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ABSTRACT 

In this paper the first steps towards a scaling up of a ceramic process are described, using as 

case study a lab-scale process, in which PZT ceramics are produced via an aqueous tape 

casting route. The process, the result of a feasibility study, was firstly analysed by drawing 

flowcharts; potential problems and flow bottlenecks were then identified and their solutions 

were pursued using a ‘soft’ problem solving approach. 

 

1. INTRODUCTION 
 
The research presented here is the analysis of the initial stages of scaling up of a laboratory 

scale process. Whilst the general process was specifically developed for thick film PZT 

production, the sub-processes within it are commonly used in ceramic manufacture. 

Therefore, many of the process scale up issues and methodologies discussed here are of 

general applicability in ceramic manufacture. 

Process design of a manufacturing system 

The design of a manufacturing system is of particular importance as corrections after process 

implementation are extremely expensive and not always successful. 

The focus on product design and development begins after the “Product Idea” has been 

screened and accepted. Fig 1 shows schematically how such a new product introduction 

could be mapped1.  
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After the “Product Idea” has been generated and its feasibility has been demonstrated, an 

implementation project starts. Its output is a prototype ready for further scale up.  

The feasibility study produces a process that demonstrates its potentiality but which is not 

refined and adjusted in order to allow easy scale up. By the subsequent phases of 

“Conceptual Design” and “Definitive Design” the most compact, efficient and economical 

process outline is created in order to permit higher product yield. The general rule is that 

manufacturing systems should be kept as simple as possible. 

In the “Conceptual Design” phase existing technological options to develop a product are 

evaluated and applied, together with an evaluation of issues regarding suitable manufacturing 

facilities. Thus the original process layout, derived from the feasibility study stage, is 

changed to originate a “slimmer” sequence of operations reducing risks, eliminating 

bottlenecks and facilitating the following work. 

The “Definitive Design” stage then refines the parameters, tests the process on a larger scale 

and solves the remaining problems, giving birth to the final process prototype. 

Methodologies for developing Conceptual Design 

In the “Conceptual Design” stage the problems arising from a detailed study of the 

Feasibility stage are faced. 

The classical approach is the so called “reductionist”2 method where each problem is divided 

into a more complex structure of sub problems and the solution of each one is pursued. 

Another way, that has demonstrated its value and advantages, is the “Concurrent 

Engineering”2 or “Simultaneous Engineering” methodology. It assesses the process in a 

holistic manner, giving a broader view and developing solutions for different problems at the 

same time. This approach has been shown2 to enhance the identification and reduction of the 

risks and hence to be more robust and also more economical in a long term. 
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Several “Problem Solving” methodologies3,4 can be adopted to facilitate Conceptual design: 

hard problem solving methodology can be used for structured problems where a quantitative 

aspect can be highlighted. The soft5,6  problem solving approach (Soft System Methodology, 

SSM) is used when ill-structured difficulties need to be considered. 

Both approaches consist of a series of stages to guide the analyst to face a wide variety of 

complications; they lead to the answers in an iterative manner. Soft and hard systems are to 

be considered complementary rather than substitutive. 

In this paper a first approach to the problems arising from a detailed study of the process to 

be scaled up is made. The problem solving approach chosen is the SSM technique. 

2. METHOD 

Navarro et al.7 developed an aqueous laboratory scale process for PZT ceramic, using the 

tape casting technique as the forming method. That work was taken as the feasibility study 

underlying the work reported here. The experimental conditions to develop the process are 

described elsewhere7. 

The first stage of the process analysis was the collection of data from the lab-scale process. 

This was achieved by reproducing the process. The list of functional, material and visual 

requirements for the product (the ‘specifications’) is the key for assessing the process in 

terms of quality of goods produced.  

In the second stage the detailed structure of operations to be carried out was analysed. Flow 

charts of the process were therefore drawn in order to achieve a clear and wide image of the 

process. By dividing the system into sub-systems, it was broken up into more controllable 

units. For each subsystem inputs and outputs were identified.  

Soft problem solving methodology was used: once identified, the problems were analysed 

considering their impact on the entire process. The causes were investigated, with a 

restriction on their number such that they would be amenable to a detailed study.  
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Lastly a series of potential solutions to the problems were evaluated; data were collected 

from literature examples, patents, existing processes, academic papers and related theories, 

comparing them with the problem needs. These were then compared with the problem 

requirements. 

3. RESULTS  

Fig.2 and Fig.2b show the material flow charts of the process. On this chart are indicated in 

detail the required operations, material transfers and process conditions. This chart gives an 

image of what happens to the product during manufacture. Standard symbols, which are 

published by ASME (American Society of Mechanical Engineers), were used throughout. 

The phases are described and analysed in Table 1. As shown three main phases are present in 

the process, giving a total time of 103 hours. The final result of this work is a single ceramic 

wafer plus a green cast tape.  

4. DISCUSSION 

In general the total process time is high, especially considering the small yield: the majority 

of the material is wasted during the process. If all the quantity of the material was taken to 

the final sintering stage the yield would be the 40% of the initial input (32 g of sintered 

samples versus 80 g of powder initially processed). 

Two main “wastes”6 underlie this problem: waste during transfers of material (Waste of 

Transporting) and inadequate final transforming step (phase 3) (Waste of Inappropriate 

Processing). The latter is, of course, an artefact of a research lab scale process much more so 

than is the former. 

Considering the flow charts in more detail it can be noted that:  

During slip preparation: the two de-airing methods that are used are difficult to scale up and 

two material transfers are used which inevitably cause material waste. 
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In the tape casting step, the length of the tape casting bench is a possible limiting factor for 

the implementation of the production and the drying time for the green tape is high, keeping 

the tape casting bench engaged. 

In the burn out of organics and sintering stage, these have been set as separate steps 

(operations 17 &18 Fig 2b). It is possible to sinter only a single ceramic piece at a time.  

All these problems afflict the process and have to be solved to provide a new, more efficient 

and simpler layout. 

Improvement of process following the SSM approach  

The SSM approach starts with the most important process bottlenecks. In this process these 

are identified as lying in Phase 3 (see Fig 2b). Two examples of the problem solving 

approach are given here.  

a)Unlinked furnace steps:  

As it can be seen in Fig 2b operations 17 & 18 are unlinked, thus time is wasted in cooling 

down the furnace, followed by reheating. Moreover, there is the risk of damage to the 

ceramic piece, which is extremely fragile after the burn out of binder and plasticizer. 

In the feasibility study this was required because of: the necessity of burning out organics in 

presence of excess of oxygen and subsequently the requirement of creating a controlled 

atmosphere, rich in PbO, during sintering to prevent lead losses at high temperature. In the 

feasibility study the latter was maintained by covering the sample with an alumina crucible. 

Two solutions for the problem were considered. Firstly, to put the cover from the beginning 

on the sample and set an appropriate (slow) temperature profile; secondly, to create a 

mechanism for lowering from outside the furnace the covering crucible when the organics 

were burnt out completely. 

 These solutions were compared and the first judged the more feasible as it involved a 

smaller number of process variables. Therefore, a series of laboratory tests were performed to 
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check its feasibility. As a result, ceramic pieces with mechanical and electrical characteristics 

similar to those obtained from unlinked operations 17 &18 were obtained. Table 2 shows the 

comparison of electrical characteristics of the samples attained using the feasibility study 

process and the new process. 

An unsatisfactory burn out of the organics could lead to the formation of undesirable fumes 

and residues that might affect the sintering stage, creating defects. To check the limiting 

amount of tape to be burnt out at a time, several samples were sintered together. It was 

shown that it was possible to sinter up to 7 samples at a time without causing notable 

sintering defects. 

By setting the new profile, operations 17 and 18 in Fig.4 were condensed. This reduced 

Phase 3 time from 48 to 28 hours (a reduction of about 42 % of Phase 3 time and 

approximately 20% of the total process time). 

b) Sintering of multiple samples: 

As shown in Fig 2b, only one piece of ceramic at a time was sintered, leading to a very small 

process throughput. The target would be to sinter a quantity of green tape as close as possible 

to the amount of the tape cast. 

In the feasibility study this methodology was used as firstly PZT tapes adhere to each other if 

put in contact during sintering, and secondly, the dimension and the shape of the alumina 

support allowed only one sample to be sintered at a time. 

From a literature review a possible solution was noted in the work of  Feng et al9 . They were 

able to sinter several samples at a time, separated by a tape cast buffer sheet manufactured 

from coarse (approximately 18 µm) zirconia powder and a polymer. A second solution would 

be to set up a belt furnace system that could sinter samples in continuous mode. The latter 

solution  is expensive and would involve the creation of new problems such as the 

maintenance of lead oxide controlled atmosphere.  
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The feasibility of the former solution  was demonstrated by the production of sintered stacks 

of 5 samples which were successively easily detached.    Moreover by stacking the wafers on 

a series of shelves it was possible to increase the number of wafers that were produced. 

In summary, by combining the solutions to the multiple sintering and unlinked furnace steps 

issues it was shown that it was possible to reduce the Phase 3 step time by a total of 20% and 

increase the throughput by producing 5 samples at a time. The newly obtained process layout 

for Phase 3 is shown in Fig.3. 

5. CONCLUSIONS 

By analysing in details the processes obtained from a feasibility study of an aqueous ceramic 

system, it has been possible to identify problems and bottlenecks. By solving the problems 

with a holistic approach typical of the Concurrent Engineering methodology, using the Soft 

Problem Solving technique, the process has been reorganised, obtaining a simpler, better 

controlled and more functional process. 
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Table: 

Table 1: Analysis of Inputs, outputs and wastes of feasibility study process 
Table 1 TIME 

(hours) 
TIME 

 (% on total 
process 
time) 

INPUT 
(grams) 

OUTPUT 
(grams) 

WASTE 
(grams) 

WASTE 
(% on input

quantity) 

Phase 1 

Slip prep. 

29 28 80 64 16 20 

Phase 2 

Tape 

Casting 

26 25 64 50 14 28 

Phase 3 

Burnout & 

Sintering 

49 47 6 4 2 33 

 

 

 

Table 2: comparison of electrical properties of pyroelectric ceramic obtained by  

different sintering profiles 

 

Table 2 Operations 17 & 18 

SEPARATE 

Operations 17 & 18 

LINKED 

Pyroelettric Coeff. 
(Cm-2K-1) 

0.000274 0.000272 

Fv 
(m2C-1) 

0.0492 0.0459 

Fd 
(Pa-1/2) 

2.54 × 10-5 2.34 × 10-5 
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Fig.1: Stages in the new product introduction process
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Fig 2 : Flow charts of process phases 1 & 2 
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3. BURNOUT & SINTERING 
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Fig 2b : Flow charts of process phase 3 
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Fig 3: Flow charts of process phase 3 after problem solving 


