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This communication concerns the treatment of dielectric data obtained from experiments following the 
chemical hardening process (cure) in thermosetting resins. The aim is to follow, in real time, the 
evolution of the individual parameters of an equivalent electrical circuit that expresses the electrical 
behaviour of a curing thermoset. The paper presents a methodology for the sequential inversion of 
impedance spectra obtained in cure monitoring experiments. A new parameter estimation technique 
based on genetic algorithms is developed and tested using different objective functions. The influence 
of the objective functions on the modelling performance is investigated. The new technique models 
successfully spectra contaminated with high noise levels. The introduction of regularization in the 
optimisation function rationalises the effects of outliers usually detected in cure monitoring dielectric 
spectra. The technique was successfully applied to the analysis of series of spectra obtained during the 
cure of an epoxy thermosetting resin. 
 
Keywords: Cure monitoring, equivalent circuit modelling, impedance, genetic algorithms, 
regularization 
 
 
1. INTRODUCTION 

Dielectric spectroscopy is an established experimental technique for probing molecular 
processes in polymers [1]. The use of the technique in studies of cure in thermosetting resins 
such as epoxies is also well established [2 – 7]. During the cure the thermosetting resin 
undergoes a transformation from a liquid to a rubber, as a result of the formation of a three 
dimensional molecular network, and then to a glass upon further advancement of the cross-
linking reaction. In dielectric spectroscopy the electrical properties of the curing thermoset are 
measured over a wide frequency range as functions of time and of temperature. The spectra 
obtained give an insight into the material state at specific cure times, due to the strong 
dependence of the dielectric permittivity and dielectric loss, on the changing chemical and 
structural state of the material [1, 8]. Mijovic and co-workers have developed a slightly 
different but equivalent approach, based on the utilisation of the complex impedance 
spectrum [9 – 15]. The applicability of the technique to industrial process control is 
conditional on the existence of an efficient methodology for quantitative translation of the 
impedance spectra to material state.  

In this paper, fitting of cure monitoring spectra is performed using genetic algorithms. Several 
objective functions are tested; namely weighted least squares, weighted absolute differences, 
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least squares with logarithmic scaling of the experimental data and absolute differences with 
logarithmic scaling. 

The effect of regularization on parameters estimation is also investigated. Simulated data with 
Gaussian noise and outliers are used for the assessment of the most appropriate objective 
function. Real experimental data are analyzed using the chosen objective function with and 
without the regularization term. 
 
 
2. BASIC DIELECTRIC THEORY AND EQUIVALENT CIRCUIT MODELS 

Three phenomena are present in the electrical response of a curing thermosetting resin at 
relatively low frequencies (1 Hz – 1 MHz): electrode polarisation, charge migration and 
dipolar relaxation [2, 10]. Consideration of these fundamental phenomena, backed up by 
experimental evidence, has led to the development of an equivalent circuit representation of 
the processes that affect the signal during the cure [9, 10]. The dipolar movements are 
modelled by a capacitor (Cdip) connected in series with a resistor (Rdip) and in parallel with 
another capacitor (Cind). The first two elements represent the permanent dipoles, which are 
present in resins due to the charge distribution in asymmetric molecules or molecular groups 
[1], whilst the Cind element represents the dipoles that are induced by the application of the 
electric field. A resistor (Rion) models the presence of extrinsic and intrinsic charge carriers [2, 
14, 15]. The resulting circuit is shown in Figure 1. 
 

 
Figure 1: Equivalent circuit of epoxy thermoset 

 
Electrode polarisation, which originates from the accumulation of charges close to the surface 
of the embedded electrodes, is typically modelled using capacitors in series with the rest of 
the circuit [9, 10]. However, it has been reported that Constant Phase Elements model the 
non-ideal capacitive behaviour of the electrode-material interface more successfully [16]. The 
complex impedance ZCPE of such an element is: 

  (1) 

where ω is the angular frequency ( 2= fw p ) and Rel, n are the CPE parameters.  
The complex impedance Z of the overall equivalent circuit, which is shown in Figure 1, is:  

  (1) 

where the real (Z΄) and imaginary (Z΄΄) components are: 



  (2) 

 (3) 

Relationships between the maximum of imaginary impedance and thermoset resistivity during 
cure have been established [10, 13]. The vitrification of the curing system has also been 
identified successfully using the impedance spectra [14]. However, fitting of the experimental 
data throughout the experimentally accessible frequency spectrum and determination of the 
evolution of circuit elements during the cure has not been attempted.  
Equivalent circuit analysis is a general tool for data interpretation of complex systems [17]. 
Impedance spectra are usually fitted using weighted linear squares methods introduced by 
Macdonald [17 – 22]. The weight factors are a measure of the variance of each experimental 
point. As impedance is a complex variable, the real and imaginary components are fitted 
concurrently, taken as independent variables. Theoretically this is not true as the Kramers – 
Kronig transformation relates the real and imaginary part of such a variable [23, 24]. In 
practice, however, one needs to cover a very wide frequency spectrum for the transformation 
to give valid results [17].  
The resulting objective function for the weighted linear squares has the following form: 

  (4) 

where S denotes the objective function, q is the number of measured frequencies and wk are 
the weight factors for the real and imaginary parts of the complex impedance. The subscripts 
exp and mod, respectively, denote the experimental impedance value and that obtained from 
the application of equations 3 and 4. 
Instead of the sum of squares, it is possible to use the sum of absolute differences as the 
objective function: 

  (5) 

The use of absolute differences is more robust than using the least squares method, in terms of 
tolerance to experimental outliers [25]. In cure monitoring the impedance values change 
several orders of magnitude (typically 103 – 109 Ohm) during the experiment and towards the 
end of cure they reach the limit of the apparatus measuring range. For the apparatus used in 
this study – and for most of the commercially available instruments – this means that 
measurement scatter can be as high as 10%. Furthermore, interference with other electrical 
equipment is possible, resulting in spurious outliers. Dygas and Breiter have proposed a 
method for detecting and eliminating outliers in impedance spectra by comparing each 
experimental point with its estimated standard deviation [26]. However, this method is not 
suitable for analyzing consecutive spectra, as it demands replicate scans for the calculation of 
standard deviation. In a cure monitoring experiment, the impedance spectrum changes as the 
cure progresses and it is not possible to repeat the measurement as the state of the material 
changes irreversibly.  



One way to enhance the robustness of the objective function is to add a regularization term 
[27]. For the case of absolute differences, we have: 

  (6) 

where λ is the Tikhonov regularization parameter [27], Pno is the number of fitting parameters 
(the number of circuit elements in Figure 1), park are the parameter values and park,exp is an 
estimation of the expected parameter values. A similar expression can be obtained for the 
least squares case. 
The presence of the regularization term suppresses any irregular fluctuations imposed by large 
errors or outliers on the estimated parameters [27]. Winterhalter and co-workers have used an 
objective function with a Tikhonov regularization term to model admittance spectra [28, 29]. 
They fitted a continuous distribution of relaxation functions to experimental data and argued 
that without the regularization term the number of significant relaxation peaks had to be 
chosen arbitrarily before any fitting was performed. 
The fitting is performed by minimizing the objective function. Macdonald has developed a 
software code [30] for solving the minimisation problem in the case of impedance spectra, 
based on the Levenberg – Marquardt method [31]. The success of the minimisation depends 
strongly on the initial estimates of the sought parameters. Furthermore, there is always a 
possibility of the algorithm converging to a local instead of the global minimum. 
In contrast to hill-climbing methods, genetic algorithms provide global minimisation and 
fitting capabilities especially in the case of multivariate systems [32]. VanderNoot and 
Abrahams have utilised genetic algorithms to fit impedance spectra [33], using an objective 
function based on weighted absolute differences. Yang and co–workers have also 
implemented genetic algorithms to model admittance data [34], with a weighted least squares 
objective function. 
 
 
3. ARTIFICIAL IMPEDANCE SPECTRA AND GENETIC ALGORITHM  

Construction of simulated spectra 
The values of the circuit parameters used to generate artificial spectra are given in Table I. 
They are representative of epoxy resin response in the early stages of cure, when the resin is 
liquid. The resulting spectra are shown in Figure 2.  
It can be observed that the real impedance values are nearly constant at low frequencies and 
decrease rapidly at higher frequencies. (The slight drop observed in the very low frequency 
region is a consequence of electrode polarisation.). The imaginary impedance spectrum 
exhibits a minimum and a maximum, with the peak value relating to the extent of the charge 
migration in the system.   
 

Table I: Circuit element values for the construction of simulated spectra 
Rion 

(Ohm) 
Rdip 

(Ohm) 
Cdip 
(F) 

Cind 
(F) 

Rel 
(Ohm) 

n 

106  104  2×10-12  10-11  106  0.5 
 
The sensitivity of the resulting real and imaginary impedance spectra to the circuit parameters 
was investigated. Each of the circuit parameter value was altered by ± 10% whilst all the other 
parameters were kept constant. The average percentage difference from the original spectrum 



was used as a measure of sensitivity over the whole frequency region. The results are 
summarized in Table II. 
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Figure 2: Real and Imaginary impedance spectra typical of a particular given state in epoxy resin 

cure. The equivalent circuit used is shown in Figure 1 and the circuit element values are 
given in Table I. 

 
It can be observed that the spectra are sensitive to changes in Rion and Cind, whilst the 
influence of Rdip and Cdip is less marked. It should be noted that the sensitivity of the 
impedance to each circuit parameter depends on the frequency. Electrode polarisation 
parameters, for example, have greater impact on the signal at low frequencies. 
 
Table II: Sensitivity to circuit parameters expressed as the average percentage difference 

from the original case for a ± 10% change in the parameter 

 Rion 
(Ohm) 

Rdip 
(Ohm) 

Cdip 
(F) 

Cind 
(F) 

Rel 
(Ohm) 

n 

+ 10% 8.42 0.58 1.34 6.14 0.25 2.21 Z’ 
- 10% 7.10 0.01 1.03 5.36 2.86 2.61 
+ 10% 8.00 0.57 1.35 4.95 0.25 1.12 Z’’ - 10% 7.56 0.01 1.02 4.96 2.86 2.52 

 
A noise signal with a Gaussian distribution was added to the simulated values in order to 
assess the robustness of the estimation algorithm. The error values were taken by sampling 
the normal distribution with mean 1 and standard deviation 0.033. These values were then 
multiplied with the simulated values. The final simulated spectra contained a 10% maximum 
error. 
 
Genetic algorithm 
The flow chart of the binary genetic algorithm used for the minimisation is illustrated in 
Figure 3. The main parameters of the algorithm are the number N of solution vectors per 



generation (individuals), the maximum number of generations Gmax, the exchange probability 
pe and the mutation probability pm.  The solution vectors are sorted and a predefined number 
(Ne) of the fittest individuals is passed to the next generation (elitism). Then, the solution 
vectors are encoded in binary format (each parameter in the vector becomes a sequence of 100 
genes) and the crossover and mutation operations are applied.   
The crossover operation is performed by selecting two encoded individuals and exchanging 
their bits. The selection of the individuals is proportional to their fitness (fitter individuals are 
more likely to be selected). The bits to be exchanged are selected with probability pe. If this 
probability is met the bits of the two individuals are exchanged (0 ↔ 1). The crossover 
operation produces two new offspring per iteration. Therefore, the number of iterations for the 
formation of a new generation of solutions will be: 

  (7) 

In the coding of the algorithm, iteration i produced the offspring i and i+1. For this reason the 
number of individuals N (and Ne) is an odd number. 
 
 



 
Figure 3: Genetic algorithm flowchart 

 
The mutation operation is performed by selecting a bit of an individual with probability pm 
and changing that bit from zero to one or vice versa. The probability pm changes for each 
successive generation according to the dispersion of the solution vectors (adaptive mutation): 

  (8) 

where c is a parameter that determines the range of values of pm (choice of high c leads to 
lower values of pm). For this application c = 6. If the resulting pm was below 0.001, which 
means that the fitness deviation is very low (candidate solution values are very close), the 
mutation probability was reset to 0.025 to ensure further exploration of the solution search 
space. 
The crossover operation explores the candidate solution vector space and builds new, fitter, 
solutions. The mutation operation ensures that the whole solution space is explored.  



The fitness function F used can be expressed as follows: 

  (9) 

where Si is the selected objective function. A list of all the objective functions used in this 
investigation is given in Table III.  
 

Table III: Objective functions tested without any regularization term 

S1 
Weighted least 

squares 
 

S2 
Weighted 
absolute 

differences  

S3 
Logarithmic 

scaling – least 
squares 

S4 

Logarithmic 
scaling – 
absolute 

differences 
 

 
The fitness function varies from zero (Si → ∞) to 100 (Si → 0). The algorithm terminates 
when an individual with fitness higher than a predefined value (Fcritical) is found or when Gmax 
is reached. 
Test runs of the genetic algorithm were performed using the spectra of Figure 2 . The search 
space for each parameter is given in Table IV. Parameters with greater sensitivity were given 
a smaller space to explore. 
Weighted least squares were used as the objective function in these test runs. The fitness 
value of the final solution was used for comparing the different scenarios. For a number of 
generations Gmax, the best obtained fitness was divided by a final fitness value which was 
attained after 200 generations. For each scenario the algorithm ran 10 times. The average 
values of the results of each of the runs are reported in Table V. 
 

Table IV: Search space of the fitting parameters 
 Rion 

(Ohm) 
Rdip 

(Ohm) 
Cdip 
(F) 

Cind 
(F) 

Rel 
(Ohm) 

n 

Upper limit 1.25×106 4.95×104 1.90×10-12 1.25×10-12 1.95×106 0.625 
Low limit 7.50×105 5.00×102 1.00×10-13 7.50×10-13 5.00×104 0.375 
Space size 5.00×105 4.90×104 1.80×10-12 5.00×10-13 1.90×106 0.250 

 
Table V: Fitting results for the tuning of the genetic algorithm parameters 

Exchange probability value 
(pe) 

Maximum Fitness value Standard Deviation 



0.4 95.41 4.242 
0.5 95.12 4.052 
0.6 94.25 3.351 

Number of generations 
(Gmax) 

Fitness value divided by the 
maximum fitness 

Standard deviation 

60 0.996 2.45×10-3 
80 0.998 1.22×10-3 
100 1.000 0.51×10-3 
120 1.000 0.05×10-3 
140 1.000 0.02×10-3 

Number of individuals     
(N) 

Maximum Fitness value Standard deviation 

81 95.32 4.700 
101 94.50 4.785 
121 94.48 4.126 

 
It can be observed that pe values in the range of 0.4 – 0.6 do not affect the algorithm 
performance. The maximum fitness value is obtained when the number of generations Gmax is 
close to 100. Higher Gmax values make the algorithm slower, without improving its 
performance. The population number N does not affect the algorithm performance when its 
value is higher than 81. The final algorithm parameter values are given in Table VI.  
Each of the fittings reported in the Results section below was repeated 50 times except for the 
fitting of experimental data. The average fitness values from the 50 runs are presented. The 
errors of the estimated values are calculated assuming Gaussian distribution and 95% level of 
confidence. 
 

Table VI: Final values for the genetic algorithm implementation 
Maximum 
number of 
generations 

(Gmax) 

Number of 
solution vectors 

(individuals) 
(N) 

Elitism          
(Ne) 

 

Exchange  
Probability      

(pe) 

Initial 
Mutation 

Probability      
(pm) 

100 101 9 0.5 0.025 
 
 
 
4. RESULTS 

Determination of the optimum objective function 
The results from the runs for the different objective functions (listed in Table III) are given in 
Table VII and are to be compared with the true values, shown in Table I. 
 
Table VII: Results from test runs on noisy data for the determination of the objective function 

 Rion 
(Ohm) 

Rdip 
(Ohm) 

Cdip       
(F) 

Cind       
(F) 

Rel   
(Ohm) 

n 

S1 1000391 23793 1.35x10-12 1.02x10-11 1010811 0.503 
S2 1003824 14534 1.68x10-12 1.02x10-11 1015095 0.505 
S3 1004254 16695 1.59x10-12 1.03x10-11 1017422 0.506 
S4 1005266 15424 1.67x10-12 1.02x10-11 1019466 0.507 



% Percentage difference compared to the true values 
S1 0.04 137.93 32.55 2.28 1.08 0.69 
S2 0.38 45.34 15.94 2.23 1.51 0.90 
S3 0.43 66.95 20.69 2.78 1.74 1.13 
S4 0.53 54.24 16.00 2.10 1.95 1.41 

Standard deviation (normalised by the corresponding means) 
S1 1.25x10-3 1.67x10-1 6.80x10-2 8.02x10-3 9.11x10-3 7.95x10-3 
S2 1.03x10-3 1.10x10-1 5.83x10-2 8.17x10-3 5.93x10-3 5.94x10-3 
S3 1.82x10-3 1.24x10-1 6.48x10-2 7.39x10-3 9.22x10-3 5.93x10-3 
S4 1.28x10-3 1.38x10-1 5.78x10-2 7.96x10-3 9.21x10-3 5.92x10-3 

 
Table VII indicates the estimation accuracy for each of the circuit parameters. Values of Rion, 
Cind, Rel and n exhibit errors below 3%, for all the objective functions tested, whilst Rdip and 
Cdip exhibit significant errors. From the percentage errors it is apparent  that the weighted least 
squares objective function (S1) results in the most accurate Rion, Cind, Rel and n values, 
however, the estimates of Rdip and Cdip are poor. 
The rest of the objective functions give similar results. The accuracy of the Rion, Cind, Rel and n 
values estimations is close to the results obtained using S1. The estimations of Rdip and Cdip are 
much better than those obtained with S1, especially in the case of the absolute differences 
objective functions (S2 and S4). The logarithmic scaling objective functions give similar 
estimations compared to the objective functions using weight factors. 
 
Effect of the regularization parameter on spectra containing outliers 
Spectra containing 10% Gaussian error and four outlier points were fitted using the S4 
objective function with a regularization term as follows: 

  (10) 
The fitted spectrum is illustrated in Figure 4. 
Three outliers were placed in the frequency area close to 60 Hz. This frequency region is 
more vulnerable to noise coming from external electric devices. The last outlier was placed at 
1 Hz. The expected values parexp are given in Table I. 
The dependence of the estimated circuit parameters on the regularization parameter value λ   
is shown in Figure 5. The initial value (λ=0) means that the fitting is performed without the 
regularization term. 
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Figure 4: Impedance spectrum with 4 outliers (indicated by crosses at log[f(Hz)] = 0, 1.5, 

1.75 and 2) and 10% random Gaussian noise 

 
It is observed that the charge carriers resistance Rion estimation does not depend on the 
regularization parameter. The estimated value has a 2% error compared to the true value. The 
dipolar resistance Rdip estimation shows some dependence on the regularization term. Without 
the regularization term – or with λ < 0.2 – there is a 20% error on the estimation. As the 
regularization parameter increases the estimation error is reduced. This improvement of the 
estimation becomes less significant for λ > 1. Similar behaviour is observed in the estimation 
of Cdip. The initial estimation error of approximately 8% is reduced to less than 2% when λ ≥ 
1. The induced capacitance Cind estimation is very good –less than 3% error- with or without 
the regularization term. A further improvement, however, is observed for λ close to unity. The 
electrode polarization parameters have a more significant dependence on λ. Rel has an error of 
about 8% without regularization, which is reduced to less than 1% when λ = 1 and stays low 
for higher λ values. The estimation error in the exponent n is over 15% without regularization, 
which is reduced to approximately 5% when λ > 1. 
 
Experimental cure monitoring data and modelling 
Experimental results 
Having established the principle of use of the genetic algorithm in modelling of artificial 
spectra, the approach was implemented and tested on a set of real cure monitoring data. The 
material used for the acquisition of the experimental data set was RTM6, an aerospace grade 
epoxy resin supplied by Hexcel® Composites UK. The resin was cured isothermally at 150°C. 
A Solartron Analytical® 1260 Gain – Phase Analyzer was used to obtain the impedance data 
over the frequency range from 1Hz to 1MHz. A total of 25 frequencies were measured. The 
duration of each frequency sweep was ~2min. Temperature control to within 0.1°C was 
achieved through a 2408 Eurotherm® temperature controller. The dielectric sensor used has a 
typical comb-electrode geometry and is commercially available from Pearson Panke Ltd (GIA 
sensor) – see Figure 6. 
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Figure 5: Dependence of circuit parameters on the regularization parameter. The fitted spectrum is 

shown in Figure 4. The correct values are denoted by the grey line. 
 

 
Figure 6: Geometry of GIA dielectric sensor 

 
Impedance spectra from the cure of RTM6 are shown in Figures 7 and 8. The signal is 
dominated by charge carriers [10]. In both figures, the shift of both the real and imaginary 
impedance towards higher values and lower frequencies as the cure progresses is observed. 
The experimental points below Z’ equal to 1kOhms, on the high frequency side of the real 
impedance spectrum, are considered to be of limited validity (possible outliers). 



2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

log [f (Hz)]

lo
g 

[Z
' (

O
h

m
)]

t = 2 min
t = 20 min
t = 40 min
t = 60 min
t = 80 min
t = 100 min

 
Figure 7: Real impedance spectrum evolution for the isothermal cure of RTM6 at 150°C 
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Figure 8: Imaginary impedance spectrum evolution for the isothermal cure of RTM6 at 150°C 

 
Initially the material is in the liquid phase and no reaction has taken place. This means that the 
impedance values are relatively low. As the polymerisation reaction proceeds, the average 
molecular weight of the polymer chains increases and a three – dimensional network starts to 
form. This network formation impedes the movements of charge carriers and results in higher 
impedance values. Towards the end of the cure, the resin vitrifies. Charge carriers movements 
are strongly hindered in the final glassy state of the polymer. Impedance spectra settle at very 



high final values and any further increase with time is negligible. Electrode polarisation is 
dominant at low frequencies in the imaginary impedance spectrum. As the cure progresses, 
this region moves out of the experimental frequency range. 
 
Application of genetic algorithm 
The first two spectra, corresponding to 2 min and 4 min (not shown in Figures 7 and 8) 
respectively, were fitted without the regularization term. The fitted parameters were then used 
for the calculation of the parexp estimates, for the fitting of the next spectrum. Linear 
extrapolation was used as follows: 

 (11) 

where the exponents ti, i = 1,2,3 denote the average time where the impedance spectrum data 
were recorded. For every frequency sweep, ti is given by: 

  (12) 

The effect of the regularization term is that it penalises irrational jumps in the circuit 
parameter values. The physical meaning of such a constraint is that the equivalent circuit 
elements are expected to evolve gradually during the cure. For the estimation of the 
consecutive spectra the objective function of equation (9) was used. The search space was 
adjusted for each spectrum according to the parameter values obtained on the preceding 
spectrum. These parameter values were set as the mean of the corresponding search range for 
the new spectrum. Table VIII shows the ranges for all the circuit parameters. If any of the 
newly estimated parameters were within 1% of the limits of the search space, the search space 
of all the parameters was expanded by 10% and the genetic algorithm was rerun. A schematic 
of the whole modelling methodology is shown in Figure 9. 
 
Table VIII: Adaptive search space of the fitting parameters. Subscript p denotes the parameter values 

obtained from fitting the chronologically preceding spectrum. 
 Rion, new 

(Ohm) 
Rdip, new 
(Ohm) 

Cdip, new 
(F) 

Cind, new 
(F) 

Rel, new 
(Ohm) 

nnew 

Mean 1.00×Rion,p 5.05×Rdip,p 5.05×Cdip,p 1.00×Cind,p 1.25×Rel,p 1.00×np 

Range 0.99×Rion,p 4.95×Rdip,p 4.95×Cdip,p 0.25×Cind,p 0.75×Rel,p 0.25×np 

 
Two runs were performed: one without the regularization term and one with the regularization 
term with λ = 1. The fitting results with and without regularization are illustrated in Figure 10. 
The charge migration resistance estimation, which is the parameter with respect to which the 
impedance data have the greatest sensitivity, is not affected by the regularization. Rion values 
change several orders of magnitude during the cure. Similarly to Rion, Cind values are not 
affected by regularization. The dipolar resistance Rdip is very noisy when the fitting is 
performed without regularization. The introduction of regularization reduces the noise 
significantly. The same is observed for Cdip. The electrode polarization parameters are more 
influenced by the existence of the regularization term. Fitting without regularization leads to 
very large values of Rel. The exponent n values have a percentage difference that exceeds 40% 
in the later stages of the cure. 
 
 



 
Figure 9: Methodology for modelling consecutive spectra 

 
 
6. DISCUSSION 

Choice of suitable objective function 
The simulation results have shown that there are minor differences between an objective 
function based on least squares and one based on absolute differences. The use of least 
squares tends to give slightly better estimations of the more sensitive parameters such as Rion. 
In contrast, when a least squares objective function is used, the estimation of the least 
sensitive parameters leads to erroneous results (for example, see Rdip and Cdip estimations in 
Table VII). The use of absolute differences gives better approximations to parameters with 
lower sensitivities such as Rdip but compromises accuracy of the estimation of parameters with 
respect to which the model circuit shows high sensitivity. In the case of cure monitoring 
spectra, the determination of parameters with low sensitivity is important, as they contain 
information about the dipolar movements of the curing system [9, 10]. Dipolar movements 
are directly linked to the vitrification of thermosets [2], a very important milestone in the cure 
process. Therefore the use of absolute differences is considered more beneficial. The use of 
logarithmic scaling instead of weighted residuals did not improve or worsen the simulation. 
Logarithmic scaling has the advantage that no estimation of the experimental data variance is 
needed as input to the objective function, as is the case when weight factors are used. 
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Figure 10: Equivalent circuit parameters for the isothermal cure of RTM6 at 150 °C. Black points 

show the fitting without regularization. Grey points show the fitting when the 
regularization term is added to the objective function. 

 
 
Effect of regularization 
From Figure 5 it is evident that regularization helps in reducing the effect of outliers in the 
estimation. This is more pronounced in the electrode polarization circuit parameters Rel and n. 
The outliers, as shown in Figure 4, are placed in the low frequency side of the spectrum, as 
sources of noise are much more likely to affect this frequency region. Consequently, the 
presence of outliers is expected to affect electrode polarisation more severely, as the electrode 
polarisation term dominates the response of the curing system at low frequencies (see 
equations (2)-(3)) [3, 16]. 
The presence of outliers is always a danger in cure monitoring signals, especially at 
frequencies close to 60 Hz. Minimisation of the detrimental effects of outliers on curve fitting 
is extremely helpful in cases where the identification and elimination of outliers is not 
feasible. One of the aims in analysing cure monitoring spectra is to automatically model 
consecutive spectra and to use the circuit parameter values for characterising the cure. The 
enhanced robustness that the regularization offers is a step further towards this aim. 



Fitting of consecutive cure monitoring spectra 
The fitting of consecutive experimental spectra showed the potential of regularization in 
dealing with real cure experiment data. The spectrum moves continuously and slowly during 
the cure. It is therefore expected that the circuit parameter values will change accordingly. 
This is crucial for the regularization to work, as the expected parameter values are obtained 
from the fitting of the chronologically preceding spectra. In the experiment studied, the curing 
process takes over 100 minutes to complete (in industrial processes it can be several hours), 
whilst the data acquisition process for the whole spectrum takes about 2 min. This implies that 
the value changes between two consecutive impedance spectra are in the order of 2% of the 
total difference between the start and the end of the experiment. 
In the estimation of Rion and Cind the use of regularization does not influence the quality of the 
estimated values. The trend is the same with the estimates obtained without regularization. 
This is a result of the very high sensitivity of the spectra to Rion and Cind. Small changes in 
those parameters can lead to large estimation errors. It is therefore expected that their values 
are estimated accurately with or without regularization. In the estimation of Rdip and Cdip 
smoother data are obtained with regularization. The trend in Rdip is more clearly seen and a 
step increase in Cdip can be resolved. The Rdip and Cdip values are less influential in the overall 
signal. The use of regularization forces the genetic algorithm to explore values close to the 
mean (see Table VIII) without losing the ability of exploiting the whole solution search space. 
The dipolar movements in thermosetting systems are connected with the cure induced 
vitrification [35, 36] and the product of Rdip and Cdip gives a measure of the dipolar relaxation 
time τdip [9]. In commercial systems the presence of charge carriers obscures the effect of the 
dipoles on the signal. The proposed parameter estimation technique is able to uncover and 
model adequately the dipolar movements in such systems and thus offers an efficient way for 
identifying vitrification in situ. 
The big discrepancy in the electrode polarization circuit elements estimation can be attributed 
to the movement of the spectrum during the cure. The spectrum initially contains a frequency 
region where electrode polarization dominates the signal. This region lies at low frequencies 
and can be identified easily in the imaginary impedance spectrum. As the spectrum moves to 
the left, this region moves out of the frequency range of the experiment (e.g. in Figure 8, the 
minimum point cannot be seen for t > 60 min). This means that the sensitivity with respect to 
Rel and n is reduced and erroneous values are obtained from the parameter estimation. 
Regularization forces the estimated values not to vary much from the values obtained in the 
previous fit. This prevents parameters with low sensitivity from settling to abnormal values 
and thus affecting the estimation of other parameters.  
 
 
7. CONCLUSIONS 

Genetic algorithms were used in order to estimate the values of the parameters of an 
equivalent circuit expressing the dielectric behaviour of thermosetting polymers during cure. 
The parameters change by several orders of magnitude in value during the reaction, whilst the 
existence of noise and outliers makes the inversion a challenging problem. 
Several objective functions based on least squares and absolute differences for the 
minimisation problem were tested. Absolute differences were found to be more accurate in 
modelling cure monitoring spectra, due to their higher accuracy in estimating parameters of 
low sensitivity. Logarithmic scaling of the experimental data worked equally well with 
weighting. 
The robustness of absolute differences was enhanced with the incorporation of a 
regularization term in the objective function. Regularization lends itself to the inversion 



problem at hand, as the parameter values of consecutive spectra are expected to have close 
values. As a result regularization using the previous solution reduces the effect of outliers and 
noise in the modelling of experimental spectra. This enables efficient use to be made of the 
estimation algorithm in real time analysis of cure monitoring spectra.  
The technique presented here can discern the contribution of permanent dipoles in the 
impedance spectrum of commercial thermosetting systems where charge carriers usually 
dominate the signal. This constitutes a significant improvement in dielectric cure monitoring 
analysis as it overcomes the difficulties faced when knowledge built from the study of dipolar 
relaxation phenomena in model resin formulations is transferred to the monitoring of 
commercial thermosets.  
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NOMENCLATURE 

The symbols are given in alphabetical order 

Symbol Description 

c Adjustable parameter for adaptive mutation 

Cdip Dipolar Capacitance 

Cind Induced Capacitance 

f frequency 

F Fitness function 

Fcritical Fitness value above which the genetic algorithm terminates 

G Number of generations 

Gmax Number of maximum generation 

n Constant Phase Element exponent 

N Number of solution vectors 

Ne Number of solution vectors passing directly to the next generation 

Nr Number of solution vectors passing through crossover and mutation 

par Parameter values 

parexp Expected parameter values 



pe Exchange probability 

pm Mutation probability 

Pno Number of parameters 

q Number of frequencies in a sweep 

Rdip Dipolar resistance 

Rel Constant Phase Element parameter 

Rion Ionic resistance 

S Objective function 

t Time 

w Weight factor 

Z Complex impedance 

Z΄ Real impedance 

Z΄΄ Imaginary impedance 

λ Tikhonov regularization parameter 

ω Angular frequency 

τdip Dipolar relaxation time 

ZCPE Complex impedance of the Constant Phase Element (CPE) 
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