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1. Abstract 

Cost effective braid reinforced composites are a potential substitute for metals in many 

automotive structural applications where good mechanical performance combined with 

high energy absorption are of special interest. This paper presents experimental work 

undertaken to characterise braided composites and a meso- mechanical damage model 

suitable for the impact and crash analysis of braided composites. The model presented 

correctly represents stiffness, initial failure and the post failure damage response which is 

of particular importance for crash applications. Furthermore, work is presented that 

describes testing procedures which should be followed in order to obtain the correct 

material parameters for analysis. Finally, validation of the testing procedures and the 

constitutive model is made against a structural braid reinforced composite beam loaded to 

failure under four point bending. 
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2. Introduction 

In recent years cost effective advanced composites reinforced with Non Crimp Fabrics 

(NCF) and braids have received increased attention as possible materials for automotive, 

and other, applications. The CEC funded Framework VI project TECABS [1], for example, 

has recently combined both materials to successfully manufacture a large complex 

automotive floor assembly using RTM technology. Within the TECABS project braids were 

used for automotive side sills and have also been used for main rails in production 

vehicles [2]. Braids can be efficiently manufactured using rotary braiding machines which 

can be tailored to provide a wide variety of yarn architectures and preform shapes that are 

particularly suitable for closed form sectional members. Furthermore, the availability of 

new low cost carbon fibres and the use of flexible resin injection processes are helping to 

encourage industrial interest, particularly for low volume niche applications. 

 

The particular class of composites considered here are carbon fibre reinforced braids for 

structural applications. Experimental work has shown that these materials offer a good 

compromise between mechanical performance, impact resistance and crash energy 

absorption. Under axial crushing of sectional members it is well known that composites 

can out perform metals for specific energy absorption [3]; braid reinforced composites are 

similarly competitive giving a two to three fold increase in specific energy absorption 

compared to metals for axial crushing of tubular sections [4].  

 

However, braid reinforced composites can also absorb significant specific energy under 

tensile loading; for example, Figure 1 compares a [±45°] biaxial braid reinforced composite 

(67.2mm*1.6mm thick) and an automotive grade Aluminium 6014/T6 coupon 

(65.0mm*1.7mm thick) loaded to failure. Despite the lower ultimate strength of the 

composite the ability of the fabric architecture to reorientate enables large strains and high 

levels of energy to be absorbed over a much greater ‘non-local’ necking zone; Figure 2. In 

terms of specific energy absorption the 220 mm long braided composite achieves 9.16J/g 

compared to 4.16J/g for the Aluminium coupon. This superior performance could be 

advantageous in applications such as automotive side intrusion where large amounts of 

energy must be absorbed. 
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Most analytical constitutive models for advanced composites have been specifically 

developed for unidirectional (UD) plies and a large number of failure models are to be 

found in the literature [5]. Under impact and crash loading the limited models available, for 

example [6,7] usually treat the progressive composite fracture process using ‘continuum 

damage mechanics’ but, again, most models to date concern UD composites. The focus of 

this paper is testing methods specific to the characterisation of braid reinforced composites 

and their representation in a meso- mechanical damage model suitable for impact and 

crash simulation. In addition to braids, however, other more conventional composites will 

also be used to introduce some specific features of the meso- mechanical damage law.  

 

3. The meso- mechanical damage model 

The Finite Element (FE) code used for this work is a commercial explicit code [8] which 

has recently added new composite ply and delamination models based on damage 

mechanics [9]. For representation of each ply the original model proposed by Ladevèze [6] 

for UD composites is available and considers each elementary-ply at the macro- level as 

an orthotropic homogeneous material; continuum damage mechanics is used to treat 

strength degradation and failure. The principle ply failure mechanisms are fibre failure due 

to longitudinal tension or compression loading, resin micro-cracking due to transverse 

tension and fibre-matrix debonding due to shear loading. These failure modes can develop 

independently, or simultaneously, depending on the state of loading. The simplified plane 

stress orthotropic constitutive law with damage parameters is given by,  
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where the compliance matrix [S] comprises of four undamaged elastic constants E1, E2, 

G12 and υ12 and damage parameters d1, d2 and d12 for the two principle fibre and shear 

directions. Usually d1 and d2 are uncoupled, but there can be an interaction between d2 and 

d12. The mechanical and damage properties in tension and compression may be different. 
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The constitutive damage law uses internal damage variables to control material stiffness 

reduction and also to define failure. These variables must be calibrated against 

appropriate coupon tests which include the principle fibre [0°] and transverse [90°] 

directions under tension and compression, a shear test [±45°] and an additional test 

[±67.5°] designed to account for interaction of certain failure modes. The original Ladevèze 

model [6] demonstrated parameter identification for UD composites T300/914 and 

IM6/914. Investigations by the authors have found that tensile and compressive aspects of 

this model appear valid for a wide range of composite types; however, the shear response 

has limitations and improvements are proposed in the following section.  

 

3.1 Shear mechanical testing and parameter identification for a UD Composite 

The following describes shear [±45°] testing and parameter identification for a relatively 

ductile high strength UD carbon fibre composite, T800S/M21 manufactured by Hexcel [10]. 

The shear response of this material exhibits large strain and non-linear damage 

evolvement to failure and is useful to illustrate limitations and improvements to the model. 

The growth of shear damage is characterised using cyclic tensile testing on a [±45°] 

coupon; the damaged modulus at any instance is provided by the unloading modulus of 

the shear stress-strain curve, Figure 3. The modulus must be determined from stress and 

strain measures in the local lamina frame. The following expressions transform quantities 

between the loading frame (x,y) and the required local lamina frame (1,2).  
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The following identification of damage parameters follows the procedure outlined in [6] 

using the results from Figure 3. At each cycle the elastic and plastic strain components are 

available and are used to determine the damage and plasticity laws respectively. At least 

5-6 cycles are required to obtain a good evolution of damage and plasticity. 
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The damage law: The damaged shear modulus at each cycle is given by, 

,  
G
G1d 0

12

12
12 −=  (3-3)

where G12 is the damaged modulus and G0
12 is the initial undamaged value. The elastic 

strains e
12ε are used to compute the conjugate shear forces 12Y at each cycle from, 

.   )2(G
2
1Y 2e

12
0
1212 ε=  (3-4)

Conjugate forces are ‘driving forces’ that govern damage propagation. Figure 4 shows the 

experimental points relating evolution of conjugate forces 12Y  and damage 12d . Reference 

[6] assumes a linear relationship between these two quantities given by,  

1201212 )( YdYdY iCi +=  , (3-5)

from which the parameters CY12  and 120Y  for the linear damage law can be identified, 

Figure 4. A final damage constant RY12  denoting ultimate failure is found by specifying the 

maximum damage value dsat in equation (3-5).  

 
 
The plasticity law: Parameters for the plasticity law are derived from the evolution of 

plastic strains at each cycle. The plasticity hardening function )( pR  is derived from (3-6) 

and (3-7). A fitting procedure is used to define a power law having three constants; 

namely, the initial yield stress R0 and the hardening coefficients β and α. 
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The shear damage and plasticity constants assuming a linear damage function are given 

in Table 1. 

 

It is evident from Figure 4 that the original linear damage law proposed by Ladevèze [6], 

equation (3.5), cannot represent the latter stages of damage and, in particular, the ultimate 
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failure condition. This nonlinear failure behaviour has been observed by the authors for a 

number of woven, Non Crimp, and braided composites which have relatively ductile 

matrices and allow considerable fibre rotation in shear prior to failure. Consequently, 

alternative laws describing the evolution of 12Y and d12 are proposed as shown in Figure 4. 

These are; namely, a linear, logarithmic and polynomial function of rank 2. The logarithmic 

function was previously proposed by Johnson and Pickett [11] for woven fabric 

composites.  

 

Figure 5 shows the consequence of these three damage functions on the shear stress 

strain relation. The linear function cannot represent the experimental trend and predicts 

premature failure; the logarithmic function gives an improved correlation, but clearly the 

polynomial function gives the best agreement and estimate for failure strain.  

 

4. Braided composites 

Mechanical properties for constitutive models to be used in Finite Element analysis are 

usually determined from appropriate regulatory tests; for example, the ASTM standards 

D3410/D [12] and D3518/D [13] for tensile and compression testing respectively. However, 

braided composites do have some particular features that should be noted in the testing 

programme. First, most braided composites have a continuous architecture without free 

edges, whereas coupon testing is usually performed on specimens cut from flat panels 

and therefore having free edges. Second, in the case of multi-layer braids, there is a 

thickness effect that should be considered. Section 4.1 discusses the damage 

mechanisms that occur in biaxial braids under tensile loading. This is then followed by 

experimental work to investigate the effects that free edges and the number of layers have 

on composite mechanical properties. 

 
4.1 The damage mechanisms and fibre rotation 

For biaxial [±θ°] braids under tensile loading the damage development has been shown to 

be nonlinear, Figure 4, and is due to matrix micro-cracking and plasticity associated with 

large fibre rotation. The fibre/matrix interface progressively debonds allowing tows to align; 

this scissor action continues until the tows reach a maximum interlocking angle and 

rupture, or the fibre start to fail due to the loss of integrity and the large shear strains. This 
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behaviour is illustrated in Figure 6 for a tensile loaded [±45°]4s braid where significant fibre 

matrix debonding and tow alignment has occurred leading to significant necking prior to 

failure of the specimen.  

 

Delamination between plies is a further damage mechanism that has been observed in 

multi-layered braid composites, Figure 7. This damage mode is due to the shearing 

deformation and is strongly coupled to the ply damage mechanism. This failure leads to 

separation of the plies and will reduce the ability of the laminate to sustain bending loads. 

Characterisation of this failure mode has not been treated here and will be investigated in 

future work. 

 

4.2 The edge effect: Cut and uncut coupons 
A test program was undertaken to determine the difference between mechanical 

properties and failure for coupons having cut and uncut edges. The work used 40mm 

diameter braids with 24K STS tows and 42 ends manufactured by Eurocarbon, the 

resin/hardener was LY3505/XB3403 from Huntsman Advanced Materials. All coupons 

were manufactured using the VARI process which gave a fibre volume ratio of 53%. Two 

fabric architectures have been considered; namely, a [±25]4S and a [±45]4S braid.  

 

The tubular braids were carefully flattened in order to maintain the fabric architecture prior 

to impregnation. Figure 8 shows the flattening of the braids which were either cut after 

curing, or left intact, to provide the two types of edge conditions. Due to the relatively 

coarse architecture of the braid having a ‘Repetitive Unit Cell’ (RUC) of 14 mm square it 

was decided to use test coupons of 65mm width; this is in line with reference [14] which 

recommends that specimen width is at least three times the RUC to ensure a uniform 

strain distribution. 

 

For the [±25]4S braided composite the cut and uncut coupons had identical initial 

mechanical properties (Eo); however, the uncut coupons showed significantly greater 

ultimate load (+27.5%) and strain to failure (+39.1%) as shown in Figure 9. and Table 2. 

The observed failure modes are also shown in Figure 9 and are similar for the two types of 

specimens. The loss of tow continuity in the cut specimen leads to a combination of tow 
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pull-out and tow failure which initiate at the free edges; whereas, for the uncut specimen 

tow breakage initiates at the area of highest stress concentration adjacent to the tabs. 

A second study is presented in Figure 10 for the [±45]4S cut and uncut braid reinforced 

composite. In this case a similar trend is observed to the previous [±25]4S case, except that 

the difference between cut and uncut strength is reduced to 13,3%. This is due to the 

increased transfer of load by transverse matrix mechanisms rather than fibre mechanisms; 

thus the anchorage effect of the fibres at the edges is less significant. 

 

This brief study indicates that braid angle strongly influences the strength between ‘cut’ 

and ‘uncut’ braid reinforced coupons. It shown that failure in biaxial ‘open’ braids, which 

are dominated by transverse matrix failure, does not greatly affect the failure strength 

using the two edge conditions. Whereas for low angle braids the load transfer mechanisms 

are fibre dominated and the difference between ‘cut’ and ‘uncut’ edge condition is much 

greater. The width of the coupon tested can also be expected to influence these trends. It 

may be concluded that mechanical data obtained from cut coupons should be used with 

caution for the FE analysis of closed sectional members. Conversely, cut edges in a 

braided structure should have mechanical data obtained from corresponding ‘cut’ coupon 

tests. 

 

Figure 10 shows the damage development for the [±45]4S coupons presented in Figure 10 

with cut and uncut edge conditions. It can be seen that both coupon types have similar 

damage evolution, at least to the point where strain gauge measurements were possible at 

about 5% strain.  

 

 

4.3 Influence number of layers on composite strength for braids  
A further variable that influences braid mechanical properties is the number of plies. 

Laminates having only a few plies tend to have distinct resin rich pockets between fabric 

tows, Figure 12. As additional plies are added these areas are displaced with tows from 

the overlaid plies leading to greater material homogeneity. The affect on mechanical 

properties is investigated for four [±45°] braids having cut edges with 1, 2, 4 and 6 layers. 
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Cyclic loading has been applied to determine the damage and hardening laws for each lay 

up. Figure 13 shows that the number of plies does not appear to influence the damage 

law; however, it does have a significant effect on the hardening law, Figure 14. The 

hardening law shows that a single ply exhibits significantly more deformation compared to 

the other layups probably due to the higher void content allowing greater freedom for fabric 

deformation. For laminates with two or more plies the plasticity law starts to be consistent.  

Again, however, it must be noted that these observations are for test measurement 

conducted to only about 5% strain which was the limit of the strain gauges. It has also 

been observed that braids with low ply numbers are liable to fail at a slightly lower failure 

strain, probably due to inconsistencies in the fabric architecture. 

 

5. Example for the loading of a braid reinforced beam 

Figure 15 shows the experimental test setup for the braid reinforced beam having 

dimensions 1100mm long by 60mm square cross section. The braided beam uses a 

[±45°]4S architecture and the previously cited fibre and resin systems. Different braided 

beams have been considered having alternative inner structures; for example an open 

square section and a 2*2 cell section as shown in Figure 16. In each case the beams have 

been loaded to failure under static four point bending.  

 
Results for the beam study are presented in Figure 16 and compare the FE simulations 

using linear and polynomial damage functions with test measurements. In this case a 

polynomial function of rank 3 has been used to capture the relationship between conjugate 

forces 12Y  and damage 12d ; the higher order polynomial is needed to capture the 

experimental points ( 12Y , 12d ) and also allow rapid damage growth after damage 

saturation is reached, this polynomial form is shown schematically in Figure 4. The linear 

damage function predicts, as expected, premature failure of the beam, whereas the 

improved polynomial function gives an encouraging agreements with test results. 
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5. Conclusions  
A meso-scale damage model has been adapted and presented for braid reinforced 

composites. Experiments have shown that biaxial braid reinforced composites can 

undergo large shear deformations and associated fibre rotations leading to a non-linear 

evolution of damage. Alternative shear damage laws have been proposed and a good 

agreement between test measurements and the law using a higher order polynomial 

function has been found. However, difficulties have been encountered to accurately 

measure strains the latter stages of shear deformations and further work will be needed to 

validate the model in this region. 

 

The failure analysis of a braided composite structure requires correct interpretation of 

coupon test measurements. Work has been presented showing the important effect that 

the edge condition (cut or uncut) of a tensile coupon has on failure load. It has been shown 

that uncut continuous braids give significantly greater strength and strain to failure and that 

this is dependent on the braid angle. The influence of the number of plies is a further 

important material variable that must be taken into consideration in the parameter 

identification process. A FE analysis of a braided composite beam has given encouraging 

agreement between test and simulation results using the new braid meso-scale damage 

model and mechanical data obtained from appropriate mechanical testing. 
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7. Figures  
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Figure 1.  Engineering stress versus displacement for a bi-axial braid reinforced 

composite and Aluminium tensile coupon 

 

 
Figure 2.  Comparison of failure mechanisms for a bi-axial braid reinforced 

composite and Aluminium tensile coupon 
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Figure 3.  Shear stress )( 12σ  versus shear strain )( 12γ  showing cyclic loading for a 

[±45]4S coupon of T800S/M21 and the failed specimen 
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Figure 4.  Experimental data points for 12Y  and 12d , and alternative damage 

functions to relate these quantities 

Logarithmic assumption: 
d12 = 0.369Ln(Y12) + 0.381 

Linear assumption:  
d12 = 0.512Y12 - 0.126 
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Figure 5.  Experimental cyclic shear stress-strain curve for T800S/M21 composite 

and prediction using the three damage functions 

 
 

 

 

 
 

Figure 6.  Deformation and failure mechanism for biaxial [±θθθθ°] braid reinforced 

composite under tensile loading 
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Figure 7.  The original and delaminated braid reinforced composite 
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Figure 8.  Preparation of the cut and uncut braid coupons 
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Figure 9.  Comparison of results for the cut and uncut [±25]4S braided coupons 
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Figure 10  Force-Displacement curves for [±45]4S cut and uncut coupons under 

tensile cyclic loading to failure 
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Figure 11 Damage laws for uncut and cut specimens 

 
 

 

Figure 12  Fabric architecture and potential resin rich areas for a single layer braid 
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Figure 13.  Damage laws for the different braid layups 
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Figure 14.  Hardening laws for the different braid layups 
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Figure 15  Braided beam using a 2*2 cell structure under 4 point bending 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Simulation results for the four point loaded braid reinforced beam 
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8. Tables  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Damage and plasticity law constants for a T800S/M21 composite 

 

 
 [±25]4S 24k STS fibre, 42 ends 
Property Cut Uncut Difference 

UTSσ  (MPa) 501 691 +27.5% 

)failure(  ε  0.02057 0.03379 +39.1% 

 
Table 2.  Comparison of mechanical properties for the cut and uncut [±25]4S 

braided coupons 

 

Material constant for Hexcel T800S/M21 Value 
0
12G    Initial shear modulus in plane (1,2) 5259 )(MPa  

CY12   Critical shear conjugate force 1.953 )( MPa  

120Y    Initial shear conjugate force 0.246 )( MPa  

RY12   Shear conjugate force limit 1.416 )( MPa  

t
ud11    Damage saturation threshold 0.598 

0R     Initial yield stress 23.58 )(MPa  

 Β       Hardening law multiplier 2356 )(MPa  

 Α       Hardening law exponent 0.636 


