
Plastics, Rubber and Composites Processing and Applications 31(2002). 377-384 

 

 

 
Investigation of cure induced shrinkage in unreinforced epoxy resin 

Mauro Zarrelli*, Alexandros A Skordos and Ivana K Partridge 

Advanced Materials Dept, Cranfield University, Cranfield, Bedford, MK43 0AL, UK 

 

ABSTRACT 

Changes in volume and thermal expansion coefficient were investigated during the cure 

of a high temperature curing epoxy resin containing a thermoplastic modifier. The 

measurements were carried out using a combination of standard and novel 

thermoanalytical techniques. It is shown that the chemical shrinkage of the curing resin 

is a linear function of the degree of cure, whereas the coefficient of thermal expansion 

depends on the temperature and on the degree of cure. This experimental information is 

translated to an incremental model that simulates the volumetric changes occurring as 

the resin follows a programmed thermal profile. Such a model can serve as a density 

sub-model in simulating heat transfer or residual stress development in composites 

during the manufacturing process. 

 

1. BACKGROUND 

Chemical reactions taking place during the cure of a thermosetting resin determine the 

route by which the structure of the material changes from a liquid to a cross-linked 

solid.  At any point in the cure this structure determines the chemical, thermal and 

mechanical properties associated with the given instantaneous degree of cure 1. The 

formation of chemical crosslinks leads to a volumetric shrinkage.  This cure induced 

shrinkage in thermosetting resins and their continuous fibre reinforced composites 

remains a poorly understood and only partially quantified feature of the processing 

operation, affecting issues such as warpage and residual internal stresses in composite 

structures.  

 

The residual stresses are a consequence of the significant mismatch between the thermal 

expansion coefficient (CTE) of the resin matrix and that of the reinforcing fibre.  A 

typical cure profile involves an early heating ramp during which the uncured resin is in 

its liquid form and expands thermally without making any significant contribution to the 

curing process.  The typical isothermal dwell stage that follows is accompanied by 
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polymerisation shrinkage; finally thermal contraction occurs as the now solid composite 

is cooled down to room temperature.  It is in this cooling stage that the most significant 

residual stresses are expected to be set up. Polymerisation shrinkage has been ignored to 

an extent, the argument being that it occurs at a relatively high temperature when the 

resin is in its rubbery state2. However, it has never been shown that polymerisation 

shrinkage in the resin, which can exceed 6% by volume3 ,  is able to relax mechanically. 

Indeed there are numerous additives, such as montmorillorite clays 4 and various 

thermoplastics 5,6 , which are routinely used in an attempt to counteract thermosetting 

resin shrinkage in a variety of  fibre reinforced composites.   

 

The level of modelling of composites manufacturing processes has improved 

significantly in recent years, but further progress is likely to be limited by the lack of  

verified data on the cure dependent properties of resins 7-9. It is therefore timely to 

produce better quality raw data to feed into such models 10.  The present paper describes 

the development of a methodology for thermo-analytical characterisation of an 

unreinforced thermoset, with the emphasis on  following the conversion dependent 

changes in the volume and the coefficient of thermal expansion of the resin as it is 

curing. The experimental methods used range from basic thermal analysis, to rheometry  

and liquid-solid dilatometry. A proprietary thermoplastic-modified epoxy resin, 

formulated for 160°C cure, was selected for practical measurement reasons, as it 

exhibits a relatively high chemical shrinkage.  The chemical nature of the formulation is 

unimportant here and the detailed experimental and modelling methodology presented 

in this paper is seen as applicable to any epoxy based resin.  

 

2. METHODS  

 The analytical tools that need to be built up in order to obtain a quantified description 

of the conversion dependent property profile of the resin are: (1) the kinetics of the 

curing reaction and the development of the glass-to-rubber transition temperature, Tg;   

(2) identification of the gelation region; (3) dependence of the thermal expansion 

coefficient upon the state of the material, and (4) the dependence of the chemical 

shrinkage upon the degree of cure. The following subsections set out the experimental 

methods and associated theory that are necessary to the development of these analytical 

tools.  
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Cure kinetics and glass transition temperature 

Detailed knowledge of the chemical cure kinetics of the resin is an essential pre-

requisite of this study, in order that the measured changes in the resin can be associated 

with a known degree of cure at all stages of the cure. The raw data were obtained from  

a modulated differential scanning calorimeter (TA Instruments MDSC Model 2920).  

Measurements were made in dynamic mode between –50°C and 320°C at a range of 

heating rates between 1 and 20 K min−1  /, and subsequently under isothermal conditions 

at a number of set temperatures (120°C-200°C). About a hundred samples were used to 

obtain the data set and examples of raw data obtained are shown in Fig. 1. The 

equilibration to the required isothermal temperature occurred without any significant 

temperature overshoot (see Fig.1a).  Details of standard data treatment, including the 

use of Bandara’s baseline (see Fig.1b), can be found in reference 11. 

 

The chemical cure kinetics were modelled using a modified expression of nth order, 

combining autocatalytic and diffusion control models, as follows: 

 

( ) ( ) mnn kk
dt
d

ααα
α

⋅−⋅+−⋅= 21 11 21      Eq.1 

 

where α is the degree of conversion, ki is a reaction rate coefficient and n1, n2, m are 

adjustable parameters. The diffusion controlled aspects of the process can be expressed 

by adopting the following expression for the reaction rate: 
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in which  
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where the subscripts ch and diff  refer respectively to chemical hardening and diffusion.  

Thus Ach is the Arrhenius pre-exponential constant, and Ech is the activation energy for 

the chemical hardening reaction and R is the universal gas constant. 
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where b is a fitting parameter, and the constants Adiff and Ediff  are similar equivalent to 

those in Eq.3 but valid for those regions of the cure where diffusion limitations 

dominate. 

Finally, f represents the free volume fraction of the total volume of the material at 

temperature T, which is  a function of the glass transition temperature Tg and the 

conversion α: 

 

( )[ ]αgTTf −⋅= 00048.0        Eq. 5 

 

The activation energy Ediff  can vary over five orders of magnitude.  This makes it 

difficult to select appropriate initial points for the fitting procedure. In a previous cure 

kinetics study in our group 12, the starting points for the numerical fitting were selected 

from some knowledge, albeit limited, of the chemical composition of the resin. In the 

present study, the chemical composition of the resin was unknown. The problem was 

resolved by using a genetic algorithm to locate the region of the absolute minimum of 

the least squares function and then using non -linear least squares fitting tools to identify 

the optimum parameters 13. A hybrid genetic algorithm was used to fit the model 

described by Eqs. 1-5 to the complete set of experimental DSC data.  A single set of 

parameters, valid for both dynamic and isothermal measurement conditions, was 

obtained. 

 

Equation 5 expresses the dependence of the factors governing diffusion rates in the 

curing resin upon its instantaneous glass transition temperature. The existence of a 

unique relationship between the degree of conversion, α, of a thermosetting polymer 

and its glass transition temperature, Tg, has been demonstrated by previous workers14 -16.  

In order to link the development of gT  with the progress of the reaction, the glass 

transition temperatures of a number of partially cured resin samples were measured 

using DSC. The samples were prepared by curing the resin in the DSC apparatus, under 
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either dynamic heating conditions (1 - 20 K min−1 ) or under isothermal conditions (120 

- 180°C) for different times and subsequently quenching them rapidly in liquid nitrogen. 

It was necessary to prepare and test fifty such specimens in order to cover the whole 

accessible range of conversions.  The fast cooling of the samples was intended to limit 

any physical aging problems due to spontaneous densification of the resin; it was found 

that characteristic physical aging peaks were absent from the subsequent DSC 

thermograms. The Tg values were determined as the inflection points of the heat flow 

step in the DSC signal in a thermal scan at 10 K min−1. 

 

 Identifying the gelation time region  

The experimental identification of the cure time or conversion at which the thermoset 

may be assumed to have formed a three-dimensional (i.e. has gelled) remains a topic for 

discussion. It is common to use rheometric techniques to arrive at an operational 

definition of gelation, tgel, by selecting either the time at which the resin reaches an 

arbitrary (high) viscosity value 17 or  the point at which at which curves for the storage 

and loss components of the complex shear modulus  cross over 18. In this work, 

measurements were carried out using a Bohlin CV 10 rheometer, oscillating at 0.5 Hz, 

with a parallel plate configuration at gap setting of 0.5 mm. 

 

Coefficient of thermal expansion (CTE) 

The thermal expansion coefficients of five different, partially cured, resin plate samples 

were measured using a thermal mechanical analyser (TMA - TA Instruments Model 

2940) fitted with a standard expansion probe. Specimens with dimensions 3×3×15 mm 

were cut and shaped from the plates. After placing the specimen in the cell and 

equilibrating the temperature at 30°C, the linear dimension of the sample was monitored 

up to 310°C, at a heating rate of 2 K min −1 . The minimum attainable force of 2 mN 

was applied to maintain contact between the probe and the sample. The coefficient of 

thermal expansion of the material in its glassy state is the slope of the displacement-

temperature curve at temperatures below the appropriate glass transition temperature.  

As this part of the curve was reasonably linear, the CTE values were determined from a 

simple linear fit, starting from 30 °C.  At temperatures above the Tg of of the partially 

cured samples, this means of determination of the CTE becomes inappropriate, partly 

because of possible probe penetration, but also because the sample will undergo post-
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cure. The coefficient of thermal expansion above the Tg was therefore determined only 

in the case of fully cured sample, by linear fitting of the displacement versus 

temperature curve. 

 

Chemical shrinkage 

Measurements  of specific volume during isothermal cure of the resin were performed 

using an improved version of the Pressure-Volume-Temperature (PVT) GNOMIX 

equipment, at the National Physical Laboratory 19. The equipment uses an LVDT to 

measure changes in the linear dimensions of a cylindrical specimen, heated by a 

surrounding electrical coil.   A liquid resin sample weighing about 1 g, previously 

degassed for 45 min at 100°C, was poured into the cell, heated up and held at the test 

temperature.  

 

3. RESULTS  
 

Data from DSC 

The glass transition temperatures, the residual heats of reaction and the degrees of cure 

of the individual resin plate samples A to E are summarised in Table 1, together with 

the corresponding measured values of the coefficient of thermal expansion (CTE). The 

scatter in Tg values specified in the table was determined by separate DSC 

measurements on two samples from each corner and from the centre of each resin plate, 

at two different depths within a plate. The spatial variation in crosslink density 

calculated from these measurements is less than 1% within any one resin plate.  The 

CTE values quoted represent an average of three measurements. 

 

The agreement between the predictions of the cure kinetics model and the experimental 

data from DSC tests was very satisfactory, as shown in Fig.2a for isothermal cures at 

120, 140, 160 and 180oC and in Figure 2b for dynamic cures carried out at heating rates 

between 1 and 20 K min−1.  In selecting parameters fort the model, the target across this 

wide range of processing conditions was an optimum fit for the gelation and post-

gelation stages of cure.  

 

Figure 3 illustrates the dependence of the experimentally measured Tg on the fractional 

conversion α. The model relating these two material quantities was taken from previous 
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work 17,18 and is based on the application of DiBenedetto’s equation (Eq.6).  A 

satisfactory fit of the model to experimental data is obtained. 

( ) ( )
( ) αλ

λαα
⋅−−

⋅−
−+= ∞ 11

1)( 00 ggg TTTTg       Eq.6 

where CTg °−= 100  and CTg °=∞ 185  are the glass transition temperatures of the 

uncured and of the ‘fully’ cured resin respectively. In the present study, this particular 

resin can be assumed to be ‘fully’ cured at a conversion level of 96%. The adjustable 

parameter λ is characteristic for the system, and in this case takes the value of 0.656.  

 

Rheology and thermal expansion data 

The rheometric experiments were carried out under isothermal conditions, at 

temperatures between 110°C and 170°C.  Figure 4 shows the determination of time to 

gelation (tgel) at 140oC from the point of the crossover between G' and G", the storage 

and loss components of the complex shear modulus when plotted against conversion α. 

The resin is expected to gel after about 91 minutes of cure at 140°C. The corresponding 

fractional conversion, as calculated using the cure kinetics model, is α = 0.64.  The 

equivalent values for cure at 120°C are 205 minutes and α = 0.653.  Gelation times for 

isothermal cures decrease with increasing cure temperature.  There is a linear 

relationship between the logarithm of time to gelation and the inverse of (absolute) 

temperature, as shown in Fig. 5. The degree of conversion corresponding to the 

formation of the 3D network is fairly constant, in the range of 0.64-0.66.  

 

Figure 6 shows the linear displacement, from TMA measurements, as a function of 

temperature for the different resin plate samples.  The shape of the curve obtained from 

the fully cured sample is as expected, with a classical indication of the glass transition 

temperature at around 190°C from these measurements (c.f. ∞gT = 185°C from DSC). 

The shapes of the curves for the partially cured resin samples indicate the onset of 

residual reaction; there is a shoulder immediately after the Tg, followed by the combined 

effects of reaction shrinkage and thermal expansion.  

The heating period in the liquid dilatometry experiments was used to determine the 

coefficient of thermal expansion of the liquid unreacted resin, which was found to be 

248 x 10-6 K−1 .  The coefficient of thermal expansion above the Tg, for fully cured 

material, was determined from the final slope of the appropriate displacement versus 
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temperature curve in Fig. 6, and found to be 136 ×10-6 K−1.  The CTE values for the 

material in the glassy state, as reported in Table 1, exhibit a linear dependence on the 

conversion (Fig.7). 

 

Chemical shrinkage 

Figure 8 illustrates the changes in specific volume occurring during cure at two 

isothermal temperatures, namely 140°C and 160°C.  The initial rapid expansion in 

volume is dominated by the thermal expansion of the sample from 80°C to the cure 

temperature. The volume data are presented alongside the corresponding degree of 

conversion, and the gelation region is indicated.   The difference between the final 

specific volumes of vitrified samples cured at the two different temperatures indicates 

that the overall volume reduction in a sample depends strongly on the exact thermal 

history of that sample.  Figure 9 shows that the chemical shrinkage is a linear function 

of the degree of conversion, in this particular resin, implying that the resin shrinkage 

coefficient is constant throughout the cure.  

 

4. SIMULATIONS FOR NON-ISOTHERMAL CURES 

The results of the experimental part of this study establish that both the chemical 

shrinkage of the resin and its coefficient of thermal expansion in the glassy state above 

conversion levels of 0.68 depend linearly on the degree of cure. The assumption that the 

CTE is linearly dependent on the degree of cure in the liquid and rubbery states enables 

the experimental data reported previously to be translated to a model for volume 

changes, based on the following relationship:  

 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⋅⋅=

dt
d

dt
dTV

dt
Vd

v
αγαˆˆ

        Eq.7 

 

Where V̂ is the specific volume, vα  is the volumetric coefficient of thermal expansion 

(VCTE) and γ  is the (constant) resin shrinkage coefficient with respect to the degree of 

cure.  

Use of the discrete form of Eq. 7 yields  
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where iV  and 1−iV  denote the specific volume at times it  and 1−it  respectively; T∆  and 

α∆  denote the change in temperature and conversion respectively, from 1−it  to it .  

The simulation used to model volumetric changes operates incrementally as suggested 

by Eq. 8.  In each time step the change in conversion is calculated using the kinetic 

model described by Eqs. 1-5. Then a comparison is made between the actual 

temperature of the material and the instantaneous glass transition temperature in order to  

determine whether the resin is in the rubbery or glassy state, and the appropriate 

coefficient of thermal expansion is input in Eq. 8. A schematic diagram of the algorithm 

used is given in Fig. 10.  

 

The model was used to simulate the volumetric changes expected during two typical 

non-isothermal cure cycles; in the first cure the resin is expected to vitrify during the 

isothermal dwell, while in the second the resin is expected not to reach vitrification 

before being cooled down. The results are illustrated in Fig 11. 

 

During the heating ramp stage, resin expansion occurs as the result of two opposing 

effects: thermal expansion and the early stages of chemical shrinkage. In the isothermal 

stage chemical shrinkage is the only active phenomenon. In this stage the rate of change 

of specific volume reflects the rate of the reaction, and therefore becomes low towards 

the end. Under the conditions represented in Fig.11a, the resin vitrified prior to cooling 

and thus the specific volume against cure time plot in that stage is a straight line 

corresponding to simple contraction of the glassy thermoset. In Fig.11b, the passage of 

the non-vitrified resin through its Tg, as it cooled down is indicated by the intersection 

of the dotted lines.  

 

5 CONCLUSIONS 

The modelling methodology outlined here appears to be an appropriate way to account 

for the volumetric changes occurring during the cure of a thermosetting resin.  As a next 

step, such methodology can be integrated within more complex simulation tools relating 

to the manufacture of thermosetting composites, such as heat transfer models or residual 
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stress development simulations 20. Our future publications will provide the necessary 

complementary data on the development of the viscoelastic modulus in the curing resin, 

to make the connection between the state of the material and existing models for 

warpage in composite parts. 
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Figure 1 Raw data from DSC measurements carried out under (a) isothermal (140°C 

and (b) dynamic heating conditions (20 K min−1 ). Bandara baseline (lower 

curve) applied 11 
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Table 1. Thermal analysis data for partially cured resin plates 

 

Plate Tg (°C) 
Residual heat of 
reaction (kJ/mol) 

Degree of cure Glass CTE ( 10-6  K−1 ))  

A 104 ± 5 132 ± 3 0.68 105 

B 133 ± 3 83 ± 3 0.80 79 

C 151 ± 3 54 ± 3 0.87 76 

D    165 ± 3 43 ± 2 0.90 68 

E 182± 2 18 ± 1 0.96 49 

 

 

Table 2. Parameters for the cure kinetics model 
 

A1 

(s-1) 

A2 

(s-1) 
Ad 

(s-1) 
E1 

(kJ/mol) 
E2 

(kJ/mol) 
Ed 

(kJ/mol)

n1 n2 m b 

2.51E+ 5 1.72E3 2.6E23 78.99 50.25 126.0 0.813 2.361 0.581 0.302 
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Fig. 2a. Comparison between experimental data from DSC and predictions of the cure kinetics 

model (solid lines) for isothermal cure conditions. 
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Fig. 2b. Comparison between experimental data from DSC and predictions of the cure kinetics 

model (solid lines) for dynamic cure conditions. (○)-1 oC/min, (■)-2 oC/min, ( )-5 oC/min,  (◊)-

7.5 oC/min, (▲)-10 oC/min, (□)-15 oC/min,  ( )-20 oC/min,  (▬)-Fitting  
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Fig. 3. Glass transition temperature versus conversion. Experimental data (EXP) and model fit. 
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Fig. 4 Determination of time to gelation during 140°C isothermal cure. (○)-Storage modulus, 

(◊)-Loss modulus 
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Fig. 5. Plot of the natural logarithm of the gelation time vs. inverse of absolute temperature. 
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Fig. 6  Linear displacement versus temperature at various degrees of cure, determined by TMA. 
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Fig. 7 Coefficient of thermal expansion versus conversion in the glassy state 
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Fig. 8  Specific volume and fractional conversion versus cure time, for 140°C and 160°C 

isothermal cures. (○) - Specific Volume at 160°C, (□) - Specific Volume at 140°C(●) - Degree 

of Conversion at 160°C, (■) – Degree of Conversion at 140°C 

 

 

Fig. 9 Chemical shrinkage vs. degree of conversion for PVT test at 140°C and 160°C 
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Fig. 10 Schematic representation of the algorithm. 

Temperature Profile:                T  = T(t) 

Initial Conversion:                    α0 

Total Specific Shrinkage:         Vf 

Ti,  ti 

Glass Transition Model    Tg(αi) 

 

Kinetic Model     αi 

∆Vi = Vi – Vi-1 = 3 * CTE * (Ti – Ti-1) + Vf  * (αi - αi-1) 

Vi=∆Vi  + Vi-1 

Ti+1 < Tf 

 

Glass Transition Temperature Profile:       Tg = Tg (t) 
 

Specific Volume Profile:                            V = V(t) 
 

Fractional Conversion Profile:                    α = α(t) 
 

Coef. of  Therm. Exp. (glass-rubber):           CTE=CTE(t)
 

If  Ti   >  Tg then    CTE = frubber  ( αi ) 
 
 
 

If  Ti   <  Tg then    CTE = fglass  ( αi ) 
 
 
 

If  Ti   =  Tg          then      CTE = [ frubber (αi)+ fglass (αi)] /2 
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(b) 

Fig. 11  Predicted property changes during two simulated representative thermal profiles 
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