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Abstract 

Antigenic variation is an immune evasion strategy that has evolved in viral, bacterial 

and protistan pathogens. In the African trypanosome this involves stochastic switches 

in the composition of a Variant Surface Glycoprotein (VSG) coat, using a massive 

archive of silent VSG genes to change the identity of the single VSG expressed at a 

time. VSG switching is driven primarily by recombination reactions that move silent 

VSGs into specialised expression sites, though transcription-based switching can also 

occur. Here we discuss what is being revealed about the machinery that underlies 

these switching mechanisms, including what parallels can be drawn with other 

pathogens. In addition, we discuss how such switching reactions act in a hierarchy 

and contribute to pathogen survival in the face of immune attack, including the 

establishment and maintenance of chronic infections, leading to host-host 

transmission. 

 

Antigenic variation in African trypanosomes 

African trypanosomes are protistan parasites that infect a range of mammals and are 

transmitted between successive hosts by the tsetse fly. In all mammals, the parasites 

replicate extracellularly in the tissue fluids and bloodstream. Despite continuous 

exposure to immune attack trypanosome infections can be very prolonged, causing a 

range of pathological manifestations (Barrett et al., 2003). Trypanosome persistence 

in the mammal is due to antigenic variation, which involves changes in the identity of 

the Variant Surface Glycoprotein (VSG), which forms a dense cell surface coat that 

shields invariant surface antigens from immune recognition. Antibodies against the 

VSG kill the trypanosome, but the population survives due to stochastic switching to a 

coat composed of an antigenically distinct VSG. The rate of VSG switching (up to 10-

3 switchers/cell/division)(Turner and Barry, 1989) is typical of what Moxon and 

colleagues termed ‘enhanced phenotypic variation’ (Moxon et al., 1994) in subset of 

genes in viral, bacterial and eukaryotic pathogens (Deitsch et al., 2009).  

Trypanosomes have made a huge investment in antigenic variation. The genome of T. 

brucei contains >1600 VSG genes (Marcello and Barry, 2007), hugely in excess of 

antigenic variation gene families elsewhere (Table 1). Most (80-90%) of this VSG 

archive is in 11 diploid, megabase-sized chromosomes; the subtelomeres harbour 



silent VSG arrays (Berriman et al., 2005), while sites for VSG transcription, termed 

the VSG expression sites (ES) (Fig.2), are found directly proximal to the telomeres 

(Hertz-Fowler et al., 2008). Only a minority (~5%) of VSG array genes are functional, 

with the large majority (~85%) being pseudogenes (Marcello and Barry, 2007), which 

(in common with other pathogens) provide a critical resource during antigenic 

variation. T. brucei has also evolved novel, aneuploid chromosomes to facilitate 

antigenic variation. Minichromosomes (Wickstead et al., 2004) are present in ~100 

copies per cell and harbour VSGs at their ends, suggesting they evolved to expand the 

telomeric pool of VSGs (Barry et al., 2003). Intermediate chromosomes are related to 

minichromosomes (Wickstead et al., 2004) and contain ES. These chromosomes may 

also be a product of the evolutionary drive to expand the VSG archive, or may indicate 

selection for increased flexibility in ES-associated gene (ESAG) expression (see 

below). Two modes of VSG switching occur: recombination reactions that move 

silent VSGs into the ES, or transcriptional switches in which the single actively 

transcribed ES is silenced and a silent ES becomes actively transcribed. Given that the 

overwhelming number of archival VSGs are outwith the ES, recombinational 

switching is the main player in T. brucei antigenic variation.  

Recombination mechanisms in T. brucei antigenic variation  

Three recombination pathways contribute to VSG switching. The extent to which the 

underlying recombination machinery is shared by these pathways, and whether or not 

each can occur by different recombination reactions, is being dissected. Additionally, 

VSG switching by recombination operates in a hierarchy (Capbern et al., 

1977;Morrison et al., 2005), the basis for which is not fully understood. In the 

hierarchy, telomeric VSGs are activated earliest in infections, followed by intact 

subtelomeric array VSGs, and finally pseudogenes, which are recombined to form 

functional VSG ‘mosaics’ (Marcello and Barry, 2007;Morrison et al., 2005;Thon et 

al., 1990). 

The most commonly described recombination pathway is gene conversion, where a 

silent, functional VSG is copied and transferred to the ES, replacing the resident VSG 

(Fig.1). The sequence copied in this reaction normally extends beyond the VSG ORF. 

Upstream, the boundary is often degenerate 70 bp repeats (Liu et al., 1983), which 

flank virtually all VSGs (~90%) (Marcello and Barry, 2007), whereas gene 

conversions in which a silent ES acts as VSG donor can extend much further upstream 



(Pays et al., 1983), even including the VSG promoter ~50 kbp distant (Hertz-Fowler et 

al., 2008). Downstream, gene conversion of array VSGs can extend to the 3’ coding or 

non-coding parts of the gene (Bernards et al., 1981), or to the chromosome end (de 

Lange et al., 1983). A number of recombination models can account for VSG gene 

conversion. Synthesis-dependent strand-annealing (SDSA) does not generate 

crossovers and has been invoked (Barry, 1997;Borst et al., 1996) as it avoids 

potentially lethal translocations when array VSGs are copied into the ES (Fig.1B). 

However, given that a substantial minority of VSGs are telomeric, break-induced 

replication (BIR) has also been suggested (Barry and McCulloch, 2001;Dreesen et al., 

2007). BIR (Fig. 1D) is enzymatically and kinetically distinct from SDSA (Lydeard et 

al., 2007), primarily in that involves repair by a processive DNA replication fork 

established from one end of a DNA double strand break (DSB). In yeast, BIR can 

stabilise telomeric repeats using subtelomeric sequences (Lydeard et al., 2007), and 

this may be promoted in T. brucei VSG switching by the preponderance of conserved 

subtelomeric sequences, such as the 70 bp repeats. In addition, long-range VSG gene 

conversions (Hertz-Fowler et al., 2008) may be better explained by BIR than SDSA. 

Nevertheless, no genetic or mechanistic dissection has shown that SDSA and BIR 

both act in VSG switching. Moreover, if both reactions do act, it is highly likely that 

BIR is important only for activation of telomeric VSGs, while SDSA can activate any 

gene in the archive.  

A second recombination pathway has been termed reciprocal, telomeric VSG 

exchange (Pays et al., 1985). Here, chromosome ends are exchanged by crossover, 

moving a silent telomeric VSG into the active ES and retaining the previously active 

VSG on the other chromosome, most likely by double strand break repair (Fig. 1B). It 

seems this is a minor pathway of VSG switching. Indeed, recent work has suggested 

that the ES undergo extensive recombination within the ESAGs upstream of the VSG 

(Hertz-Fowler et al., 2008), and it is possible that VSG reciprocal exchange might be a 

by-product of this activity.  

A final recombination pathway is used to generate novel, functional VSGs by 

combining portions of the ORFs from at least two pseudogenes to yield VSG mosaics 

(Thon et al., 1990). A number of observations suggest this is a distinct pathway to 

intact VSG gene conversion. First, this appears to be a relatively inefficient reaction, 

with VSG mosaics observed late in infections (Marcello and Barry, 2007). 



Nevertheless, the huge number of VSG pseudogenes suggests this is very important 

(Barbet and Kamper, 1993), expanding the VSG coat repertoire beyond that encoded 

directly from the genome. Second, in mosaic gene conversion recombination occurs 

within the VSG ORFs, rather than flanking homology, despite VSGs sharing very 

limited overall primary sequence homology. Third, mosaic VSG formation involves 

multiple donor genes, with a functional gene most likely built up sequentially by 

segmental gene conversions. Finally, activation of intact VSGs almost certainly targets 

the ES (Boothroyd et al., 2009), but it is unclear if this is also the case for mosaic 

VSG formation. Sequencing the bloodstream stage ES repertoire in one T. brucei 

strain revealed that each site possesses a functional VSG adjacent to the telomere 

(Hertz-Fowler et al., 2008) and it is unclear if the VSG pseudogenes sometimes 

observed upstream are assembly intermediates.  

Molecular players in antigenic variation by recombination 

VSG switching, at least of intact VSGs, occurs by exploiting homologous 

recombination (HR), a universally conserved DNA repair mechanism (San Filippo et 

al., 2008). Mutation of three key factors of HR has been shown to impair (not 

abrogate) VSG switching: RAD51, the central enzyme of HR (McCulloch and Barry, 

1999), and BRCA2 (Hartley and McCulloch, 2008) and RAD51-3 (Proudfoot and 

McCulloch, 2005), distinct proteins that mediate RAD51 activity (San Filippo et al., 

2008). These data show striking parallels with Neisseria type IV pili antigenic 

variation (Hill and Davies, 2009), which occurs by gene conversion of silent, non-

functional pilS genes to a  pilE expression locus. This is dependent on RecA, the 

bacterial homologue of eukaryotic RAD51, exploiting each available subpathway of 

RecA-dependent HR, initiated by a RecF-like route (Mehr and Seifert, 1998) or by 

recBCD (though the evidence for this is controversial, and may be strain-

specific)(Hill et al., 2007). T. brucei VSG gene conversion also appears to exploit 

different recombination sub-pathways: residual VSG gene conversion in RAD51 

mutants suggests RAD51-independent recombination can act, while four RAD51 

paralogues appear to make non-equivalent contributions to VSG switching (R. 

Dobson, C.Stockdale and R. McCulloch, unpublished)(Proudfoot and McCulloch, 

2005). Intriguingly, the contribution of mismatch repair (MMR) to antigen gene 

conversion in the two organisms also shows parallels. MMR recognises and repairs 

base mismatches, which can occur during recombination between sequence-diverged 



DNA molecules, in which context MMR suppresses recombination. Surprisingly, 

mutation of neither mutS in N. gonorrhoeae nor the eukaryotic orthologue, MSH2, in 

T. brucei alters antigenic variation frequency, despite elevating rates of mutation and 

HR (Bell and McCulloch, 2003;Hill and Davies, 2009). This could suggest the gene 

conversion reactions are not subject to normal MMR surveillance, which for T. brucei 

could implicate an MMR-independent HR reaction (Barnes and McCulloch, 2007). 

Alternatively, MMR may function both to initiate and regulate antigen recombination, 

nullifying the phenotype of any mutation.  

The use of both antigen pseudogenes and intact genes for gene conversion in a single 

pathogen is rare (Table 1). To date, approaches in T. brucei have only assayed for the 

recombination factors that contribute to, or have modelled experimentally (Boothroyd 

et al., 2009), recombination of intact VSGs. Nevertheless, comparison with other 

pathogens may provide clues regarding mosaic VSG formation. B.  burgdorferi 

antigenic variation involves recombining silent vls segments into a vlsE ES (Norris, 

2006) and looks superficially similar to that of Neisseria, but is RecA-independent 

(Liveris et al., 2008). The explanation for this difference my reside in the fact that 

VlsE antigenic variation involves apparently random segmental conversions from 

multiple vls donors, without any clear homology sequences guiding the reaction 

(Zhang and Norris, 1998). This contrasts with the ‘mini-cassette’ process of Neisseria 

pilS gene conversion (Hill and Davies, 2009), which is normally guided by upstream 

and downstream flanking sequence homology, similar to the recombination of intact 

vlp/vsp genes in B. hermsii (Dai et al., 2006). In principle, therefore, B. burgdorferi 

antigenic variation appears more similar to A. marginale msp2 gene conversion, 

which employs only a very small donor archive and uses segmental gene conversion 

to generate huge numbers of variants (Futse et al., 2005). This reaction appears to be 

‘anchored’ by sequence homology at one flank, but is resolved in regions of limited 

homology, allowing huge recombinatorial flexibility (Futse et al., 2005). Two 

speculations seem warranted. First, it is likely that B. hermsii antigenic variation 

compares with gene conversion of intact T. brucei VSGs and Neisseria pilS genes in 

being driven by RecA/Rad51-dependent recombination. Second, the segmental gene 

conversion reactions that underlie T. brucei VSG and A. marginale msp2 mosaic gene 

formation, like B. burgdorferi vlsE switching, are (at least partly) RecA/Rad51-

independent. Segmental gene conversion pathways may have evolved to elaborate 



antigenic variation, allowing highly protracted infections marked by huge antigen 

variability and allowing superinfection in partly immune hosts. What features are 

common to those pathogens that employ only intact genes are less clear; this is not 

limited to intracellular pathogens (Table 1), but may be used where a relatively 

precise surface antigen activation hierarchy is seen, such as in B. hermsii (Barbour et 

al., 2006).  

Initiation of VSG switching 

A question long unanswered in any pathogen, is how are recombination-based 

switching events initiated? DSBs within the antigen ES have been suggested as the 

likeliest culprit (Barry, 1997;Borst et al., 1996;Hill and Davies, 2009) and recently 

Boothroyd et al. (Boothroyd et al., 1980) provided evidence that that this may be so 

for T. brucei VSG switching. Controlled generation of a DSB adjacent to the 70 bp 

repeats in the active ES increased the rate of VSG switching and initiated VSG gene 

conversion. In addition, using ligation-mediated PCR, DNA breaks could be detected 

within the 70 bp repeats upstream of the VSG in the active ES, but much less readily 

(if at all) in an inactive ES. The 70 bp repeats have been predicted as the site of 

initiation previously (Barry, 1997;Liu et al., 1983), but further work is needed to 

determine how they act (Barry and McCulloch, 2009). This may not be 

straightforward, as several observations appear at odds with the suggestion that the 70 

bp repeat breaks always initiate VSG switching. First, both previous work 

(McCulloch et al., 1997) and Boothroyd et al (Boothroyd et al., 2009) examined VSG 

switching in T. brucei cells expressing VSG from an ES engineered to lack 70 bp 

repeats. Neither study could detect differences in switch frequency compared with T. 

brucei expressing VSG from the same ES when a large array of 70 bp repeats was 

retained. Second, in all eukaryotes DNA breaks elicit a DNA damage response, 

allowing the cell to co-ordinate repair with cell cycle progression. For DSBs, a key 

factor is the Mre11-Rad50-Nbs1/Xrs2 complex (Harper and Elledge, 2007), but 

mutation of MRE11 in T. brucei has no discernible effect on VSG switching 

(Robinson et al., 2002), even though the protein is clearly important for genome 

stability (Robinson et al., 2002;Tan et al., 2002). Finally, generation of a DSB 

appeared not to recapitulate the full diversity of VSG switching events, in that all 

switching reactions used telomeric VSGs as donors (>80% residing in silent ES). This 

raises the question of whether DSBs also elicit switching of intact array VSGs or VSG 



pseudogenes. Indeed, we do not yet know if DSBs in the ES recruit RAD51 for HR, 

as seen elsewhere in the genome (Glover et al., 2008).  

What is the role of VSG transcriptional switching, and how is it catalysed? 

Antigenic variation relies on the expression of a single ES from many, a process 

termed allelic exclusion (Borst and Genest, 2006). An important context to understand 

this process is the observation (Navarro and Gull, 2001) that the active ES, which is 

transcribed by RNA polymerase (Pol) I, does not localise to the nucleolus (as 

expected for PolI-transcribed genes such as rRNA) but to a putative subnuclear site 

termed the expression site body (ESB). A model for the functioning of the ESB 

(whose constitution remains unknown) is that it accommodates only a single ES, 

explaining why attempts to select for trypanosomes expressing >1 ES yield only 

unstable, rapidly switching intermediates (Chaves et al., 1999). Recently, a number of 

factors have been described whose mutation or RNAi-mediated knockdown results in 

derepression of transcription from the silent ES. Each factor influences chromatin 

structure, and in each case derepression affected differing amounts of the ES 

transcription units (Fig. 2). RNAi of TbISWII, a SWI2/SNF-2-related chromatin 

remodelling factor, leads to a  ~30 fold increase in transcripts of genes proximal to the 

ES promoter (Hughes et al., 2007). Conversely, RNAi of TbRAP1, which in yeast 

binds telomeres and contributes to heterochromatin formation, causes a 2-50 fold 

increases in VSG transcripts from the silent ES, but lesser derepression proximal to 

the promoter (Yang et al., 2009). A similar telomere-mediated effect is seen in histone 

deacetylase TbSir2 mutants (Alsford et al., 2007), but limited to the region 

downstream of the VSGs. Finally, RNAi of DOT1B, one of two T. brucei histone H3 

methyltransferases, results in ~10 fold depression of the whole silent ES transcription 

unit (Figueiredo et al., 2008). In addition, DOT1B RNAi caused accumulation of cells 

expressing two VSGs on the cell surface, indicating a perturbation in VSG coat 

transition during switching. These studies reveal that a number of epigenetic 

processes contribute to singular ES expression, but it is striking that the extent of 

silent ES de-repression never reveals transcription to the levels from the active site, 

and the frequency of VSG switching appears not to change (where tested). It seems, 

likely, therefore, that these are secondary processes that follow from the establishment 

of singular expression. Moreover, the factors, and potential triggers, that mediate 



transcriptional switching remain elusive for trypanosomes, as for pathogens 

exclusively reliant on this reaction, such as P. falciparum (Scherf et al., 2008).  

A broader question about transcriptional switching in trypanosomes is the purpose of 

this reaction. Given the overwhelming numbers of silent VSGs that must be activated 

by recombination, does the presence of ~20 ES add much to antigenic variation, or 

does it contribute another function? It has been suggested that the reason for 

possessing multiple ES may lie in the ESAGs, not the VSGs (Bitter et al., 1998;Young 

et al., 2008). ESAG6 and ESAG7 form a heterodimeric receptor for host transferrin, 

supplying the parasite with iron. A host-range hypothesis has stemmed from this, 

suggesting that transcriptional switching reveals different transferrin receptors 

adapted to the different mammalian hosts trypanosomes infect (Bitter et al., 1998). 

This has been extended to other ESAGs and, though questioned by others (Steverding, 

2006), would suggest that transcriptional switching provides a means for infection 

establishment. However, we cannot yet exclude that transcriptional switching 

provides antigenic variation functions throughout a chronic infection: the silent ES 

may provide sites for the generation of VSG mosaics (Barry and McCulloch, 2001), or 

might provide a failsafe switch mechanism when VSG pseudogenes are switched into 

the active ES. Understanding the evolution of the VSG system for antigenic variation 

would shed light on this (Barry and McCulloch, 2001). For instance, do 

transcriptional and recombinational switching reactions share a common trigger? 

Infection dynamics and antigenic variation 

The essence of the antigenic variation system in trypanosomes is to ensure survival 

within the mammal to allow transmission to the next host, via the tsetse vector. The 

system is clearly efficient, since infections in experimental cattle can last for hundreds 

of days (Luckins and Mehlitz, 1976), while human infections can have a prepatent 

period of years before clinical signs emerge (Barrett et al., 2003). This picture of a 

chronic disease is not mirrored by the majority of the trypanosome antigenic variation 

literature, which, largely due to experimental restrictions, has concentrated on the first 

peaks of parasitaemia, essentially the initiation and establishment of infection. Despite 

these shortcomings, studies that have ventured into the chronic phase of infection  

(Capbern et al., 1977;Kamper and Barbet, 1992;Marcello and Barry, 2007;Morrison 

et al., 2005;Thon et al., 1990) have revealed some intriguing insights into the 

dynamics and functioning of antigenic variation. 



Antigenic variation occurs independently of host immune responses as a stochastic 

process. However, it is antibody selection that results in the observed hierarchy of 

VSG expression. Experimental infections and mathematical modelling suggest the 

first peak of parasitaemia is controlled by a combination of density dependent growth 

arrest and immunity (Lythgoe et al., 2007;Morrison et al., 2005). The sequential 

expression of VSGs that follows is a product of cumulative antibody responses that 

select against the more frequently activated VSGs as the infection progresses. As we 

have argued above, VSG switching is two-tiered, using one form of recombination 

(mosaic VSG formation) that is VSG-sequence homology-dependent, and another 

(gene conversion of intact VSGs) driven by sequence homology in the flanking 

regions. Mosaic VSG formation is relatively rare (Barry, 1997;Kamper and Barbet, 

1992;Thon et al., 1990) and predominates later in infection (Marcello and Barry, 

2007). This difference in rate of switching between VSG classes provides some basis 

for understanding the VSG hierarchy, but a modelling analysis (Lythgoe et al., 2007) 

suggests further subtleties. Within the limitations of the model, only by grouping 

genes into subsets with distinct ranges of switching probabilities could a realistic 

representation of in vivo infection dynamics be generated. These groupings may 

correspond to (a) those genes that comprise intact and functional open reading frames 

that are switched to by a simple single-step recombination reaction, and (b) 

pseudogenes requiring more than a single recombination event to create an intact ORF 

and functional protein. Within these probability clusters there is further hierarchy; for 

example, within (a), probability of switching has been experimentally demonstrated to 

be dependent upon the locus position of the donor sequence (Aline, Jr. et al., 1985;Liu 

et al., 1985;Morrison et al., 2005;Robinson et al., 1999) or (b), dependent upon the 

number of recombination events required to create a functionally expressed VSG, 

from involving few sequences (Pays et al., 1983) to multiple and complex 

recombinations (Kamper and Barbet, 1992;Marcello and Barry, 2007). Several 

aspects remain unclear, however. Most prominently, we do not yet know if the 

transition to mosaic VSG formation involves a change in dominance of switching 

mechanisms per se (i.e. specific recombination pathway differences), mainly because 

recombination pathway responsible has not been characterised. The demonstration of 

RAD51-independent recombination in T. brucei requiring as little as 7-13 bp of 

homology (Conway et al., 2002;Glover et al., 2008) suggests a pathway, but this 

remains to be tested. There may be further mechanistic differences in VSG switching 



at the species level. The VSG archive of T. brucei is now fairly well characterised, but 

those of T. congolense and T. vivax have not been similarly analysed. Genome 

projects are present for both (http://www.genedb.org/), and preliminary analysis 

suggests that T. congolense does not have the 70-bp repeat system of T. brucei (L. 

Marcello, PhD thesis), hinting that phenotypic similarities in infection profiles may 

hide mechanistic differences in VSG switching. 

Recombination-based determinants of switch hierarchy have been described during 

antigenic variation in other pathogens. In B. hermsii the activation probability of silent 

(functionally intact) vlp/vsp genes appears to be dependent on the sequence homology 

and positioning, respectively, of upstream and downstream homology elements 

(Barbour et al., 2006). A. marginale also displays a hierarchy, but using only 

pseudogenes: simple msp2 mosaics appear preferentially early in infection and more 

complex mosaic genes predominate later, in the presence of a patent specific immune 

response to the earlier, simple mosaics (Palmer et al., 2007). It has been suggested 

that the simple mosaic confer a fitness advantage over the complex mosaics, but this 

fitness advantage is balanced by the simple mosaics being more immunogenic 

(Zhuang et al., 2007). A potential explanation for antigens expressed early in 

infection being more immunogenic is that if the switching probability matrix is 

maintained throughout infection, they will be continuously switched to, giving rise to 

a persistent stimulation of the immune response to those epitopes. Once the antibody 

response against these epitopes is patent, further switches to these commonly 

switched to antigens will be redundant, but the maintenance of this spectrum of 

switching probability throughout infection will result in the characteristic profile (in 

trypanosomes and Anaplasma) of large, early parasitaemic peaks followed by 

intermittent and smaller peaks (Lythgoe et al., 2007)(i.e. a reduction in the effective 

switching rate). Variant fitness requires addressing in trypanosome chronic infections, 

as this may be due to cross-reactive epitopes, as suggested in Anaplasma, but also 

potentially the creation of non- (or less-) functional VSGs as the more complex (and 

less probable) mosaic formation occurs, and consequently reduced fitness of the 

trypanosome expressing that VSG. In addition, homology-driven switching is likely to 

generate VSGs with epitopes that are cross-reactive with patent immune responses, 

and such cross-reactivity has been suggested to play a vital role in determining 

Plasmodium infection dynamics (Recker et al., 2004). Cross reaction between 



immune responses to VSGs has not been observed in trypanosome infections 

(Capbern et al., 1977;Morrison et al., 2005;Robinson et al., 1999;Van Meirvenne et 

al., 1975), although it is a phenomenon that has not specifically been searched for. 

Given the recent description of loss of memory B cells during trypanosome infections 

(Radwanska et al., 2008), it might be expected that this immunosuppression will 

allow increased tolerance of cross-reactive epitopes generated as the infection 

progresses. Loss of immunological memory may explain the reappearance of early 

variants late in infection observed in mice, rabbits and goats (but not cattle)(Barry, 

1986). Immune selection at a population level, combined with homology-driven 

switching, may drive VSG archive evolution down homology-mediated routes, 

explaining how strain divergence in VSG repertoire develops (Hutchinson et al., 

2007). The continual generation of antigenic diversity at the repertoire level is 

essential to allow the parasite to overcome herd immunity (Futse et al., 2008). 

Antigenic variation undoubtedly combines with other parasite- and host-driven 

mechanisms to maintain chronicity.  Probably the most important parasite 

determinant, other than the antigenic variation system, for maintaining chronic 

infections is the self-regulation of growth by the density-dependent differentiation of 

mitotically dividing long slender bloodstream form cells to non-dividing short stumpy 

form cells, which are pre-adapted to initiate infection in the tsetse fly midgut (Barry 

and McCulloch, 2001). The interplay of differentiation and antigenic variation are key 

(Lythgoe et al., 2007;Tyler et al., 2001), and the recent identification of a key marker 

of differentiation will allow this relationship to be examined in detail (Dean et al., 

2009). Further fitness advantages that allow an increased time window for a 

successful switch to novel variants may be at the population level and more generic, 

such as hydrodynamic uptake and removal of bound antibody (Engstler et al., 2007), 

or the advantages conferred by different trypanosome transferrin receptors (Bitter et 

al., 1998). These multiple mechanisms, along with the VSG switching dynamics, will 

contribute to the evolution of fitness within the host. Certainly, when superinfections 

with a different strain of trypanosome are attempted in an animal with an established 

infection, the strain that is established does seem to have a fitness advantage 

(Morrison et al., 1982).  

In summary, the availability of post-genomic tools has begun the exploration of 

several key aspects of antigenic variation, revealing underlying mechanisms and VSG 



switching dynamics in the chronic stage of infection. Understanding this stage may 

explain the apparently uniquely enormous antigen repertoire in trypanosomes, and 

identification of the molecular mechanism of mosaic VSG formation will inform how 

infection time and potential for transmission is maximised. Appreciating the diversity 

of host-parasite interactions is important. Combining markers for both parasite (VSG 

switching and stumpy formation) and host (immune response and antibodies) will 

result in better overall understanding of how trypanosomiasis manifests as a chronic 

disease, and potentially provide opportunities for disease intervention.  
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Figure legends 

Figure 1. Recombination models for VSG switching by gene conversion. A 

Recombination is shown initiated by a DNA double strand break (DSB) in the 70 bp 

repeats (hatched) upstream of the VSG (black arrow) in the active expression site. 

DSB processing reveals 3’ single-stranded ends, a reaction in which MRE11-RAD50-

XRS2/NBS1 acts, providing a substrate for RAD51 to form a nucleoprotein filament. 

RAD51 function is aided by a number of factors, including BRCA2 and multiple 

RAD51 paralogues (not shown). RAD51 catalyses homology-dependent invasion of 

the single-stranded end into intact DNA duplex (grey lines) containing a silent VSG 

(grey arrow); mismatch repair (MMR) limits recombination to sufficiently 

homologous sequences. Three pathways for DSB repair can be used. B shows double 

strand break repair, where newly synthesised DNA is copied from the intact DNA 

duplex and remains base-pared, leading to Holliday junction recombination 

intermediates, whose enzymatic resolution can lead to gene conversion with (not 

shown) or without (shown) cross-over of flanking sequences. C shows synthesis-

dependent strand annealing, where newly replicated DNA is displaced from the intact 

duplex, re-anneals with homologous sequence at the DSB, allowing synthesis of the 

other strand. In D, break-induced replication, an origin-independent replication fork, 



with leading and lagging strand synthesis, forms on the strand invasion intermediate 

allowing replication to the chromosome end. 

Figure 2. VSG mosaic formation by segmental gene conversion. A VSG gene (blue 

box) is shown within an expression site (ES), which is represented as an archetype of 

such a transcription unit: expression site associated genes are shown as functional 

(black box) or pseudogenes (grey box) and are identified by number; repeat sequences 

within (70 bp repeats) or upstream (50 bp repeats) of the ES are indicated by hatched 

boxes; the promoter is indicated by an arrow; and the telomere by a vertical line. 

Segmental gene conversion of three silent VSG genes from the subtelomeric array 

archive is diagrammed, indicating segments from each ORF being combined (arrows) 

to replace the transcribed VSG. The inset shows details of an experimentally verified 

VSG mosaic (adapted from Marcello and Barry, 2007). Three silent VSG pseudogene 

donor ORFs are shown below the mosaic sequence of the functional VSG (identified 

as an expressed cDNA): colours indicate regions of sequence homology between the 

donors and the cDNA, and the potential junctions in the gene conversion(s); overall 

sequence identity is shown.  

Figure 3. VSG switching hierarchy in T. brucei. The graph shows the numbers of T. 

brucei cells (parasitaemia) measured in a cow up to 70 days post-infection (plotted as 

the prepatent period, in days, that a 0.2 ml inoculum of cattle blood achieves a 

parasitaemia of 1×108.1 trypanosomes.ml−1units in a mouse; adapted from Morrison et 

al, 2005). Below is a depiction of the timing of VSG switch mechanism usage and 

gene activation. Transcriptional switching is proposed to occur at the outset of an 

infection, whereas recombination switching is used throughout; note, the former 

proposal is not experimentally verified. Silent telomeric VSGs are activated more 

frequently that intact, subtelomeric array VSGs, which are activated more frequently 

than VSG pseudogenes. During recombinational switching, VSG flanking sequence 

(e.g. 70 bp repeats) is proposed to mediate the VSG switching reactions of intact genes 

early in infections, whereas the formation of VSG mosaics relies on recombination 

using the genes’ ORF sequences later in infections. The intensity of shading in each 

bar represents the effective switching rate, i.e. the proportion of switches that give rise 

to novel VSGs.  

Table 1. Antigenic variation systems in eukaryotic and bacterial pathogens. 



aVSG, variant surface glycoprotein; MSG, major surface glycoprotein; VSP, variant 

specific surface protein; VES1, variant erythorocyte surface antigen, of both α and β 

types; VAR encodes P. falciparum erythrocyte membrane protein 1; VLP/VSP, 

variable large protein/variable small protein; VLS, Vmp-like sequence; PIL encodes 

the type IV pilus; MSP2, major surface protein 2.  

b N/A; not applicable 
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Pathogen Infection strategy Surface antigena Gene no. in archive % of archive pseudogene Expression site no. Switch mechanism RecA/Rad51 dependencyb

T. brucei extracellular VSG ~1600 85 14-23 recombination and transcription Rad51-dependent and -independent
P. carinii intracellular MSG ~80 0 1 recombiation ?
G. lamblia extracellular VSP ~150 0 ~150 transcription N/A
B. bovis intracellular VES1 ~150 ~50 24-42 recombination and transcription ?
P. falciparum intracellular VAR ~60 0 ~60 transcription N/A
B. hermsii extracellular VLP/VSP ~60 0 1 recombination ?
B. burgdorferi extracellular VLS ~15 100 1 recombination RecA-independent
N. gonorrhoeae intracellular PIL ~20 100 1-2 recombination RecA-dependent
A. marginale intracellular MSP2 <10 100 1 recombination ?
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