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Abstract

An imaging fibre bundle is incorporated into a full-field imaging OCT system, with the aim of eliminating
the mechanical scanning currently required at the probe tip in endoscopic systems. Each fibre within the
imaging bundle addresses a Fizeau interferometer formed between the bundle end and the sample, a
configuration which ensures down lead insensitivity of the probe fibres, preventing variations in sensitivity
due to polarization changes in the many thousand constituent fibres. The technique allows acquisition of
information across a planar region with single-shot measurement, in the form of a 2D image detected using a
digita CCD camera. Depth scanning components are now confined within a processing interferometer
external to the completely passive endoscope probe.

The technique has been evaluated in our laboratory for test samples, and images acquired using the bundle-
based system are presented. Data are displayed either as en-face scans, paralel to the sample surface, or as
dlices through the depth of the sample, with a spatial resolution of about 30 um. The minimum detectable
reflectivity at present is estimated to be about 103, which is satisfactory for many inorganic samples,
Methods of improving the signal-to-noise ratio for imaging of lower reflectivity samples are discussed.
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1. Introduction

Optical coherence tomography (OCT) is a medica imaging technique employing low-coherence
interferometry to image the morphology of biological tissue or non-biological semi-transparent composite
materids. Illumination wavelengths in the visible and near infra red regions of the spectrum, are strongly
scattered by tissue, limiting the maximum imaging depth to about 1 mm'. However, the depth resolution,
ranging from about 1 um in ultra-high resolution systems to around 30 pum, is superior to that achieved by
other tomographic methods such as ultrasound, enabling cell-level detail to be observed in the highest
resolution systems”. OCT is therefore of interest for both in-vitro and in-vivo investigations of epithelial
tissues® “. Its ability to perform ‘optical biopsy’ gives it the potentia to replace, or at least to reduce the
necessity for, invasive screening by excision of tissue samples’.

Laboratory testing can be conveniently performed using bulk-optic OCT instrumentation, but the acquisition
of in-vivo images, typically from within the gastro-intestinal tract, requires the use of a flexible, endoscopic
probe. Thisis realized by incorporating optical fibre components. In early systems, the typical configuration
comprised a Michelson interferometer formed from a directional coupler®. Until recently, time-domain
implementations have predominated. In time-domain OCT, broadband illumination is used, and the path-
length of the reference arm is scanned to locate occurrences of the coherence function at a series of sample
depths. Optical circulators and balanced detection are now generally used to optimize performance in these
systems. The time-domain technique is, however, gradually being superseded by Fourier-domain OCT,
which offers superior signal-to-noise performance. In Fourier-domain OCT, the full sample depth is



addressed simultaneoudly, the signal beam being dispersed into a sequence of spectral components which
carry the structural information.

The magjority of bulk and fibre-based OCT systems currently under investigation are based around a
Michelson interferometer configuration. This alows an instrument to be constructed using relatively few
components and provides good signal-to-noise performance’. However, optical fibre versions of the
Michelson configuration are susceptible to signal fading caused by bending-induced differences between the
states of polarization (SOP) of light in the reference and signal arms®. This is evidently more likely to be a
problem during in-vivo measurements. Phase drifting of the fringes, caused by temperature fluctuations, is
aso likely under these conditions. Previous work in our laboratory has demonstrated that, for fibre-based
OCT systems, the Michelson interferometer configuration may not always be the optimum choice. An
alternative Fizeau interferometer configuration offers the advantage of down-lead insensitivity®*°. Discussion
of our current Fizeau OCT system has been previously reported™.

The usual procedure in OCT is to scan the position of the focused probe beam rapidly across the sample
surface (x-y scanning) to build up a 3D map of tissue structure™. In this paper, we discuss the use of a
coherent fibre bundle, sometimes known as an imaging bundle, to acquire 3-dimensional volume information
without the need for x-y scanning® **. The fibres within a coherent bundle are arranged in a regular array
throughout the entire length of up to several metres™. An image projected onto one polished end of the
bundle is thus transmitted undistorted to the opposite end. In the bundle-based OCT system, reciprocal
imaging occurs between the distal end of each fibre in the bundle and the sample, enabling OCT information
to be transmitted simultaneously from many positions across the area of the sample illuminated by light from
the bundle. Detection of the optical signal over the area addressed by the bundle is performed by a digitd
cameraarray, allowing a 3D image to be constructed from a single depth scan.

2. Time-domain OCT

Our full-field experimental systems to date have used time-domain processing. Broadband illumination was
supplied by super-luminescent diode (SLD) sources at 830 nm. Optimum wavel engths for tissue are those in
the range 1000-1550 nm, where absorption of light by the tissue is at its lowest™®. However, for full-field
measurements, silicon technology cameras are much more readily available, with sensitivity in the visible
and very near IR, hence the choice of 830 nm wavelength during development of the new technique.

The structure that appears in an OCT signal results from refractive index discontinuities at boundaries
between tissue structures. In a time-domain system, illumination is provided by a broadband non-laser
device. The output spectrum should be as broad as possible, since depth resolution is determined by the
coherence length, which isinversely related to source spectral width. For atypical super-luminescent source,
the spectral width is about 20-100 nm, resulting in a coherence length (and depth resolution) of 10-20 um. A
typical single-spot scanned OCT system consists of a Michelson interferometer in which the reference and
sample arms are of closely similar length, as shown in figure 1.
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Figure 1. Michelson-configuration OCT system, based on a directiona coupler. BBS = broad band source.



The reference arm includes a variable optical delay line, enabling the reference beam path to be swept
linearly over a range of several millimetres. For a tissue boundary at a particular depth within the sample,
interference fringes will be seen only when the reference beam path is set to match that of the signal beam, to
within the 10-20 um coherence length of the source. When this condition is satisfied, interference fringes are
detected, modulated by the source spectra envelope. Thus the positions of the various tissue boundaries can
be located and mapped with high resolution as the reference path is scanned.

Spatial resolution in the plane normal to the optical axis is determined by the spot size of the focused beam
within the sample, and is typically similar to the depth resolution. It is determined by the quality of the probe
head focusing optics.

The refractive indices of biological materials within a sample of plant or animal tissue are typically rather
similar, often differing in only the second or third decima place and resulting in low reflectivity values.
Balanced detection is therefore widely used to improve SNR performance.

3. Fizeau-configuration OCT using a coherent optical fibre bundle

For single-spot OCT instruments, 3D information is obtained by rapid scanning of the probe beam, both
through the sample depth and in a pattern across the sample surface™. This is areliable technique, relatively
straightforward to implement in bulk-optic systems, and typically allows a 3D image of a volume up to afew
cubic millimetres to be obtained in a few seconds. However, when using this type of system endoscopically,
for interna in-vivo measurements, active scanning is required at the endoscope tip. Although this has been
successfully demonstrated using miniaturised components'’, it requires rather sophisticated engineering,
especialy for 3-D measurement. A passive probe, that eliminated the need for scanning, would therefore be
advantageous for endoscopic use.

A coherent fibre bundle, by alowing simultaneous OCT measurement from an array of positions across the
sample, eliminates the requirement for x-y scanning™. The bundle diameter of a few mm is suitable for
endoscopic use and a fibre spacing as little as 6-10 um can be obtained. The potential spatial resolution is
therefore similar to that obtained from an x-y scanned system.
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Figure 2. Configuration for 3D OCT employing a fibre imaging bundle. SLD = super-luminescent diode, A =
optional focusing lens controlling illumination onto bundle face. The average path-length imbalancelL is
identical in both the Fizeau and Michel son interferometers. Inset circle shows where the two reflections
occur in the Fizeau interferometer.



The original configuration, used for our bundle-based OCT system and shown in figure 2, is a full-field
version of an arrangement previously employed in our laboratory for a single-point system based on a
Fizeau-type probe interferometer. The Fizeau cavity is formed between the end face of the bundle and the
sample itself. One related system has been described in the literature, based on a Michelson interferometer.
Although this also uses a fibre imaging bundle, it does not employ simultaneous illumination™.

Path length matching cannot be achieved directly with the Fizeau arrangement, so a scanned, bulk-optic
processing interferometer is employed, having an average path-length mismatch identical to that of the
Fizeau. In the work presented here, the processing interferometer is of the Michelson type, but other
configurations are possible.

The Fizeau arrangement was considered particularly appropriate for a bundle-based system, in that the
bundle itself does not form part of either the sample or the processing interferometer. This gives the
instrument ‘ down-lead insensitivity’ . Environmentally-induced polarisation changes within the bundle do not
affect the visibility of the interference signal. Because the Michelson processing interferometer uses bulk
components, polarisation changes in this section are also avoided. Polarisation-induced fading is a potentid
problem in any non common-path interferometer, although for single-fibre systems, if not too fagt, it can be
compensated using polarisation state controllers. In an imaging bundle the Fizeau configuration is a
particularly attractive option since it is likely that polarisation is affected differently by each fibre, precluding
compensation.

There are, however, disadvantages in using this arrangement, in the form of reduced SNR performance
resulting from the high dc signal component when compared with a Michelson interferometer. The
implications of this problem are discussed further in section 5 below.

4. Experimental details

The experiments described in this paper were performed using the configuration shown in figure 2. The
source was a 7 mwW, 830 nm super-luminescent diode (SLD), with a bandwidth of about 15 nm,
corresponding to a coherence length of about 30 um.

Light from the source was collimated and transmitted through the processing interferometer to the input face
of the imaging bundle, via a beam-splitter cube which allowed 50% of the returning light to be directed onto
the detector. A focusing lens (A), positioned after the interferometer, enabled the beam diameter to be
adjusted to illuminate any required area of the bundle face. Because the interferometer has unequal path
lengths in the two arms, positioning the lens before the interferometer would cause a wavefront curvature
mismatch, resulting in bulls-eye fringes in the recombining beams. Backscattered light from the sample re-
entered the bundle, where it combined with areference reflection derived from the distal end of the bundle.
The OCT interference signal derives from mixing between sample reflections that have taken the shorter path
in the processing interferometer, and a reference reflection that has taken the longer path in the processing
interferometer, respectively.

In the configuration shown, light passes first through the processing interferometer, then through the Fizeau
system. This alows beams to be collimated through the bulk-optic section, avoiding the formation of circular
fringes. Unexpanded beams could be used in this section if required to allow, for example, small aperture
modulation components to be included in the interferometer. In this case, a beam expander might be
necessary following the Michelson interferometer. In principle, an aternative arrangement could be
employed, with the processing interferometer positioned after the Fizeau interferometer. However, the
proximal face of the bundle would then have to be imaged through each of the two interferometer arms on
the camera. Since the arms are of unequal length, additional optics would be required to compensate for the
resulting magnification mismatch. It is likely that difficulties would be encountered in overlaying the two
images on the camera with sufficient precision to observe high quality OCT signals.

4.1 Imaging bundles
Two types of fibre imaging bundle (supplied by Schott Fiber Optics Inc.) were used in this work. Initidly, a
wound bundle, 2 m in length and made up of 300x300 fibres was employed. The bundle is comprised of



many hundred “multifibres” wound on a mandrel. The multifibres are groups of 5 x 5 individua fibres
assembled on a 10 um centre spacing in a square-packed arrangement, as shown in figure 3(a). The ends of
the bundle are fused to produce a rigid section enclosed in a ferrule, while the centre portion remains
flexible. Bundles are purchased as a component of selected length with both ends polished to a high-quality
optical finish.

Subsequently, leached bundles were aso investigated. These are manufactured by acid-leaching away the
secondary cladding material from the central region of a drawn multifibre rod, leaving rigid sections at each
end for mounting the bundle. These bundles have the advantage of an extremely regular, hexagona
arrangement of the component fibres (figure 3(b)), but are generally available in shorter lengths than the
wound bundles. For most OCT applications, this would not be a problem. We found both types of bundle to
be appropriate for OCT imaging, having similar loss coefficients, numerical apertures and inter-fibre
isolation characteristics.

Light was transmitted by the bundle to a probe head comprising a pair of matched |enses positioned in a unit
magnification, 4f imaging arrangement. Spherical lenses were used initially, but aspherics were later
introduced to optimise imaging quality, since minimising aberrations across the entire image is of critica
importance in the bundle-based system.
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Figure 3. Diagrams and photographs of illuminated bundle end faces, showing the fibre packing
arrangements for the Schott imaging bundles used in our laboratory: (a) 5 x 5 square-packed “multifibre” and
photograph showing multifibres in a wound bundle. (b) Hexagonal packing used in the leached bundles.

Inasingle point OCT system, the beam waist diameter determines the spatia resolution of the instrument in
the x-y plane normal to the beam direction. Poor focusing degrades spatial resolution. In the bundle-based
system, this is similarly true. However, in the full-field system there is an additional consequence of poor
focusing. If the beam waist diameter exceeds the fibre spacing, overlap gives rise to inter-fibre cross-talk in
light scattered by the sample. Non-reciprocal imaging can occur, in which backscattered light transmitted to
the sample by one fibre can be collected by a different fibre. Even if beam waists are well separated at best
focus, cross-talk will arise outside the Rayleigh range as the beams diverge.

Since the path length in the Fizeau varies depending on which pair of neighbouring fibres are involved,
spurious sets of interference fringes can arise at the detector. Figure 4(a) shows a plot of intensity variation
for four individua fibres, randomly located within an illuminated region of about 50x50 fibres, as the
processing interferometer is scanned, when probe-head imaging is performed by a pair of simple plano-
convex lenses. Multiple fringe bursts can be seen arising from severe cross-talk. The consequences are the
appearance of ‘ghost’ features, causing blurring of interfaces in the OCT image and degradation of both
depth (z) and x-y resolution. It can be seen that the precise form of the envelope function in this situation
variesfrom fibreto fibre.

Substitution of achromat lenses resulted in a significant improvement, although their ability to minimise
aberrations is known to decrease for off-axis object points. Aspherics performed better till. By choosing an
appropriate aperture diameter for our system, focusing quality with aspherics confined about 90% of the
incident power to asingle fibre, with about 1-2% in each of the neighbouring fibres.
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Figure 4. Intensity modulation of the signal from individual fibresin the imaging bundle as the processing
interferometer is scanned, when using (@) standard plano-convex and (b) aspherical lenses for focusing in the
probe head. The x-axisis on the same scale in each plot.

Typically, no more than one additional pair of interference envelopes was seen to either side of a true
interference signal, and the magnitude of the satellite envelopes was reduced to only a few percent of the
main envelope. Figure 4(b) shows the intensity modulation for three individua fibres within the illuminated
region when aspherics replace the standard lenses in the probe head. The exact position of the envelope
maximum varies by a few micrometres for different fibres. This is not unexpected, as the Fizeau cavity
length will be dependent upon the flatness of the bundle end face and by the precision of its aignment
paralel to the sample surface.

Because the bundle is externa to the interferometers, any slight variation in the interna physical length or
optical path difference for different regions of the bundle is unimportant. The numerical aperture of the fibre
bundle, however, islarge, at 0.63. Under coherent illumination from alaser, the fibres in the imaging bundle
are seen to be capable of supporting multiple spatial modes. In principle, ‘ghost’ images could be seen for
light travelling to and from the measurement region in different modes, but under the coupling conditions
used in our system, single-mode performance was achieved. The fill-factor for the wound bundle used in this
project, in which the basic packing arrangement of fibres was a square grid, was about 30-40%. This is
because data is collected only from the fibre core area, with the regions between fibres appearing dark. Use
of a bundle therefore gives a somewhat pixelated appearance to the images. The spatial resolution, however,
is high, and interpolation or dight smoothing can be used to improve the visual appearance of the OCT
images.

4.2 Detection and processing

The detector was a 12-bit digital camera (LaVision) with a 640 by 480 pixel array and a variable integration
time. The proximal face of the fibre bundle was imaged, via a beam-splitter, onto the image plane of the
camera, typically with a magnification of about 4 to 5. Thus, in the image, a single fibre occupied an area of
16-25 pixels. OCT data were acquired from the camera by downloading successive frames into image
buffers as the mirror in the processing interferometer was scanned over a distance of typically 0.2-2 mm.
Data were processed and displayed either as 2D slices, showing x-z planes (depth dices) or x-y (en-face)
planes parallel to the sample surface, as shown in figure 5. Slices stored in either orientation can be stacked
to produce a full 3D volume image, athough the visua interpretation of thisis more difficult. The sampling
interval was selected to provide data at 300-400 depth positions over a total depth scan range of about
600um, allowing for each fringe envel ope encountered to be sampled at |east ten times with the source used.

4.2.1 Sequential subtraction. The OCT signal cannot be isolated from the dc component prior to digitization,
because digitization takes place within the camera. There is no access to the analogue signal for pre-
digitization filtering. The presence of the dc background places alimitation on the SNR for direct imaging of



the low-contrast fringes typical in OCT. The OCT signal can, however, be isolated following acquisition, by
appropriate combination of images acquired under different phase conditions.

In x-y mode, sample interfaces can be identified by applying a sequential subtraction agorithm to pairs of
incoming images, and monitoring the difference value obtained for each pixel. When this value reaches a
maximum, corresponding to the peak of a fringe envelope, the scan position is recorded in the find output
buffer’®, A number of samples were investigated, composed of combinations of mirrored and glass surfaces
inair.

Figure 5. Schematic of sample volume showing the coordinate system used and the image orientation for (A)
en-face and (B) depth slice imaging.

4.2.2 Modulated acquisition with phase-binning
If the sampling interval is much smaller than the OCT fringe period, sequential subtraction is simple to
implement, as acquisition need not be synchronised with z-scanning. However, athough this method locates
the peak of the OCT envelope, it does not accurately measure the amplitude. We therefore investigated a 4-
step ‘phase-binning’ scheme, described by Dubois et al*’, implemented by modulating the path length
sinusoidally, using a piezo-mounted mirror, and pulsing the source synchronously with a duty cycle of 25%.
This alows sets of images to be acquired that correspond to intensity integration over each of the four
quarters of the applied modulation period™.
Thevariation in optical intensity | with time, at any camera pixel, is given by

| =1q + Acos(¢ +y sin(2rft + 0)) (1)

where |q is the average intensity, A the amplitude of the OCT signal,y and f the amplitude and frequency
respectively of the path-length modulation, and ¢ and 6 areinitial phase values.

The pixel intensity values for the four images collected during each quarter of the modulation cycle are
denoted E;, where i=1,2,3,4. Application of the Bessel function expansions I's and I'; for the integrated
intensity values obtained using (1) enables the dc part of the signal to be rejected, by straightforward
arithmetic combinations £ and X of the four images, as follows:

ZS:_E1+ E2+E3—E4 OCFSAS|n¢ (28.)
2. =-E +E, - E3+E; <« Acos¢ (2b)
For the particular values v =2.45 and 6=0.96, the two Bessel function expansions I's and I, are equal,

allowing the interferometer phase to be eliminated and the envelope of the OCT signa to be measured
directly. The resultant image is, in fact, proportiona to the square of the OCT envel ope amplitude.

s 24z =21 A2 (3)

5. SNR calculations

When assessing a conventional OCT system using high-bandwidth photodetectors, a signa-to-noise analysis
based upon the contributions from photon noise, detector noise and excess noise is required. For a full-field
system using a CCD camera, we monitor accumulated charge rather than a continuous photocurrent, and



detection is essentially a photon-counting process. The bandwidth filtering and balanced detection techniques
that can be applied to improve SNR when using photodetectors are not available in the case of camera
detection. A large dc background will dominate the acquired images, with superimposed |ow-contrast OCT
fringes.

The SNR calculation for camera acquisition takes account of the camera dark noise and readout noise, and
the Poisson distributed photon noise on the optica signal. When using the four-step binning algorithm

described in section 4, the resulting expression for the signal-to-noise is™
2
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Where N is the number of images acquired for each of the four phase ranges, &« is the full-well capacity of
the camera (32,000 el ectrons for our camera) and v is the fringe contrast, given by
2/R4CR .

"“ R4 tCR+ 2R, )
Here R, R and Ry are the reference reflectivity, signal reflectivity and proportion of incoherent background
at the detector respectively. C, in our system, is the recoupling efficiency in the Fizeau cavity. Typically
more than 70% of the light is currently lost in re-coupling in the Fizeau section, because NA matching
between the bundle and the focusing optics is rather poor. This could be improved by using custom lenses to
design a probe with appropriate input and output NA values. Although more costly, a telecentric probe
system, offering a very long Rayleigh range, would be theidea solution. A factor of C ~ 0.3 isincluded asa
multiplier for the sample reflectivity in our current system, to account for recoupling losses.
In a Michelson interferometer system the incoherent signal is generally less than 1%, assuming stray
reflections from fibre ends and bulk components have been suppressed. In the Fizeau system, again assuming
suppression of the bundle front-face reflection, the main contribution to the incoherent signal is a large dc
component resulting from the dual interferometer arrangement. Light which has travelled through both
interferometers, but is not path-length matched, makes no contribution to the OCT signal. This fraction is
given by

2R =R +CR (6)
The factor of two arises because R,,. is defined at the detector, at which position half of the light returning

from reflections in the Fizeau interferometer has been lost. The minimum detectable reflectivity can be
defined by a SNR of 2. Thisleadsto

AR ¢
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For R =0.04 and C=1, this suggests a theoretical minimum detectable reflectivity of about 5 x 10°, or -53
dB when N=1. Taking into account fibre recoupling losses, and the fact that most pixelsin are not optimally
illuminated, alters this value to afigure closer to 10, or 40 dB.

The camera noise contributes significantly to the total noise. We used a 12-bit camera with a full well
capacity of 32,000 electrons. The theoretical dark charge noise was typically 20-100 electrons at integration
times used, and the quoted readout noise about 12 electrons. The total measured rms variation on any pixel
due to camera noise was about 50 electrons, which will further degrade the SNR from the theoretical value.
We would expect, taking this into account, to detect a minimum reflectivity somewhere between 10 — 10°
(-40 to-30 dB) with the current system, corresponding to a fringe contrast of around 0.06 in the origina
cameraimages.

SNR can be increased by accumulation of multiple images at each depth position. Accumulating images,
although it slows down the acquisition process, should lead to a significant improvement in the theoretica
SNR. Averaging 10 images for each scan position would be expected to improve the minimum detectable
reflectivity by about 10 dB (to between -50 and -40 dB), sufficient for some biological applications and
many engineering applications. The theoreticdl SNR also would be increased, for optimaly illuminated




pixels, by using a cooled camera with a larger full-well capacity and lower noise. [llumination with a near-
Gaussian beam profile will clearly result in optimal performance only close to the centre of the image. A top-
hat illumination profile would be preferred.

6. Results

The ability of the system to detect surfaces of varying reflectivity was assessed by interposing a 200um thick
microscope cover dip across and in contact with a mirror placed in the sample position, so as to cover about
half of the cameraimage. Figure 6 shows (a) an en-face image, (b) a depth dice image, (c) a representation
of the sample and (d) a 3D plot generated from the en-face image with slight smoothing applied using a 3x3
median filter. The results presented in figure 6 were obtained using simple sequential subtraction processing.
The trand ation stage was not in this case synchronised with acquisition.
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Figure 6. (a) Representation of the sample composed of a mirror and a glass coverdlip. (b) En-face OCT
image of sample. (c) Depth slice OCT image corresponding to the position of the dotted linein (b). (d) 3D
plot generated from smoothed version of image (a).

The interface corresponding to the mirror surface can be clearly identified in both representations. The
portion of this interface that is in contact with the coverdip appears shifted in the images by about 100um.
This is because the cover dip increases the optical path length in the Fizeau by a distance t(ng-n,), wheret is
the cover dlip thickness and ng=1.5 and n,;=1 the refractive indices of the glass and of air respectively. The
sample area addressed is about 1.4 mm x1mm, with a scan depth of about 0.4 mm, and the depth dice
corresponds to the central row in the en-face image, as shown.



The glass/air interface at the front of the cover dip produces only a 4% reflection, and is therefore more
difficult to detect than the mirrored surfaces. However, athough much fainter than the signals produced from
the mirror reflections, it isvisible in the depth dice as a second line near to the top of the image.

Following implementation of the 4-step phase-binning processing scheme, further measurements were made
to assess the ability of this technique to remove the dc component, and to investigate the effect of
accumulating multiple images for each of the four phase ranges. Images of a mirror surface, obtained using
accumulations of 1 and 10 frames at each depth, are shown in figure 7.
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Figure 7. OCT mages obtained from amirror surface (inverted greyscale) accumulating (a) 1 and (b) 10
frames for each phase range.

Variations in illumination efficiency between fibres complicate calculation of the SNR for the images shown
in figure 7. The SNR for the best-illuminated pixels in the first image is about 40 (16 dB), compared with a
theoretical SNR of 28 dB obtained from the analysis in section 5, assuming about half the full-well capacity
of the CCD camerato be used for the best-illuminated pixels. The theoretical analysis ignores readout noise,
and it is aso possible that the recoupling factor used in the theoretical calculation is over-optimistic. The
SNR with 10 accumulations increases to about 100 (20 dB). The improvement in contrast is clearly visiblein
the image using a higher number of accumulated frames. However, the improvement is less than would be
expected for the number of accumulations used, which suggests that part of the residual signal results from
coherent mixing and is not eliminated by the averaging process.

If a display linear with signal value is used, the visual dynamic range is limited to 36 dB, therefore it is
preferable to use a non-linear scale that compresses the data range. In this case, the square root of the images
has been taken before display. The current SNR is insufficient to obtain an image from tissue, due in part to
the high incoherent signal contribution inherent to the Fizeau configuration, which places a limit on system
performance, and in part to an apparent residual coherent signa, which may result from short (tens of
microns) reflective cavities within the optical system. .

Figure 8 shows a depth slice OCT image of the surface of a 300 um thick plastic film (n 1.4 using 50
acquisitions per phase range at each depth position sampled. An inverted greyscale is used in this case. The
upper and lower surfaces are plainly visible in the central region of the figure, although the SNR is only just
sufficient in the region of less well illuminated pixels towards the periphery.

Figure 8. Inverted greyscal e image of both surfaces of a 300 wm thick plastic film (accumulating 50 frames)
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The value of minimum detectable reflectivity would be improved by increasing the level of illumination to
fully utilise the full-well capacity of the camera, and by improving NA matching in the probe section to
ensure optimal recoupling to the fibre bundle.

7. Discussion

The bundle-based approach to 3D OCT image acquisition has been successfully demonstrated above for
laboratory samples of relatively high reflectivity. The elimination of x-y scanning alows a completely
passive endoscopic probe to be configured. There are two important questions to be addressed. The first is
whether the technique has potential for measurements in biological tissue, where reflectivity values are
expected to be two or more orders of magnitude lower than those of the current non-biological laboratory
samples. The other issue is acquisition speed; can a bundle-based system run at speeds comparable to current
systems incorporating fast x-y galvo-scanners?

7.1 NR performance. The signa-to-noise ratio (SNR) of the images shown above is adequate for the
measurements made here, but requires significant improvement to allow more complex samples to be
studied. One straightforward way to achieve this would be by increasing the power of the source, which
currently provides a maximum of only around 7 mW of optical power. The optical arrangement shown is not
optimised for efficiency. Half the light is currently lost in the processing interferometer and a further 50%
each time light passes through the beam splitter at the input of the fibre bundle. The use of a bulk optica
circulator, would greatly improve the optica efficiency.

An important factor in optimising depth resolution is to minimise cross-tak between the fibres, which
otherwise produces small spurious interferometric intensity oscillations at depth scan positions slightly off
the path-baanced condition for a particular sample interface. These arise, as discussed above, when the
focused beam-waist at the sample from each fibre becomes larger than the inter-fibre spacing. We are able to
reduce inter-fibre crosstalk to anegligible level, but as our Rayleigh range is less than 100 um, this currently
requires very careful positioning of the beam focus with respect to our sample. Improvements to the design
of the focusing optics in the probe head, to increase the Rayleigh range, would relax this requirement
significantly, and improve SNR for depth positions away from the beam focus.

7.2 Acquisition speed. The processing time currently required in our system to generate an image in either
the x-y or x-z plane is of the order of several minutes. However, this is limited primarily by a slow
processing algorithm. The camera is capable of reading out data at 30 frames per second; faster if pixel
binning is employed to reduce the amount of data per frame. Thus a set of say 100 images acquired a a
sampling interva of 2 um could be obtained within 3s or less and stored straight to RAM. Some further time
would need to be allocated for post-processing, but 3D OCT information would be obtained in seconds rather
than minutes. Current fast systems using galvanometer scanners produce an image in around 1-5 s, so the
potential acquisition speed of the camera system approaches that of mechanically scanned instruments.

8. Conclusions

An imaging fibre bundle has been employed to construct a full-field OCT system with a passive endoscopic
probe section. It has been shown that 3D structura information can be obtained from a sample without any
requirement for beam-scanning in the x-y plane normal to the optical axis. The spatia resolution of the
bundle-based system compares well with that of active OCT designs using galvanometer mirrors. For the
current system, the spatial resolution in the x-y plane and the depth resolution are both about 30um.
Measurements have been successfully made on non-biological surfaces in air, over scan depths of up to
about 0.75 mm. The SNR of the system is adequate to detect glass/air interfaces, but is currently insufficient
to alow biological samples to be imaged. However, modifications to improve the SNR to the required value
have been discussed, including an increase in source power and inclusion of additional optical componentsto
produce a more efficient configuration. Further investigation, following implementation of these
improvements, will determine the ultimate quality of the 3D images acquired when bundle-based OCT is
used to examine biological tissue.
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