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Abstract. Advances in micro and nanofluidics have influenced technological developments in

several areas, including materials, chemistry, electronics and bio-medicine. The phenomena

observed at micro and nanoscale are characterised by their inherent multiscale nature. Accurate

numerical modelling of these phenomena is the cornerstone for enhancing the applicability

of micro and nanofluidics in the industrial environment. We investigated different strategies for

applying macroscopic boundary conditions to microscopic simulations. Continuous rescaling of

atomic velocities and velocity distribution functions, such as Maxwell-Boltzmann or Chapman-

Enskog, were investigated. Simulations were performed for problems involving liquids and

gases under different velocity and temperature conditions. The results revealed that the selection

of the most suitable method is not a trivial issue and depends on the nature of the problem,

availability of computational resource and accuracy requirement.

Keywords: multiscale modelling, heat transfer, molecular dynamics, hybrid atomistic contin-

uum methods, micro/nanofluid dynamics

1 INTRODUCTION
During the last decade, nanofluidics has emerged as a strongly emerging field [1] and has al-

ready found applications in various disciplines including bioengineering, medicine and chem-

istry [2]. In the near future, it is also expected to have impact in many areas, such as drug

delivery and nano-manufacturing.

Nanoscale devices have unique characteristics and present significant differences compared

to larger scale ones. Surface properties for this type of devices are dominant and, therefore,

understanding of the phenomena involved, as well as efficient and realistic modelling of these

phenomena is of paramount importance [3]. Traditional continuum flow models, based on

Navier-Stokes equations with no-slip boundary conditions are not applicable for microscale sys-

tems, such as combustors, valves, nozzles and turbomachines [3], due to the break down of the

continuum approximation. In particular, the macroscopic constitutive relations and boundary

conditions become inadequate [4]. This discrepancy increases further for nanofluidic devices,

where molecular modelling must be employed. Molecular simulations are computationally

intensive, thereby restricting their application to nanoscale systems and time scales below mi-

croseconds. Thus, modelling nanofluidic devices presents a significant challenge due to the

inaccuracy of the continuum models and inefficiency of the molecular ones in the meso scale

regimes. To address this challenge, multiscale methods that bridge the gap between micro-

scopic and macroscopic description have been proposed [5]. One group of multiscale methods

for nano- and microscale systems couple molecular and continuum solvers to provide a unified

description from nanoscale to larger scales and are called hybrid methods.
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A number of hybrid methods for fluidics have been proposed in the literature [5–15].The

majority of these methods are based on the domain decomposition technique which is suit-

able for problems where the continuum equations are valid in most parts of the computational

domain, but fail to fully describe the phenomena in a particular area. The main idea is to decom-

pose the simulation domain into two distinct regions. One region is modelled as a continuum

and solved by a continuum fluid dynamics (CFD) solver, while the other region is modelled

using molecular dynamics (MD) [5, 6]. Within each region the solution is separately computed

and both regions are linked by a hybrid solution interface (HSI). The advantage is that the

computationally expensive MD solver is only applied within a small region, whereas the major-

ity of the simulation domain is solved by a CFD solver, which is several orders of magnitude

faster [6, 16]. The domain decomposition technique does not decouple the time scales between

the macroscopic and microscopic scales. Thus, the maximum computational time is restricted

to time scales computed by MD. In order to handle the time scale constraints a pointwise cou-

pling (PWC) method has been recently proposed [13, 17]. In the PWC, the entire domain is

computed by the macroscopic solver while the microscale model enters as a refinement and is

used locally for obtaining macroscopic properties from the microscopic model. One important

property of the PWC is that it naturally decouples the microscopic and macroscopic timescales.

The accuracy and efficiency of multiscale approaches depend to a great extent on the bound-

ary condition transfer (BCT) method that constrains the atomistic region to the continuum con-

ditions. The problem of imposing macroscopic conditions on a molecular system is a very

challenging task and has not yet been addressed for a general case [16, 18]. The main difficulty

is the disparity between degrees of freedom modelled by the atomistic and continuum models.

This paper investigates mesoscale methods for applying macroscopic boundary conditions

to a microscopic system, in particular temperature enforcement. However, the anticipated im-

pact of this work is broader as these techniques can be implemented to other multiscale prob-

lems. In the simulation problems presented in this paper, MD is used within the PWC for ob-

taining macroscopic properties either near the boundary of the continuum domain or at specific

points inside the flow domain. The paper is organised as follows. Sec. 2 provides a brief de-

scription of MD, the PWC coupling scheme and the methods for enforcing the continuum states

in the MD domain. The results for liquid flow cases are presented in Sec. 3.1 and Sec. 3.2. In

Sec. 3.3 the results of gaseous flow simulations are discussed. The conclusions are summarised

in Sec. 4.

2 METHODOLOGY
2.1 Molecular Dynamics
In the PWC method, MD simulations are used to calculate macroscopic properties of the fluid.

The nature of MD method is deterministic so that if velocities, positions and equations of mo-

tions of the components of a molecular system are known at time t, the state of the systems is

fully determined at time t+∆t. Atoms are modelled as mass points with position ri and mass

mi. Their motion is governed by Newton’s equation of motion, written for each atom i in the

following form

mir̈i = −∂Vi

∂ri
. (1)

The potential energy Vi is the sum of semi-empirical analytical functions that represent the

interatomic forces. The atomic trajectories are calculated by integrating Eq. (1) in time for

all atoms. Despite the apparent simplicity, the simulations are computationally demanding

due to the large number of atoms involved. Nowadays, modern parallel computers allow MD

simulations of several millions of atoms [19]. The MD simulations in this study were performed

using a modified version of LAMMPS [20], which employs the velocity Verlet scheme [21] to

integrate Eq. (1).
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Fig. 1. Schematic representation of PWC.

All interatomic interactions are modelled by the shifted Lennard-Jones (LJ) 6-12 potential.

Between a pair of atoms i and j with the distance rij , the LJ potential is given by

V LJ
ij = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6

−
(
σ

rc

)12

+

(
σ

rc

)6
]
. (2)

The cut-off distance is set to rc = 2.5σ.

Depending on the choice of ε, σ and the mass m, the LJ-potential can represent a number of

elements whose atoms interact via Van-der-Waals forces. Unless otherwise stated, reduced units

are used throughout the paper. For Argon these would represent ε = εAr = 119.8K/kB, σ =
σAr = 0.34 nm, m = mAr = 0.34 amu. The corresponding time unit is τ = (mσ2/ε)1/2 =
2.16 ps.

2.2 Pointwise coupling scheme
In the PWC scheme, the CFD solver advances the solution in the entire domain. MD simu-

lations are used to (i) provide accurate boundary conditions, such as slip velocity, tangential

stress or heat flux; (ii) substitute the constitutive relations, for example, to calculate pressure

(P (ρ, T )); and (iii) calculate transport properties, such as viscosity for non-Newtonian fluids.

In the most simplistic PWC scheme the MD simulations are performed at every CFD time step,

corresponding to the local current continuum states. The macroscopic quantities of interest are

measured from the MD simulations and fed back to the CFD solver, where they are used to

advance the solution. Obviously, this procedure leads to repetitive MD simulations of nearly

identical states and, thus, a more sophisticated algorithm that stores and makes use of already

performed MD simulations may be employed instead.

In order to perform MD simulations for the required continuum states, they must be con-

strained in an appropriate manner. Initially, this is achieved by setting up the molecular system

with the corresponding continuum density ρcon and temperature Tcon. During the actual MD

simulations, the molecular system is constrained to the continuum velocity gradient and tem-

perature by controlling the molecular state within confined regions on the boundary of the MD

domains. Since this paper focuses on the implementation of continuum conditions to MD sim-

ulations for PWC, the test cases are one-dimensional continuum simulations which use three

dimensional molecular simulations for computing boundary conditions and viscosity. For this

setup, the PWC scheme must distinguish between boundary cells and general cells away from

the boundary. Both cases are shown schematically in Fig. 1. In the general case, the MD sim-

ulations are constrained by two sides (upper and lower). On both sides, the continuum state is

imposed within a small region. The two other dimensions are periodic. When the lower side is

bounded by a wall, this is modelled by MD.
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Enforcing the continuum constraints requires to alter the properties of the atoms inside the

constrained region to match the continuum velocity, ucon, and temperature, Tcon. Addition-

ally, the local continuum pressure, Pcon, must be applied normal on the outer surface of the

constrained region in order to keep the atoms within the molecular domain and to subject the

molecular system to the correct pressure.

The velocity and temperature conditions can be imposed by two alternative methods. The

first one is based on periodic rescaling of the atomic velocities [4, 10, 22–26], and the second

one on a periodic re-sampling from a velocity distribution functions, such as the Maxwell-

Boltzmann [15, 27, 28] or the Chapman-Enskog [29–34] distribution.

2.3 Rescaling techniques
The average velocity of particles in the constrained region Rctr must correspond to the contin-

uum velocity ucon:

1

Mctr

∑
i∈Rctr

miui = ucon , (3)

where Mctr =
∑

mi, i ∈ Rctr is the total mass of particles inside the constrained region. In

order to satisfy Eq. (3) velocities, ui of the atoms inside the constrained region are periodically

replaced by u
′
i, which is calculated by

u
′
i = ui − 1

Mctr

∑
i∈Rctr

miui + ucon . (4)

Hybrid methods usually apply the normal pressure through external forces [9, 22]. The

disadvantage of using an external force is that inserts/removes energy depending on the velocity

of the atoms onto which the force is applied to. This results in oscillations in the molecular

system [6, 16]. The oscillations can be significantly reduced by using the velocity reversing

scheme [6]. According to this, the pressure, Pcon, is applied by reversing the velocity vector

of atoms that move in the opposite direction of the pressure force. If the outer surface of

the constrained region is normal to a dimension α, then an atom i is reversed by changing

the sign of the respective velocity component: v
′
i,α = −v

′
i,α. For each reversed atom, i, a

momentum pi = 2miv
′
i,α is applied. To apply a pressure of Pcon at each MD time step,

the algorithm continues to reverse atoms until the transferred momentum equals the required

momentum transfer due to the pressure:∑
i

2miv
′
i = Pcon∆tActr , (5)

where the sum is over the reversed atoms, ∆t is the size of the time step and Actr is the surface

area of the constrained region. The main advantages of the velocity reversing scheme are its

simplicity, robustness, and the absence of any artifacts due to transfer of energy [6].

The continuum temperature is applied to the microscopic system through an energy transfer

scheme [6]. The main idea is to add or remove energy from the microscopic system in order

to match the macroscopic temperature without modifying the particles’ mean velocity. The

energy transfer is performed independently for each dimension and is achieved through scaling

the velocity vectors of the atoms as follows:

u
′
i = uif + c. (6)

The scaling factor, f , is calculated by

f =

(
1 +

3NctrkBTcon

2Ek,int

)
, (7)
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where Nctr is the number of atoms in the constrained regions, Ek,inta is the internal kinetic

energy of these atoms, kB denotes the Boltzmann’s constant and Tcon is the target energy. The

internal kinetic energy is given by

Ek,int =
∑

i∈Rctr

1

2
mi (ui − ū)

2
, (8)

with ū being the mean velocity component of the constrained atoms that is calculated by ū =
(1/Mctr)

∑
i∈Rctr

miui. The factor c is given by

c = ū(1− f) (9)

and ensures that no momentum is transferred along with the energy.

2.4 Resampling techniques
The second BCT method utilises velocity distribution functions. For the scope of this study

the atomistic velocities are periodically sampled either using the Maxwell-Boltzmann or the

Chapman-Enskog distribution. Resampling has been previously applied by other authors in

relation to the moving contact line problem [15, 27].

The Maxwell-Boltzmann velocity distribution is the natural velocity distribution of an atomic

or molecular system in an equilibrium state [35]. It defines the probability of the one-dimensional

velocity components of an atom assuming a specific value, based on a temperature T and the

atom mass m.

For the Maxwell-Boltzmann distribution the probability density f(C) of the thermal veloc-

ity C = u/ (2kBT/m)
1/2

is given by

f(C) =
1

π3/2
exp (−C) . (10)

Each particle in the upper region is assigned a velocity u = ucontinuum+umaxwell, where

umaxwell is the velocity of the Maxwellian distribution and ucontinuum is the macroscopic

velocity. The assigned atomistic velocities in the constrained region are then defined as

uia = ucon
a +

√
kBT con

mi
· ψ, (11)

where ψ denotes a Gaussian distributed number N (0, 1) and ucon
a is the ath component of the

continuum velocity.

In order to ensure that every particle remains inside the molecular domain a reflective plane

is placed at the upper boundary of the constrained region. This is simpler than the velocity

reversing scheme, but can only be applied to incompressible flows because the normal pressure

is a result of the reflected atoms.

For non-equilibrium situations the Chapman-Enskog distribution is a better model and,

therefore, its application for sampling the atomic velocities has also been investigated. It has

been used primarily in hybrid simulations of dilute gases that employ geometrical decomposi-

tion and state coupling [30–34].

The Chapman-Enskog distribution is a perturbed Maxwell-Boltzmann distribution [29] with

probability density given by

f (C) = Γ (C)π−3/2exp
(−C2

)
, (12)
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where Γ (C) is the perturbation term given by

Γ (C) = 1 + (qxux + qyuy + qzuz)

(
2

5
C2 − 1

)
−

2 (τx,yCxCy + τx,zCxCz + τy,zCyCz)− τx,x
(
C2

x − C2
z

)−
τy,y

(
C2

y − C2
z

)
, (13)

where qa and τa,b, (a, b = x, y, z) denote the dimensionless heat flux and stress tensor, respec-

tively. The atomistic velocities for the current distribution are sampled from Eq. (12) through

the implementation of an acceptance-rejection random velocity generator described in Ref. 29.

3 RESULTS AND DISCUSSION
3.1 Liquid flow for the boundary problem
In this section the results of BCT schemes for liquid and gas flow and heat transfer problems

are presented. The size of the molecular domain was 20σ, 50σ and 20σ in x, y and z directions,

respectively. Periodic boundary conditions were applied in the x and z directions. Three regions

were assigned: the wall at the bottom, the BCT region at top of the domain and the flow region

in between.

The wall was modelled by two planes of a face-centred cubic (fcc) lattice, where the wall

molecules were allowed to vibrate around their lattice sites by a harmonic spring with stiffness

k = 50ε/σ2. Their velocities were rescaled to the wall temperature Twall = 1.0ε/kB . The

density of the wall atoms was ρwall = 1.0 mσ−3 and their mass was equal to that of the fluid

atoms. Here, the wall properties do not correspond to any specific solid material, but represent

a solid wall with no slip boundary condition. Similar models for solid walls have been used

in previous studies [27, 36, 37]. The BCT region was located at y > 45σ and the flow region

at 1.5σ < y < 45σ. The total number of atoms was 18, 820, of which 676 formed the wall

and the remaining 18, 144 the fluid within the flow and BCT regions. The fluid density was

ρfluid = 0.8 mσ−3 and the simulation time step was ∆tMD = 0.001τ . Each simulation was

run for 2× 106 time steps and the calculated quantities were averaged over the last 2 · 105 time

steps.

Initially, the rescaling technique and the one based on the Maxwell-Boltzmann distribu-

tion have been tested for a stationary heat transfer problem with continuum conditions Tcon =
1.5 ε/kB and ucon,x = 0 σ/τ on the upper constrained region. The Chapman-Enskog distribu-

tion was utilised when the results obtained from the Maxwell-Boltzmann were not physically

correct. A typical example is the application of the Maxwell-Boltzmann distribution in the

dilute gases.

In the second test case the boundary conditions were Tcon = 1.0 ε/kB and ucon,x =
1.0 σ/τ . The temperature of the constrained region was equal to the wall temperature and,

thus, the temperature was expected to remain nearly constant throughout the molecular domain.

The results from both BCT methods are in good agreement with the theory as shown in Fig.

3. A linear velocity profile was obtained and the temperature remained constant and equal to

1.0 ε/kB .

It was found that for the rescaling technique the size of the BCT region can influence the

consistency of velocity values with the macroscopic conditions. In Eq. 1 the atomistic velocities

are rescaled to a new mean velocity equal to the continuum constraint. In the current test case

this results in an underestimated velocity in the lower boundary of the rescaled region (Fig. 4).

The inconsistency between the macroscopic and microscopic states introduces inaccuracies in

the simulation procedure. To address this issue, in the current test cases the BCT region has

been further divided to four bins, with height 2.5σ each.
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Fig. 2. Temperature profile for the Couette flow with ux−con = 0 σ/τ and Tcon = 1.5 ε/kB .
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Fig. 3. Velocity and temperature profiles for the Couette flow with ux−con = 1.0 σ/τ and

Tcon = 1.0 ε/kB .

For the third test case, the continuum conditions in the constrained region were Tcon =
1.2 ε/kB and ucon,x = 1.0 σ/τ . Both BCT methods provide similar results. Figure 5 shows

the linear and parabolic profiles obtained for the velocity and temperature, respectively.

3.2 Liquid flow for the general problem
This is essentially a Couette flow problem with the molecular domain being constrained to

continuum values on two opposite sides as illustrated in Fig. 1 (left). The size of the molecular

domain was 10σ, 30σ and 10σ in the x, y and z dimensions, respectively. The molecular domain

was subdivided into three regions: the upper and lower BCT regions and the flow region in

between. Periodic boundary conditions were applied in the x and z dimensions. The lower

constrained region was located at y < 5σ, the flow region at 5 < y < 25 with height H = 20σ
and the upper constrained region at y > 25σ. The simulations were performed with a fluid

density ρfluid = 0.8 mσ−3, which resulted in a total number of 2, 592 particles. Using a time

step ∆tMD = 0.001τ , the simulations were run for 2 × 106 time steps. The temperature and

velocity measurements were averaged over the last 2× 105 time steps.

Three simulations were performed with different type of continuum conditions. In the first

one, the temperature and velocity applied to the upper and lower boundaries were uuppper
con,x =

0 σ/τ , Tupper
con = 1.5ε/kB and ulower

con,x = 0 σ/τ , T lower
con = 1.0ε/kB respectively. This set-

up corresponds to a pure heat transfer problem. Figure 6 shows the temperature and velocity

Journal of Nanophotonics, Vol. 3, 031960 (2009)                                                                                                                                    Page 7

Downloaded from SPIE Digital Library on 23 May 2011 to 138.250.27.125. Terms of Use:  http://spiedl.org/terms



y/H

u x(
σ/

τ)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Rescaling 4 bins
Rescaling whole region

Fig. 4. Velocity profiles obtained with velocity constraints applied to the whole constrained

region as well as the constrained region divided into subdomains.
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Fig. 5. Velocity and temperature profiles for the Couette flow with ux−con = 1.0 σ/τ and

Tcon = 1.2 ε/kB .

profiles. As expected, the temperature profile obtained using both BCT methods is linear and

the profile of the x component of the velocity across the y direction of the domain remains

equal to zero. Furthermore, similar temperature profiles are obtained from both techniques.

Small deviations are within the margin of statistical error due to the size of the MD domain and

constrained region, as well as the time averaging procedure.

In the second simulation, the boundary conditions at the upper and lower boundaries were

uuppper
con,x = 1.5 σ/τ , Tupper

con = 1.0ε/kB and ulower
con,x = 0.8 σ/τ , T lower

con = 1.0ε/kB , respectively.

The velocity and temperature profiles obtained from both BCT methods are similar as shown in

Fig. 7.

For the third simulation, the applied boundary conditions were uuppper
con,x = 1.5 σ/τ , Tupper

con =

1.2ε/kB and ulower
con,x = 0.8 σ/τ , T lower

con = 1.0ε/kB at the lower and upper boundaries respec-

tively. Results are shown in Fig. 8. The temperature profile is parabolic due to the heat generated

by viscous dissipation and its conduction towards the boundaries [4]. Small deviations in the

temperature profile are associated with statistical errors and the frequency with which the atom-

istic velocities are sampled from the velocity distribution function. The frequency with which

the continuum constraints are applied is an important factor for the resampling method. A high

frequency - in the extreme case, where resampling is performed at every time step - leads to

a situation where the atoms are basically trapped inside the BCT region, because their veloci-

ties are continuously resampled and, therefore, change direction so that these atoms are almost
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Fig. 6. Velocity and temperature profiles for the Couette flow with upper boundary condi-

tions uupper
x−con = 0 σ/τ , Tupper

con = 1.5 ε/kB and lower boundary conditions ulower
x−con = 0 σ/τ ,

T lower
con = 1.0 ε/kB .
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Fig. 7. Velocity and temperature profiles for the Couette flow with upper boundary conditions

uupper
x−con = 1.5 σ/τ , Tupper

con = 1.0 ε/kB and lower boundary conditions ulower
x−con = 0.8 σ/τ ,

T lower
con = 1.0 ε/kB .

stationary. This effect becomes more apparent in the case of large BCT regions. On the other

hand, one should be careful not to choose a too large resampling frequency that will not match

the prescribed continuum state.

3.3 Gas flows
The second set of test cases aims to test the applicability of BCT methods to gas flows. The

performed simulations were restricted to boundary node problems only. The size of the molec-

ular domain was 200σ, 120σ and 200σ in the x, y and z directions, respectively, and similar

to the liquid flows the domain was divided into two subregions; the flow region was located at

y < 100σ and the BCT region at 100σ < y < 120σ. At the bottom of the molecular domain

a stochastic thermal wall was imposed. A stochastic thermal wall is similar to a reflective wall

but corrects or resamples the velocity vector of the reflected atom depending on the transferred

thermal energy to or from the wall. Such walls have been extensively used for gas flow simula-

tions [38–41]. In the current study the following rules have been implemented by re-setting the
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Fig. 8. Velocity and temperature profiles for the Couette flow with upper boundary conditions

uupper
x−con = 1.5 σ/τ , Tupper

con = 1.2 ε/kB and lower boundary conditions ulower
x−con = 0.8 σ/τ ,

T lower
con = 1.0 ε/kB .

velocities of each atom striking the wall:

vx =
√

kBTwall

m · ψ

vy = ±
√

− 2kBTwall

m · lnψ1 (14)

vz =
√

kBTwall

m · ψ′

where Twall is the wall temperature; m is the atom’s mass; ψ and ψ
′

are Gaussian distributed

random numbers, N (0, 1); and ψ1 is a uniformly distributed random number in U(0, 1). Hence,

in the adopted model the components of velocity which are parallel to the wall are sampled from

a Maxwellian distribution

f(vα) =

√
m

2πkBTwall
exp

( −mv2α
2kBTwall

)
, (15)

where α is the corresponding direction and the normal to the wall velocity component, vβ , is

sampled from a Rayleigh distribution given by

f(vβ) =
m

kBTwall
|vβ | exp

(
−mv2β

2kBTwall

)
. (16)

The ± in Eq. (14) corresponds the upper and lower walls, respectively. The + sign is used at

the lower wall in order to force the particle to re-enter the simulation box. If the wall is placed

at the upper boundary, the − sign is used.

The first test case concerns simulations where the BCT is enforced through a Maxwell-

Boltzmann distribution. The simulations have been performed for different values of gas den-

sity with continuum constraints ucon,x = 1.0 σ/τ and Tcon = 1.0 ε/kB and wall temperature

Twall = 1.0 ε/kB . Three values of density were simulated ρ = 0.02 mσ−3, ρ = 0.04 mσ−3

and ρ = 0.08 mσ−3 resulting in the generation of 10, 240, 20, 000 and 40, 316 atoms, respec-

tively. The time step used in the MD simulations was ∆tMD = 0.001τ and each simulation

was run for 8× 106 time steps. The macroscopic quantities were averaged over the last 2× 106

time steps.

For low-density gas flows, slip at the boundary is expected, whose magnitude is related to

the Knudsen number. High Knudsen numbers result in increased slip [36, 39]. The Knudsen
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Fig. 9. Velocity profiles obtained with Maxwell-Boltzmann and Chapman-Enskog distributions,

respectively, for different gas densities.

number is calculated by [40]

Kn =
λ

L
=

1√
2πρσ2L

, (17)

where λ is the mean free path of the gas, ρ is the number density and L is the character-

istic length. Equation (17) means that low density results in higher Knudsen numbers and,

consequently, higher magnitudes of the slip velocity. Figure 9(a) shows the velocity profiles

obtained from the gas flow using the Maxwell-Boltzmann distribution based BCT scheme for

the three densities. As expected, higher slip velocities near the wall are obtained for lower den-

sity values. However, large deviations are observed between the applied velocity constraints

and the actual velocity in the upper boundary of the flow region. This is because of an ad-

ditional slip velocity generated between the flow and BCT regions due to the application of

the Maxwell-Boltzmann distribution. Note that lower gas density results in higher deviation

between the actual and applied velocity [15, 33]. To circumvent the unphysical slip at the con-

strained region, the same simulations have been performed with Maxwell-Boltzmann distribu-

tion replaced by the Chapman-Enskog distribution. Figure 9(b) shows velocity profiles obtained

with the Chapman-Enskog distribution. Application of this distribution eliminates artificial slip

phenomena between the flow and BCT regions.

For the last test case, the rescaling based technique and the method based on resampling

the Chapman-Enkog’s distribution are utilised for gas flow simulations in the same domain

with the previous gas simulations, with density ρ = 0.05 mσ−3, and continuum constraints

ucon,x = 1.0 σ/τ and Tcon = 1.0 ε/kB and wall temperature Twall = 1.0 ε/kB . In the

simulations, 25, 168 particles have been generated, the MD time step was ∆tMD = 0.001τ ,

each simulation was run for 8× 106 time steps and the calculated macroscopic quantities were

averaged over the last 2× 106 time steps.

MD simulations of a larger system have been performed to verify the validity of the results.

An MD domain of 200σ in each direction was selected, comprising a total number of 42, 592
particles. The density was ρ = 0.05 mσ−3 and the time step was 0.001τ . The simulations

were performed for 8× 106 time steps and the calculated quantities were averaged over the last

2×106 time steps. Two stochastic thermal walls were placed at the upper and lower boundaries

of the simulation domain with conditions chosen as uupper
wall,x = 2.0 σ/τ , Tupper

wall = 0.8 ε/kB for

the upper wall and ulower
wall,x = 0 σ/τ , T lower

wall = 1.0 ε/kB for the lower wall, respectively.

Figure 10(a) shows that results obtained from both BCT methods are in excellent agreement

with the large MD simulation. Figure 10(b) shows the velocity distributions for continuum
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Fig. 10. Velocity profiles for gas with ρ = 0.05 m · σ−3 obtained from the rescaling BCT

method, the BCT method based on the Chapman-Enskog distribution and the full MD simula-

tion.

velocity ucon,x = 0.2 σ/τ = 25 m/s.

4 CONCLUSIONS
An investigation of different mesoscale approaches for coupling macroscopic and microscopic

simulations was presented. Two BCT methods of constraining the molecular domain to the

continuum state have been examined, one based on rescaling the atoms’ velocities and the other

one is based on velocity sampling through a distribution function.

The rescaling BCT method was implemented in conjunction with a velocity reversing scheme

with regards to the macroscopic pressure. Applying the correct value of pressure and minimis-

ing any associated artifacts is crucial for the performance of any hybrid scheme. Inconsistencies

in the pressure can shrink the simulation domain or even make particles drift away. This can

generate errors and instabilities in the hybrid procedure. Simulations performed with the rescal-

ing BCT method show that it can be successfully applied to both liquid and gas flows. The size

of the regions where the velocity constraints are applied has to be selected carefully in order to

obtain consistent velocities with the continuum state.

For the second BCT method, Maxwell-Boltzmann and Chapman-Enskog distribution func-

tions were examined. The former has been used in liquid simulations and the results were found

in good agreement with the rescaling BCT method. The size of the constrained domain, the way

that the domain is terminated and the sampling frequency may have significant impact on the

results when the Maxwell-Boltzmann distribution is used. Inadequate sampling frequency can

lead to unrealistic effects, such as trapping of particles in the constrained region, or deviations

between the macroscopic and microscopic velocities. Selection criteria of these parameters

depends on the problem in question and cannot be defined explicitly. The application of the

Maxwell-Boltzmann distribution to gas flows leads to discrepancies between the desired and the

actual applied velocity. This discrepancy can be corrected by applying the Chapman-Enskog

distribution. The results obtained are then consistent with the rescaling-based BCT method and

larger MD simulations.

The selection of BCT method is not a trivial issue. It depends on the specific simulated

problem and a number of other parameters such as the accuracy requirements and the available

computational resource. The main advantage of the rescaling method is its generic nature and

broad range of applicability. However, it is less computationally efficient compared to the

velocity distribution function method.
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