁb3] is to use the chain rule of derivabarwrite Eq[3.R as:

dvo)
'~ Td(cow)

V,,co9, (3.27)

In comparison to the pairwise and the bonded potentialsekenthe computation of the
atomic forces requires some extra linear algebra.

First, we notice that for a sistem of three atoms the forcesngr from the angle
bending potential are internal, therefore the total forogh®e three atoms must be zero
along the three directions. It is enough to compute the corapis on atomsandk, and
the forces on atom 2 can be calculated yesience. This saves us thi@at of computing
all derivatives explicitly, and the resulting equationsttoe force components are:

B davwe) o
fy = _d(coss') axicosS’ (3.28)
davwe) o
fooo= — L 2
iy dcow)  dy, coy (3.29)
B davwe) o
f, = _d(coss') . 7z co9y (3.30)
B dv(6) 0
fuy = _d(coss') . axkcos9 (3.31)
dv(o) 0
fy = — - — .32
ky d(cod) aykcosﬂ) (3.32)
B dv(6) 0
fi, = — d(co%) azkcos9 (3.33)
1:jx = _fix_ka (3-34)
fy = —fiy—fiy (3.35)
fo = —fo—fo (3.36)

The first derivative with respect to the cosine, for the harimpotential given by Ed.3.24,

is easily evaluated as:
dvid)  2K(6 - 6o)

d(co®) s
It is possible to derive simple relations for the partialiggtives of the numerator and
denominator of the cosine in Hg, 3125, with respect to thedinates of atoms andk.

(3.37)
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For the numeratony - b,) we get:

0
B_Xi(bl -by)
0
ﬁ_yi(bl -by)

0
a_a(bl -by)

0

B_Xi(bl -by)
0

a_xi(bl -by)
0

B_Xi(bl -by)

and for the denominatdio,| - |b,| we get:

0

a—xi(|b1| - |bal)
0

—(|by| - |b
ayi(| 1l - [b2])

0
5_Zi(|bl| - |b2l)

0

aﬂbﬂ - |b2l)
0

—(|byq| - |b
ayk(| 1l - |b2l)

0
aﬂbﬂ -|bal)
Now if we define:

by - b,
Iby| - [yl
[l

|4

b4

||

(X = Xj)
Y —Yj)

(z-z)

(Xj — %)
i — Y

(z — 2,

(o7
(X| J)|b1|

byl
(% y,)|b1|

by
ba
by
[ls1]
(o5
by

(z - Zj)lb_2|

(X = Xj)

(X =Yj)

(3.38)
(3.39)

(3.40)
(3.41)
(3.42)

(3.43)

(3.44)

(3.45)
(3.46)

(3.47)
(3.48)
(3.49)

(3.50)

(3.51)

(3.52)
(3.53)

(3.54)

(3.55)
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the partial derivatives of the cosine can be calculated as:

0 (X = Xj)B = (% — X))A
—Co% = C (3.56)
0% B2
0 k= y)B=(yi —y)A
o, coy = 52 C (3.57)
-7 B —(z — z A
7009 = (2~ 2) BZ(Z A (3.58)
(3.59)
(= %)B = (X — X))A
acoﬁ = 52 D (3.60)
i -y)B- (k- YA
a—ykcos9 = 52 D (3.61)
acoﬁ _ @-2) Bz(zk 2) D. (3.62)

Furthermore, if the width of the angle is expected to deviatesiderably from the
equilibrium valuef,, a harmonic potential is added between atorasdk to keep into
account the increase in angular springfséss caused by the collision between the elec-
tronic shells of finite-sized atoms. This corrective termally goes under the name of
Urey-Bradley potential, and is implemented as a addititiaamonic bond as described
in the previous section. However, it is only computed whenlibnd is "compressed”, i.e.
when the bond length is lesser than its rest length.

3.1.4 Dihedral torsion potential

The derivation of the forces arising from dihedrals is exieéy cumbersome and omitted
for the sake of brevity. A very accurate derivation is deizhiin Ref.].
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3.2 Force-matching equations

The calculation of the pairwise interactions is performsohg the MSCG method, min-
imising the merit cofficienty? ¢ as written in Eq_2.99.
If we rewrite Eq[Z2.9P as follows:

xus = (f = G9)'(f - G9), (3.63)

where G is a matrix of 3yN x Np elements, and is a vector of &N known terms,
andg¢ is the vector ofNp unknown force-field parameters, it becomes apparent tleat th
set of parameters that minimigé,s can be calculated as a least-squares solution of the
overdetermined linear system:

f-Gp=0 or Go¢=H, (3.64)

with 3n¢N equations ant\p unknownsﬁb].

The system in Eq._3.64 has8l equations antp unknowns. We require such system to
have more equations than unknowns, therefore the conditidghe minimum number of
configurations that we must postprocess is:

N > 3_N (365)

This condition must be satisfied for each block in case a Blaairaging techniquéﬂS]
is used.

3.2.1 Pre-calculation of bonded interactions using a harmac ap-
proximation

In our CG force field we have decided to neglect the torsioeglrekes of freedom of the

polymer backbone, as their energy contribution is usualbyerimited than for bonds

and bending angleEllB]. The chosen analytical form for C@dsand angles was that
of a harmonic potential,

Uy = Kb(r — ro)z (366)
Ua = Ka(6 — 6p)? (3.67)
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WhereUy, U,, are the potential energieky, K, the spring constants, ang, 6, the rest
length and rest angle width, respectively. The force-fielcthmeters were obtained from
the equilibrium fluctuations of the atomistic system, foliog the method suggested by
Zhou and coworker&i%]. At equilibrium, the probabilitysttibution of the energy asso-
ciated with one bonded degree of freedom must obey Boltzratatistics, and therefore
the probability density of the associated scalar variabteust be

P(x) = C-exg-U(X)/ksT), (3.68)

wherex is the appropriate scalar variable that depends on the tiypetential (i.e. bond
length or angle width; is the absolute temperatulg, is the Boltzmann constant)(x)
is the potential energy ar@a normalisation constant to ensure the the integral of dier a
possible values of x is equal to 1, i.e. ensure sure that B@gtually a probability distri-
bution. The empirical probability histograms for each C@Gdbed degree of freedom were
generated from the all-atom simulations, using the appatgtopological mapping. The
parameters were then determined by fitting[Eq.13.69 ontorti@recal distribution. This
approach has the downside of requiring a starting assumfiirche analytical shape of
the potential energy. However, harmonic potentials seewot& well with most systems
,188]. If we substitute a harmonic potential in [Eq._3.69 @@ see that the resulting
probability density ofx has the form:

(3.69)

P(X)=C- exp(——KX(X_ XO)Z) =C- exp( i XO)Z),

keT - 2kgT/2K,

which is a Gaussian distribution with meag and variancegT /2K,. Therefore, after
checking that the shape of the distribution is actually Geus the parameters could also
be estimated as:

X = (X) (3.70)
kgT

where(-) represents the averaging over the available samples. Hséyday to determine

bonded interactions in the comparatively simple way desdriabove, can help simplify
the complexity of the more demanding least-squares probksociated with the deter-
mination of the non-bonded pairwise potential between gadsible pair of CG sites.
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Namely, the forces contribution arising from bonds, angled dihedrals can be com-
puted separately arglibtractedfrom the vector of known terms (i.e. known forces on
the sites, according to the atomistic model and the chos@pimg). The advantage of
precalculating the bonded interactions, instead of leathem as unknowns and comput-
ing them along the pairwise interactions from the generaCi@Seast-squares problem,
is that the new system has about only half of the original omkrs. In the CG study
presented in later sections, about 1000 unknowns out of208@0 were removed in this
fashion.

3.2.2 Solution of the least-squares problem

The original formulation of the least-squares problem eisséed with the MSCG method,
(Eq.[3.64) E.b]. can be cumbersome and can lead to very bigigeat In particular,
several factors can cause a rapid increase in size of thexr@atbeyond the size that can
be directly addressed with the available memory and stspgee.

The first is the necessity to determine explicdllypairwise interactions betweenfidirent
types of CG sites, can be problematic in systems with mafiigréint types of sites: with
three site types, the possible combinations are only 6,siviith 5 site types (as in the
case of the solvated DNA double strand) the combinationslaeady 15. With a cutd
distance of 10A and a grid step of 0.1A, every type of pairviigeraction contributes
with 100 further unknowns to the complexity of the problenmefefore a simple system
of 2000 sites and 5 site types, even using a block averagimgzaimation with a conser-
vative block size of 10 configurations, would generate aim&0000x 1500, which uses
about 1GB of memory (storing elements in double precisid. are therefore already
close to the upper limit of complexity that can be dealt witling an average desktop
computer.

A possible way to circumvent this problem, suggested by Nwid coworkers, is to
rewrite the system in the following form, equivalent to EG®

Xos =¢"Gop—2bT¢p+1'f, (3.72)

Whereb = G'f, andG = G'G. The suggested route to solve this problem is look for the
stationary point of2,s(¢), zeroing all partial derivative®?/d¢, fori = 1...Np, obtaining
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the system ofNp equations antNp unknowns
G¢ = b, (3.73)

that can be attacked directly using standard methods featisystems (as the size of the
codficient matrix will be typically in the order of about 10601000). This formula-
tion has the disadvantage that the condition number oGimeatrix is the square of the
original condition number o6, and therefore the corresponding linear system requires
preconditioning in order to yield accurate results; on tteeohand, the size of the matrix
i[iEjreatly reduced\p x Np) and consequently the memory requirements are much lower

]

The strategies for the solution of the linear system 13.64beildiscussed further in
the last chapters of this thesis, dedicated to the coarssirggaof DNA molecules.
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Viscosity of Price-Brooks TIP3P model
water

In this chapter we present the results of a parametric stlittyeosfect of diferent tem-
peratures and salt concentrations on the dynamic viscosisy specific type of water
model, the Price-Brooks TIP3P wat@[%].

This kind of water model is a refinement of the original TIP3&av modeIEIA], and is
optimised for MD simulations performed with Periodic Boang Conditions and long-
range solvers for electrostatic interactions, such as &swahmation, and particle-particle
particle-mesh (PPPMEJ%]. The necessity of this studyearisecause a reliable knowl-
edge of the solvent viscosity is crucial in the estimatiomofecular difusion codicients
from MD simulation. Moreover, the data available from thterature did not take into
consideration theféects of temperature and salt concentration on the viscosity

Like most empirical models, the Price and Brooks TIP3P isupestrised for pure water
at 298K, and its behaviour undeffidirent conditions is not known a priori. We have in-
vestigated theféects of diferent temperatures and salt concentrations on the vigadsit
the Price-Brooks variety of TIP3P (which we will call PB-TP), in order to quantify the
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deviation from the behaviour in standard conditions. Thisriportant for any simulation
performed at non-standard temperature and ion concentsati

4.1 Introduction

The existence of a large number of water models implicitigentines the dticulty to
capture all water properties with only one parametrisa@j. The usage of a model
is therefore limited to the set of properties that it can oélpice within an acceptable ac-
curacy level. Simple models such as the 3-point TIP3P arsulbisequent modifications
have encountered success, because they are computgtiesaldemanding than more
sophisticated ones, such as the TIF’@> [95]. Further interélse TIP3P arose from the
fact that the widely used CHARMM force field for biomolecusamulations was param-
eterised using TIP3P, and it was unclear whether the solvagtioperties would be pre-
served when using aftierent water mode@G]. Only recently, a study performed bgtN
and Smith using the CHARMM potential has shown that the bigliawof biomolecules
in solution is fairly similar when other water models are . this applies to several
versions of TIP3P, TIP4P, and to a lesser extent to TIPSP. [D&spite of this, TIP3P
still remains the most widely adopted water model. One ofré@sons is that not all
MD packages implement the numerical optimisations thawatb compensate most of
the additional computational cost of TIP4P and TIP@’ [97EllWdnown limitations of
the TIP3P model include its poor structure, high sefftdiion codficient [95], and low
viscosity @3]. A modified set of parameters (PB-TIP3P) wesppsed a few years ago
by Price and Brooks that improves the structural propedii¢ise model and its suitability
in simulations with periodic boundary conditions and laagge electrostatich3].

4.2 Methods and simulated cases

The PB-TIP3P has the same rigid 3-point geometry of the maigf IP3P model, and
the same sfiness for the O-H bonds and the H-O-H angle (see [Mab. 4.2)} bubdli-

fies the fixed electrical charges on the atoms, as well as tfameders of the pairwise
Lennard-Jones interactions for oxygen and hydrogen atdine.interaction parameters
are summarised in Tab. 4.1. For biomolecular simulatioesniolecule is usually kept
rigid applying holonomic constraints by means of algoritbmech as SHAKE [41]. Con-
straining all bonds and angles involving the fast-vibrgtih atoms is common practice,
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Ficure 4.1: Geometry of TIP3P (a), TIP4P (b) and TIP5P (c) water nreodeP4P and TIP5P
add extra massless charges in order to better reproduckdhgedistribution around the molecule.

in biomolecular simulations, in order to allow a the use obrager timestep and reduce
the computational cost.

The PB-TIP3P model has a good capability to reproduce thalrdigtribution func-
tion of oxygen atoms which is found in real water, as shownign[#.2.

Molecular dynamics (MD)EB] was used to simulate cubic deg60x60x60A)
filled with PB-TIP3P water in a NPT ensemble that was corgrblly a Nose-Hoover ther-
mostat and barost99]. Periodic boundary conditveer® applied in all directions
and a particle-particle particle-mesh (PPPM) solver wasluer calculating the long-
range electrostatics forces. Bonds and angles involvikigdgen atoms were constrained
with the SHAKE algorithm. The simulations were performeddth combinations of the
temperatures 298K, 323K and 348K; and the ions molar coret@mts (total moles of
Na" and CI ions per liter water) of OM , 0.1M, and 1.0M. The target pressmas latm
for all simulations. An overview of the composition of thesilated systems is presented
in Tab.[4.B. After assigning the initial positions and véfies, the potential energy of
each system was minimised before equilibrating the systeth® target temperature and
pressure for 1ns with a timestep of 0.5fs. The equilibratedesns were then used for
the production runs of 4ns with a timestep of 2fs. Every coration of temperature and
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Ficure 4.2: Radial distribution functions of PB-TIP3Pwater, cargd with experimental val-
ues [2]
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Tase 4.1: Atomic charges and
Lennard-Jones parameters for TIP3P
and PB-TIP3P water models

Parameter TIP3P PB-TIP3P

Yo -0.8340  -0.8300
Ou 0.4170  0.4150
€00 0.1521  0.1020
00 3.1507  3.1880
€on 0.0460  0.0000
oo 0.4000  0.0000
€nn 0.0836  0.0000
ThH 1.7753  0.0000

TasLE 4.2: Geometry and mechanical parame-
ters for TIP3P models.

Symbol Value

Bond sttthess K 450
Bond length ro 0.9572
Angle stifness Ky 55
Angle width 0o 104.52

salt conditions was simulated in three independent runis r@hdomised initial condi-
tions, in order to increase the number of samples to averagre Bressure, temperature
and volume were stored at every timestep. The fluid viscogityas calculated with the
Green-Kubo relation@ﬂOl] from the time integral a& Hutocorrelation function of
the df-diagonal components of the pressure tensor,

V)

e fo (P (0)P;; (1))dt , (4.1)

77 =
where(V) and(T) are the run averages of temperature and preskgiie the Boltzmann
constant andP;; one of the &-diagonal components of the pressure tensor. The autocor-
relation function (ACF) was computed using a window-averggrocedure analogous
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TasLe 4.3: Number of molecules
used in the simulations atftierent
salt concentrations

lonconc. H,O Na* CI-

oM 7224 0O 0
0.1M 7210 7 7
1.0M 7088 68 68

to that described by Nevins and Sp£ 102] with a time windb&ps and integrated
numerically using the trapezoid rule with a step of 2fs. Tigiothe noisy tail of the ACF,

the integral function reaches a plateau after about 1.%p$s then subject to fluctuations.
Therefore, the limit value was estimated by averaging ttheevaver the last 0.5ps of the
time window.

An example of the pressure ACF and its integral function vewgiin Figs[4.3(&) and
[4.3(b). For every simulation, the procedure was perfornwedtie three independent
pressure componenk,y, Py, andPy,. Since every condition was simulated three times,
each reported value is the average of nine independentags8mAll 27 independent runs
were performed using LAMMPiBZS], and the results were postessed using custom
C and Octave scripts.

4.3 Results

The results obtained for water viscosity are summarisecam[4.4 and compared with
available experimental data for both pure water and salireunes. In particular, accurate
measurements at 298.15K have been produced for pure watsakme solution by Zhang
[B]. For several dierent conditions of temperature and salt concentratiathéu data
could be found in the papers by Kestin and cowor@ [103)wéi@r, for some of the
simulated conditions, we were not able to locate suitalppeermental values and we have
relied on extrapolation. The available measurements vegrerted to be accurate within
1% of their absolute vaIueEI [E 503].

As we can see from Tab._4.4, the viscosity of the PB-TIP3P Inisdeonsistently
lower than that of real water and higher than the TIP3P m&ll,{._ﬂll]. The absolute
values are about half of the experimental ones. This distrgpis partly due to the
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Ficure 4.4: Summary of resulting viscosity measurements at 298RK3and 348K.
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Ficure 4.5: Viscosity versus temperature, for real water and PB3P] in no salt condi-
tions.Experimental datapoints were taken from [3]



4.3 ResuLrs 67

Tasie 4.4: Results for PB-TIP3P water viscosities and
comparison with experimental values

T(K) M(iong n(mPa-s) nex(mPa:s) 7n/7exp

298 0 0.420.02 0.89G 0.48
298 0.1 0.450.03 0.893¢ 0.50
298 1.0 0.48&0.03 0.914¢ 0.53

323 0 0.3%0.01 0.547 0.57
323 0.1 0.330.02 0.550" 0.56
323 1.0 0.340.02 0.576" 0.59

348 0 0.220.01 0.379" 0.58
348 0.1 0.240.01 0.38F" 0.63
348 1.0 0.250.02 0.4037 0.62
* Experimental value, from [5]

’ Experimental value, fro:Hﬂ)

° Experimental value, fro 3]

T Extrapolated values

simplifications of the model. In particular, the charge mlsition of the electron cloud
cannt be accurately represented by three point chargesevgusstions are fixed relative
to the atoms. Models like TIP4P and TIP5P, while still rigitbaherefore incapable of
reproducing polarisationfiects, add extra massless charges which mimic the charge dis-
tribution more accurately, and are (almost) always moreesgful in reproducing a wider
range of water properties, although greater complexitytsatways associated with bet-
ter results|[97].

In addition, the empirical and simplified nature of the mouheplies a poor predic-
tive capability for those properties that, like viscosityere not included in the original
parametrisation_[94]. Nevertheless, by comparison with ehperimentsDS], the PB-
TIP3P model is able to reproduce at least qualitatively teed of the the viscosity in-
crease due to ions in solution, as shown in Eigl 4.4. For tmeilsied conditions, the
effect of temperature is much more visible than that of the saltentration.

The viscosity decreases considerably at higher tempesatat 348K its absolute value
is nearly half of the value measured at 298K. For pure waxpermental data are avail-
able for a range of temperatures and a comparison is plottEai[4.5 showing that the
viscosity of the PB-TIP3P model follows the same trend asettperimentally obtained
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values.

The discrepancy between the results for real water and TVR8Er, shown in Fig._415

is due to two main reasons: first, the model is geometricathpkfied, rigid and non-
polarisable, which limits its capability to reproduce tleerect charge distribution around
the molecule; secondly, trempiricalnatural of this class of models means that their pa-
rameters are “fitted” in order to reproduce a given set ofcstimal or thermodynamical
properties. This implies however that no warranty is giveat properties not introduced
in the original parametrisation will be reproduced coigetind this was indeed the case
with the viscosity of TIP3P).

It is worth mentioning that our results for TIP3P viscositysalf-free conditions are in
excellent agreement with the values given by both Yeh andiden{Q31+ 0.01Mpa- )

and Gonzalez and Abascal.321MPa- s, although no standard deviation was given in
their paper)BS]. Amongst the available models, thet beerall performance seems
to belong to the TIP4R005 model by Abascal and Vega, but it's use has been somewhat
limited, at least in part for the reasons outlined in theadtrction of this chaptelILb6].
Summarising, he presented results can be useful in sirantathat aim at the extraction
of quantitative information about theftlisive properties of small molecules in agueous
saline solution: if the deviation from the behaviour of reaiter is known, the too low
viscosity can be kept into account and the unrealisticali ldiffusion codicients can

be rescaled accordingly, thus recovering good estimatgseatal values.



Diffusion codicients of sSSDNA oligomers

5.1 Introduction

The aim of the work presented in this chapter was to evallegeffect of salt concen-
tration on the dtusive properties of DNA oligomers of fikerent sequence. Salt con-
centration plays a double role, modifying the carrier fluisicesity and the mechanical
properties of the ssSDNA chaiEI [BO?]. This interplay detigres the resulting diusive
behaviour. The féect on the conformation has been investigated calculatiegetjuiva-
lent hydrodynamic radius of the strands. The way the salteoination &ects the solvent
viscosity wa kept in to account thanks to the results obthinehe previous chapter. The
averaged properties of short oligomers can be used asaivstelements of a finely dis-
cretised model of ssDNA for implementation in particle-dlunodels for the simulation
of transport phenomena in DNA biosensors.
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5.2 Method and simulated cases

All simulations have been carried using the LAMMPS pardii# simulator using the
CHARMM27 force field Eb]. All bonds and angles involviiyatoms were con-
strained with SHAKE. The cutdfor non-bonded interactions was set to 10 Angstrom
and long-range electrostatics were computed by PPPM met$iod a grid space of 1
Angstrom. The 3’ and 5’ ends of the nucleic acid chain werepedpwith hydroxyl
groups. The tetramerpf), and (pT)4, and the octamerg8), and (p8), were solvated
in cubic boxes of explicit TIP3P water, modified accordinghe parametrization sug-
ested by Price and Brooks in order to reproduce the solvaritsre more accurately
)
The systems have been neutralized with 3 (for tetramersygondtamersNa‘ions and
NaCl was added up to twoftierent concentrations, 0.1M and 1.0M respectively.

5.2.1 Simulation boxes

The boxes for §A)4 in 0.1 and 1.0M solutions included 6755 waters&8 and 5CI~ and
6631 waters, 68a" and 62CI- respectively. The boxes fop(), contained 6761 waters,
8Na* and 5CI~, and 6646 waters, ®ba* and 62CI-. The boxes for [pA)s contained
6431 waters, 18a" and 3Cl-, and 6646 waters, 6" and 59CI-. The boxes for
(pT)4 contained 6761 watersN&" and 3CI~, and 6646 waters, &6a* and 59CI|~. The
composition of the simulation boxes is summarised in [[dh. 5.

All runs were performed at 298K and 1 atm in the NpT ensemblegusose-Hoover
thermostat and barostQM]. The systems have been migdnaizd then equilibrated for
1ns with a timestep of 0.5fs, and then run for 4 more nanoskctmallow ion equili-
bration around the moleculmOS]. Each of the 8 cases has heein 3 independent
simulations with randomized initial configurations, foraal simulated time of 600ns.
The position of the ssDNA centre of mass was stored every$.2 p
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TasLe 5.1: Composition of the simulation boxes.
All runs were performed at 298K and latm.

Seq. C(NaCl) Atoms HO Na* CL-

4A 0.1IM 20409 6755 8 5
4A 1.0M 20181 6631 65 62

4T 0.1IM 20423 6761 8 5
4T 1.0M 20195 6646 65 62

8A 0.1IM 20305 6678 10 3
8A 1.0M 20081 6566 66 59

8T 0.1IM 20317 6682 10 3
8T 1.0M 20093 6570 66 59

5.2.2 Calculation of the difusion codficient

The difusion codicients were calculated from the random fluctuations of thé&enube
centre of mass using the well-known Einstein relation fdiugion in three dimensions,

D = Jim 2 (MSDV)

51
t—oo at 6 ( )

The slope of a linear fitting of the Mean Square DisplacemdiSI)) over a time window
At was evaluated after computing the MSD by window-averagimy the production run,
as illustrated for example b 2]. The chosen window langasAt = 100ps, while
the spacing between the time origins of the windows was 10Dps.MSD converges very
neatly to the expected linear behaviour, and the unceytaimthe slope is several orders

of magnitude smaller than the absolute value, thus progidisolid estimat, as shown in
Fig.[5.1.

5.2.3 Correction for finite-size dfects

A suitable treatment for keeping account of tiieet of PBC and the limited size of the
simulation box was developed by Yeh and Hummer, based on girieat correction of
the original theoretical analysis for point-like partisley Dinweg and Krem09].
The simulated dfusion codficient Ds computed by means of Ed. (b.1) is first corrected
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Freure 5.1: Summary of corrected hydrodynamic radiuses fé¢int salt concentrations.

for finite-size dfects as:
D=D.+ kBTfoz,
6L
WherekgT is the reduced temperaturgis the dynamic viscosity of the used water model,
& = 2.873 is a constant that synthetises the correlattéece summed over all periodic
images of a cubic latticey = 0.76 is an empirical correction for finite-size molecules,

andL is the linear size of the boﬁb@w].

(5.2)

5.2.4 Correction for low solvent viscosity

Assuming that viscosity alone doesn’'t have a remarkalileceon the hydrodynamic
radius of the molecules, the Stokes-Einstein equationiges\the scaling relationship for
diffusion in two solvents of dlierent viscosity (in our case, real and model water), as

7wDw=1D, or Dy =-LD, (5.3)

Nw

whereD,, is the estimated fliusion codicient in real water. The dynamic viscosity of
TIP3P water is known to be very low, and it has been reportesbhbye authors to be31+
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0.01mPa- s [@]. However, as shown in the previous chapter, the PricsBs TIP3P
water model has a comparatively higher viscosity. The erpartal values for water
viscosity in no-salt, 0.1M, and 1.0M NaCl solutions are exgjvely Q89 + 0.02mPa. s,
0.90+ 0.02mPa- s and 097 + 0.02mPa- s. [B]. The comparison with model water in
similar conditions, and the corresponding correctiondexas summarized in Tab. (b.2).
For the solutions at 0.1M and 1.0M NaCl the solvent viscosdyrection factorsy/n,
are respectively 0.50 and 0.49. The correctdildion codicients are summarised in

Tab. [5.3).

5.2.5 Correction for constant drift

Every simulation was initialised with randomised atomitoegies; however, numerical
errors can cause the center of mass of the simulation box sege a small residual
velocity. The result is a system slowly drifting in spaced déine resulting motion of the
molecule in solution is the sum of a random brownian motiahatranslation at constant
velocity. It is known that, in the case of brownian motionwirift, the MSD becomes
guadratic instead of IineaﬂlO]; moreover, no simple winzl relation exists between a
guadratic MSD and the correspondingfdsion codficients. Therefore it was necessary
to correct the drift artifact by subtracting the total vetpof the system’s centre of mass.
This way we were able to recover the expected linear shape efindow-averaged MSD.

5.3 Results

Salt concentration is known to have difieet on both fluid viscositﬂS] and ssDNA per-
sistence Iengt?], which influences the chain persigtéength and therefore its con-
formation in solution and, potentially, its hydrodynamadius. We have used molecu-
lar dynamics simulations to investigate thiéeet of salt concentrations on theffdisive
properties of sSSDNA oligomers. Finite-sizfexts have been taken into consideration by
means of opportune correction ¢beients. The discrepancy between the viscosity of real
and model water has also been considered.

The nucleotide sequences of the simulated sSDNA strandschesen as two limit cases,
polyadenine and polythymine, which show respectively tlagimum and minimum base
stacking tendency and therefore the maximum and minimurectgd persistence length.
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TasLe 5.2: Viscosity of real water, (extrapolated from [51)
and Price-Brooks TIP3P water at 298K and 1 atm fiedent
NaCl molar concentrations (valuesrimPa-: s).

C(NaCl) mpeTipzp  MH,0(EXP.) 1PB-TIP3P/NMH,0
0 0.43+0.02 089 048
0.1M 045+ 0.01 090 049
1.0M 048+ 0.01 097 050

TasLe 5.3: Computed@s) and correctedld,,) diffusion codicients (in
10-3cn?/s) and corrected hydrodynamic radiRs (in nm)

Seq. C(NaCl) Ds Dw R

4A 0.1IM 0394+ 0025 0285+0.012 1779+ 0.008
4A 1.0M 0319+ 0.020 0237+0.010 2045+ 0.088
47 0.1IM 0431+ 0.015 Q303+0.008 1674+0.043
47 1.0M 0382+0.025 0268+0.012 1809+ 0.082
8A 0.1IM 0253+ 0.003 Q214+0.002 2371+0.019
8A 1.0M 0197+0.020 Q177+0.009 2745+0.148
8T 0.1IM 0233+ 0.011 Q204+ 0.005 2488+ 0.066
8T 1.0M 0217+0.008 Q187+0.004 2597+ 0.055

The lack of experimental data for short oligonucleotidesihtteallow a direct valida-
tion of the simulation results. However, experimental nueasients have been performed
by Nkodo and coworkers for slightly longer strarBs [4], afiter salt conditions, as shown
in Fig[5.4. Our results in high-salt conditions are very elés the values extrapolated
from the experiment, whose least-square fitting gives:

D = 5525- N7%°% (5.4)

whereD is the difusion codicient and\ the number of nucleotides. Although the solvent
conditions are not exactly the same, our results can be cadmpantitatively, with
decent accuracy, with values extrapolated from[Ed. 5.4aumex over 1.0M the viscosity
of the solvent can be assumed not to be massividgted by higher salt concentrati& [5].
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Ficure 5.4: Least square fitting of the experimental results by Mkaad coworkers, for ssSDNA
in high-salt conditions_[4].

The surprisingly good agreement shown in Eig] 5.5 suggkatstie method described in
this chapter can actually be used for the quantitative ¢aticun of diffusion codficients in

saline solution. The same approach, in principle, can b#uhy applied to other small
molecules (i.e. drugs).
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Ficure 5.5: Comparison between theffdision codicient predicted by a least-square fit of
experimental results, and the results of our simulatiortsgh-salt conditions
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Ficure 5.6: An example of configurational fluctuation of ssSDNA inig@n: initial orderly
configuration of a polyadenine tetramer, (left), and configon after 10ns equilibration, with
unstacking of one of the terminal residues (right).



Implementation of brownian perturbations
for isolated particles

6.1 Introduction

Modelling the brownian motion is and important part of a nsespic simulation of par-
ticles and polymer transport, because random agitationeigphysical mechanism that
triggers dffusive processes.

The explanation and description of Brownian motion was istdidnd formalized by the
likes of Einstein, Langevin, Smoluchowsﬂﬂ]. Langesgi@pproach is to include ex-
plicitly the random force in the hamiltonian equations oftiao of the colloid particle
(assumed to be spherical) thus obtaining a stochasticamdditerential equation which
can be solved formally using the boundary conditgd) = vo,

t
% =-BV+Al)=v-vet = ‘ﬁtf e"A(7)dr (6.1)
0
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wherep = 6rRn/M is the friction codicient, m andR are the mass and the equivalent
hydrodynamic radius of the particleis the newtonian viscosity of the solvent, aid) is
the stochastic acceleration, that needs to be characiéoisEq.[6.1 to be of any practical
use. Given a certain simulation timest&fp what we need to know is theimulativeeffect

of all the random accelerations caused by collisions oedumn the intervalf, t + At], on
the resulting position and velocity. When the “random fligiindition At > g~ doesnot
apply, the displacement over the timestep is no longer puagidom, but it's &ected by
the velocity at the previous timestep, which must be catedlas well. This can be often
the case in mesoscopic fluid-particle simulati@[lll]/.vefcallr andrg the particle’s
position vector and initial position, under the hypothebes

¢ the timescale of the random force variation is much fastan @y other physical
guantity in play;

e energy equipartition will hold for both solvent moleculeglgarticles, so the par-
ticle velocity distribution will also converge to a Maxwelh curve

the joint probabilty distribution function (PDH)(d, u) for the vectors

d = r—ro-pBtve(l-e?) (6.2)

u = Vv+vee? (6.3)

(from which displacement and velocity can be readily ol#djnover a timestept, is
given by ,[1__1}2]:

~ 1 gld|? — 2hd - u + f|uf?
0= e- P 2tg-m | ©4)
where the coféicientsf, g, h are given by

_ LlkeT _ BAL _ o-2BAt

f = 7 (2BAt — 3 + 4e e ) (6.5)

g = kE‘V-r(l—e‘z‘m) (6.6)
o 1keT N

h = M 1-¢e"™ (6.7)

where T is the absolute temperature &gdhe Boltzmann constant. Modelling brownian
fluctuations involves sampling six random numbdsl,, d;, uy, uy, U,, from the joint PDF
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given by EqLG.1. In the following, a numerical implementatis described.

6.2 Method

For numerical implementation, Ed._6.4 must first be recashéncanonical form of a
Gaussian multivariate.
When the vector of mean valuesdgas in brownian fluctuations) its general form is:
1 1
f(w) = ————exp|-—=wCw' 6.8

W) = ayricen p[ 2 ] ©8
wherew is an n-dimensional row vector of random variables with zeean, andC is the
N x n covariance matrix, simmetric and positive definite. Tifiediagonal terms o€ are
responsible for the mutual correlations between the sgicheariables. If we write the
vectorw as:

T

T
w=[d u| =[d dy d uc U u (6.9)
the exponent in EQ. 6.4 can be rewritten as:
w'C 1w,

where the inverse matri@ ! and the covariance matri2 are found to be

(g 0 0 -h 0 O]
0 g 0 0 -h O
1 |0 0 g 0 0 -h
1o __— 6.10
fg-h2(-h 0 0 f 0 O ( )
0 -h 0 0 f 0
0 0 -h 0 0 f)
and )
f 0O0hOO
0 fOOhO
0 0f 0O0HA
C= (6.11)
h 00goO0oO0
0hoOOgo
0 0h0O0GgQg
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The covariances (i.e.flbdiagonal terms) are non-zero only between components-of po
sition and velocity along the same cartesian direction. @aments along dierent direc-
tions are non correlated, and actually independent, tbeit PDF being Gaussiamm].
Consequently, the distribution in EQ. 6.4 can be factorim¢d three identical distribu-
tions:

f(d = X odf — 2ndu; + fuf i=XY,z 6.12
(l,UJ—We P 2(fg—1?) » I=XY,Z (6.12)

Now if we splitw into three vectors
Wi = [di Ui], I =XY.Z (6.13)

the EqL6.IP can be rewritten as canonical Gaussian biggoansisting of a displacement
and a velocity component each)

1 1 .
mexp[—zwa*Wi], i=XV,z (6.14)

where the covariance matrix and its inverse are:

f h 1 g -h
B= , Bt= , 6.15
lh 9] fg—hz[—h f] 619

and their co#ficients are already known. A common method for the implenemtaf
Gaussian multivariates requires the Cholesky factoopati the covariance matriﬁlZ:%].

Namely, ifx = [x, %] is a vector of independent normal variables, arallower trian-
gular matrix such thdtL T = B, with B positive definite, then the vectgr= Lx follows
a Gaussian multivariate with O mean vector and covariandeixr&]. The matrix.

is the so-called Cholesky factor Bt

Our bidimensional case is quick to derive, and we get:

M
L=| =1, (6.16)
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that yelds the recipe for each of the component of displaoearel velocity, foi = x,y, z:

d = xif (6.17)

Ui

m(—%) +Xi24(9 - hTz (6.18)
wherex;; andx;, are independent normal variables that can be generateddorme by

a Box-Muller or Marsaglia polar aIgorithrJEl'M], provideght a good-quality random
generator is availabl5].

The definition of the two random vectodsu, and the knowledge of their PDF, provide
the numerical scheme for the generation of a brownian ti@jgc Be At the timestep
length, and' andVv' position and velocity at the timestep t, rearranging thengein the
Eq.[6.2 we get:

Pt ot +ﬁ_1(1 _ e—ﬁAt)Vt +dt (6.19)

R Gl T (6.20)

whered! andu' are correlated random vectors whose components are geteside-
scribed above.

6.3 Calculation of relevant parameters from all-atom sim-
ulation

The model described in the previous section was implementacustom C code using
the WELL random number generat@lS], and parametrisedrding to the data col-
lected from an all-atom 40ns molecular dynamics MD simatatf a sSSDNA polyadenine
tetramer in saline water at 1.0M ion concentration, withetstep 1fs in order to allow a
comparison between the predicteffasion codicients. The resulting model parameters,
in Sl units, are summarised in Tab.16.1.

The resulting elements of the covariance matrix

fh
) g] (6.21)

are respectively:
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TasLe 6.1: Summary of brownian motion parameters for a
particle simulated at 298K and latm.

Parameter Symbol value Units

Hydrodinamic radius R, 0.818-10° m
Particle mass M 2.108-102%* Kg
Temperature T 2980 K
Friction coef. B 7.095-10% st
n

Solvent viscosity 0.97-10°  Pas.

o f =5601 10%n?
e g=1473-10°pn¥ps
e h=7.075 10'pnPps

The difusion codicient predicted by the all-atom simulation was= (0.275+ 0.003)-
10°nPs .

The decorrelation time of the displacement vector autetation wasr = 1.2ps.

The decorrelation time and thefidision codicient from the MD simulation have been
used to validate the model.

First, the autocorrelation function (ACF) for the displamnt vector was computed. The
resulting decay curve has a time constant.aB86ps very close to the value of. 022ps
given by the all-atom simulation, as shown in Fig]6.1.

Secondly, the dfusion codicient of the brownian particle was calculated from the slope
of the window-averaged the mean square displacement (M&Diyajectory of 10 steps,

applying Einstein’s relation:
Y
i Ir® = o
t—oo 6t

D (6.22)

and validated against the results from the all-atom simaniaagain with good agreement
(Fig.[6.2).

6.4 Notes on the simulation of dfusing particles

The model here described is could be defined as purely kinerbatause apparently no
numerical integration is performed on the newtonian eguatof motion of the particle.
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Ficure 6.1: Computed autocorrelation (solid line) and exponéfiting of the ACF from MD
simulation (dotted) for the brownian displacements calmd with a timestep of.001ps= 1fs.

In fact, the brownian perturbation applied at every timggtemimics the total &ect of

a large number fluctuations (collisions) over a span of tiagaéto the timestep itself.
The Chandrasekhar model is an analytical integration oktbehastic Langevin equa-
tions of motion, which yelds the resulting displacements aglocity perturbations for a
given timestep. The solution of a stochastiffeliential equation is not a function, but a
probabilty density. Therefore, the resulting browniarpthsements and velocity pertur-
bations are opportune random variables, whose probalahgity is a function of several
parameters (fluid viscosity particle diameter, and tim@stdn this respect, the model
can be seen as a direct implementation of an analyticalisolutather than a numerical
integration. Now if we take a closer look at the shape of Ef96.

rt+At — rt +IB_1(1 _ e—,BAt)Vt + dt

vt = (e + Ul
S~——
“DETERMINISTIC RANDOM

we can see that for timesteps comaprable wjiB, the perturbations are not purely ran-
dom, but is the sum of two contributions: a random one, andtbaedepends on the
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Ficure 6.2: Window-averaged MSD (solid line) and linear fitting tf@d) for a trajectory of
10° timesteps of 10ps each. The slope of the line is proportitmtie difusion codficeint. The
theoretical dfusion codficient, 0275- 10-°m?/sis correctly reproduced.

velocity at the previous timestep. That implies that theipiar partially remembers its
previous velocity, but thisféect decays rapidly (exponentially) as the timestep becomes
longer (and therefore we integrate in time over a larger siey® where more collisions
happen with solvent molecules). When the timestep lengtreases, the exponential
terms become very small and we reach the random flight reghme. result, trajectories
simulated with very short timesteps look much more like faglines, whereas for longer
timesteps the trajectory becomes extremely noisy, as shofig.[6.4.

It can be noted that the necessity to include the pertunbsitom the velocity only
arises when the timestepping in comparable with the chenatt time. When the timestep
gets “long enough”, the exponential in EEq. 8.19 decay to,dexoduring the timestep the
particle undergoes enough collision to lose memory of tligalnvelocity, the random
flight condition holds and the velocity at each timestep bee® purely random. In order
to quantify the timestep length that ensures random-flightltions, we propose to use
the comparison between two estimates of thfiudion codficient D. On on hand we have

the Stokes-Einstein formula:
kegT

- 6mnR,’
and on the other hand, we can use the Einstein relation, wighly correct under the

(6.23)
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Ficure 6.3: Hfect of the timestep on the level of correlation for browniartprbation: a
trajectory generated with short timestep of 1fs, (left) andther generated with a longer timestep
of 2500fs (right). In both cases the characteristic timehefrotion of the brownian particle was
1/8 =0.12ps

assumption that the random-flight condition holds:

RY
Der o fim IO = o

6.24
t—oo 6t ( )

The idea is that the two estimates will agree in random-flegimditions, i.e Dgr/D =~ 1,
and disagree otherwise. The results are shown in(Fig. 6.4.efipirical rule is that the
random flight hypotheses is satisfied #or > 20r. The results obtained for timesteps
much shorter than the characteristic time, curiously, shgood agreement with the cor-
rect value. However, this is more an insight in the matheraibehaviour of the chosen
model, rather than a physically meaningful result: timps®o short would contradict the
hypotheses under which the equations used here were derived



6.4 NOTES ON THE SIMULATION OF DIFFUSING PARTICLES 87

=

o
(6]

Diff. coeff. (% of real value)

0001 001 01 1 10 100 1000 10000
timestep (ps)

Ficure 6.4: Plot of the ratiddgr/D between the diusion codicients predicted by the Einstein
relation and the Einstein-Stokes formula, foffelient timesteps.



Part IV

Multiscale modelling of nucleic acids
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Mapping atoms onto coarse-grained sites

The coarse graining procedure can be divided into two maipsst First, the atomistic
model is mapped topologically onto a reduced set of CG "s{mssuperatoms). Sec-
ondly, the interaction potentials are determined for tlteioced model in terms of bonded
and non-bonded interactions. In the following we desciitgeapproach we have used to
model water and DNA.

7.1 Definition of the reduced model

A very straightforward method for the choice of the CG sitesifion is to locate them
onto the centre of mass of a molecule or chemical group. kay, the "mapping
operator", i.e. the function that links the atomistic canades the the coarse-grained co-
ordinates, is linear (more precisely, it's a weighted ageraf the atomistic positions).
Nucleic acids are biopolymers whose monomers, called ntidkes, are made of a phos-
phate group, a ribose or deoxyribose, and a nitrogenous 2B\ is a polymer of
adenine, guanine, cytosine and thymine; RNA replaces thgmvith uracil. Here we will
focus on DNA only.
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Ficure 7.1: Schematic representation of DNA double strand stractand base pairing. URL:
httpy/rh.healthsciences.purdue.gditheorydngindex.html

Phosphate and sugar build the polymer backbone, whilst éisesbare lateral groups.
Each base can interact in a highly specific way with its comletary, forming hydrogen

bonds that act as a “glue” between the single strands to fatauble helix. Complemen-

tary base pairs are Adenine - Thymine, (A-T) and Guanine eslge (G-C). A schematic

representation of a DNA double strand is given in Eigl 7.1

The sugar ring is made of four carbon atoms and one oxygen. aibmcarbons are
usually labelled as C1'-C2’-C3'-C4’. A fifth carbon bound @3, and called C5'. (The
apostrophes are not a standard chemical notation, but aderuthe CHARMM notation
to distinguish sugar atoms from the others). All sugar gsoalong a single strand are
always aligned along a specific direction, identified by tbsifpon of C3’ and C5’ carbon
atoms; the direction can be either 3'-5’ or 5’-3'. The twoastds of a double helix are
always antiparallel, i.e. one is always a 3'-5’ and the othbi-3’ type ﬂ]

The most spontaneous starting point for the coarse-giofia polymer is, of course,
the modelling of its monomers. In the case of DNA, usuallyrtiast widely adopted CG
schemes have 1,2, or 3 points per nucleo@ [117].

For our CG model, we have chosen a 3 point mode, where phaspledxyribose and
nitrogenous base are modelled by one site each, as illedtirafFig[7.1.

A further consideration is needed when coarse-grainingt@miatic model such as
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Ficure 7.2: Example of three-point-per-residue model of a nuadeothere, Adenosine): the
atomistic structures of phospate, deoxyribose and nitroge base (left) are mapped onto one
bead each (right).

those produced for the CHARMM atomistic force field. It is mmary, in such cases, to
"patch” (modify) the terminal monomers of the chain, namiebpping” the (3’) and (5)
ends (that would normally be bonded to the neighbouringlues) with hydroxyl groups
(O-H) after removing the phosphate at the 5’ end of the cHaithe present work, for the
parametrisation of the CG interaction sites, no distintti@s made between the terminal
and non-terminal residues along the DNA chains. Water nutdsovere modelled with
1 site per molecule, located in the centre of mass. The altt@NA chains used in this
work were created using the MakeNA server, based on the NAguage for molecular
manipulationMS].

7.1.1 Calculation of atomic groups’ centres of mass

In the computation of the group centre of mass, every atondooate is weighted by the
atom mass. Luckily, like most biomolecules, nucleic acigsaaso made of few elements
(in this case carbon, nitrogen, oxygen, hydrogen, and gtarsig), which simplifies the
computation. All four nucleotides share two common groppssphate and deoxyribose,
and are characterised by the third, the nitrogenous base. aldmic masses and the
resulting masses of the CG sites obtained using a 3-pormtegedue mapping are listed
in Tab[Z.1 and Talh.7.2. Sodium ions were modelled expliathg clearly the only option
was a 1-point-per-atom map.
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Element Symbol Mass (mol)

Carbon C 12.0107
Hydrogen H 1.0079
Nitrogen N 14.0067
Oxygen @) 15.9994
Phosphorus P 30.9737
Sodium Na 22.9897
Chlorine Cl 35.4532

TasLE 7.1: List of elements that form nucleic acids, water and tlestncommon ions used in
MD simulations. Masses are expressed/mgj.

CG site Symbol Mass (ghol)
Adenine A 134.122
Thymine T 125.108
Guanine G 150.121
Cytosine C 112.101

Deoxyribose SUG 116.117
Phosphate PHO 62.973
Water WT3 18.05
Sodium SOD 22.990

TasLE 7.2: List of coarse-grained sites for the CG model, and timaisses in gnol.

7.1.2 Topology of the CG model

The term “topology”, when applied to particle models sucthase used in molecular dy-
namics, refers to the way particles are interconnected gleot bonds. The mechanical
properties of the bonds are modelled as opportune “sprifgg’ harmonic potentials)
between pairs of bonded atoms. Likewise, angular and toaiiagidity are described by
angular springs, involving triplets of atoms (necessaryrivocally identify a bending
angle), and torsional springs, involving quadruplets ofha& (to identify two planes and
the corresponding torsion angle).

If we see the molecule as a “graph”, it is easy to notice thatsivthe identification of
bonds and angles is quite straightforward, the identibcatf dihedrals becomes more
and more demanding as the topological complexity incredmsssause of the high num-
ber of possible combinations of quadruplets of conseciytivended atoms. This task is
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usually carried forward with the help of dedicated softwérearies, such as the Psfgen
package available in VME@B].

An example: a single adenine nucleotide on a ssDNA chaimiesented in an all-atom

simulation as a set of 30 atoms, whose bonded interactiensadelled by 33 bonds, 57
angles and 92 dihedrals. In the case of a 3-point coarsesgranodels,reducing the num-
ber of particles leads to a great topological simplificatidine topology recognition is

more conveniently performed in three steps: first, a bondsligenerated from the known
residue list; secondly, the bond list is used to generatengtedist (every angle can be
seen as formed by two distinct bonds sharing one atom);lyhifte angle list is used to

generate the list of dihedrals (every dihedral can be se@ar@d by two distinct angles

sharing two atoms).

7.2 Implementation

In practical application, the coarse-graining procedakes$ as input the atomistic data,
in terms of sets of trajectory snapshots, each containiagdlordinates of the atomistic
system, the forces acting on each atom, and some other thgnamic parameters, such
as temperature. The output is a reduced system of CG sitgshaim mutual interaction
potentials. The MD software used in this work (LAMMPS, by 8&National Laborato-
ries, USA) is open-source, constantly updated and rath&rmeahaving been developed
for over a decade. It is designed to be easy to modify, buaitsady extremely flexible
"as itis". For the purposes of this work, almost all needetl$ation capabilities were al-
ready available. However, LAMMPS only comes as a highhiceent parallel simulation
engine, with no building, pre- or post-processing capghbilihatsoever. A considerable
effort was hence devoted to the development of the requiredgo@-post-processing
tools.

7.2.1 Estimation of datafile size

Our simulation scenario comprised long atomistic trajees) in the order of tens of
nanoseconds, performed with timesteps of 1-2 femtosecwritissnapshots taken with a
sampling stride in the order of 1 picosecond. The resultatgfiles contained in the order
of approx. 16 configurations, for a total file size up to few tens of Gigabytehich can
be cumbersome to handle but does not cause any seriousifgagibblem.
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7.2.2 Format conversion

LAMMPS’ output routines are very flexible, and allow the dungpof prescribed subsets
of system particles and their properties. This is extremgBful to define a taylor-made
output that only stores what is strictly necessary. Thisliiéky also implies that a dump
file can only be parsed in a context-dependent way, and posegsing routines must take
into account the chosen format for each simulation. Thewutan be in binary or text
format, the former being much faster, but also prone to cdibifity problems because of
the possible architectureftkrences between the CPUs of HPC supercomputers, used for
the simulation, and desktop PCs,used for the post-proggsBecause of such problems
we have used text output only for the dumping of simulaticapsmots. Appropriate tools
have been implemented in Python and C for the conversion EBMMPS data files to
the commonly used PDB and PSF file formats for molecular doates and topology,
which can be read by VMD.

7.2.3 Physical units

For biomolecular simulations, LAMMPS operates with a peguset of physical units.
We have used such units for all the quantities computed bgade, and presented in the
remaining chapters of this thesis. The units are summaiiséab.[7.2.B.

Quantity Units

Distance Angstroms

Time femtoseconds

Mass gramanole

Energy Kcalmole

Velocity Angstromgemtoseconds
Force Kcalmole-Angstroms
Temperature Kelvin

Pressure atmospheres

Charge proton charge

TasLE 7.3: Summary of physical units used by LAMMPS and also adbfiiethe simulations
performed in this thesis.



Coarse-Graining of Water

In this chapter we describe the modelling of the coarseagdhsolvent, generated from
the initial all-atom simulation of the Price-Brooks TIP3pdel that was described and
studied in the previous parts of this thesis.

8.1 Coarse-Grained mapping of water onto a one-point
model

The triatomic, rigid TIP3P water molecule was mapped ontmgles CG site situated in
its centre of mass. The electrostatic charges were notdadlexplicitly in the CG model,
and their &ect was therefore implicitly incorporated in the overalimése potential to
be determined. Other authors have pursuediergint route and located the geometric
center of the molecule, in order to account for the unbaldmeass distribution within a
water molecule’s atoms (an oxygen atom is about 16 timesiéethan a hydrogen). As
it will be shown in the next sections, however, our approachaverthelessfkective in
reproducing the fluid structure.
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8.2 Method and simulated cases

The all-atom simulations were performed using the LAMMPS kli2le by Sandia Na-
tional Laboratories (USA) in combination with the CHARMMré&e field. Pressure and
temperature were controlled using a Nose-Hoover therrhasth barostat. Long-range
electrostatic interactions were calculated with a PPPMrélym, whilst the cuté radius
for Lennard-Jones interactions was set at 10.0A.

8.2.1 All-atom simulation

The all-atom simulations were performed using the LAMMPS kli2le by Sandia Na-
tional Laboratories (USA) in combination with the CHARMMrée field. Pressure and
temperature were controlled using a Nose-Hoover thermasth barostat. Long-range
electrostatic interactions were calculated with a PPPMrélym, whilst the cuté radius
for Lennard-Jones interactions was set at 10.0A. A cubiemadx of 40A, containing
5943 atoms (1981 molecules), was equilibrated for 1ns imtNihE ensemble at 298K and
1 atm, with a timestep of 0.5 fs,and then simulated for 4nkénNVT ensemble at 298K,
with a timestep of 2 fs. Configurations and atomistic forcesensaved every 2ps, for a
total of 2000 configurations.

8.2.2 Coarse-graining procedure

Mapping molecules onto 1-point models implies that the IteguCG system contains
no bonded interactions, and its physical behaviour depenigiely on the non-bonded
pairwise interactions. We have used our implementatiomeMSCG method in order
to parametrise the resulting interaction potential for C&ex molecules. The chosen
cutof radius was 10.0A, and the interactions were discretisedgridawith step 0.01A,
for a total of 1000 unknowns. Notice that in this case, havanfy one possible type
of pair interaction (water-water) greatly reduces the nendf unknowns. The MSCG
problem was solved using a block-averaging approach asideddy ]. The 2000
configurations were partitioned into 200 blocks of 10 configions each, and the size of
the matrix associated with each block’s linear system w&29@x 1000. The overde-
termined system associated with each block was solved ifest-squares sense using
the solver provided by the Linalg package in the Python nisaemodule Numpy. The
resulting solution vectors were then averaged over alldsoc



8.2 METHOD AND SIMULATED CASES 97

*
£

a\

S

]

."t_I_- “ q !‘ 4
_--" 3 >~

(b)

Ficure 8.1: A snapshot of the all-atom (left) water box used for ttwarastic simulations, and
the resulting 1-point coarse grained water box (right).

8.2.3 Validation of the coarse-grained potential

The output of the MSCG method is a tabulated distance-degperidrce that models the
CG sites interactions by trying to reproduce the overaliéaarising from the underlying
all-atom interactions. The computed tabulated force was tad back into a LAMMPS
simulation of a CG water box of 48 40 x 40A, which was then simulated at 298K in
the NVT ensemble with a timestep of 2fs in order to allow anerasomparison with
the atomistic simulation. LAMMPS has the capability to talseinput a force table and
then perform cubic spline interpolation in order to caltel@rces at distances comprised
between two grid points. The original tabulated potentral the resulting interpolation
are shown in Fig[C8.2]3.

The shape of the force-distance relation shows one apparentous feature. The re-
pulsive force becomes very strong approaching an inted&tance of 2A, but then drops
considerably for even shorter valuesrofThis is clearly unphysical, as we would expect
the finite size of the molecules to cause even greater rgpuisice the electronic shells of
the atoms are close enough to collide. The reason can béyreadn in Figl 8.2]3, where
the empirical density function af has been computed over all molecules and sampled
configurations. Values of which are smaller that 2A, i.e. the position of the “colli-
sion peak” in the force table, almost never occur. Therefloeecorresponding regions of
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Ficure 8.2: Tabulated force as computed using the MSCG method, andterpolated by
LAMMPS; the constant extrapolation to the core region isdated with a dashed line.

force-field parametric space are very poorly guessed. Orhand, this is an unavoid-
able limitation of the force-matching approach: the centemass of the coarse-grained
chemical groups will never spontaneously sample thosemegof phase space where
their positions are strongly overlapped, because of the hejulsive forces and the steric
hindrance caused by the finite size of the molecules in thenlyidg all-atom model. On
the other hand, however, the problem can be easily solvedrantially” patching the
computed force table with highly repulsive short-distafarees. This is for example the
course of action suggested by Noid and coworkers [18]. Thameter chosen for the
validation of the model is the radial distribution functi@@RDF) of water’s oxygen atoms.
The radial distribution function has been chosen becaisskaen a long-standing tradi-
tion to use it as the “structural fingerprint” for fluid syste2, 120, 121]. As discussed
previously, in Chaptedrl4,the RDF of particular atoms is dimlisive property of a fluid.
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Ficure 8.3: probability density function of a certain intersitestdince to occur between two
coarse-grained water molecules.

Moreover, experimental data are available for compariatthpugh it is also well-known

that TIP3P models fail to perfectly reproduce water strgtoharacterised by a RDF with
three characteristic peaks of decreasing height [97]. dsimpler than the atomistic rep-
resentation, a CG model cannot hope to improve over thedtmaits of the underlying

all-atom model. However, as shown in Fig_812.3, the resglRDF approximates very
well the structure of Price-Brooks TIP3P, which is in turreasonable approximation of
real water.

8.3 Results and discussion

The overall agreement between the structure of the all-atwhCG water models is good,
with a good positioning of the first peak and a loss of the sé@ord third peak that can
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Ficure 8.4: radial distribution function of all-atom and coargeiged water models

be considering acceptable, considering that even sonaat-models cannot capture
these features [95]. The resulting water model has beenfas#te simulation of coarse-

grained models of DNA. The characterisation of the inteoastof water sites with other

CG sites of the DNA model will be discussed in the next chapter



Coarse-Graining of DNA

In this chapter we describe the coarse-graining strategptad for DNA molecules. In
the case of nucleic acids, the structural complexity isrgygauch greater than for simple
water molecules. Several have been exploited in order taceethe computational cost
required for the parametrisation of the coarse-graineckfbeld. In particular, the expen-
sive MSCG approach has only been used for pairwise intere;tBonded interactions
(bond stretching, angle bending and dihedral torsionale®y have been parametrised
separately according to the method previously describe@hiapte B. With this (rea-
sonable) simplifying hypothesis, the number of unknownthim least-squares problem
(Eq.[3.64 was reduced to half of the original value.

9.1 Method and simulated cases

All-atom simulations for the present chapter have beenoperd using the LAMMPS
molecular simulator [25] and the CHARMM force-field [36]. rFall simulations, the
cutoff for the pairwise interactions was set at 10A, and the lomgieaelectrostatic forces
were solved using a Ewald summation, and bonds containidgplggns were constrained

101
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with SHAKE ]. The resulting trajectories were postprssed using custom C and
Octave scripts, and the VMD visualisation softw£ 119jeForce-Matching technique
was applied using our in-house implementation of the MSC@uoe written in Python,
making extensive use of the Numpy and SciPy numerical iidase{ﬁ,]. Numerically
demanding subroutines, such as the loops for the calcnlatipairwise interactions, were
implemented in C and linked to the Python code using the Wealpackage contained
in SciPy.

All-Atom simulation of dsDNA

For this study, a decamer of double-stranded B-DNA made anite-Thymine base
pairs was minimised and equilibrated in a rectangular boX@x40x60A, containing
3487 PME-TIP3P water moleculeg_tgs] and 18'Nans. The inclusion of sodium ions is
absolutely necessary in order to neutralise the high negeliarge of the DNA molecule.
The downside is the introduction of one additional site typthe system, which causes
the number of possible heteroatomic pairs to raise from 181to The number of un-
knowns in the linear system described by[Eq.B.64 grows dougly. The system was
then simulated for 10ns at a constant temperature and pees298K using a Nose-
Hoover thermostat, with a timestep of 1fs. Atomistic foreesl positions were stored
every 2ps, for a total of 5000 configurations.

9.1.1 Coarse-Grained mapping of DNA onto a 3-point-per-rague
model

For the coarse grained solvent, we decided to use a 1-poidéimath a single interac-
tion site for the whole molecule, located in its center of syas discussed in the pre-
vious chapter. It must be noted that the results of the pusvahapter are not flicient
for the parametrisation of the solvent: all pairwise intdiens between water sites and
coarse-grained DNA sites had also to be determined. Howthepre-parametrisation
of water-water interactions allowed a great simplificatiorthe numerical solution of
the least-squares problem, because the contributiond tiade water molecules that
were only interacting with other water molecules (which evére vast majority) could
be excluded. The possibility to use the geometric centéeaaswas discussed for exam-
ple by Noid ]. The pairwise interaction potential wasetatined by force matching.
Coulombic interactions were not included explicitly in t86& potential. For the DNA,
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the choice was a 3-point per residue model, where the iriteresites model respectively
the phosphate group, the ribose rings and the nitrogen@aesb®ther authors have pur-
sued diferent routes, for example 1-point-per-residue models. é¥ewin such cases
the drastic geometrical simplification requires ad-howasitents in order to mimic the
base-pairing interaction, which is highly directional iatare, and cannot be captured by
radial interactions in a 1-point model (and actually, itywe a challenge even for 3-point
models)[73].

(a) All-atom DNA model (b) 3-point-per-residue CG model

Ficure 9.1: Comparison between the All-Atom and Coarse-Grained Divdels

9.1.2 Parametrisation of bonded interactions

All bonded interactions were parametrised in advance figgir equilibrium fluctuations,

assuming a harmonic functional form for both bond-stretgland angle-bending poten-
tials, as explained in Chapter 3. As a first approximation,dbntribution of backbone
dihedral angles was neglected, since the involved foraessually less relevant than for
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bonds and angles [13]. The resulting probability distidautind least-squares fitting for
each bond and angle are shown in [Eig] 9.2[and 9.3. The ovexadl ggreement demon-
strates the validity of the harmonic approximation, asayepointed out by [§8]. The
numerical values for the parameters are summarised in Ten®. Talh 92 . One observa-
tion is that in some cases the probability distribution d&as from the expected Gaussian
behaviour and shows two peaks instead of one. This can baiegglwith the fact that
the underlying atomistic structure is fluctuating arotnwd possible metastable configu-
rations, which correspond to two (slightly)firent positions for the centres of mass of
the involved atomic groups.
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Ficure 9.2: Empirical probability distribution for the bonds of aarse-grained 3-point-per-
residue model of DNA.

9.1.3 Solution of the least-squares problem

The cutdf radius for the pairwise interactions was set to 10.0A, witftid step of 0.2A.
The 6 diterent types of sites generate 21 possible pairwise interacand the resulting



9.1 METHOD AND SIMULATED CASES 105

PDF of A_SUG_PHO angles, with U, =K, (heta—heta,)* PDF of SUG_PHO_SUG angles, with U, =K, (heta—heta, )
25 5
— Least-squares fit — Least-squares fit
Ml Empirical distribution Hl Empirical distribution
'I| | |

=
o
w

~

=
o
Probability density

Probability density

0.5F

%95 10 25 3.0 95 10

1. 2.0
Angle width (degrees)

(b)

PDF of PHO_SUG_PHO angles, with U, =K, (heta—heta,)’ PDF of T_SUG_PHO angles, with U, =K, (heta—heta, )’
3. 2.

— Least-squares fit
I Empirical distribution

— Least-squares fit

Il Empirical distribution

N

o
=
o

Probability density
-

o
Probability density
P
o

Iy
=)
o
o

)
o

3.0 35 %95 1.0

o
=
o
-
o

2.0 25
Angle width (degrees)

(© (d)

Ficure 9.3: Empirical probability distribution for the angles oftaarse-grained 3-point-per-
residue model of DNA.

system of MSCG equations had 1050 unknowns. Each site ges&@amdependent equa-
tions, one for each Cartesian direction. However, it is wisef note that nearly 99% of
the system’s sites are CG waters, and most of them are omsansting with other CG
waters. The situation is depicted more clearly in Eig] 9.4hc& most water molecules
only interact with other water molecules, the correspogdiratrix rows would contain
non-zero cofficients only for that (small) portion of thvector that contains the param-
eters of the water-water intersite forces, which are tharpaters walreadyknown from
the separate parametrisation of the solvent performedddedod in the previous chapter.
The adopted approach removes “redundant” equations, eatlgreduces the number of
equations that each saved configuration can contribute miiienum number of config-
urations per block must be increased accordingly, in o@ensure overdetermination of
the linear system of Eq._3.64.
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ID Bond type Kp ro

1 SUG-A 25.539264 5.144872

2 SUG-PHO 5.426890 3.999550

3 SUG-T 18.627567 4.625684

TasLe 9.1: Bond parameters for the CG DNA modél; is in Kcal/(mol - Angstrom), rg in
Angstroms.

ID Angle type Ka 0o

1 A-SUG-PHO 8.296963 1.935816

2 SUG-PHO-SUG 38.551760 1.633703

3 PHO-SUG-PHO 15.942489 2.092407

4  T-SUG-PHO 3.603392 1.881817

TaLe 9.2: Angle parameters for the CG DNA modgl; is in Kcal/(mol- rad?), 6 in radiants.

Once we excluded water sites, the resulting system had @dyt&s (58 for the DNA
and 18 for sodium ions), therefore each snapshot genera@&equations. The 5000
configuration were partitioned into 125 blocks of 40 confajioms each. Each block
of 40 timesteps contained 9120 equations in 1050 unknowaaigh to make the linear
system overdetermined. The 5000 configurations were joaid into 125 blocks of
40 configurations each. After the exclusion of the matrix sa@rresponding to water
molecules, each block contained 10120 equations in 1050amwrks. It must be noted
that we only excluded thequationgmatrix rows) generated by water molecules, but their
contributions to the forces on all remaining CG sites wemapated as usual. Therefore
this apparent simplification doesn’t cause any loss of aysionsistency.

The forces associated with CG bonded interactions (alrpadhymetrised as explained
in the previous section) were precomputed for each timestepsubtracted from the
vector of known terms. Each of the 125 blocks was solved iaddently and the results
were averaged over all blocks. The resulting potential chmi@rce are summarised in
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(a) DNA decamer surrounded by water (b) Water molecules actually interacting
with the DNA

Ficure 9.4: Portion of water box which is within 1 cufaadius from the DNA decamer

Figg.[9.5[9.6[ 9]7, 918, 9.9. One final remark is that all @igsed pairwise forces were
represented as arrays of opportune delta functions. Théirgsprofile of the force table
is a stepwise continue function. Other authors produceddédd potentials using spline
interpolations, but we discarded this option for practreglsons related to the MD code
we used for all simulations: LAMMPS only supports tables @fcdetised values and
automatically produces its own spline interpolation.

9.2 Simulation of the CG system

The CG system, mapped and parametrised as described inehieys sections, was
simulated for 1ns at 298K in the NVT ensemble, with a timestepfs. The temperature
was controlled using a Nose-Hoover thermostat. The oldatoeafigurations were used
to calculate the molecule’s Root-Mean-Square-Displaceifif®&SD) over time. Usually

the RMSD is commonly used as a measure of the level of eqaiidr reached by a
molecule[23]. A stabilised value for the RMSD is relatedtie tolecule’s capability to

fluctuate around an equilibrium configuration. We have dettith use the RMSD value
over time in order to compare the equilibrium behaviourdhef€G and AA systems over
a time window of 1ns, and the results are shown in[Eig]9.11. lilieal geometry is at

least qualitatively preserved as shown in FEig. B.12.
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Ficure 9.5: Potentials of mean force for pairwise interactionshefd¢oarse-grained system

9.3 Discussion

The results for the CG system show that the equilibrium comndiion is still not com-
pletely stable and tends to unzip after about 1ns. At the segund timescale, the CG
structure preserves its helical shape but it tends to blediagway from the initial crystal
structure in comparison to the all-atom model (the RMSD iBsad on a higher value).
This can be explained by the higher flexibility of the coagsained chain due to the ex-
clusion of torsional dihedral potentials, which were ex@d on the ground of the low
energy associated with polymer torsional degrees of fnee[ﬂ,]. They should be
included in future improvements of this model.

However, our approach succeeded in his main task, i.e. mgaapable of handling a
structurally complex system and generate a plausible fieetcbfor bonded and pairwise
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Ficure 9.6: Potentials of mean force for pairwise interactionshefd¢oarse-grained system

interactions. The comparative stability of the doubleheiremarkable especially be-
cause the MSCG was capable of generating the expectediatinaatential for Adenine-
Thymine interactions at short range, without relying on adyhoc hypotheses of sort,
unlike other modelsJﬂS]. In particular, for systems in thrdey of 10000-20000 parti-
cles, which are big enough for the simulation of many smalhimlecules (DNA strand
and small proteins), the postprocessing of tens of thowsahcbnfigurations can be per-
formed in a matter of hours even on a normal desktop PC.

Moreover, DNA can be considered as a particularly hard nubdeto coarse-grain,
and the method can be much easier to apply to other types widbécules. Nitrogenous
bases (in our model, Adenine and Thymine) are planar chémioaps, and therefore
the loss of geometrical detail, when replacing them withesiglal beads, is considerable.
Furthermore, the two strands of the double helix are holéttugy by highly directional
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Ficure 9.7: Potentials of mean force for pairwise interactionshefd¢oarse-grained system

hydrogen bonds between complementary bases, which aacegpin the CG model by
much simpler radial interactions. Therefore, base-pairifieractions are not easy to
reproduce accurately in a CG system.

Taking into account the above mentionedhidulties, the CG DNA model performs

promisingly, especially because it's possible to see roominiprovement in several re-
spects. The explicit modelling of the torsional degrees@édom of the DNA backbone
will help keep the alignment of the complementary bases #atuilise the base pairing
and therefore the double helix.
Further refinement of the interactions can be achieved bygsging more atomistic con-
figurations. The upper limit is set by storage space and psnog speed: with our setup,
for the system investigated in this chapter, 1000 confignmattake approx. 1GB of stor-
age space and can be processed in about 1h.
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Ficure 9.8: Potentials of mean force for pairwise interactionshefd¢oarse-grained system

In addition, other authors have recently proposed a methsddof Bayesian inference
for the refinement of the force-field produced by the MSCG metkvhich can improve

the physical consistency of the CG mo

[91].
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(@) (b)

Ficure 9.10: Comparison between the all-atom and the CG simuldétixes. The number of
particles was reduced from over 15000 to about 5000.
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Ficure 9.11: Comparison between the RMSD for the atomistic and CsEery, over a time
window of 1000ps.
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(a) Initial configuration (b) (c)

Ficure 9.12: Equilibrium fluctuation of the CG DNA model. The helicgometry is at least
qualitatively reproduced.
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Concluding remarks and suggestions for
future work

The work described in this Thesis can be divided in two parts.

First, we have used Molecular Dynamics in order to gain a titzive understanding
of diffusive processes at the nanoscale, focusing on DNA in aqussdutson, using the
widely adopted CHARMM potential in combination with the BIP-PME water model
[36. 23],

In particular, the properties of model water in MD simulasan diferent simulation
conditions were studied. Furthermore, the results obtafrem the study of the wa-
ter model were used for the simulation offdsion codicients of single-stranded DNA
molecules.

As demonstrated by the good quantitative agreement betéteenomputed diu-
sion values and the empirical values predicted by availagdels, the techniques imple-
mented and tested in this thesis establish a reliable catipnal methodology for the
study of fluid viscosities and theftlisive properties of small biomolecules. Such meth-
ods would be readily applied to other biomolecular systefismall diffusing organic
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molecules, such as drugs.

The second part of this thesis focussed instead on the ingoletion and testing of
a recently developed method for the parametrisation ofseegrained force fields from
atomistic simulations, called the Multiscale Coarse-@Giraj Method, or MSCGE?].
The idea behind the method is to parametrise coarse-graitexdctions by matching the
total force on the coarse grained sites, as predicted byntherlying fine grained all-atom
model.

The method was implemented in an object-oriented softveani&it written in Python.
Where possible, all subroutines dealing with numericaitgmsive tasks where re-written
in C, in order to optimise performance. The toolkit was desijto be used with the
LAMMPS molecular dynamics code by Sandia National Labaraso(USA) ], but it
can be expanded very easily in order to be interfaced witarstbftwares.

We tested and validated the method by performing a one-p&rmolecule coarse
graining of TIP3P-PME water. The resulting model was ableepyoduce the fluid struc-
ture (its radial distribution function) in a nearly quaative way.

Finally, we applied the MSCG method to a more demanding prablnamely the
parametrisation of a 3-point-per-residue coarse-gramedel of double-stranded DNA.
DNA is probably one of the most filicult biomolecules to coarse-grain, for several rea-
sons. Its nitrogenous bases are chemical groups with arpsanecture, which is not
well approximated by spherical CG sites. Furthermore, thNABRouble helix is made
of two complementary strands which are not covalently bdndwmit interact instead
through highly specific and directional hydrogen bonds leetwcomplementary base
pairs (Adenine-Thymine and Cytosine-Guanine), a situatinat is rather dficult to re-
produce by means of spherical interaction sites and radialvgse potentials. In synthe-
sis, the complexity of DNA internal interactionsfiers the great geometrical simplifica-
tion of the coarse-graining.

As a consequence, the agreement of the obtained CG modehwititomistic struc-
ture was still not quantitative. In particular, the heligglometry was qualitatively pre-
served and the RMSD of the coarse-grained model was stabletlog trajectory, but
higher than its all-atom counterpart.

The parameter estimation is therefore promising but stifirovable. In particular, the
MSCG method relies on the quality of the phase-space sagwlithe atomistic system’s
simulated trajectory, which is well-known for beindi@tult to achieve even on the longest
simulation runs.
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On the other hand, the MSCG method is veffgetive in systems of almost spherical
molecules, where radial interactions are a good approxamaind all the grid points of
the discretised potential (outside the repulsive coreorégtan be sampled abundantly.
The method described in Chapiér 8 for the coarse-grainimgatér can be easily adapted
to other fluid systems, such as €@r methane, as long as all-atom models are available.

10.1 Evaluation of computational cost

The lower computational cost of CG simulations is due to twaimfactors: first, the
number of atoms decreases; secondly, the greater mass m@&stiléng particles allows
the use of larger timesteps without jeopardising the eneogygervation.

It must also be noted that water is a rather unfavourable, ¢esmuse even a 1-point
model can only reduce the number of particles by a factor Bypawed to the factor 10
for the 3-point model of the DNA chain.

This is all the more relevant considering that the vast nitgjof atoms in a biomolecular
simulation (around 90%) belong to water molecules, and tnacimulations, almost
80% of the CPU time is spent calculating pairwise interaxgio

As a benchmark, we have clocked the required CPU time for iteé@&tions on a single
core (AMD Turion TL-52 1900 Mhz). Unfortunately, when thaginal simulation were
performed, we didn’t systematically store information abGPU time for the all-atom
parallel runs. However, LAMMPS is a software specificallysidaed to run on large
clusters. Therefore, it's performance scales nearly tigdar a number of processors up
to a few hundredslﬂS]. On Cranfield University's HPC suparpater, equipped with
Intel EM64T Xeon 51xx (Woodcrest) 3.0 GHz CPUs, an all-ataoniolecular simula-
tion of a system of 15503 particles took 25893 seconds (a htbre than 7 hours) to
complete 10 iterations (roughly one nanosecond of simulated time), ®mcdres. As
shown in Tab[[10]1 the computational cost of the benchmarksi@@ilation was much
lower than its all-atom counterpart, roughly by a factor Snce the particles involved
in the CG simulation are also considerably heavier, thedtepelength can also be ex-
tended. The longest achievable timestep depends on thesy&ing simulated, and it
was found to be approximately four times longer than theatmn simulation timestep,
according to Zhou and coworke&88]. The combination oficedi computational cost
and extended timestep implies a possible 80-fold gain feidhgest feasible simulation
timescale. This can push the timescale limit from the curnendreds of nanoseconds to
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Tasie 10.1: Comparison of required computa-
tion time for the calculation of 1000 timesteps, on 1
CPU, for the atomistic system and the correspond-
ing CG representation of a cubic box of water of
40 x 40 x 40 Angstrom. For comparison purposes,
both simulations used the same timestep of 2fs.

System # Particles CPU time (s)
All-Atom 5943 323.965
Coarse-Grained 1981 16.348

the milliseconds, which is for example the folding timegocal some small protein%S].

10.2 Future work

Room for improvement in the modelling of DNA can be seen in tagin respects.

First, our model did not include explicitly the torsionatplees of freedom of the DNA
backbone, which were initially neglected because theylievenergies and forces lower
than angle-bending and bond-stretching interacti@s [T8BEir inclusion would sffen
the backbone and prevent it from fluctuating too far from thefiguration predicted by
the all-atom system, increasing the alignment of compleéargiases and stabilising the
base-pairing interaction.

Secondly, several authors have recently proposed varefirements that may im-
prove the parameter estimation, for example using stegisBayesian inference tech-
niques, and including a more accurate treatment of Coulomtﬂractionsﬁﬂl].

Therefore, the methodology described in this thesis, ardd#veloped tools, can
offer a very promising platform upon which future work on muéke modelling of
biomolecules can be built.
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